certcrl usage notes

Last update Feb. 6 2008 by dmitch

Certcrl is a command line tool which provides access to all of the TP module’s cert verification functionality. There are two basic ways to use certcrl. One is to perform a one-shot evaluation of a set of certs and optional CRLs whose filenames are specified on the command line, with a lot of options to invoke various evaluation policies and their options. This is called “command line mode”. The other use for certtool is as an interpreter of a scripting language which was designed specifically for this tool. This is called “script mode”. The scripting language allows for one run of certtool to perform an arbitrary number of cert verifications, with complete control over the policies and policy options for each verification.

Usage

The basic usage is

certcrl [option …]

Common Options

The options common to both command line mode and script mode are:

-v
Verbose; results in detailed display of verification evidence after each cert verification

-q
Quiet; one line to stdout, showing cmd line arguments, per execution except for errors

-L
Silent; no stdout except for errors

Command Line Mode Options

All of these are optional except for the first one (i.e. you must specify at least one cert). All file names are normal UNIX usage – relative to cwd, or a full path is acceptable. The certcrl program returns nonzero exit status of the cert verification resulted in an error (unless the –e option is specified, in which case the exit status is nonzero if the result of the cert verification is not what you specify).

Basic options

-c certFileName
Specify a cert to verify. The first one specified is the leaf. This option can be invoked any number of times greater than zero. Certs can be in DER or PEM format; you don’t have to specify.

-C rootCertFileName
Specify a root (trusted anchor). This option can be invoked any number of times including zero.

-r crlFileName
Specify a CRL This option can be invoked any number of times including zero. CRLs can be in DER or PEM format; you don’t have to specify.

-d certDbName
Specify a DB (keychain) which can contain certs and/or CRLs. You can specify at most one of these.

-s
Use all of the system anchor certs (X509Anchors) as roots. Overrides any roots specified with –C option.

-l=loopCount
Perform cert evaluation loopCount times. Default is 1.

-f
Leaf cert is a CA. I.e., CSSM_TP_ACTION_LEAF_IS_CA is true. Default for this bit is false.

-N
Disable network fetch of certs. I.e., CSSM_TP_ACTION_FETCH_CERT_FROM_NET is false. Default for this bit is true.

-T verifyTime
Time to verify, in CSSM_TIMESTRING format, like 20041217154316. Default is “now”.

-e=expectedError
Expressed as a string, a substring of the kind of string you get from cssmPerror() or SecCopyErrorMessageString(). Default is CSSM_OK.

Verification Policy Options

-h sslHostName
Specify SSL host name. Implies SSL policy.

-t
SSL client side. Implies SSL policy; default is server side.

-E senderEmail
Specify sender’s email address. Implies SMIME policy unless iChat is specified.

-y
Policy. Value is one of {ssl | smime | swuSign | codeSign | pkgSign | resourceSign | iChat | pkinitServer | pkinitClient | IPSec}. Default is Apple Basic.

-k keyUsage
Intended key usage, in hex (starting with 0x). For SMIME. This is placed in CSSM_APPLE_TP_SMIME_OPTIONS. IntendedUsage. Values are per CE_KeyUsage, in <Security/certextensions.h>.
Revocation Policy Options

-R revocationPolicy
Policy is one of {crl,ocsp,both,none}; default is none.

-a
Allow certs unverified by CRL. I.e., CSSM_TP_ACTION_REQUIRE_CRL_PER_CERT is false. Default for this bit is true if CRL revocation is enabled.

-A
Require CRL verification if cert provides a CRL locator. I.e., CSSM_TP_ACTION_REQUIRE_CRL_IF_PRESENT is true. Default for this bit is false.

-n
Disable network fetch of CRLs. I.e., CSSM_TP_ACTION_FETCH_CRL_FROM_NET is false. Default for this bit is true.

-u responderURI
URI of local responder. OCSP only.

-U responderCert
Local responder’s cert. OCSP only.

-H
OCSP cache disable, both read and write. Default is enabled.

-W
Network OCSP disable. Default is enabled.

-Q
Require OCSP if present in cert. I.e., CSSM_TP_ACTION_OCSP_REQUIRE_IF_RESP_PRESENT is true. Default for this bit is false.

-o
Generate OCSP nonce. Default is false.

-O
Require nonce in OCSP response. Default is false.

Script Mode

To invoke certcrl’s script mode, you pass it the name of a script file with the –S option:

certcrl –S scriptFile [option …]

The small number of options available are as described above under “Common Options”, plus the following:

-P
Pause after each test. Used for MallocDebug.

-p
Print script variable names and exit.

