kern_sig.c   [plain text]


/*
 * Copyright (c) 2000-2001 Apple Computer, Inc. All rights reserved.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
 * 
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. The rights granted to you under the License
 * may not be used to create, or enable the creation or redistribution of,
 * unlawful or unlicensed copies of an Apple operating system, or to
 * circumvent, violate, or enable the circumvention or violation of, any
 * terms of an Apple operating system software license agreement.
 * 
 * Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this file.
 * 
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 * 
 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
 */
/* Copyright (c) 1995-1998 Apple Computer, Inc. All Rights Reserved */
/*
 * Copyright (c) 1982, 1986, 1989, 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
 */

#define	SIGPROP		/* include signal properties table */
#include <sys/param.h>
#include <sys/resourcevar.h>
#include <sys/proc_internal.h>
#include <sys/kauth.h>
#include <sys/systm.h>
#include <sys/timeb.h>
#include <sys/times.h>
#include <sys/acct.h>
#include <sys/file_internal.h>
#include <sys/kernel.h>
#include <sys/wait.h>
#include <sys/signalvar.h>
#if KTRACE
#include <sys/ktrace.h>
#endif
#include <sys/syslog.h>
#include <sys/stat.h>
#include <sys/lock.h>
#include <sys/kdebug.h>

#include <sys/mount.h>
#include <sys/sysproto.h>

#include <bsm/audit_kernel.h>

#include <machine/spl.h>

#include <kern/cpu_number.h>

#include <sys/vm.h>
#include <sys/user.h>		/* for coredump */
#include <kern/ast.h>		/* for APC support */
#include <kern/lock.h>
#include <kern/task.h>		/* extern void   *get_bsdtask_info(task_t); */
#include <kern/thread.h>
#include <kern/sched_prim.h>
#include <kern/thread_call.h>
#include <mach/exception.h>
#include <mach/task.h>
#include <mach/thread_act.h>

/*
 * Missing prototypes that Mach should export
 *
 * +++
 */
extern int thread_enable_fpe(thread_t act, int onoff);
extern void unix_syscall_return(int error);
extern thread_t	port_name_to_thread(mach_port_name_t port_name);
extern kern_return_t check_actforsig(task_t task, thread_t thread, int setast);
extern kern_return_t get_signalact(task_t , thread_t *, int);
extern boolean_t thread_should_abort(thread_t);
extern unsigned int get_useraddr(void);

/*
 * ---
 */

extern void doexception(int exc, int code, int sub);

void stop(struct proc *p);
int cansignal(struct proc *, kauth_cred_t, struct proc *, int);
int killpg1(struct proc *, int, int, int);
void sigexit_locked(struct proc *, int);
int setsigvec(struct proc *, int, struct __user_sigaction *);
void exit1(struct proc *, int, int *);
void psignal_uthread(thread_t, int);
kern_return_t do_bsdexception(int, int, int);
void __posix_sem_syscall_return(kern_return_t);

/* implementations in osfmk/kern/sync_sema.c. We do not want port.h in this scope, so void * them  */
kern_return_t semaphore_timedwait_signal_trap_internal(void *, void *,time_t, int32_t, void (*)(int));
kern_return_t semaphore_timedwait_trap_internal(void *, time_t, int32_t, void (*)(int));
kern_return_t semaphore_wait_signal_trap_internal(void *, void *, void (*)(int));
kern_return_t semaphore_wait_trap_internal(void *, void (*)(int));

static int	filt_sigattach(struct knote *kn);
static void	filt_sigdetach(struct knote *kn);
static int	filt_signal(struct knote *kn, long hint);

struct filterops sig_filtops =
	{ 0, filt_sigattach, filt_sigdetach, filt_signal };


/*
 * NOTE: Source and target may *NOT* overlap! (target is smaller)
 */
static void
sigaltstack_64to32(struct user_sigaltstack *in, struct sigaltstack *out)
{
	out->ss_sp	= CAST_DOWN(void *,in->ss_sp);
	out->ss_size	= in->ss_size;
	out->ss_flags	= in->ss_flags;
}

/*
 * NOTE: Source and target may are permitted to overlap! (source is smaller);
 * this works because we copy fields in order from the end of the struct to
 * the beginning.
 */
static void
sigaltstack_32to64(struct sigaltstack *in, struct user_sigaltstack *out)
{
	out->ss_flags	= in->ss_flags;
	out->ss_size	= in->ss_size;
	out->ss_sp	= CAST_USER_ADDR_T(in->ss_sp);
}

static void
sigaction_64to32(struct user_sigaction *in, struct sigaction *out)
{
	/* This assumes 32 bit __sa_handler is of type sig_t */
	out->__sigaction_u.__sa_handler = CAST_DOWN(sig_t,in->__sigaction_u.__sa_handler);
	out->sa_mask = in->sa_mask;
	out->sa_flags = in->sa_flags;
}

static void
__sigaction_32to64(struct __sigaction *in, struct __user_sigaction *out)
{
	out->__sigaction_u.__sa_handler = CAST_USER_ADDR_T(in->__sigaction_u.__sa_handler);
	out->sa_tramp = CAST_USER_ADDR_T(in->sa_tramp);
	out->sa_mask = in->sa_mask;
	out->sa_flags = in->sa_flags;
}


#if SIGNAL_DEBUG
void ram_printf(int);
int ram_debug=0;
unsigned int rdebug_proc=0;
void
ram_printf(int x)
{
    printf("x is %d",x);

}
#endif /* SIGNAL_DEBUG */

int
signal_lock(struct proc *p)
{
int error = 0;
#if DIAGNOSTIC
#if SIGNAL_DEBUG
#ifdef __ppc__
        {
            int register sp, *fp, numsaved; 
 
            __asm__ volatile("mr %0,r1" : "=r" (sp));

            fp = (int *)*((int *)sp);
            for (numsaved = 0; numsaved < 3; numsaved++) {
                p->lockpc[numsaved] = fp[2];
                if ((int)fp <= 0)
                        break;
                fp = (int *)*fp;
            }
        }
#endif /* __ppc__ */       
#endif /* SIGNAL_DEBUG */
#endif /* DIAGNOSTIC */

siglock_retry:
	error = lockmgr((struct lock__bsd__ *)&p->signal_lock[0], LK_EXCLUSIVE, 0, (struct proc *)0);
	if (error == EINTR)
		goto siglock_retry;
	return(error);
}

int
signal_unlock(struct proc *p)
{
#if DIAGNOSTIC
#if SIGNAL_DEBUG
#ifdef __ppc__
        {
            int register sp, *fp, numsaved; 
 
            __asm__ volatile("mr %0,r1" : "=r" (sp));

            fp = (int *)*((int *)sp);
            for (numsaved = 0; numsaved < 3; numsaved++) {
                p->unlockpc[numsaved] = fp[2];
                if ((int)fp <= 0)
                        break;
                fp = (int *)*fp;
            }
        }
#endif /* __ppc__ */       
#endif /* SIGNAL_DEBUG */
#endif /* DIAGNOSTIC */

	/* TBD:  check p last arg */
	return(lockmgr((struct lock__bsd__ *)&p->signal_lock[0], LK_RELEASE, (simple_lock_t)0, (struct proc *)0));
}

void
signal_setast(sig_actthread)
thread_t sig_actthread;
{
	act_set_astbsd(sig_actthread);
}

/*
 * Can process p, with ucred uc, send the signal signum to process q?
 */
int
cansignal(p, uc, q, signum)
	struct proc *p;
	kauth_cred_t uc;
	struct proc *q;
	int signum;
{
	/* you can signal yourself */
	if (p == q)
		return(1);

	if (!suser(uc, NULL))
		return (1);		/* root can always signal */

	if (signum == SIGCONT && q->p_session == p->p_session)
		return (1);		/* SIGCONT in session */

	/*
	 * Using kill(), only certain signals can be sent to setugid
	 * child processes
	 */
	if (q->p_flag & P_SUGID) {
		switch (signum) {
		case 0:
		case SIGKILL:
		case SIGINT:
		case SIGTERM:
		case SIGSTOP:
		case SIGTTIN:
		case SIGTTOU:
		case SIGTSTP:
		case SIGHUP:
		case SIGUSR1:
		case SIGUSR2:
			if (uc->cr_ruid == q->p_ucred->cr_ruid ||
			    kauth_cred_getuid(uc) == q->p_ucred->cr_ruid ||
			    uc->cr_ruid == kauth_cred_getuid(q->p_ucred) ||
			    kauth_cred_getuid(uc) == kauth_cred_getuid(q->p_ucred))
				return (1);
		}
		return (0);
	}

	/* XXX
	 * because the P_SUGID test exists, this has extra tests which
	 * could be removed.
	 */
	if (uc->cr_ruid == q->p_ucred->cr_ruid ||
	    uc->cr_ruid == q->p_ucred->cr_svuid ||
	    kauth_cred_getuid(uc) == q->p_ucred->cr_ruid ||
	    kauth_cred_getuid(uc) == q->p_ucred->cr_svuid ||
	    uc->cr_ruid == kauth_cred_getuid(q->p_ucred) ||
	    kauth_cred_getuid(uc) == kauth_cred_getuid(q->p_ucred))
		return (1);
	return (0);
}


