/* * Copyright (c) 2015 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * * THE KCDATA MANIFESTO * * Kcdata is a self-describing data serialization format. It is meant to get * nested data structures out of xnu with minimum fuss, but also for that data * to be easy to parse. It is also meant to allow us to add new fields and * evolve the data format without breaking old parsers. * * Kcdata is a permanent data format suitable for long-term storage including * in files. It is very important that we continue to be able to parse old * versions of kcdata-based formats. To this end, there are several * invariants you MUST MAINTAIN if you alter this file. * * * None of the magic numbers should ever be a byteswap of themselves or * of any of the other magic numbers. * * * Never remove any type. * * * All kcdata structs must be packed, and must exclusively use fixed-size * types. * * * Never change the definition of any type, except to add new fields to * the end. * * * If you do add new fields to the end of a type, do not actually change * the definition of the old structure. Instead, define a new structure * with the new fields. See thread_snapshot_v3 as an example. This * provides source compatibility for old readers, and also documents where * the potential size cutoffs are. * * * If you change libkdd, or kcdata.py run the unit tests under libkdd. * * * If you add a type or extend an existing one, add a sample test to * libkdd/tests so future changes to libkdd will always parse your struct * correctly. * * For example to add a field to this: * * struct foobar { * uint32_t baz; * uint32_t quux; * } __attribute__ ((packed)); * * Make it look like this: * * struct foobar { * uint32_t baz; * uint32_t quux; * ///////// end version 1 of foobar. sizeof(struct foobar) was 8 //////// * uint32_t frozzle; * } __attribute__ ((packed)); * * If you are parsing kcdata formats, you MUST * * * Check the length field of each struct, including array elements. If the * struct is longer than you expect, you must ignore the extra data. * * * Ignore any data types you do not understand. * * Additionally, we want to be as forward compatible as we can. Meaning old * tools should still be able to use new data whenever possible. To this end, * you should: * * * Try not to add new versions of types that supplant old ones. Instead * extend the length of existing types or add supplemental types. * * * Try not to remove information from existing kcdata formats, unless * removal was explicitly asked for. For example it is fine to add a * stackshot flag to remove unwanted information, but you should not * remove it from the default stackshot if the new flag is absent. * * * (TBD) If you do break old readers by removing information or * supplanting old structs, then increase the major version number. * * * * The following is a description of the kcdata format. * * * The format for data is setup in a generic format as follows * * Layout of data structure: * * | 8 - bytes | * | type = MAGIC | LENGTH | * | 0 | * | type | size | * | flags | * | data | * |___________data____________| * | type | size | * | flags | * |___________data____________| * | type = END | size=0 | * | 0 | * * * The type field describes what kind of data is passed. For example type = TASK_CRASHINFO_UUID means the following data is a uuid. * These types need to be defined in task_corpses.h for easy consumption by userspace inspection tools. * * Some range of types is reserved for special types like ints, longs etc. A cool new functionality made possible with this * extensible data format is that kernel can decide to put more information as required without requiring user space tools to * re-compile to be compatible. The case of rusage struct versions could be introduced without breaking existing tools. * * Feature description: Generic data with description * ------------------- * Further more generic data with description is very much possible now. For example * * - kcdata_add_uint64_with_description(cdatainfo, 0x700, "NUM MACH PORTS"); * - and more functions that allow adding description. * The userspace tools can then look at the description and print the data even if they are not compiled with knowledge of the field apriori. * * Example data: * 0000 57 f1 ad de 00 00 00 00 00 00 00 00 00 00 00 00 W............... * 0010 01 00 00 00 00 00 00 00 30 00 00 00 00 00 00 00 ........0....... * 0020 50 49 44 00 00 00 00 00 00 00 00 00 00 00 00 00 PID............. * 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ * 0040 9c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ * 0050 01 00 00 00 00 00 00 00 30 00 00 00 00 00 00 00 ........0....... * 0060 50 41 52 45 4e 54 20 50 49 44 00 00 00 00 00 00 PARENT PID...... * 0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ * 0080 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ * 0090 ed 58 91 f1 * * Feature description: Container markers for compound data * ------------------ * If a given kernel data type is complex and requires adding multiple optional fields inside a container * object for a consumer to understand arbitrary data, we package it using container markers. * * For example, the stackshot code gathers information and describes the state of a given task with respect * to many subsystems. It includes data such as io stats, vm counters, process names/flags and syscall counts. * * kcdata_add_container_marker(kcdata_p, KCDATA_TYPE_CONTAINER_BEGIN, STACKSHOT_KCCONTAINER_TASK, task_uniqueid); * // add multiple data, or add__with_description()s here * * kcdata_add_container_marker(kcdata_p, KCDATA_TYPE_CONTAINER_END, STACKSHOT_KCCONTAINER_TASK, task_uniqueid); * * Feature description: Custom Data formats on demand * -------------------- * With the self describing nature of format, the kernel provider can describe a data type (uniquely identified by a number) and use * it in the buffer for sending data. The consumer can parse the type information and have knowledge of describing incoming data. * Following is an example of how we can describe a kernel specific struct sample_disk_io_stats in buffer. * * struct sample_disk_io_stats { * uint64_t disk_reads_count; * uint64_t disk_reads_size; * uint64_t io_priority_count[4]; * uint64_t io_priority_size; * } __attribute__ ((packed)); * * * struct kcdata_subtype_descriptor disk_io_stats_def[] = { * {KCS_SUBTYPE_FLAGS_NONE, KC_ST_UINT64, 0 * sizeof(uint64_t), sizeof(uint64_t), "disk_reads_count"}, * {KCS_SUBTYPE_FLAGS_NONE, KC_ST_UINT64, 1 * sizeof(uint64_t), sizeof(uint64_t), "disk_reads_size"}, * {KCS_SUBTYPE_FLAGS_ARRAY, KC_ST_UINT64, 2 * sizeof(uint64_t), KCS_SUBTYPE_PACK_SIZE(4, sizeof(uint64_t)), "io_priority_count"}, * {KCS_SUBTYPE_FLAGS_ARRAY, KC_ST_UINT64, (2 + 4) * sizeof(uint64_t), sizeof(uint64_t), "io_priority_size"}, * }; * * Now you can add this custom type definition into the buffer as * kcdata_add_type_definition(kcdata_p, KCTYPE_SAMPLE_DISK_IO_STATS, "sample_disk_io_stats", * &disk_io_stats_def[0], sizeof(disk_io_stats_def)/sizeof(struct kcdata_subtype_descriptor)); * * Feature description: Compression * -------------------- * In order to avoid keeping large amunt of memory reserved for a panic stackshot, kcdata has support * for compressing the buffer in a streaming fashion. New data pushed to the kcdata buffer will be * automatically compressed using an algorithm selected by the API user (currently, we only support * pass-through and zlib, in the future we plan to add WKDM support, see: 57913859). * * To start using compression, call: * kcdata_init_compress(kcdata_p, hdr_tag, memcpy_f, comp_type); * where: * `kcdata_p` is the kcdata buffer that will be used * `hdr_tag` is the usual header tag denoting what type of kcdata buffer this will be * `memcpy_f` a memcpy(3) function to use to copy into the buffer, optional. * `compy_type` is the compression type, see KCDCT_ZLIB for an example. * * Once compression is initialized: * (1) all self-describing APIs will automatically compress * (2) you can now use the following APIs to compress data into the buffer: * (None of the following will compress unless kcdata_init_compress() has been called) * * - kcdata_push_data(kcdata_descriptor_t data, uint32_t type, uint32_t size, const void *input_data) * Pushes the buffer of kctype @type at[@input_data, @input_data + @size] * into the kcdata buffer @data, compressing if needed. * * - kcdata_push_array(kcdata_descriptor_t data, uint32_t type_of_element, * uint32_t size_of_element, uint32_t count, const void *input_data) * Pushes the array found at @input_data, with element type @type_of_element, where * each element is of size @size_of_element and there are @count elements into the kcdata buffer * at @data. * * - kcdata_compression_window_open/close(kcdata_descriptor_t data) * In case the data you are trying to push to the kcdata buffer @data is difficult to predict, * you can open a "compression window". Between an open and a close, no compression will be done. * Once you clsoe the window, the underlying compression algorithm will compress the data into the buffer * and automatically rewind the current end marker of the kcdata buffer. * There is