Everything else is controlled by the contents of the script file. In the absence of a formal language description (feel free to write one yourself), what follows is a description of the format of a certcrl script – henceforth called a “script” - followed by detailed descriptions of individual variables you can specify during execution.

Instead of trying to learn this script language from scratch, the author recommends perusing some of the existing certcrl scripts to get a feel for what you can do with this tool and how it’s used every day. There are a number of such scripts in SecurityTests/certcrl/testSubjects/. Each directory therein has a bunch of certs and a script file (all the script files end in .scr by convention but certcrl doesn’t know about that). Most of these scripts run every night as part of the nightly build. See the clxutils/cltpdvt shell script to see how they are run in this environment.

Script command lines

Each thing you tell certcrl is contained on one line of the script file. No semicolons or other delimiters are used. The form of most (not quite all) script lines is

variable = value
Where variable is one of many variable names described below, and value is the string you assign to that variable. If value contains spaces it must be enclosed in double quotes. (The most common use for doing this is to specify a filename with embedded spaces.) Otherwise all whitespace is ignored and is optional, and everything after the end of the value token is ignored.

Comments are lines with a sharp (‘#’) as the first nonwhitespace character. They are ignored by the script parser.

There is an echo command whose form is

echo echo_text
This just sends echo_text to stdout unless the certcrl program has been run with either the ‘q (quiet) or –L (silent) options. The echo_text string does not have to be in quotes if it contains spaces; everything after the ‘echo’ string plus a whitespace character is sent to stdout.

Test block

A certcrl script contains an arbitrary number of tests. One test corresponds to one cert evaluation (one call to CSSM_TP_CertGroupVerify()). A test is described in a test block, which starts with the line

test = testName
Where testName is some string which identifies the test (for purposes of stdout spew). The testName string is a “value” as described above; if it contains spaces it must be enclosed in double quotes. All whitespace in a “test =” line is optional and ignored. A test block ends with the line

 end

In between these two lines are an arbitrary number of command lines which define the parameters for one cert chain evaluation. These lines generally correspond to the command line options you can give certcrl in command line mode, with different syntax as described below, plus some additional power features involving verification of the evidence chain. Inside of a test block can also reside comments and echo commands, neither of which have any effect on the cert chain evaluation.

An example of the simplest test block imaginable is like so:

test = “Simple cert evaluation”

cert = someCert.cer

end

This results in a cert chain evaluation, with one cert (obtained from file someCert.cer), no roots, and no options. This test will certainly fail, but it’s just a syntactical example. The line starting with “cert =” corresponds to the –c option in certcrl’s command line mode. The value is the name of a cert file.

A test fails if its associated cert chain evaluation does not yield the expected (i.e., specified or implied by default) result. Failure results in failure-specific diagnostic info being sent to stdout; then if the quiet option (-q) has not been specified, the program pauses like so:

***Failure on testName

a to abort, c to continue:

If you type ‘a’ and CR, the program exits. If you type ‘c’ and CR, the program proceeds with the next test in the script, if any. Note if certcrl is being run with the quiet (-q) option, the above pause does not occur and the program unconditionally exits with nonzero status. This is normally how this program is run from a shell script in a hands-off manner.

Test variables

Here is a list of the variable assignments that can appear in a test block. The name of the variable is listed first (that’s the thing to the left of the “=”) followed by the format and/or description of possible values, and the default value if you don’t specify that variable in a test. A common format for values is “boolean”; these are expressed with the strings “true” and “false”.

Basic Variables:

dir
Directory name, either relative to cwd or as an absolute path, in which subsequent files are located. Default is cwd.

cert
Specify a cert file, one of n>0 (one cert per line). The first one so specified is the leaf. No default. Certs can be in DER or PEM format; you don’t have to specify.

root
Specify a root cert, one of n>=0. No default – default is “no roots”.

crl
Specify CRL, one of n>=0. Default is no CRLs. CRLs can be in DER or PEM format; you don’t have to specify.

certDb
Specify a DB file (a keychain) in which to look for certs and CRLs. No default. Can be used a maximum of one time in a given test.

useSystemAnchors
Value is a Boolean. If true, use all of the system anchor certs (X509Anchors) as roots. Overrides any roots specified with the root variable. Default is false.

leafCertIsCA
Value is a Boolean. Controls the CSSM_TP_ACTION_LEAF_IS_CA bit. Default is false.

allowExpiredRoot
Value is a Boolean. Controls the CSSM_TP_ACTION_ALLOW_EXPIRED_ROOT bit. Default is false.

verifyTime
A string representing the time to verify, in CSSM_TIMESTRING format, like 20041217154316. Default is “now”.