/* ARGSUSED */
int
sigaction(struct proc *p, register struct sigaction_args *uap, __unused register_t *retval)
{
	struct user_sigaction vec;
	struct __user_sigaction __vec;

	struct user_sigaction *sa = &vec;
	register struct sigacts *ps = p->p_sigacts;

	register int signum;
	int bit, error=0;

	signum = uap->signum;
	if (signum <= 0 || signum >= NSIG ||
	    signum == SIGKILL || signum == SIGSTOP)
		return (EINVAL);

	if (uap->osa) {
		sa->sa_handler = ps->ps_sigact[signum];
		sa->sa_mask = ps->ps_catchmask[signum];
		bit = sigmask(signum);
		sa->sa_flags = 0;
		if ((ps->ps_sigonstack & bit) != 0)
			sa->sa_flags |= SA_ONSTACK;
		if ((ps->ps_sigintr & bit) == 0)
			sa->sa_flags |= SA_RESTART;
		if (ps->ps_siginfo & bit)
			sa->sa_flags |= SA_SIGINFO;
		if (ps->ps_signodefer & bit)
			sa->sa_flags |= SA_NODEFER;
		if (ps->ps_64regset & bit)
			sa->sa_flags |= SA_64REGSET;
		if ((signum == SIGCHLD) && (p->p_flag & P_NOCLDSTOP))
			sa->sa_flags |= SA_NOCLDSTOP;
		if ((signum == SIGCHLD) && (p->p_flag & P_NOCLDWAIT))
			sa->sa_flags |= SA_NOCLDWAIT;

		if (IS_64BIT_PROCESS(p)) {
			error = copyout(sa, uap->osa, sizeof(struct user_sigaction));
		} else {
			struct sigaction vec32;
			sigaction_64to32(sa, &vec32);
			error = copyout(&vec32, uap->osa, sizeof(struct sigaction));
		}
		if (error)
			return (error);
	}
	if (uap->nsa) {
		if (IS_64BIT_PROCESS(p)) {
			error = copyin(uap->nsa, &__vec, sizeof(struct __user_sigaction));
		} else {
			struct __sigaction __vec32;
			error = copyin(uap->nsa, &__vec32, sizeof(struct __sigaction));
			__sigaction_32to64(&__vec32, &__vec);
		}
		if (error)
			return (error);
		error = setsigvec(p, signum, &__vec);
	}
	return (error);
}

/* Routines to manipulate bits on all threads */
int
clear_procsiglist(struct proc *p,  int bit)
{
	struct uthread * uth;
	thread_t thact;

	signal_lock(p);

	if ((p->p_flag & P_INVFORK) && p->p_vforkact) {
		thact = p->p_vforkact;	
		uth = (struct uthread *)get_bsdthread_info(thact);
		if (uth) {
			uth->uu_siglist &= ~bit;
		}
		p->p_siglist &= ~bit;
		signal_unlock(p);
		return(0);
	} 

	TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) {
		uth->uu_siglist &= ~bit;
	}
	p->p_siglist &= ~bit;
	signal_unlock(p);
	return(0);
}


static int
unblock_procsigmask(struct proc *p,  int bit)
{
	struct uthread * uth;
	thread_t thact;

	signal_lock(p);
	if ((p->p_flag & P_INVFORK) && p->p_vforkact) {
		thact = p->p_vforkact;	
		uth = (struct uthread *)get_bsdthread_info(thact);
		if (uth) {
			uth->uu_sigmask &= ~bit;
		}
		p->p_sigmask &= ~bit;
		signal_unlock(p);
		return(0);
	} 
	TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) {
		uth->uu_sigmask &= ~bit;
	}
	p->p_sigmask &= ~bit;
	signal_unlock(p);
	return(0);
}


static int
block_procsigmask(struct proc *p,  int bit)
{
	struct uthread * uth;
	thread_t thact;

	signal_lock(p);
	if ((p->p_flag & P_INVFORK) && p->p_vforkact) {
		thact = p->p_vforkact;	
		uth = (struct uthread *)get_bsdthread_info(thact);
		if (uth) {
			uth->uu_sigmask |= bit;
		}
		p->p_sigmask |=  bit;
		signal_unlock(p);
		return(0);
	} 
	TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) {
		uth->uu_sigmask |= bit;
	}
	p->p_sigmask |=  bit;
	signal_unlock(p);
	return(0);
}

int
set_procsigmask(struct proc *p,  int bit)
{
	struct uthread * uth;
	thread_t thact;

	signal_lock(p);
	if ((p->p_flag & P_INVFORK) && p->p_vforkact) {
		thact = p->p_vforkact;	
		uth = (struct uthread *)get_bsdthread_info(thact);
		if (uth) {
			uth->uu_sigmask = bit;
		}
		p->p_sigmask =  bit;
		signal_unlock(p);
		return(0);
	} 
	TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) {
		uth->uu_sigmask = bit;
	}
	p->p_sigmask =  bit;
	signal_unlock(p);
	return(0);
}

/* XXX should be static? */
int
setsigvec(struct proc *p, int signum, struct __user_sigaction *sa)
{
	register struct sigacts *ps = p->p_sigacts;
	register int bit;

	if ((signum == SIGKILL || signum == SIGSTOP) &&
		sa->sa_handler != SIG_DFL)
		return(EINVAL);
	bit = sigmask(signum);
	/*
	 * Change setting atomically.
	 */
	ps->ps_sigact[signum] = sa->sa_handler;
	ps->ps_trampact[signum] = sa->sa_tramp;
	ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask;
	if (sa->sa_flags & SA_SIGINFO)
		ps->ps_siginfo |= bit;
	else
		ps->ps_siginfo &= ~bit;
	if (sa->sa_flags & SA_64REGSET)
		ps->ps_64regset |= bit;
	else
		ps->ps_64regset &= ~bit;
	if ((sa->sa_flags & SA_RESTART) == 0)
		ps->ps_sigintr |= bit;
	else
		ps->ps_sigintr &= ~bit;
	if (sa->sa_flags & SA_ONSTACK)
		ps->ps_sigonstack |= bit;
	else
		ps->ps_sigonstack &= ~bit;
	if (sa->sa_flags & SA_USERTRAMP)
		ps->ps_usertramp |= bit;
	else
		ps->ps_usertramp &= ~bit;
	if (sa->sa_flags & SA_RESETHAND)
		ps->ps_sigreset |= bit;
	else
		ps->ps_sigreset &= ~bit;
	if (sa->sa_flags & SA_NODEFER)
		ps->ps_signodefer |= bit;
	else
		ps->ps_signodefer &= ~bit;
	if (signum == SIGCHLD) {
		if (sa->sa_flags & SA_NOCLDSTOP)
			p->p_flag |= P_NOCLDSTOP;
		else
			p->p_flag &= ~P_NOCLDSTOP;
		if ((sa->sa_flags & SA_NOCLDWAIT) || (sa->sa_handler == SIG_IGN))
			p->p_flag |= P_NOCLDWAIT;
		else
			p->p_flag &= ~P_NOCLDWAIT;
	}

#ifdef __ppc__ 
	if (signum == SIGFPE) {
		if (sa->sa_handler == SIG_DFL || sa->sa_handler == SIG_IGN) 
			thread_enable_fpe(current_thread(), 0);
		else
			thread_enable_fpe(current_thread(), 1);
	}
#endif  /* __ppc__ */
	/*
	 * Set bit in p_sigignore for signals that are set to SIG_IGN,
	 * and for signals set to SIG_DFL where the default is to ignore.
	 * However, don't put SIGCONT in p_sigignore,
	 * as we have to restart the process.
	 */
	if (sa->sa_handler == SIG_IGN ||
	    (sigprop[signum] & SA_IGNORE && sa->sa_handler == SIG_DFL)) {

		clear_procsiglist(p, bit);
		if (signum != SIGCONT)
			p->p_sigignore |= bit;	/* easier in psignal */
		p->p_sigcatch &= ~bit;
	} else {
		p->p_sigignore &= ~bit;
		if (sa->sa_handler == SIG_DFL)
			p->p_sigcatch &= ~bit;
		else
			p->p_sigcatch |= bit;
	}
	return(0);
}

/*
 * Initialize signal state for process 0;
 * set to ignore signals that are ignored by default.
 */
void
siginit(p)
	struct proc *p;
{
	register int i;

	for (i = 0; i < NSIG; i++)
		if (sigprop[i] & SA_IGNORE && i != SIGCONT)
			p->p_sigignore |= sigmask(i);
}

/*
 * Reset signals for an exec of the specified process.
 */
void
execsigs(p, thr_act)
	register struct proc *p;
	register thread_t thr_act;
{
	register struct sigacts *ps = p->p_sigacts;
	register int nc, mask;
	struct uthread *ut;

	/*
	 * Reset caught signals.  Held signals remain held
	 * through p_sigmask (unless they were caught,
	 * and are now ignored by default).
	 */
	while (p->p_sigcatch) {
		nc = ffs((long)p->p_sigcatch);
		mask = sigmask(nc);
		p->p_sigcatch &= ~mask;
		if (sigprop[nc] & SA_IGNORE) {
			if (nc != SIGCONT)
				p->p_sigignore |= mask;
			if (thr_act){
			 	ut = (struct uthread *)get_bsdthread_info(thr_act);
				ut->uu_siglist &= ~mask;
				p->p_siglist &= ~mask;
			} else
				clear_procsiglist(p, mask);
		}
		ps->ps_sigact[nc] = SIG_DFL;
	}
	/*
	 * Reset stack state to the user stack.
	 * Clear set of signals caught on the signal stack.
	 */
	ps->ps_sigstk.ss_flags = SA_DISABLE;
	ps->ps_sigstk.ss_size = 0;
	ps->ps_sigstk.ss_sp = USER_ADDR_NULL;
	ps->ps_flags = 0;
}

/*
 * Manipulate signal mask.
 * Note that we receive new mask, not pointer,
 * and return old mask as return value;
 * the library stub does the rest.
 */
int
sigprocmask(register struct proc *p, struct sigprocmask_args *uap, __unused register_t *retval)
{
	int error = 0;
	sigset_t oldmask, nmask;
	user_addr_t omask = uap->omask;
	struct uthread *ut;

	ut = (struct uthread *)get_bsdthread_info(current_thread());
	oldmask  = ut->uu_sigmask;

	if (uap->mask == USER_ADDR_NULL) {
		/* just want old mask */
		goto out;
	}
	error = copyin(uap->mask, &nmask, sizeof(sigset_t));
	if (error)
		goto out;

	switch (uap->how) {
	case SIG_BLOCK:
		block_procsigmask(p, (nmask & ~sigcantmask));
		signal_setast(current_thread());
		break;

	case SIG_UNBLOCK:
		unblock_procsigmask(p, (nmask & ~sigcantmask));
		signal_setast(current_thread());
		break;

	case SIG_SETMASK:
		set_procsigmask(p, (nmask & ~sigcantmask));
		signal_setast(current_thread());
		break;
	
	default:
		error = EINVAL;
		break;
	}
out:
	if (!error && omask != USER_ADDR_NULL)
		copyout(&oldmask, omask, sizeof(sigset_t));
	return (error);
}

int
sigpending(__unused struct proc *p, register struct sigpending_args *uap, __unused register_t *retval)
{
	struct uthread *ut;
	sigset_t pendlist;

	ut = (struct uthread *)get_bsdthread_info(current_thread());
	pendlist = ut->uu_siglist;

	if (uap->osv)
		copyout(&pendlist, uap->osv, sizeof(sigset_t));
	return(0);
}


/*
 * Suspend process until signal, providing mask to be set
 * in the meantime.  Note nonstandard calling convention:
 * libc stub passes mask, not pointer, to save a copyin.
 */

static int
sigcontinue(__unused int error)
{
//	struct uthread *ut = get_bsdthread_info(current_thread());
  unix_syscall_return(EINTR);
}

int
sigsuspend(register struct proc *p, struct sigsuspend_args *uap, __unused register_t *retval)
{
	struct uthread *ut;

	ut = (struct uthread *)get_bsdthread_info(current_thread());