an ASCII art in kern_cdata.c to aid the reader in understanding * this. * * - kcdata_finish_compression(kcdata_descriptor_t data) * Must be called at the end to flush any underlying buffers used by the compression algorithms. * This function will also add some statistics about the compression to the buffer which helps with * decompressing later. * * Once you are done with the kcdata buffer, call kcdata_deinit_compress to * free any buffers that may have been allocated internal to the compression * algorithm. */ #ifndef _KCDATA_H_ #define _KCDATA_H_ #include #include #include #define KCDATA_DESC_MAXLEN 32 /* including NULL byte at end */ #define KCDATA_FLAGS_STRUCT_PADDING_MASK 0xf #define KCDATA_FLAGS_STRUCT_HAS_PADDING 0x80 /* * kcdata aligns elements to 16 byte boundaries. */ #define KCDATA_ALIGNMENT_SIZE 0x10 struct kcdata_item { uint32_t type; uint32_t size; /* len(data) */ /* flags. * * For structures: * padding = flags & 0xf * has_padding = (flags & 0x80) >> 7 * * has_padding is needed to disambiguate cases such as * thread_snapshot_v2 and thread_snapshot_v3. Their * respective sizes are 0x68 and 0x70, and thread_snapshot_v2 * was emmitted by old kernels *before* we started recording * padding. Since legacy thread_snapsht_v2 and modern * thread_snapshot_v3 will both record 0 for the padding * flags, we need some other bit which will be nonzero in the * flags to disambiguate. * * This is why we hardcode a special case for * STACKSHOT_KCTYPE_THREAD_SNAPSHOT into the iterator * functions below. There is only a finite number of such * hardcodings which will ever be needed. They can occur * when: * * * We have a legacy structure that predates padding flags * * * which we want to extend without changing the kcdata type * * * by only so many bytes as would fit in the space that * was previously unused padding. * * For containers: * container_id = flags * * For arrays: * element_count = flags & UINT32_MAX * element_type = (flags >> 32) & UINT32_MAX */ uint64_t flags; char data[]; /* must be at the end */ }; typedef struct kcdata_item * kcdata_item_t; enum KCDATA_SUBTYPE_TYPES { KC_ST_CHAR = 1, KC_ST_INT8, KC_ST_UINT8, KC_ST_INT16, KC_ST_UINT16, KC_ST_INT32, KC_ST_UINT32, KC_ST_INT64, KC_ST_UINT64 }; typedef enum KCDATA_SUBTYPE_TYPES kctype_subtype_t; /* * A subtype description structure that defines * how a compound data is laid out in memory. This * provides on the fly definition of types and consumption * by the parser. */ struct kcdata_subtype_descriptor { uint8_t kcs_flags; #define KCS_SUBTYPE_FLAGS_NONE 0x0 #define KCS_SUBTYPE_FLAGS_ARRAY 0x1 /* Force struct type even if only one element. * * Normally a kcdata_type_definition is treated as a structure if it has * more than one subtype descriptor. Otherwise it is treated as a simple * type. For example libkdd will represent a simple integer 42 as simply * 42, but it will represent a structure containing an integer 42 as * {"field_name": 42}.. * * If a kcdata_type_definition has only single subtype, then it will be * treated as a structure iff KCS_SUBTYPE_FLAGS_STRUCT is set. If it has * multiple subtypes, it will always be treated as a structure. * * KCS_SUBTYPE_FLAGS_MERGE has the opposite effect. If this flag is used then * even if there are multiple elements, they will all be treated as individual * properties of the parent dictionary. */ #define KCS_SUBTYPE_FLAGS_STRUCT 0x2 /* force struct type even if only one element */ #define KCS_SUBTYPE_FLAGS_MERGE 0x4 /* treat as multiple elements of parents instead of struct */ uint8_t kcs_elem_type; /* restricted to kctype_subtype_t */ uint16_t kcs_elem_offset; /* offset in struct where data is found */ uint32_t kcs_elem_size; /* size of element (or) packed state for array type */ char kcs_name[KCDATA_DESC_MAXLEN]; /* max 31 bytes for name of field */ }; typedef struct kcdata_subtype_descriptor * kcdata_subtype_descriptor_t; /* * In case of array of basic c types in kctype_subtype_t, * size is packed in lower 16 bits and * count is packed in upper 16 bits of kcs_elem_size field. */ #define KCS_SUBTYPE_PACK_SIZE(e_count, e_size) (((e_count)&0xffffu) << 16 | ((e_size)&0xffffu)) static inline uint32_t kcs_get_elem_size(kcdata_subtype_descriptor_t d) { if (d->kcs_flags & KCS_SUBTYPE_FLAGS_ARRAY) { /* size is composed as ((count &0xffff)<<16 | (elem_size & 0xffff)) */ return (uint32_t)((d->kcs_elem_size & 0xffff) * ((d->kcs_elem_size & 0xffff0000) >> 16)); } return d->kcs_elem_size; } static inline uint32_t kcs_get_elem_count(kcdata_subtype_descriptor_t d) { if (d->kcs_flags & KCS_SUBTYPE_FLAGS_ARRAY) { return (d->kcs_elem_size >> 16) & 0xffff; } return 1; } static inline int kcs_set_elem_size(kcdata_subtype_descriptor_t d, uint32_t size, uint32_t count) { if (count > 1) { /* means we are setting up an array */ if (size > 0xffff || count > 0xffff) { return -1; //invalid argument } d->kcs_elem_size = ((count & 0xffff) << 16 | (size & 0xffff)); } else { d->kcs_elem_size = size; } return 0; } struct kcdata_type_definition { uint32_t kct_type_identifier; uint32_t kct_num_elements; char kct_name[KCDATA_DESC_MAXLEN]; struct kcdata_subtype_descriptor kct_elements[]; }; /* chunk type definitions. 