error
Expected result of cert evaluation. Expressed as a string, a substring of the kind of string you get from cssmPerror() or SecCopyErrorMessageString(). Default is CSSM_OK. Note: comparison is done via strstr(), so you can (and generally will) specify these like “TP_VERIFY_ACTION_FAILED” without the leading “CSSMERR_”.
certerror
Expected per-cert errors to be found in CSSM_TP_APPLE_EVIDENCE_INFO. StatusCodes[]. The format of the value is

certNum:errorString

Where certNum is an integer specifying the location in the evidence chain (i.e., which cert to look for the expected status; 0 is the leaf), and errorString is a substring of the the kind of string you get from cssmPerror() or SecCopyErrorMessageString(). Default if no certerror is present means “don’t verify the StatusCodes[] arrays”.

certstatus
Expected per-cert status words (to be found in CSSM_TP_APPLE_EVIDENCE_INFO.StatusBits_. The format of the value is

certNum:statusBits

Where certNum is an integer specifying the location in the evidence chain (i.e., which cert to look for the expected status; 0 is leaf), and statusBits is the expected value in hex (sorry, no symbolic parsing here). Default if no certstatus is present means “don’t verify the StatusBits fields”.
Verification Policy Options:

policy

Value is one of {codeSigning, iChat, pkinitServer, pkinitClient,

ssl, smime}. Default if not present is Apple Basic.

sslHost
SSL host name. If present implies SSL policy.

sslClient
Value is a boolean specifying SSL client side. Implies SSL policy. Default is false (server side).

senderEmail
Sender’s email address. Implies SMIME policy unless iChat policy specified elsewhere. Default – not present – means “don’t both checking the email address”.

codeSigning
Value is ignored (but must be present for clean parsing). Specifies Apple Code Signing policy.

iChat
Value is ignored (but must be present for clean parsing). Specifies iChat policy.

keyUsage
Value is a string specifying intended key usage in hex. Implies S/MIME policy. Default means “don’t check key usage”.

Revocation Policy Options:

revokePolicy
Value is one of {crl,ocsp,both,none}; default is none.

responderURI
URI of local responder. OCSP only. Default is none.

responderCert
Local responder’s cert. OCSP only. Default is none.

cacheDisable
Value is a Boolean. OCSP cache disable, both read and write. Default is false (i.e., OCSP cache is enabled).

allowUnverified
Value is a Boolean. Translates to the inverse of CSSM_TP_ACTION_REQUIRE_REV_PER_CERT. Default is false (REQUIRE_REV_PER_CERT true) if CRL or OCSP revocation is enabled.

requireCrlIfPresent
Value is a Boolean. Controls the CSSM_TP_ACTION_REQUIRE_CRL_IF_PRESENT bit. Default is false.

requireCrlForAll
Value is a Boolean. Controls the CSSM_TP_ACTION_REQUIRE_CRL_PER_CERT bit. Default is false.

crlNetFetchEnable
Value is a Boolean. Controls the CSSM_TP_ACTION_FETCH_CRL_FROM_NET bit. Default is true.

certNetFetchEnable
Value is a Boolean. Controls the CSSM_TP_ACTION_FETCH_CERT_FROM_NET bit. Default is false.

ocspNetFetchDisable
Value is a Boolean. If true. disables OCSP transactions. Default is false (OCSP via net is enabled).

requireOcspIfPresent
Value is a Boolean. Controls the CSSM_TP_ACTION_OCSP_REQUIRE_IF_RESP_PRESENT bit. Default is false.

requireOcspForAll
Value is a Boolean. Controls the CSSM_TP_ CSSM_TP_ACTION_OCSP_REQUIRE_PER_CERT bit. Default is false.

generateOcspNonce
Value is a Boolean. If true, generate OCSP nonce. Default is false.

requireOcspNonce
Value is a Boolean. If true, require nonce in OCSP response. Default is false.

Global variables

A small number of the test variables can be expressed in a globals section which looks like this:

globals

globalVariable = value

…
end

Where globalVariable is one of the following variables as described above:

allowUnverified

certNetFetchEnable

crlNetFetchEnable

useSystemAnchors

leafCertIsCA

cacheDisable

ocspNetFetchDisable

requireOcspIfPresent

requireCrlIfPresent

requireOcspForAll

requireCrlForAll

A variable assignment in a globals section essentially acts to override the default value for that variable for all subsequent tests. The global value for a given variable, resulting from its assignment in a globals section, is in effect from the point in the script where the globals section is encountered until the next globals section containing an assignment for that specific variable (or until EOF of the script). All tests which run subsequent to a global variable assignment use the globally assigned value for that variable as the default instead of the standard defaults described above. Specific tests can still override global values, but the values assigned in tests do not affect the values of the globals once that test is completed. A globals section can appear anywhere in a script outside of a test block.