	/*
	 * When returning from sigpause, we want
	 * the old mask to be restored after the
	 * signal handler has finished.  Thus, we
	 * save it here and mark the sigacts structure
	 * to indicate this.
	 */
	ut->uu_oldmask = ut->uu_sigmask;
	ut->uu_flag |= UT_SAS_OLDMASK;
	ut->uu_sigmask = (uap->mask & ~sigcantmask);
	(void) tsleep0((caddr_t) p, PPAUSE|PCATCH, "pause", 0, sigcontinue);
	/* always return EINTR rather than ERESTART... */
	return (EINTR);
}


int
__disable_threadsignal(struct proc *p, 
					   __unused register struct __disable_threadsignal_args *uap, 
					   __unused register_t *retval)
{
	struct uthread *uth;

	uth = (struct uthread *)get_bsdthread_info(current_thread());

	/* No longer valid to have any signal delivered */
	signal_lock(p);
	uth->uu_flag |= UT_NO_SIGMASK;
	signal_unlock(p);

	return(0);

}


int
__pthread_markcancel(p, uap, retval)
	struct proc *p;
	register struct __pthread_markcancel_args *uap;
	register_t *retval;
{
	thread_act_t target_act;
	int error = 0;
	struct uthread *uth;

	target_act = (thread_act_t)port_name_to_thread(uap->thread_port);

	if (target_act == THR_ACT_NULL)
		return (ESRCH);

	uth = (struct uthread *)get_bsdthread_info(target_act);

	/* if the thread is in vfork do not cancel */
	if ((uth->uu_flag & (P_VFORK | UT_CANCEL | UT_CANCELED )) == 0) {
		uth->uu_flag |= (UT_CANCEL | UT_NO_SIGMASK);
		if (((uth->uu_flag & UT_NOTCANCELPT) == 0) 
			&& ((uth->uu_flag & UT_CANCELDISABLE) == 0))
				thread_abort_safely(target_act);
	}

	thread_deallocate(target_act);
	return (error);
}

/* if action =0 ; return the cancellation state , 
 *      if marked for cancellation, make the thread canceled
 * if action = 1 ; Enable the cancel handling
 * if action = 2; Disable the cancel handling
 */
int
__pthread_canceled(p, uap, retval)
	struct proc *p;
	register struct __pthread_canceled_args *uap;
	register_t *retval;
{
	thread_act_t thr_act;
	struct uthread *uth;
	int action = uap->action;

	thr_act = current_act();
	uth = (struct uthread *)get_bsdthread_info(thr_act);

	switch (action) {
		case 1:
			uth->uu_flag &= ~UT_CANCELDISABLE;
			return(0);
		case 2:
			uth->uu_flag |= UT_CANCELDISABLE;
			return(0);
		case 0:
		default:
			/* if the thread is in vfork do not cancel */
			if((uth->uu_flag & ( UT_CANCELDISABLE | UT_CANCEL | UT_CANCELED)) == UT_CANCEL) {
				uth->uu_flag &= ~UT_CANCEL;
				uth->uu_flag |= (UT_CANCELED | UT_NO_SIGMASK);
				return(0);
			}
			return(EINVAL);
	}	 	
	return(EINVAL);
}

void
__posix_sem_syscall_return(kern_return_t kern_result) 
{
	int error = 0;

	if (kern_result == KERN_SUCCESS)
		error = 0;
	else if (kern_result == KERN_ABORTED)
		error = EINTR;
	else if (kern_result == KERN_OPERATION_TIMED_OUT) 
		error = ETIMEDOUT;
	else
		error = EINVAL;
	unix_syscall_return(error);
	/* does not return */
}


int
__semwait_signal(p, uap, retval)
	struct proc *p;
	register struct __semwait_signal_args *uap;
	register_t *retval;
{

	kern_return_t kern_result;
	mach_timespec_t then;
	struct timespec now;

	if(uap->timeout) {

		if (uap->relative) {
			then.tv_sec = uap->tv_sec;
			then.tv_nsec = uap->tv_nsec;
		} else {
			nanotime(&now);
			then.tv_sec = uap->tv_sec - now.tv_sec;
			then.tv_nsec = uap->tv_nsec - now.tv_nsec;
			if (then.tv_nsec < 0) {
				then.tv_nsec += NSEC_PER_SEC;
				then.tv_sec--; 
			}
		}

		if (uap->mutex_sem == (void *)NULL)
			kern_result = semaphore_timedwait_trap_internal(uap->cond_sem, then.tv_sec, then.tv_nsec, __posix_sem_syscall_return);
		else
			kern_result = semaphore_timedwait_signal_trap_internal(uap->cond_sem, uap->mutex_sem, then.tv_sec, then.tv_nsec, __posix_sem_syscall_return);

	} else {

		if (uap->mutex_sem == (void *)NULL)
			kern_result = semaphore_wait_trap_internal(uap->cond_sem, __posix_sem_syscall_return);
		else

			kern_result = semaphore_wait_signal_trap_internal(uap->cond_sem, uap->mutex_sem, __posix_sem_syscall_return);
	}

out:
	if (kern_result == KERN_SUCCESS)
		return(0);
	else if (kern_result == KERN_ABORTED)
		return(EINTR);
	else if (kern_result == KERN_OPERATION_TIMED_OUT) 
		return(ETIMEDOUT);
	else
		return(EINVAL);
}


int 
__pthread_kill(__unused struct proc *p, 
			   register struct __pthread_kill_args *uap, 
			   __unused register_t *retval) 
{
	thread_t target_act;
	int error = 0;
	int signum = uap->sig;
	struct uthread *uth;

	target_act = (thread_t)port_name_to_thread(uap->thread_port);

	if (target_act == THREAD_NULL)
		return (ESRCH);
	if ((u_int)signum >= NSIG) {
		error = EINVAL;
		goto out;
	}

	uth = (struct uthread *)get_bsdthread_info(target_act);

	if (uth->uu_flag & UT_NO_SIGMASK) {
		error = ESRCH;
		goto out;
	}

	if (signum)
		psignal_uthread(target_act, signum);
out:
	thread_deallocate(target_act);
	return (error);
}


int 
pthread_sigmask(__unused register struct proc *p, 
				register struct pthread_sigmask_args *uap, 
				__unused register_t *retval)
{
	user_addr_t set = uap->set;
	user_addr_t oset = uap->oset;
	sigset_t nset;
	int error = 0;
	struct uthread *ut;
	sigset_t  oldset;

	ut = (struct uthread *)get_bsdthread_info(current_thread());
	oldset = ut->uu_sigmask;

	if (set == USER_ADDR_NULL) {
		/* need only old mask */
		goto out;
	}

	error = copyin(set, &nset, sizeof(sigset_t));
	if (error)
		goto out;

	switch (uap->how) {
	case SIG_BLOCK:
		ut->uu_sigmask |= (nset & ~sigcantmask);
		break;

	case SIG_UNBLOCK:
		ut->uu_sigmask &= ~(nset);
		signal_setast(current_thread());
		break;

	case SIG_SETMASK:
		ut->uu_sigmask = (nset & ~sigcantmask);
		signal_setast(current_thread());
		break;
	
	default:
		error = EINVAL;

	}
out:
	if (!error && oset != USER_ADDR_NULL)
		copyout(&oldset, oset, sizeof(sigset_t));

	return(error);
}


int 
sigwait(register struct proc *p, register struct sigwait_args *uap, __unused register_t *retval)
{
	struct uthread *ut;
	struct uthread *uth;
	int error = 0;
	sigset_t mask;
	sigset_t siglist;
	sigset_t sigw=0;
	int signum;

	ut = (struct uthread *)get_bsdthread_info(current_thread());

	if (uap->set == USER_ADDR_NULL)
		return(EINVAL);

	error = copyin(uap->set, &mask, sizeof(sigset_t));
	if (error)
		return(error);

	siglist = (mask & ~sigcantmask);

	if (siglist == 0)
		return(EINVAL);

	signal_lock(p);
	if ((p->p_flag & P_INVFORK) && p->p_vforkact) {
		signal_unlock(p);
		return(EINVAL);
	} else {
		TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) {
			if ( (sigw = uth->uu_siglist & siglist) ) {
				break;
			}
		}
	}
	signal_unlock(p);
	if (sigw) {
		/* The signal was pending on a thread */
		goto sigwait1;
	}
	/*
	 * When returning from sigwait, we want
	 * the old mask to be restored after the
	 * signal handler has finished.  Thus, we
	 * save it here and mark the sigacts structure
	 * to indicate this.
	 */
	ut->uu_oldmask = ut->uu_sigmask;
	ut->uu_flag |= UT_SAS_OLDMASK;
	if (siglist == (sigset_t)0)
		return(EINVAL);
	/* SIGKILL and SIGSTOP are not maskable as well */
	ut->uu_sigmask = ~(siglist|sigcantmask);
	ut->uu_sigwait = siglist; 
	/* No Continuations for now */
	error =  tsleep((caddr_t)&ut->uu_sigwait, PPAUSE|PCATCH, "pause", 0);

	if ((error == EINTR) || (error == ERESTART))
		error = 0;

	sigw = (ut->uu_sigwait & siglist);
	ut->uu_sigmask = ut->uu_oldmask;
	ut->uu_oldmask = 0;
	ut->uu_flag &= ~UT_SAS_OLDMASK;
sigwait1:
	ut->uu_sigwait = 0;
	if (!error) {
		signum = ffs((unsigned int)sigw);
		if (!signum)
			panic("sigwait with no signal wakeup");
		ut->uu_siglist &= ~(sigmask(signum));
		if (uap->sig != USER_ADDR_NULL)
				error = copyout(&signum, uap->sig, sizeof(int));
	}

	return(error);