0 - 0x7ff are reserved and defined here * NOTE: Please update kcdata/libkdd/kcdtypes.c if you make any changes * in STACKSHOT_KCTYPE_* types. */ /* * Types with description value. * these will have KCDATA_DESC_MAXLEN-1 length string description * and rest of kcdata_iter_size() - KCDATA_DESC_MAXLEN bytes as data */ #define KCDATA_TYPE_INVALID 0x0u #define KCDATA_TYPE_STRING_DESC 0x1u #define KCDATA_TYPE_UINT32_DESC 0x2u #define KCDATA_TYPE_UINT64_DESC 0x3u #define KCDATA_TYPE_INT32_DESC 0x4u #define KCDATA_TYPE_INT64_DESC 0x5u #define KCDATA_TYPE_BINDATA_DESC 0x6u /* * Compound type definitions */ #define KCDATA_TYPE_ARRAY 0x11u /* Array of data OBSOLETE DONT USE THIS*/ #define KCDATA_TYPE_TYPEDEFINTION 0x12u /* Meta type that describes a type on the fly. */ #define KCDATA_TYPE_CONTAINER_BEGIN \ 0x13u /* Container type which has corresponding CONTAINER_END header. \ * KCDATA_TYPE_CONTAINER_BEGIN has type in the data segment. \ * Both headers have (uint64_t) ID for matching up nested data. \ */ #define KCDATA_TYPE_CONTAINER_END 0x14u #define KCDATA_TYPE_ARRAY_PAD0 0x20u /* Array of data with 0 byte of padding*/ #define KCDATA_TYPE_ARRAY_PAD1 0x21u /* Array of data with 1 byte of padding*/ #define KCDATA_TYPE_ARRAY_PAD2 0x22u /* Array of data with 2 byte of padding*/ #define KCDATA_TYPE_ARRAY_PAD3 0x23u /* Array of data with 3 byte of padding*/ #define KCDATA_TYPE_ARRAY_PAD4 0x24u /* Array of data with 4 byte of padding*/ #define KCDATA_TYPE_ARRAY_PAD5 0x25u /* Array of data with 5 byte of padding*/ #define KCDATA_TYPE_ARRAY_PAD6 0x26u /* Array of data with 6 byte of padding*/ #define KCDATA_TYPE_ARRAY_PAD7 0x27u /* Array of data with 7 byte of padding*/ #define KCDATA_TYPE_ARRAY_PAD8 0x28u /* Array of data with 8 byte of padding*/ #define KCDATA_TYPE_ARRAY_PAD9 0x29u /* Array of data with 9 byte of padding*/ #define KCDATA_TYPE_ARRAY_PADa 0x2au /* Array of data with a byte of padding*/ #define KCDATA_TYPE_ARRAY_PADb 0x2bu /* Array of data with b byte of padding*/ #define KCDATA_TYPE_ARRAY_PADc 0x2cu /* Array of data with c byte of padding*/ #define KCDATA_TYPE_ARRAY_PADd 0x2du /* Array of data with d byte of padding*/ #define KCDATA_TYPE_ARRAY_PADe 0x2eu /* Array of data with e byte of padding*/ #define KCDATA_TYPE_ARRAY_PADf 0x2fu /* Array of data with f byte of padding*/ /* * Generic data types that are most commonly used */ #define KCDATA_TYPE_LIBRARY_LOADINFO 0x30u /* struct dyld_uuid_info_32 */ #define KCDATA_TYPE_LIBRARY_LOADINFO64 0x31u /* struct dyld_uuid_info_64 */ #define KCDATA_TYPE_TIMEBASE 0x32u /* struct mach_timebase_info */ #define KCDATA_TYPE_MACH_ABSOLUTE_TIME 0x33u /* uint64_t */ #define KCDATA_TYPE_TIMEVAL 0x34u /* struct timeval64 */ #define KCDATA_TYPE_USECS_SINCE_EPOCH 0x35u /* time in usecs uint64_t */ #define KCDATA_TYPE_PID 0x36u /* int32_t */ #define KCDATA_TYPE_PROCNAME 0x37u /* char * */ #define KCDATA_TYPE_NESTED_KCDATA 0x38u /* nested kcdata buffer */ #define KCDATA_TYPE_LIBRARY_AOTINFO 0x39u /* struct user64_dyld_aot_info */ #define KCDATA_TYPE_BUFFER_END 0xF19158EDu /* MAGIC numbers defined for each class of chunked data * * To future-proof against big-endian arches, make sure none of these magic * numbers are byteswaps of each other */ #define KCDATA_BUFFER_BEGIN_CRASHINFO 0xDEADF157u /* owner: corpses/task_corpse.h */ /* type-range: 0x800 - 0x8ff */ #define KCDATA_BUFFER_BEGIN_STACKSHOT 0x59a25807u /* owner: sys/stackshot.h */ /* type-range: 0x900 - 0x93f */ #define KCDATA_BUFFER_BEGIN_COMPRESSED 0x434f4d50u /* owner: sys/stackshot.h */ /* type-range: 0x900 - 0x93f */ #define KCDATA_BUFFER_BEGIN_DELTA_STACKSHOT 0xDE17A59Au /* owner: sys/stackshot.h */ /* type-range: 0x940 - 0x9ff */ #define KCDATA_BUFFER_BEGIN_OS_REASON 0x53A20900u /* owner: sys/reason.h */ /* type-range: 0x1000-0x103f */ #define KCDATA_BUFFER_BEGIN_XNUPOST_CONFIG 0x1e21c09fu /* owner: osfmk/tests/kernel_tests.c */ /* type-range: 0x1040-0x105f */ /* next type range number available 0x1060 */ /**************** definitions for XNUPOST *********************/ #define XNUPOST_KCTYPE_TESTCONFIG 0x1040 /**************** definitions for stackshot *********************/ /* This value must always match IO_NUM_PRIORITIES defined in thread_info.h */ #define STACKSHOT_IO_NUM_PRIORITIES 4 /* This value must always match MAXTHREADNAMESIZE used in bsd */ #define STACKSHOT_MAX_THREAD_NAME_SIZE 64 /* * NOTE: Please update kcdata/libkdd/kcdtypes.c if you make any changes * in STACKSHOT_KCTYPE_* types. */ #define STACKSHOT_KCTYPE_IOSTATS 0x901u /* io_stats_snapshot */ #define STACKSHOT_KCTYPE_GLOBAL_MEM_STATS 0x902u /* struct mem_and_io_snapshot */ #define STACKSHOT_KCCONTAINER_TASK 0x903u #define STACKSHOT_KCCONTAINER_THREAD 0x904u #define STACKSHOT_KCTYPE_TASK_SNAPSHOT 0x905u /* task_snapshot_v2 */ #define STACKSHOT_KCTYPE_THREAD_SNAPSHOT 0x906u /* thread_snapshot_v2, thread_snapshot_v3 */ #define STACKSHOT_KCTYPE_DONATING_PIDS 0x907u /* int[] */ #define STACKSHOT_KCTYPE_SHAREDCACHE_LOADINFO 0x908u /* same as KCDATA_TYPE_LIBRARY_LOADINFO64 */ #define STACKSHOT_KCTYPE_THREAD_NAME 0x909u /* char[] */ #define STACKSHOT_KCTYPE_KERN_STACKFRAME 0x90Au /* struct stack_snapshot_frame32 */ #define STACKSHOT_KCTYPE_KERN_STACKFRAME64 0x90Bu /* struct stack_snapshot_frame64 */ #define STACKSHOT_KCTYPE_USER_STACKFRAME 0x90Cu /* struct stack_snapshot_frame32 */ #define STACKSHOT_KCTYPE_USER_STACKFRAME64 0x90Du /* struct stack_snapshot_frame64 */ #define STACKSHOT_KCTYPE_BOOTARGS 0x90Eu /* boot args string */ #define STACKSHOT_KCTYPE_OSVERSION 0x90Fu /* os version string */ #define STACKSHOT_KCTYPE_KERN_PAGE_SIZE 0x910u /* kernel page size in uint32_t */ #define STACKSHOT_KCTYPE_JETSAM_LEVEL 0x911u /* jetsam level in uint32_t */ #define STACKSHOT_KCTYPE_DELTA_SINCE_TIMESTAMP 0x912u /* timestamp used for the delta stackshot */ #define STACKSHOT_KCTYPE_KERN_STACKLR 0x913u /* uint32_t */ #define STACKSHOT_KCTYPE_KERN_STACKLR64 0x914u /* uint64_t */ #define STACKSHOT_KCTYPE_USER_STACKLR 0x915u /* uint32_t */ #define STACKSHOT_KCTYPE_USER_STACKLR64 0x916u /* uint64_t */ #define STACKSHOT_KCTYPE_NONRUNNABLE_TIDS 0x917u /* uint64_t */ #define STACKSHOT_KCTYPE_NONRUNNABLE_TASKS 0x918u /* uint64_t */ #define STACKSHOT_KCTYPE_CPU_TIMES 0x919u /* struct stackshot_cpu_times or stackshot_cpu_times_v2 */ #define STACKSHOT_KCTYPE_STACKSHOT_DURATION 0x91au /* struct stackshot_duration */ #define STACKSHOT_KCTYPE_STACKSHOT_FAULT_STATS 0x91bu /* struct stackshot_fault_stats */ #define STACKSHOT_KCTYPE_KERNELCACHE_LOADINFO 0x91cu /* kernelcache UUID -- same as KCDATA_TYPE_LIBRARY_LOADINFO64 */ #define STACKSHOT_KCTYPE_THREAD_WAITINFO 0x91du /* struct stackshot_thread_waitinfo */ #define STACKSHOT_KCTYPE_THREAD_GROUP_SNAPSHOT 0x91eu /* struct thread_group_snapshot or thread_group_snapshot_v2 */ #define STACKSHOT_KCTYPE_THREAD_GROUP 0x91fu /* uint64_t */ #define STACKSHOT_KCTYPE_JETSAM_COALITION_SNAPSHOT 0x920u /* struct jetsam_coalition_snapshot */ #define STACKSHOT_KCTYPE_JETSAM_COALITION 0x921u /* uint64_t */ #define STACKSHOT_KCTYPE_THREAD_POLICY_VERSION 0x922u /* THREAD_POLICY_INTERNAL_STRUCT_VERSION in uint32 */ #define STACKSHOT_KCTYPE_INSTRS_CYCLES 0x923u /* struct instrs_cycles_snapshot */ #define STACKSHOT_KCTYPE_USER_STACKTOP 0x924u /* struct stack_snapshot_stacktop */ #define STACKSHOT_KCTYPE_ASID 0x925u /* uint32_t */ #define STACKSHOT_KCTYPE_PAGE_TABLES 0x926u /* uint64_t */ #define STACKSHOT_KCTYPE_SYS_SHAREDCACHE_LAYOUT 0x927u /* same as KCDATA_TYPE_LIBRARY_LOADINFO64 */ #define STACKSHOT_KCTYPE_THREAD_DISPATCH_QUEUE_LABEL 0x928u /* dispatch queue label */ #define STACKSHOT_KCTYPE_THREAD_TURNSTILEINFO 0x929u /* struct stackshot_thread_turnstileinfo */ #define STACKSHOT_KCTYPE_TASK_CPU_ARCHITECTURE 0x92au /* struct stackshot_cpu_architecture */ #define STACKSHOT_KCTYPE_LATENCY_INFO 0x92bu /* struct stackshot_latency_collection */ #define STACKSHOT_KCTYPE_LATENCY_INFO_TASK 0x92cu /* struct stackshot_latency_task */ #define STACKSHOT_KCTYPE_LATENCY_INFO_THREAD 0x92du /* struct stackshot_latency_thread */ #define STACKSHOT_KCTYPE_LOADINFO64_TEXT_EXEC 0x92eu /* TEXT_EXEC load info -- same as KCDATA_TYPE_LIBRARY_LOADINFO64 */ #define STACKSHOT_KCTYPE_AOTCACHE_LOADINFO 0x92fu /* struct dyld_aot_cache_uuid_info */ #define STACKSHOT_KCTYPE_TASK_DELTA_SNAPSHOT 0x940u /* task_delta_snapshot_v2 */ #define STACKSHOT_KCTYPE_THREAD_DELTA_SNAPSHOT 0x941u /* thread_delta_snapshot_v* */ struct stack_snapshot_frame32 { uint32_t lr; uint32_t sp; }; struct stack_snapshot_frame64 { uint64_t lr; uint64_t sp; }; struct dyld_uuid_info_32 { uint32_t