}


int
sigaltstack(struct proc *p, register struct sigaltstack_args *uap, __unused register_t *retval)
{
	struct sigacts *psp;
	struct user_sigaltstack ss;
	int error;

	psp = p->p_sigacts;
	if ((psp->ps_flags & SAS_ALTSTACK) == 0)
		psp->ps_sigstk.ss_flags |= SA_DISABLE;
	if (uap->oss) {
		if (IS_64BIT_PROCESS(p)) {
			error = copyout(&psp->ps_sigstk, uap->oss, sizeof(struct user_sigaltstack));
		} else {
			struct sigaltstack ss32;
			sigaltstack_64to32(&psp->ps_sigstk, &ss32);
			error = copyout(&ss32, uap->oss, sizeof(struct sigaltstack));
		}
		if (error)
			return (error);
	}
	if (uap->nss == USER_ADDR_NULL)
		return (0);
	if (IS_64BIT_PROCESS(p)) {
		error = copyin(uap->nss, &ss, sizeof(struct user_sigaltstack));
	} else {
		struct sigaltstack ss32;
		error = copyin(uap->nss, &ss32, sizeof(struct sigaltstack));
		sigaltstack_32to64(&ss32,&ss);
	}
	if (error)
		return (error);
	if ((ss.ss_flags & ~SA_DISABLE) != 0)  {
		return(EINVAL);
	}

	if (ss.ss_flags & SA_DISABLE) {
		if (psp->ps_sigstk.ss_flags & SA_ONSTACK)
			return (EINVAL);
		psp->ps_flags &= ~SAS_ALTSTACK;
		psp->ps_sigstk.ss_flags = ss.ss_flags;
		return (0);
	}
/* The older stacksize was 8K, enforce that one so no compat problems */
#define OLDMINSIGSTKSZ 8*1024
	if (ss.ss_size < OLDMINSIGSTKSZ)
		return (ENOMEM);
	psp->ps_flags |= SAS_ALTSTACK;
	psp->ps_sigstk= ss;
	return (0);
}

int
kill(struct proc *cp, struct kill_args *uap, __unused register_t *retval)
{
	register struct proc *p;
	kauth_cred_t uc = kauth_cred_get();

       AUDIT_ARG(pid, uap->pid);
       AUDIT_ARG(signum, uap->signum);

	if ((u_int)uap->signum >= NSIG)
		return (EINVAL);
	if (uap->pid > 0) {
		/* kill single process */
		if ((p = proc_findref(uap->pid)) == NULL) {
			if ((p = pzfind(uap->pid)) != NULL) {
				/*
				 * IEEE Std 1003.1-2001: return success
				 * when killing a zombie.
				 */
				return (0);
			}
			return (ESRCH);
		}
		AUDIT_ARG(process, p);
		if (!cansignal(cp, uc, p, uap->signum)) {
			proc_dropref(p);
			return(EPERM);
		}
		if (uap->signum)
			psignal(p, uap->signum);
		proc_dropref(p);
		return (0);
	}
	switch (uap->pid) {
	case -1:		/* broadcast signal */
		return (killpg1(cp, uap->signum, 0, 1));
	case 0:			/* signal own process group */
		return (killpg1(cp, uap->signum, 0, 0));
	default:		/* negative explicit process group */
		return (killpg1(cp, uap->signum, -(uap->pid), 0));
	}
	/* NOTREACHED */
}


/*
 * Common code for kill process group/broadcast kill.
 * cp is calling process.
 */
int
killpg1(cp, signum, pgid, all)
	register struct proc *cp;
	int signum, pgid, all;
{
	register struct proc *p;
	kauth_cred_t uc = cp->p_ucred;
	struct pgrp *pgrp;
	int nfound = 0;
	
	if (all) {
		/* 
		 * broadcast 
		 */
		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || 
			    p == cp || !cansignal(cp, uc, p, signum))
				continue;
			nfound++;
			if (signum)
				psignal(p, signum);
		}
	} else {
		if (pgid == 0)		
			/* 
			 * zero pgid means send to my process group.
			 */
			pgrp = cp->p_pgrp;
		else {
			pgrp = pgfind(pgid);
			if (pgrp == NULL)
				return (ESRCH);
		}
		for (p = pgrp->pg_members.lh_first; p != 0;
		     p = p->p_pglist.le_next) {
			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
			    p->p_stat == SZOMB ||
			    !cansignal(cp, uc, p, signum))
				continue;
			nfound++;
			if (signum)
				psignal(p, signum);
		}
	}
	return (nfound ? 0 : ESRCH);
}

/*
 * Send a signal to a process group.
 */
void
gsignal(pgid, signum)
	int pgid, signum;
{
	struct pgrp *pgrp;

	if (pgid && (pgrp = pgfind(pgid)))
		pgsignal(pgrp, signum, 0);
}

/*
 * Send a signal to a process group.  If checktty is 1,
 * limit to members which have a controlling terminal.
 */
void
pgsignal(pgrp, signum, checkctty)
	struct pgrp *pgrp;
	int signum, checkctty;
{
	register struct proc *p;

	if (pgrp)
		for (p = pgrp->pg_members.lh_first; p != 0;
		     p = p->p_pglist.le_next)
			if (checkctty == 0 || p->p_flag & P_CONTROLT)
				psignal(p, signum);
}

/*
 * Send signal to a backgrounded process blocked due to tty access
 * In FreeBSD, the backgrounded process wakes up every second and
 * discovers whether it is foregounded or not. In our case, we block 
 * the thread in tsleep as we want to avoid storm of processes as well 
 * as the suspend is only at AST level
 */
void
tty_pgsignal(pgrp, signum)
	struct pgrp *pgrp;
	int signum;
{
	register struct proc *p;

	if (pgrp)
		for (p = pgrp->pg_members.lh_first; p != 0;
		     p = p->p_pglist.le_next)
			if ((p->p_flag & P_TTYSLEEP) && (p->p_flag & P_CONTROLT))
				psignal(p, signum);
}

/*
 * Send a signal caused by a trap to a specific thread.
 */
void
threadsignal(thread_t sig_actthread, int signum, u_long code)
{
	register struct uthread *uth;
	register struct task * sig_task;
	register struct proc *p ;
	int mask;

	if ((u_int)signum >= NSIG || signum == 0)
		return;

	mask = sigmask(signum);
	if ((mask & threadmask) == 0)
		return;
	sig_task = get_threadtask(sig_actthread);
	p = (struct proc *)(get_bsdtask_info(sig_task));

	uth = get_bsdthread_info(sig_actthread);
	if (uth && (uth->uu_flag & UT_VFORK))
		p = uth->uu_proc;

	if (!(p->p_flag & P_TRACED) && (p->p_sigignore & mask))
		return;

	uth->uu_siglist |= mask;
	p->p_siglist |= mask;	/* just for lame ones looking here */
	uth->uu_code = code;
	/* mark on process as well */
	signal_setast(sig_actthread);
}

 
void
psignal(p, signum)
	register struct proc *p;
	register int signum;
{
	psignal_lock(p, signum, 1);
}

void
psignal_vfork(struct proc *p, task_t new_task, thread_t thr_act, int signum)
{
	register int prop;
	register sig_t action;
	int mask;
	struct uthread *uth;

	if ((u_int)signum >= NSIG || signum == 0)
		panic("psignal signal number");
	mask = sigmask(signum);
	prop = sigprop[signum];

#if SIGNAL_DEBUG
        if(rdebug_proc && (p == rdebug_proc)) {
                ram_printf(3);
        }
#endif /* SIGNAL_DEBUG */

	if ((new_task == TASK_NULL) || (thr_act == (thread_t)NULL)  || is_kerneltask(new_task))
		return;


	uth = get_bsdthread_info(thr_act);
	signal_lock(p);

	/*
	 * proc is traced, always give parent a chance.
	 */
	action = SIG_DFL;

	if (p->p_nice > NZERO && action == SIG_DFL && (prop & SA_KILL) &&
		(p->p_flag & P_TRACED) == 0)
		p->p_nice = NZERO;

	if (prop & SA_CONT) {
		p->p_siglist &= ~stopsigmask;
		uth->uu_siglist &= ~stopsigmask;
	}

	if (prop & SA_STOP) {
		/*
		 * If sending a tty stop signal to a member of an orphaned
		 * process group, discard the signal here if the action
		 * is default; don't stop the process below if sleeping,
		 * and don't clear any pending SIGCONT.
		 */
		if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0 &&
			action == SIG_DFL)
			goto psigout;
		uth->uu_siglist &= ~contsigmask;
		p->p_siglist &= ~contsigmask;
	}
	uth->uu_siglist |= mask;
	p->p_siglist |= mask;   /* just for lame ones looking here */
	
	/* Deliver signal to the activation passed in */
	act_set_astbsd(thr_act);

	/*
	 *	SIGKILL priority twiddling moved here from above because
	 *	it needs sig_thread.  Could merge it into large switch
	 *	below if we didn't care about priority for tracing
	 *	as SIGKILL's action is always SIG_DFL.
	 */
	if ((signum == SIGKILL) && (p->p_nice > NZERO)) {
		p->p_nice = NZERO;
	}

	/*
	 *	This Process is traced - wake it up (if not already
	 *	stopped) so that it can discover the signal in
	 *	issig() and stop for the parent.
	 */
	  if (p->p_flag & P_TRACED) {
		if (p->p_stat != SSTOP)
			goto run;
		else
			goto psigout;
	}
run:
	/*
	 * If we're being traced (possibly because someone attached us
	 * while we were stopped), check for a signal from the debugger.
	 */
	if (p->p_stat == SSTOP) {
		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
			uth->uu_siglist |= sigmask(p->p_xstat); 
			p->p_siglist |= mask;   /* just for lame ones looking here */
		}
	}

	/*
	 * setrunnable(p) in BSD
	 */
	p->p_stat = SRUN;

psigout:
	signal_unlock(p);
}

static thread_t
get_signalthread(struct proc *p, int signum)
{
	struct uthread *uth;
	thread_t thr_act;
	sigset_t mask = sigmask(signum);
	thread_t sig_thread_act;
	struct task * sig_task = p->task;
	kern_return_t kret;
	
	if ((p->p_flag & P_INVFORK) && p->p_vforkact) {
		sig_thread_act = p->p_vforkact;	
		kret = check_actforsig(sig_task, sig_thread_act, 1);
		if (kret == KERN_SUCCESS) 
			return(sig_thread_act);
		else
			return(THREAD_NULL);
	} 

	TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) {
		if(((uth->uu_flag & UT_NO_SIGMASK)== 0) && 
			(((uth->uu_sigmask & mask) == 0) || (uth->uu_sigwait & mask))) {
			if (check_actforsig(p->task, uth->uu_act, 1) == KERN_SUCCESS)
				return(uth->uu_act);
		}
	}
	if (get_signalact(p->task, &thr_act, 1) == KERN_SUCCESS) {
		return(thr_act);
	}

	return(THREAD_NULL);
}

/*
 * Send the signal to the process.  If the signal has an action, the action
 * is usually performed by the target process rather than the caller; we add
 * the signal to the set of pending signals for the process.
 *
 * Exceptions:
 *   o When a stop signal is sent to a sleeping process that takes the
 *     default action, the process is stopped without awakening it.
 *   o SIGCONT restarts stopped processes (or puts them back to sleep)
 *     regardless of the signal action (eg, blocked or ignored).
 *
 * Other ignored signals are discarded immediately.
 */
void
psignal_lock(p, signum, withlock)
	register struct proc *p;
	register int signum;
	register int withlock;
{
	register int s, prop;
	register sig_t action;
	thread_t	sig_thread_act;
	register task_t		sig_task;
	int mask;
	struct uthread *uth;
	boolean_t funnel_state = FALSE;
	int sw_funnel = 0;

	if ((u_int)signum >= NSIG || signum == 0)
		panic("psignal signal number");
	mask = sigmask(signum);
	prop = sigprop[signum];

#if SIGNAL_DEBUG
        if(rdebug_proc && (p == rdebug_proc)) {
                ram_printf(3);
        }
#endif /* SIGNAL_DEBUG */

	if (thread_funnel_get() == (funnel_t *)0) {
		sw_funnel = 1;
		funnel_state = thread_funnel_set(kernel_flock, TRUE);
	}
	/*
	 *	We will need the task pointer later.  Grab it now to
	 *	check for a zombie process.  Also don't send signals
	 *	to kernel internal tasks.
	 */
	if (((sig_task = p->task) == TASK_NULL)  || is_kerneltask(sig_task)) {
		if (sw_funnel)
			thread_funnel_set(kernel_flock, funnel_state);
		return;
	}

        s = splhigh();
        KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
        splx(s);

	/*
	 * do not send signals to the process that has the thread
	 * doing a reboot(). Not doing so will mark that thread aborted
	 * and can cause IO failures wich will cause data loss.
	 */
	if (ISSET(p->p_flag, P_REBOOT)) {
		if (sw_funnel)
			thread_funnel_set(kernel_flock, funnel_state);
		return;
	}

	if (withlock)
		signal_lock(p);

	/*
	 *	Deliver the signal to the first thread in the task. This
	 *	allows single threaded applications which use signals to
	 *	be able to be linked with multithreaded libraries.  We have
	 *	an implicit reference to the current thread, but need
	 *	an explicit one otherwise.  The thread reference keeps
	 *	the corresponding task data structures around too.  This
	 *	reference is released by thread_deallocate.
	 */
	
	if (((p->p_flag & P_TRACED) == 0) && (p->p_sigignore & mask))
		goto psigout;

	/* If successful return with ast set */
	sig_thread_act = get_signalthread(p, signum);

	if (sig_thread_act == THREAD_NULL) {
		/* XXXX FIXME
		 * if it is sigkill, may be we should
	 	 * inject a thread to terminate
	 	 */
#if SIGNAL_DEBUG
       		ram_printf(1);
#endif /* SIGNAL_DEBUG */
		goto psigout;
	}

	uth = get_bsdthread_info(sig_thread_act);

	/*
	 * If proc is traced, always give parent a chance.
	 */
	if (p->p_flag & P_TRACED)
		action = SIG_DFL;
	else {
		/*
		 * If the signal is being ignored,
		 * then we forget about it immediately.
		 * (Note: we don't set SIGCONT in p_sigignore,
		 * and if it is set to SIG_IGN,
		 * action will be SIG_DFL here.)
		 */
		if (p->p_sigignore & mask)
			goto psigout;
		/* sigwait takes precedence */
		if (uth->uu_sigwait & mask)
			action = KERN_SIG_WAIT;
		else if (uth->uu_sigmask & mask)
			action = KERN_SIG_HOLD;
		else if (p->p_sigcatch & mask)
			action = KERN_SIG_CATCH;
		else
			action = SIG_DFL;
	}

	if (p->p_nice > NZERO && action == SIG_DFL && (prop & SA_KILL) &&
		(p->p_flag & P_TRACED) == 0)
		p->p_nice = NZERO;

	if (prop & SA_CONT) {
		uth->uu_siglist &= ~stopsigmask;
		p->p_siglist &= ~stopsigmask;
	}

	if (prop & SA_STOP) {
		/*
		 * If sending a tty stop signal to a member of an orphaned
		 * process group, discard the signal here if the action
		 * is default; don't stop the process below if sleeping,
		 * and don't clear any pending SIGCONT.
		 */
		if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0 &&
			action == SIG_DFL)
			goto psigout;
		uth->uu_siglist &= ~contsigmask;
		p->p_siglist &= ~contsigmask;
	}
	uth->uu_siglist |= mask;
	p->p_siglist |= mask;   /* just for lame ones looking here */

	
	/*
	 * Defer further processing for signals which are held,
	 * except that stopped processes must be continued by SIGCONT.
	 */
	if (action == KERN_SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
		goto psigout;
	}
	/*
	 *	SIGKILL priority twiddling moved here from above because
	 *	it needs sig_thread.  Could merge it into large switch
	 *	below if we didn't care about priority for tracing
	 *	as SIGKILL's action is always SIG_DFL.
	 */
	if ((signum == SIGKILL) && (p->p_nice > NZERO)) {
		p->p_nice = NZERO;
	}

	/*
	 *	Process is traced - wake it up (if not already
	 *	stopped) so that it can discover the signal in
	 *	issig() and stop for the parent.
	 */
	if (p->p_flag & P_TRACED) {
	   	if (p->p_stat != SSTOP)
			goto run;
		else
			goto psigout;
	}

	if (action == KERN_SIG_WAIT) {
		uth->uu_sigwait = mask;
		uth->uu_siglist &= ~mask;
		p->p_siglist &= ~mask;
		wakeup(&uth->uu_sigwait);
		/* if it is SIGCONT resume whole process */
		if (prop & SA_CONT) {
			p->p_flag |= P_CONTINUED;
			(void) task_resume(sig_task);
		}
		goto psigout;
	}

	if (action != SIG_DFL) {
		/*
		 *	User wants to catch the signal.
		 *	Wake up the thread, but don't un-suspend it
		 *	(except for SIGCONT).
		 */
		if (prop & SA_CONT) {
			if (p->p_flag & P_TTYSLEEP) {
				p->p_flag &= ~P_TTYSLEEP;
				wakeup(&p->p_siglist);
			} else {
				p->p_flag |= P_CONTINUED;
				(void) task_resume(sig_task);
			}
			p->p_stat = SRUN;
		} else if (p->p_stat == SSTOP)
			goto psigout;
		goto run;
	} else {
		/*	Default action - varies */
		if (mask & stopsigmask) {
			/*
			 * These are the signals which by default
			 * stop a process.
			 *
			 * Don't clog system with children of init
			 * stopped from the keyboard.
			 */
			if (!(prop & SA_STOP) && p->p_pptr == initproc) {
				psignal_lock(p, SIGKILL, 0);
				uth->uu_siglist &= ~mask;
				p->p_siglist &= ~mask;
				goto psigout;
			}
                        
			/*
			 *	Stop the task
			 *	if task hasn't already been stopped by
			 *	a signal.
			 */
			uth->uu_siglist &= ~mask;
			p->p_siglist &= ~mask;
			if (p->p_stat != SSTOP) {
				p->p_xstat = signum;
				stop(p);
				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
					struct proc *pp = p->p_pptr;

					pp->si_pid = p->p_pid;
					pp->si_status = p->p_xstat;
					pp->si_code = CLD_STOPPED;
					pp->si_uid = p->p_ucred->cr_ruid;
					psignal(pp, SIGCHLD);
				}
			}
			goto psigout;
		}

		switch (signum) {
			/*
			 * Signals ignored by default have been dealt
			 * with already, since their bits are on in
			 * p_sigignore.
			 */

		case SIGKILL:
			/*
			 * Kill signal always sets process running and
			 * unsuspends it.
			 */
			/*
			 *	Process will be running after 'run'
			 */
			p->p_stat = SRUN;

			thread_abort(sig_thread_act);

			goto psigout;

		case SIGCONT:
			/*
			 * Let the process run.  If it's sleeping on an
			 * event, it remains so.
			 */
			if (p->p_flag & P_TTYSLEEP) {
				p->p_flag &= ~P_TTYSLEEP;
				wakeup(&p->p_siglist);
			} else {
				p->p_flag |= P_CONTINUED;
				(void) task_resume(sig_task);
			}
			uth->uu_siglist &= ~mask;
			p->p_siglist &= ~mask;
			p->p_stat = SRUN;

			goto psigout;

		default:
			/*
			 * All other signals wake up the process, but don't
			 * resume it.
			 */
			if (p->p_stat == SSTOP)
				goto psigout;
			goto run;
		}
	}
	/*NOTREACHED*/
run:
	/*
	 * If we're being traced (possibly because someone attached us
	 * while we were stopped), check for a signal from the debugger.
	 */
	if (p->p_stat == SSTOP) {
		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
			uth->uu_siglist |= sigmask(p->p_xstat); 
	} else {
		/*
	 	 * setrunnable(p) in BSD and
	 	 * Wake up the thread if it is interruptible.
	 	 */
		p->p_stat = SRUN;
		thread_abort_safely(sig_thread_act);
	}
psigout:
	if (withlock) 
		signal_unlock(p);
	if (sw_funnel)
			thread_funnel_set(kernel_flock, funnel_state);
}