imageLoadAddress; /* base address image is mapped at */ uuid_t imageUUID; }; struct dyld_uuid_info_64 { uint64_t imageLoadAddress; /* XXX image slide */ uuid_t imageUUID; }; struct dyld_uuid_info_64_v2 { uint64_t imageLoadAddress; /* XXX image slide */ uuid_t imageUUID; /* end of version 1 of dyld_uuid_info_64. sizeof v1 was 24 */ uint64_t imageSlidBaseAddress; /* slid base address of image */ }; struct dyld_aot_cache_uuid_info { uint64_t x86SlidBaseAddress; /* slid base address of x86 shared cache */ uuid_t x86UUID; /* UUID of x86 shared cache */ uint64_t aotSlidBaseAddress; /* slide base address of aot cache */ uuid_t aotUUID; /* UUID of aot shared cache */ }; struct user32_dyld_uuid_info { uint32_t imageLoadAddress; /* base address image is mapped into */ uuid_t imageUUID; /* UUID of image */ }; struct user64_dyld_uuid_info { uint64_t imageLoadAddress; /* base address image is mapped into */ uuid_t imageUUID; /* UUID of image */ }; #define DYLD_AOT_IMAGE_KEY_SIZE 32 struct user64_dyld_aot_info { uint64_t x86LoadAddress; uint64_t aotLoadAddress; uint64_t aotImageSize; uint8_t aotImageKey[DYLD_AOT_IMAGE_KEY_SIZE]; }; enum task_snapshot_flags { /* k{User,Kernel}64_p (values 0x1 and 0x2) are defined in generic_snapshot_flags */ kTaskRsrcFlagged = 0x4, // In the EXC_RESOURCE danger zone? kTerminatedSnapshot = 0x8, kPidSuspended = 0x10, // true for suspended task kFrozen = 0x20, // true for hibernated task (along with pidsuspended) kTaskDarwinBG = 0x40, kTaskExtDarwinBG = 0x80, kTaskVisVisible = 0x100, kTaskVisNonvisible = 0x200, kTaskIsForeground = 0x400, kTaskIsBoosted = 0x800, kTaskIsSuppressed = 0x1000, kTaskIsTimerThrottled = 0x2000, /* deprecated */ kTaskIsImpDonor = 0x4000, kTaskIsLiveImpDonor = 0x8000, kTaskIsDirty = 0x10000, kTaskWqExceededConstrainedThreadLimit = 0x20000, kTaskWqExceededTotalThreadLimit = 0x40000, kTaskWqFlagsAvailable = 0x80000, kTaskUUIDInfoFaultedIn = 0x100000, /* successfully faulted in some UUID info */ kTaskUUIDInfoMissing = 0x200000, /* some UUID info was paged out */ kTaskUUIDInfoTriedFault = 0x400000, /* tried to fault in UUID info */ kTaskSharedRegionInfoUnavailable = 0x800000, /* shared region info unavailable */ kTaskTALEngaged = 0x1000000, /* 0x2000000 unused */ kTaskIsDirtyTracked = 0x4000000, kTaskAllowIdleExit = 0x8000000, kTaskIsTranslated = 0x10000000, }; enum thread_snapshot_flags { /* k{User,Kernel}64_p (values 0x1 and 0x2) are defined in generic_snapshot_flags */ kHasDispatchSerial = 0x4, kStacksPCOnly = 0x8, /* Stack traces have no frame pointers. */ kThreadDarwinBG = 0x10, /* Thread is darwinbg */ kThreadIOPassive = 0x20, /* Thread uses passive IO */ kThreadSuspended = 0x40, /* Thread is suspended */ kThreadTruncatedBT = 0x80, /* Unmapped pages caused truncated backtrace */ kGlobalForcedIdle = 0x100, /* Thread performs global forced idle */ kThreadFaultedBT = 0x200, /* Some thread stack pages were faulted in as part of BT */ kThreadTriedFaultBT = 0x400, /* We tried to fault in thread stack pages as part of BT */ kThreadOnCore = 0x800, /* Thread was on-core when we entered debugger context */ kThreadIdleWorker = 0x1000, /* Thread is an idle libpthread worker thread */ kThreadMain = 0x2000, /* Thread is the main thread */ }; struct mem_and_io_snapshot { uint32_t snapshot_magic; uint32_t free_pages; uint32_t active_pages; uint32_t inactive_pages; uint32_t purgeable_pages; uint32_t wired_pages; uint32_t speculative_pages; uint32_t throttled_pages; uint32_t filebacked_pages; uint32_t compressions; uint32_t decompressions; uint32_t compressor_size; int32_t busy_buffer_count; uint32_t pages_wanted; uint32_t pages_reclaimed; uint8_t pages_wanted_reclaimed_valid; // did mach_vm_pressure_monitor succeed? } __attribute__((packed)); /* SS_TH_* macros are for ths_state */ #define SS_TH_WAIT 0x01 /* queued for waiting */ #define SS_TH_SUSP 0x02 /* stopped or requested to stop */ #define SS_TH_RUN 0x04 /* running or on runq */ #define SS_TH_UNINT 0x08 /* waiting uninteruptibly */ #define SS_TH_TERMINATE 0x10 /* halted at termination */ #define SS_TH_TERMINATE2 0x20 /* added to termination queue */ #define SS_TH_IDLE 0x80 /* idling processor */ struct thread_snapshot_v2 { uint64_t ths_thread_id; uint64_t ths_wait_event; uint64_t ths_continuation; uint64_t ths_total_syscalls; uint64_t ths_voucher_identifier; uint64_t ths_dqserialnum; uint64_t ths_user_time; uint64_t ths_sys_time; uint64_t ths_ss_flags; uint64_t ths_last_run_time; uint64_t ths_last_made_runnable_time; uint32_t ths_state; uint32_t ths_sched_flags; int16_t ths_base_priority; int16_t ths_sched_priority; uint8_t