/* psignal_lock(p, signum, withlock ) */
void
psignal_uthread(thr_act, signum)
	thread_t thr_act;
	int signum;
{
	struct proc *p;
	register int prop;
	register sig_t action;
	thread_t	sig_thread_act;
	register task_t		sig_task;
	int mask;
	struct uthread *uth;
	kern_return_t kret;
	int error = 0;

	p = (struct proc *)get_bsdtask_info(get_threadtask(thr_act));
	if ((u_int)signum >= NSIG || signum == 0)
		panic("Invalid signal number in psignal_uthread"); 
	mask = sigmask(signum);
	prop = sigprop[signum];

#if SIGNAL_DEBUG
        if(rdebug_proc && (p == rdebug_proc)) {
                ram_printf(3);
        }
#endif /* SIGNAL_DEBUG */

	/*
	 *	We will need the task pointer later.  Grab it now to
	 *	check for a zombie process.  Also don't send signals
	 *	to kernel internal tasks.
	 */
	if (((sig_task = p->task) == TASK_NULL)  || is_kerneltask(sig_task)) {
		return;
	}

	sig_thread_act = thr_act;
	/*
	 * do not send signals to the process that has the thread
	 * doing a reboot(). Not doing so will mark that thread aborted
	 * and can cause IO failures wich will cause data loss.
	 */
	if (ISSET(p->p_flag, P_REBOOT)) {
		return;
	}

	signal_lock(p);

	/*
	 *	Deliver the signal to the first thread in the task. This
	 *	allows single threaded applications which use signals to
	 *	be able to be linked with multithreaded libraries.  We have
	 *	an implicit reference to the current thread, but need
	 *	an explicit one otherwise.  The thread reference keeps
	 *	the corresponding task data structures around too.  This
	 *	reference is released by thread_deallocate.
	 */
	
	if (((p->p_flag & P_TRACED) == 0) && (p->p_sigignore & mask))
		goto puthout;

	kret = check_actforsig(sig_task, sig_thread_act, 1);

	if (kret != KERN_SUCCESS) {
		error = EINVAL;
		goto puthout;
	}


	uth = get_bsdthread_info(sig_thread_act);

	/*
	 * If proc is traced, always give parent a chance.
	 */
	if (p->p_flag & P_TRACED)
		action = SIG_DFL;
	else {
		/*
		 * If the signal is being ignored,
		 * then we forget about it immediately.
		 * (Note: we don't set SIGCONT in p_sigignore,
		 * and if it is set to SIG_IGN,
		 * action will be SIG_DFL here.)
		 */
		if (p->p_sigignore & mask)
			goto puthout;
		/* sigwait takes precedence */
		if (uth->uu_sigwait & mask)
			action = KERN_SIG_WAIT;
		else if (uth->uu_sigmask & mask)
			action = KERN_SIG_HOLD;
		else if (p->p_sigcatch & mask)
			action = KERN_SIG_CATCH;
		else
			action = SIG_DFL;
	}

	if (p->p_nice > NZERO && action == SIG_DFL && (prop & SA_KILL) &&
		(p->p_flag & P_TRACED) == 0)
		p->p_nice = NZERO;

	if (prop & SA_CONT) {
		uth->uu_siglist &= ~stopsigmask;
		p->p_siglist &= ~stopsigmask;
	}

	if (prop & SA_STOP) {
		/*
		 * If sending a tty stop signal to a member of an orphaned
		 * process group, discard the signal here if the action
		 * is default; don't stop the process below if sleeping,
		 * and don't clear any pending SIGCONT.
		 */
		if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0 &&
			action == SIG_DFL)
			goto puthout;
		uth->uu_siglist &= ~contsigmask;
		p->p_siglist &= ~contsigmask;
	}
	uth->uu_siglist |= mask;
	p->p_siglist |= mask;   /* just for lame ones looking here */

	/*
	 * Defer further processing for signals which are held,
	 * except that stopped processes must be continued by SIGCONT.
	 */
	if (action == KERN_SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP))
		goto puthout;
		
	/*
	 *	SIGKILL priority twiddling moved here from above because
	 *	it needs sig_thread.  Could merge it into large switch
	 *	below if we didn't care about priority for tracing
	 *	as SIGKILL's action is always SIG_DFL.
	 */
	if ((signum == SIGKILL) && (p->p_nice > NZERO)) {
		p->p_nice = NZERO;
	}

	/*
	 *	Process is traced - wake it up (if not already
	 *	stopped) so that it can discover the signal in
	 *	issig() and stop for the parent.
	 */
	if (p->p_flag & P_TRACED) {
	   	if (p->p_stat != SSTOP)
			goto psurun;
		else
			goto puthout;
	}

	if (action == KERN_SIG_WAIT) {
		uth->uu_sigwait = mask;
		uth->uu_siglist &= ~mask;
		p->p_siglist &= ~mask;
		wakeup(&uth->uu_sigwait);
		/* if it is SIGCONT resume whole process */
		if (prop & SA_CONT) {
			p->p_flag |= P_CONTINUED;
			(void) task_resume(sig_task);
		}
		goto puthout;
	}

	if (action != SIG_DFL) {
		/*
		 *	User wants to catch the signal.
		 *	Wake up the thread, but don't un-suspend it
		 *	(except for SIGCONT).
		 */
		if (prop & SA_CONT) {
			p->p_flag |= P_CONTINUED;
			(void) task_resume(sig_task);
		}
		goto psurun;
	} else {
		/*	Default action - varies */
		if (mask & stopsigmask) {
			/*
			 * These are the signals which by default
			 * stop a process.
			 *
			 * Don't clog system with children of init
			 * stopped from the keyboard.
			 */
			if (!(prop & SA_STOP) && p->p_pptr == initproc) {
				psignal_lock(p, SIGKILL, 0);
				uth->uu_siglist &= ~mask;
				p->p_siglist &= ~mask;
				goto puthout;
			}
                        
			/*
			 *	Stop the task
			 *	if task hasn't already been stopped by
			 *	a signal.
			 */
			uth->uu_siglist &= ~mask;
			p->p_siglist &= ~mask;
			if (p->p_stat != SSTOP) {
				p->p_xstat = signum;
				if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
					struct proc *pp = p->p_pptr;

					pp->si_pid = p->p_pid;
					pp->si_status = p->p_xstat;
					pp->si_code = CLD_STOPPED;
					pp->si_uid = p->p_ucred->cr_ruid;
					psignal(pp, SIGCHLD);
				}
				stop(p);
			}
			goto puthout;
		}

		switch (signum) {
			/*
			 * Signals ignored by default have been dealt
			 * with already, since their bits are on in
			 * p_sigignore.
			 */

		case SIGKILL:
			/*
			 * Kill signal always sets process running and
			 * unsuspends it.
			 */
			/*
			 *	Process will be running after 'run'
			 */
			p->p_stat = SRUN;

			thread_abort(sig_thread_act);

			goto puthout;

		case SIGCONT:
			/*
			 * Let the process run.  If it's sleeping on an
			 * event, it remains so.
			 */
			if (p->p_flag & P_TTYSLEEP) {
				p->p_flag &= ~P_TTYSLEEP;
				wakeup(&p->p_siglist);
			} else {
				p->p_flag |= P_CONTINUED;
				(void) task_resume(sig_task);
			}
			uth->uu_siglist &= ~mask;
			p->p_siglist &= ~mask;
			p->p_stat = SRUN;
			goto puthout;

		default:
			/*
			 * All other signals wake up the process, but don't
			 * resume it.
			 */
			goto psurun;
		}
	}
	/*NOTREACHED*/
psurun:
	/*
	 * If we're being traced (possibly because someone attached us
	 * while we were stopped), check for a signal from the debugger.
	 */
	if (p->p_stat == SSTOP) {
		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
			uth->uu_siglist |= sigmask(p->p_xstat); 
			p->p_siglist |= sigmask(p->p_xstat); 
		}
	} else {
		/*
	 	 * setrunnable(p) in BSD and
	 	 * Wake up the thread if it is interruptible.
	 	 */
		p->p_stat = SRUN;
		thread_abort_safely(sig_thread_act);
	}

puthout:
		signal_unlock(p);
}


__inline__ void
sig_lock_to_exit(struct proc *p)
{
	thread_t	self = current_thread();

	p->exit_thread = self;
	(void) task_suspend(p->task);
}

__inline__ int
sig_try_locked(struct proc *p)
{
	thread_t	self = current_thread();

	while (p->sigwait || p->exit_thread) {
		if (p->exit_thread) {
			if (p->exit_thread != self) {
				/*
				 * Already exiting - no signals.
				 */
				thread_abort(self);
			}
			return(0);
		}
		if(assert_wait_possible()) {
			assert_wait((caddr_t)&p->sigwait_thread, 
					(THREAD_INTERRUPTIBLE));
		}
		signal_unlock(p);
		thread_block(THREAD_CONTINUE_NULL);
		signal_lock(p);
		if (thread_should_abort(self)) {
			/*
			 * Terminate request - clean up.
			 */
			return -1;
		}
	}
	return 1;
}

/*
 * If the current process has received a signal (should be caught or cause
 * termination, should interrupt current syscall), return the signal number.
 * Stop signals with default action are processed immediately, then cleared;
 * they aren't returned.  This is checked after each entry to the system for
 * a syscall or trap (though this can usually be done without calling issignal
 * by checking the pending signal masks in the CURSIG macro.) The normal call
 * sequence is
 *
 *	while (signum = CURSIG(curproc))
 *		postsig(signum);
 */
int
issignal(p)
	register struct proc *p;
{
	register int signum, mask, prop, sigbits;
	thread_t cur_act;
	struct uthread * ut;
	struct proc *pp;

	cur_act = current_thread();

#if SIGNAL_DEBUG
        if(rdebug_proc && (p == rdebug_proc)) {
                ram_printf(3);
        }
#endif /* SIGNAL_DEBUG */
	signal_lock(p);

	/*
	 * Try to grab the signal lock.
	 */
	if (sig_try_locked(p) <= 0) {
		signal_unlock(p);
		return (0);
	}

	ut = get_bsdthread_info(cur_act);
	for(;;) {
		sigbits = ut->uu_siglist  & ~ut->uu_sigmask;

		if (p->p_flag & P_PPWAIT)
			sigbits &= ~stopsigmask;
		if (sigbits == 0) {	 	/* no signal to send */
			signal_unlock(p);
			return (0);
		}
		signum = ffs((long)sigbits);
		mask = sigmask(signum);
		prop = sigprop[signum];

		/*
		 * We should see pending but ignored signals
		 * only if P_TRACED was on when they were posted.
		 */
		if (mask & p->p_sigignore && (p->p_flag & P_TRACED) == 0) {
			ut->uu_siglist &= ~mask;		/* take the signal! */
			p->p_siglist &= ~mask;		/* take the signal! */
			continue;
		}
		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0)  {
			register task_t	task;
			/*
			 * If traced, always stop, and stay
			 * stopped until released by the debugger.
			 */
			/* ptrace debugging */
			p->p_xstat = signum;
			pp = p->p_pptr;
			if (p->p_flag & P_SIGEXC) {
				p->sigwait = TRUE;
				p->sigwait_thread = cur_act;
				p->p_stat = SSTOP;
				p->p_flag &= ~(P_WAITED|P_CONTINUED);
				ut->uu_siglist &= ~mask;	/* clear the old signal */
				p->p_siglist &= ~mask;	/* clear the old signal */
				signal_unlock(p);
				do_bsdexception(EXC_SOFTWARE, EXC_SOFT_SIGNAL, signum);
				signal_lock(p);
			} else {
//				panic("Unsupportef gdb option \n");;
				pp->si_pid = p->p_pid;
				pp->si_status = p->p_xstat;
				pp->si_code = CLD_TRAPPED;
				pp->si_uid = p->p_ucred->cr_ruid;
				psignal(pp, SIGCHLD);
				/*
			 	*	XXX Have to really stop for debuggers;
			 	*	XXX stop() doesn't do the right thing.
			 	*	XXX Inline the task_suspend because we
			 	*	XXX have to diddle Unix state in the
			 	*	XXX middle of it.
			 	*/
				task = p->task;
				task_hold(task);
				p->sigwait = TRUE;
				p->sigwait_thread = cur_act;
				p->p_stat = SSTOP;
				p->p_flag &= ~(P_WAITED|P_CONTINUED);
				ut->uu_siglist &= ~mask;	/* clear the old signal */
				p->p_siglist &= ~mask;	/* clear the old signal */

				wakeup((caddr_t)p->p_pptr);
				signal_unlock(p);
				assert_wait((caddr_t)&p->sigwait, (THREAD_INTERRUPTIBLE));
				thread_block(THREAD_CONTINUE_NULL);
				signal_lock(p);
			}

			p->sigwait = FALSE;
			p->sigwait_thread = NULL;
			wakeup((caddr_t)&p->sigwait_thread);

			/*
			 * This code is to detect when gdb is killed
			 * even as the traced program is attached.
			 * pgsignal would get the SIGKILL to traced program
			 * That's what we are trying to see (I hope)
			 */
			if (ut->uu_siglist & sigmask(SIGKILL)) {
				/*
				 * Wait event may still be outstanding;
				 * clear it, since sig_lock_to_exit will
				 * wait.
				 */
				clear_wait(current_thread(), THREAD_INTERRUPTED);
				sig_lock_to_exit(p);
				/*
			 	* Since this thread will be resumed
			 	* to allow the current syscall to
			 	* be completed, must save u_qsave
			 	* before calling exit().  (Since exit()
			 	* calls closef() which can trash u_qsave.)
			 	*/
				signal_unlock(p);
				exit1(p,signum, (int *)NULL);
				return(0);
			}

			/*
			 *	We may have to quit
			 */
			if (thread_should_abort(current_thread())) {
				signal_unlock(p);
				return(0);
			}
			/*
			 * If parent wants us to take the signal,
			 * then it will leave it in p->p_xstat;
			 * otherwise we just look for signals again.
			 */
			signum = p->p_xstat;
			if (signum == 0)
				continue;
			/*
			 * Put the new signal into p_siglist.  If the
			 * signal is being masked, look for other signals.
			 */
			mask = sigmask(signum);
			ut->uu_siglist |= mask;
			p->p_siglist |= mask;   /* just for lame ones looking here */
			if (ut->uu_sigmask & mask)
				continue;
		}

		/*
		 * Decide whether the signal should be returned.
		 * Return the signal's number, or fall through
		 * to clear it from the pending mask.
		 */

		switch ((long)p->p_sigacts->ps_sigact[signum]) {
		
		case (long)SIG_DFL:
			/*
			 * Don't take default actions on system processes.
			 */
			if (p->p_pptr->p_pid == 0) {
#if DIAGNOSTIC
				/*
				 * Are you sure you want to ignore SIGSEGV
				 * in init? XXX
				 */
				printf("Process (pid %d) got signal %d\n",
					p->p_pid, signum);
#endif
				break; 				/* == ignore */
			}
			
			/*
			 * If there is a pending stop signal to process
			 * with default action, stop here,
			 * then clear the signal.  However,
			 * if process is member of an orphaned
			 * process group, ignore tty stop signals.
			 */
			if (prop & SA_STOP) {
				if (p->p_flag & P_TRACED ||
					(p->p_pgrp->pg_jobc == 0 &&
					prop & SA_TTYSTOP))
					break;	/* == ignore */
				if (p->p_stat != SSTOP) {
					p->p_xstat = signum;
					stop(p);
					if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
						pp = p->p_pptr;
						pp->si_pid = p->p_pid;
						pp->si_status = p->p_xstat;
						pp->si_code = CLD_STOPPED;
						pp->si_uid = p->p_ucred->cr_ruid;
						psignal(pp, SIGCHLD);
					}
				}
				break;
			} else if (prop & SA_IGNORE) {
				/*
				 * Except for SIGCONT, shouldn't get here.
				 * Default action is to ignore; drop it.
				 */
				break;		/* == ignore */
			} else {
				ut->uu_siglist &= ~mask;	/* take the signal! */
				p->p_siglist &= ~mask;	/* take the signal! */
				signal_unlock(p);
				return (signum);
			}
			/*NOTREACHED*/

		case (long)SIG_IGN:
			/*
			 * Masking above should prevent us ever trying
			 * to take action on an ignored signal other
			 * than SIGCONT, unless process is traced.
			 */
			if ((prop & SA_CONT) == 0 &&
				(p->p_flag & P_TRACED) == 0)
				printf("issignal\n");
			break;		/* == ignore */

		default:
			/*
			 * This signal has an action, let
			 * postsig() process it.
			 */
			ut->uu_siglist &= ~mask;		/* take the signal! */
			p->p_siglist &= ~mask;		/* take the signal! */
			signal_unlock(p);
			return (signum);
		}
		ut->uu_siglist &= ~mask;		/* take the signal! */
		p->p_siglist &= ~mask;		/* take the signal! */
		}
	/* NOTREACHED */
}

/* called from _sleep */
int
CURSIG(p)
    register struct proc *p;
{
	register int signum, mask, prop, sigbits;
	thread_t cur_act;
	struct uthread * ut;
	int retnum = 0;
           

	cur_act = current_thread();

	ut = get_bsdthread_info(cur_act);

	if (ut->uu_siglist == 0)
		return (0);

	if (((ut->uu_siglist & ~ut->uu_sigmask) == 0) && ((p->p_flag & P_TRACED) == 0))
		return (0);

	sigbits = ut->uu_siglist & ~ut->uu_sigmask;

	for(;;) {
		if (p->p_flag & P_PPWAIT)
			sigbits &= ~stopsigmask;
		if (sigbits == 0) {	 	/* no signal to send */
			return (retnum);
		}

		signum = ffs((long)sigbits);
		mask = sigmask(signum);
		prop = sigprop[signum];

		/*
		 * We should see pending but ignored signals
		 * only if P_TRACED was on when they were posted.
		 */
		if (mask & p->p_sigignore && (p->p_flag & P_TRACED) == 0) {
			continue;
		}
		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
			/*
			 * Put the new signal into p_siglist.  If the
			 * signal is being masked, look for other signals.
			 */
			mask = sigmask(signum);
			if (ut->uu_sigmask & mask)
				continue;
			return(signum);
		}

		/*
		 * Decide whether the signal should be returned.
		 * Return the signal's number, or fall through
		 * to clear it from the pending mask.
		 */

		switch ((long)p->p_sigacts->ps_sigact[signum]) {
		
		case (long)SIG_DFL:
			/*
			 * Don't take default actions on system processes.
			 */
			if (p->p_pptr->p_pid == 0) {
#if DIAGNOSTIC
				/*
				 * Are you sure you want to ignore SIGSEGV
				 * in init? XXX
				 */
				printf("Process (pid %d) got signal %d\n",
					p->p_pid, signum);
#endif
				break; 				/* == ignore */
			}
			
			/*
			 * If there is a pending stop signal to process
			 * with default action, stop here,
			 * then clear the signal.  However,
			 * if process is member of an orphaned
			 * process group, ignore tty stop signals.
			 */
			if (prop & SA_STOP) {
				if (p->p_flag & P_TRACED ||
					(p->p_pgrp->pg_jobc == 0 &&
					prop & SA_TTYSTOP))
					break;	/* == ignore */
				retnum = signum;
				break;
			} else if (prop & SA_IGNORE) {
				/*
				 * Except for SIGCONT, shouldn't get here.
				 * Default action is to ignore; drop it.
				 */
				break;		/* == ignore */
			} else {
				return (signum);
			}
			/*NOTREACHED*/

		case (long)SIG_IGN:
			/*
			 * Masking above should prevent us ever trying
			 * to take action on an ignored signal other
			 * than SIGCONT, unless process is traced.
			 */
			if ((prop & SA_CONT) == 0 &&
				(p->p_flag & P_TRACED) == 0)
				printf("issignal\n");
			break;		/* == ignore */

		default:
			/*
			 * This signal has an action, let
			 * postsig() process it.
			 */
			return (signum);
		}
		sigbits &= ~mask;		/* take the signal! */
	}
	/* NOTREACHED */
}