ths_eqos; uint8_t ths_rqos; uint8_t ths_rqos_override; uint8_t ths_io_tier; } __attribute__((packed)); struct thread_snapshot_v3 { uint64_t ths_thread_id; uint64_t ths_wait_event; uint64_t ths_continuation; uint64_t ths_total_syscalls; uint64_t ths_voucher_identifier; uint64_t ths_dqserialnum; uint64_t ths_user_time; uint64_t ths_sys_time; uint64_t ths_ss_flags; uint64_t ths_last_run_time; uint64_t ths_last_made_runnable_time; uint32_t ths_state; uint32_t ths_sched_flags; int16_t ths_base_priority; int16_t ths_sched_priority; uint8_t ths_eqos; uint8_t ths_rqos; uint8_t ths_rqos_override; uint8_t ths_io_tier; uint64_t ths_thread_t; } __attribute__((packed)); struct thread_snapshot_v4 { uint64_t ths_thread_id; uint64_t ths_wait_event; uint64_t ths_continuation; uint64_t ths_total_syscalls; uint64_t ths_voucher_identifier; uint64_t ths_dqserialnum; uint64_t ths_user_time; uint64_t ths_sys_time; uint64_t ths_ss_flags; uint64_t ths_last_run_time; uint64_t ths_last_made_runnable_time; uint32_t ths_state; uint32_t ths_sched_flags; int16_t ths_base_priority; int16_t ths_sched_priority; uint8_t ths_eqos; uint8_t ths_rqos; uint8_t ths_rqos_override; uint8_t ths_io_tier; uint64_t ths_thread_t; uint64_t ths_requested_policy; uint64_t ths_effective_policy; } __attribute__((packed)); struct thread_group_snapshot { uint64_t tgs_id; char tgs_name[16]; } __attribute__((packed)); enum thread_group_flags { kThreadGroupEfficient = 0x1, kThreadGroupUIApp = 0x2 }; struct thread_group_snapshot_v2 { uint64_t tgs_id; char tgs_name[16]; uint64_t tgs_flags; } __attribute__((packed)); enum coalition_flags { kCoalitionTermRequested = 0x1, kCoalitionTerminated = 0x2, kCoalitionReaped = 0x4, kCoalitionPrivileged = 0x8, }; struct jetsam_coalition_snapshot { uint64_t jcs_id; uint64_t jcs_flags; uint64_t jcs_thread_group; uint64_t jcs_leader_task_uniqueid; } __attribute__((packed)); struct instrs_cycles_snapshot { uint64_t ics_instructions; uint64_t ics_cycles; } __attribute__((packed)); struct thread_delta_snapshot_v2 { uint64_t tds_thread_id; uint64_t tds_voucher_identifier; uint64_t tds_ss_flags; uint64_t tds_last_made_runnable_time; uint32_t tds_state; uint32_t tds_sched_flags; int16_t tds_base_priority; int16_t tds_sched_priority; uint8_t tds_eqos; uint8_t tds_rqos; uint8_t tds_rqos_override; uint8_t tds_io_tier; } __attribute__ ((packed)); struct thread_delta_snapshot_v3 { uint64_t tds_thread_id; uint64_t tds_voucher_identifier; uint64_t tds_ss_flags; uint64_t tds_last_made_runnable_time; uint32_t tds_state; uint32_t tds_sched_flags; int16_t tds_base_priority; int16_t tds_sched_priority; uint8_t tds_eqos; uint8_t tds_rqos; uint8_t tds_rqos_override; uint8_t tds_io_tier; uint64_t tds_requested_policy; uint64_t tds_effective_policy; } __attribute__ ((packed)); struct io_stats_snapshot { /* * I/O Statistics * XXX: These fields must be together. */ uint64_t ss_disk_reads_count; uint64_t ss_disk_reads_size; uint64_t ss_disk_writes_count; uint64_t ss_disk_writes_size; uint64_t ss_io_priority_count[STACKSHOT_IO_NUM_PRIORITIES]; uint64_t ss_io_priority_size[STACKSHOT_IO_NUM_PRIORITIES]; uint64_t ss_paging_count; uint64_t ss_paging_size; uint64_t ss_non_paging_count; uint64_t ss_non_paging_size; uint64_t ss_data_count; uint64_t ss_data_size; uint64_t ss_metadata_count; uint64_t ss_metadata_size; /* XXX: I/O Statistics end */ } __attribute__ ((packed)); struct task_snapshot_v2 { uint64_t ts_unique_pid; uint64_t ts_ss_flags; uint64_t ts_user_time_in_terminated_threads; uint64_t ts_system_time_in_terminated_threads; uint64_t ts_p_start_sec; uint64_t ts_task_size; uint64_t ts_max_resident_size; uint32_t ts_suspend_count; uint32_t ts_faults; uint32_t ts_pageins; uint32_t ts_cow_faults; uint32_t ts_was_throttled; uint32_t ts_did_throttle; uint32_t ts_latency_qos; int32_t ts_pid; char ts_p_comm[32]; } __attribute__ ((packed)); struct task_delta_snapshot_v2 { uint64_t tds_unique_pid; uint64_t tds_ss_flags; uint64_t tds_user_time_in_terminated_threads; uint64_t tds_system_time_in_terminated_threads; uint64_t tds_task_size; uint64_t tds_max_resident_size; uint32_t tds_suspend_count; uint32_t tds_faults; uint32_t tds_pageins; uint32_t tds_cow_faults; uint32_t tds_was_throttled; uint32_t tds_did_throttle; uint32_t tds_latency_qos; } __attribute__ ((packed)); struct stackshot_cpu_times { uint64_t user_usec; uint64_t system_usec; } __attribute__((packed)); struct stackshot_cpu_times_v2 { uint64_t user_usec; uint64_t system_usec; uint64_t runnable_usec; } __attribute__((packed)); struct stackshot_duration { uint64_t stackshot_duration; uint64_t