/*
 * Put the argument process into the stopped state and notify the parent
 * via wakeup.  Signals are handled elsewhere.  The process must not be
 * on the run queue.
 */
void
stop(p)
	register struct proc *p;
{
	p->p_stat = SSTOP;
	p->p_flag &= ~(P_WAITED|P_CONTINUED);
	if (p->p_pptr->p_stat != SSTOP)
		wakeup((caddr_t)p->p_pptr);
	(void) task_suspend(p->task);	/*XXX*/
}

/*
 * Take the action for the specified signal
 * from the current set of pending signals.
 */
void
postsig(int signum)
{
	struct proc *p = current_proc();
	struct sigacts *ps = p->p_sigacts;
	user_addr_t catcher;
	u_long code;
	int mask, returnmask;
	struct uthread * ut;

#if DIAGNOSTIC
	if (signum == 0)
		panic("postsig");
	/*
	 *	This must be called on master cpu
	 */
	if (cpu_number() != master_cpu)
		panic("psig not on master");
#endif

	signal_lock(p);
	/*
	 * Try to grab the signal lock.
	 */
	if (sig_try_locked(p) <= 0) {
		signal_unlock(p);
		return;
	}

	ut = (struct uthread *)get_bsdthread_info(current_thread());
	mask = sigmask(signum);
	ut->uu_siglist &= ~mask;
	p->p_siglist &= ~mask;
	catcher = ps->ps_sigact[signum];
#if KTRACE
	//LP64: catcher argument is a 64 bit user space handler address
	if (KTRPOINT(p, KTR_PSIG))
		ktrpsig(p->p_tracep,
		    signum, CAST_DOWN(void *,catcher), ut->uu_flag & UT_SAS_OLDMASK ?
		    &ut->uu_oldmask : &ut->uu_sigmask, 0);
#endif
	if (catcher == SIG_DFL) {
		/*
		 * Default catcher, where the default is to kill
		 * the process.  (Other cases were ignored above.)
		 */
		/* called with signal_lock() held */
		sigexit_locked(p, signum);
		return;
		/* NOTREACHED */
	} else {
		/*
		 * If we get here, the signal must be caught.
		 */
#if DIAGNOSTIC
		if (catcher == SIG_IGN || (ut->uu_sigmask & mask))
			log(LOG_WARNING,
				"postsig: processing masked or ignored signal\n");
#endif
		/*
		 * Set the new mask value and also defer further
		 * occurences of this signal.
		 *
		 * Special case: user has done a sigpause.  Here the
		 * current mask is not of interest, but rather the
		 * mask from before the sigpause is what we want
		 * restored after the signal processing is completed.
		 */
		if (ut->uu_flag & UT_SAS_OLDMASK) {
			returnmask = ut->uu_oldmask;
			ut->uu_flag &= ~UT_SAS_OLDMASK;
			ut->uu_oldmask = 0;
		} else
			returnmask = ut->uu_sigmask;
		ut->uu_sigmask |= ps->ps_catchmask[signum];
		if ((ps->ps_signodefer & mask) == 0)
			ut->uu_sigmask |= mask;
		if ((signum != SIGILL) && (signum != SIGTRAP) && (ps->ps_sigreset & mask)) {
			if ((signum != SIGCONT) && (sigprop[signum] & SA_IGNORE))
				p->p_sigignore |= mask;
			ps->ps_sigact[signum] = SIG_DFL;
			ps->ps_siginfo &= ~mask;
			ps->ps_signodefer &= ~mask;
		}
#ifdef __ppc__
		/* Needs to disable to run in user mode */
		if (signum == SIGFPE) {
			thread_enable_fpe(current_thread(), 0);
		}
#endif  /* __ppc__ */

		if (ps->ps_sig != signum) {
			code = 0;
		} else {
			code = ps->ps_code;
			ps->ps_code = 0;
		}
		p->p_stats->p_ru.ru_nsignals++;
		sendsig(p, catcher, signum, returnmask, code);
	}
	signal_unlock(p);
}

/*
 * Force the current process to exit with the specified signal, dumping core
 * if appropriate.  We bypass the normal tests for masked and caught signals,
 * allowing unrecoverable failures to terminate the process without changing
 * signal state.  Mark the accounting record with the signal termination.
 * If dumping core, save the signal number for the debugger.  Calls exit and
 * does not return.
 */
 /* called with signal lock */
void
sigexit_locked(p, signum)
	register struct proc *p;
	int signum;
{

	sig_lock_to_exit(p);
	p->p_acflag |= AXSIG;
	if (sigprop[signum] & SA_CORE) {
		p->p_sigacts->ps_sig = signum;
		signal_unlock(p);
		if (coredump(p) == 0)
			signum |= WCOREFLAG;
	} else 
		signal_unlock(p);
		
	exit1(p, W_EXITCODE(0, signum), (int *)NULL);
	/* NOTREACHED */
}


static int
filt_sigattach(struct knote *kn)
{
	struct proc *p = current_proc();

	kn->kn_ptr.p_proc = p;
	kn->kn_flags |= EV_CLEAR;		/* automatically set */

	/* XXX lock the proc here while adding to the list? */
	KNOTE_ATTACH(&p->p_klist, kn);

	return (0);
}

static void
filt_sigdetach(struct knote *kn)
{
	struct proc *p = kn->kn_ptr.p_proc;

	KNOTE_DETACH(&p->p_klist, kn);
}

/*
 * signal knotes are shared with proc knotes, so we apply a mask to 
 * the hint in order to differentiate them from process hints.  This
 * could be avoided by using a signal-specific knote list, but probably
 * isn't worth the trouble.
 */
static int
filt_signal(struct knote *kn, long hint)
{

	if (hint & NOTE_SIGNAL) {
		hint &= ~NOTE_SIGNAL;

		if (kn->kn_id == (unsigned int)hint)
			kn->kn_data++;
	}
	return (kn->kn_data != 0);
}


void
bsd_ast(thread_t thr_act)
{
	struct proc *p = current_proc();
	struct uthread *ut = get_bsdthread_info(thr_act);
	int	signum;
	user_addr_t pc;
	boolean_t funnel_state;
	static int bsd_init_done = 0;

	if (p == NULL)
		return;

	funnel_state = thread_funnel_set(kernel_flock, TRUE);

	if ((p->p_flag & P_OWEUPC) && (p->p_flag & P_PROFIL)) {
		pc = get_useraddr();
		addupc_task(p, pc, 1);
		p->p_flag &= ~P_OWEUPC;
	}

	if (CHECK_SIGNALS(p, current_thread(), ut)) {
		while ( (signum = issignal(p)) )
			postsig(signum);
	}
	if (!bsd_init_done) {
		bsd_init_done = 1;
		bsdinit_task();
	}

	(void) thread_funnel_set(kernel_flock, FALSE);
}

/*
 * Follwing routines are called using callout from bsd_hardclock
 * so that psignals are called in a thread context and are funneled
 */
void
psignal_vtalarm(struct proc *p)
{
	boolean_t funnel_state;

	if (p == NULL)
		return;
	funnel_state = thread_funnel_set(kernel_flock, TRUE);
	psignal_lock(p, SIGVTALRM, 1);
	(void) thread_funnel_set(kernel_flock, FALSE);
}

void
psignal_xcpu(struct proc *p)
{
	boolean_t funnel_state;

	if (p == NULL)
		return;
	funnel_state = thread_funnel_set(kernel_flock, TRUE);
	psignal_lock(p, SIGXCPU, 1);
	(void) thread_funnel_set(kernel_flock, FALSE);
}

void
psignal_sigprof(struct proc *p)
{
	boolean_t funnel_state;

	if (p == NULL)
		return;
	funnel_state = thread_funnel_set(kernel_flock, TRUE);
	psignal_lock(p, SIGPROF, 1);
	(void) thread_funnel_set(kernel_flock, FALSE);
}

/* ptrace set runnalbe */
void
pt_setrunnable(struct proc *p)
{
task_t task;

	task = p->task;

	if (p->p_flag & P_TRACED) {
		p->p_stat = SRUN;
		if (p->sigwait) {
			wakeup((caddr_t)&(p->sigwait));
			task_release(task);
		}
	}
}


kern_return_t
do_bsdexception(
	    int exc,
	    int code,
	    int sub)
{
	exception_data_type_t   codes[EXCEPTION_CODE_MAX];

	codes[0] = code;	
	codes[1] = sub;
	return(bsd_exception(exc, codes, 2));
}

int
proc_pendingsignals(struct proc *p, sigset_t mask)
{
	struct uthread * uth;
	thread_t th;
	sigset_t bits = 0;
	int error;

	/* If the process is in proc exit return no signal info */
	if (p->p_lflag & P_LPEXIT) 
		return(0);

	/* duplicate the signal lock code to enable recursion; as exit
	 * holds the lock too long. All this code is being reworked
	 * this is just a workaround for regressions till new code
	 * arrives.
	 */
ppend_retry:
		error = lockmgr((struct lock__bsd__ *)&p->signal_lock[0], (LK_EXCLUSIVE | LK_CANRECURSE), 0, (struct proc *)0);
		if (error == EINTR)
			goto ppend_retry;

	if ((p->p_flag & P_INVFORK) && p->p_vforkact) {
		th = p->p_vforkact;	
		uth = (struct uthread *)get_bsdthread_info(th);
		if (uth) {
			bits = (((uth->uu_siglist & ~uth->uu_sigmask) & ~p->p_sigignore) & mask);
		}
		goto out;
	} 

	bits = 0;
	TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) {
		bits |= (((uth->uu_siglist & ~uth->uu_sigmask) & ~p->p_sigignore) & mask);
	}
out:
	signal_unlock(p);
	return(bits);
}

int
thread_issignal(proc_t p, thread_t th, sigset_t mask)
{
	struct uthread * uth;
	sigset_t  bits=0;


		uth = (struct uthread *)get_bsdthread_info(th);
		if (uth) {
			bits = (((uth->uu_siglist & ~uth->uu_sigmask) & ~p->p_sigignore) & mask);
		}
		return(bits);
}