stackshot_duration_outer; } __attribute__((packed)); struct stackshot_fault_stats { uint32_t sfs_pages_faulted_in; /* number of pages faulted in using KDP fault path */ uint64_t sfs_time_spent_faulting; /* MATUs spent faulting */ uint64_t sfs_system_max_fault_time; /* MATUs fault time limit per stackshot */ uint8_t sfs_stopped_faulting; /* we stopped decompressing because we hit the limit */ } __attribute__((packed)); typedef struct stackshot_thread_waitinfo { uint64_t owner; /* The thread that owns the object */ uint64_t waiter; /* The thread that's waiting on the object */ uint64_t context; /* A context uniquely identifying the object */ uint8_t wait_type; /* The type of object that the thread is waiting on */ } __attribute__((packed)) thread_waitinfo_t; typedef struct stackshot_thread_turnstileinfo { uint64_t waiter; /* The thread that's waiting on the object */ uint64_t turnstile_context; /* Associated data (either thread id, or workq addr) */ uint8_t turnstile_priority; uint8_t number_of_hops; #define STACKSHOT_TURNSTILE_STATUS_UNKNOWN 0x01 /* The final inheritor is unknown (bug?) */ #define STACKSHOT_TURNSTILE_STATUS_LOCKED_WAITQ 0x02 /* A waitq was found to be locked */ #define STACKSHOT_TURNSTILE_STATUS_WORKQUEUE 0x04 /* The final inheritor is a workqueue */ #define STACKSHOT_TURNSTILE_STATUS_THREAD 0x08 /* The final inheritor is a thread */ #define STACKSHOT_TURNSTILE_STATUS_BLOCKED_ON_TASK 0x10 /* blocked on task, dind't find thread */ #define STACKSHOT_TURNSTILE_STATUS_HELD_IPLOCK 0x20 /* the ip_lock was held */ uint64_t turnstile_flags; } __attribute__((packed)) thread_turnstileinfo_t; #define STACKSHOT_WAITOWNER_KERNEL (UINT64_MAX - 1) #define STACKSHOT_WAITOWNER_PORT_LOCKED (UINT64_MAX - 2) #define STACKSHOT_WAITOWNER_PSET_LOCKED (UINT64_MAX - 3) #define STACKSHOT_WAITOWNER_INTRANSIT (UINT64_MAX - 4) #define STACKSHOT_WAITOWNER_MTXSPIN (UINT64_MAX - 5) #define STACKSHOT_WAITOWNER_THREQUESTED (UINT64_MAX - 6) /* workloop waiting for a new worker thread */ #define STACKSHOT_WAITOWNER_SUSPENDED (UINT64_MAX - 7) /* workloop is suspended */ struct stackshot_cpu_architecture { int32_t cputype; int32_t cpusubtype; } __attribute__((packed)); struct stack_snapshot_stacktop { uint64_t sp; uint8_t stack_contents[8]; }; /* only collected if STACKSHOT_COLLECTS_LATENCY_INFO is set to !0 */ struct stackshot_latency_collection { uint64_t latency_version; uint64_t setup_latency; uint64_t total_task_iteration_latency; uint64_t total_terminated_task_iteration_latency; } __attribute__((packed)); /* only collected if STACKSHOT_COLLECTS_LATENCY_INFO is set to !0 */ struct stackshot_latency_task { uint64_t task_uniqueid; uint64_t setup_latency; uint64_t task_thread_count_loop_latency; uint64_t task_thread_data_loop_latency; uint64_t cur_tsnap_latency; uint64_t pmap_latency; uint64_t bsd_proc_ids_latency; uint64_t misc_latency; uint64_t misc2_latency; uint64_t end_latency; } __attribute__((packed)); /* only collected if STACKSHOT_COLLECTS_LATENCY_INFO is set to !0 */ struct stackshot_latency_thread { uint64_t thread_id; uint64_t cur_thsnap1_latency; uint64_t dispatch_serial_latency; uint64_t dispatch_label_latency; uint64_t cur_thsnap2_latency; uint64_t thread_name_latency; uint64_t sur_times_latency; uint64_t user_stack_latency; uint64_t kernel_stack_latency; uint64_t misc_latency; } __attribute__((packed)); /**************** definitions for crashinfo *********************/ /* * NOTE: Please update kcdata/libkdd/kcdtypes.c if you make any changes * in TASK_CRASHINFO_* types. */ /* FIXME some of these types aren't clean (fixed width, packed, and defined *here*) */ struct crashinfo_proc_uniqidentifierinfo { uint8_t p_uuid[16]; /* UUID of the main executable */ uint64_t p_uniqueid; /* 64 bit unique identifier for process */ uint64_t p_puniqueid; /* unique identifier for process's parent */ uint64_t p_reserve2; /* reserved for future use */ uint64_t p_reserve3; /* reserved for future use */ uint64_t p_reserve4; /* reserved for future use */ } __attribute__((packed)); #define TASK_CRASHINFO_BEGIN KCDATA_BUFFER_BEGIN_CRASHINFO #define TASK_CRASHINFO_STRING_DESC KCDATA_TYPE_STRING_DESC #define TASK_CRASHINFO_UINT32_DESC KCDATA_TYPE_UINT32_DESC #define TASK_CRASHINFO_UINT64_DESC KCDATA_TYPE_UINT64_DESC #define TASK_CRASHINFO_EXTMODINFO 0x801 #define TASK_CRASHINFO_BSDINFOWITHUNIQID 0x802 /* struct crashinfo_proc_uniqidentifierinfo */ #define TASK_CRASHINFO_TASKDYLD_INFO 0x803 #define TASK_CRASHINFO_UUID 0x804 #define TASK_CRASHINFO_PID 0x805 #define TASK_CRASHINFO_PPID 0x806 #define TASK_CRASHINFO_RUSAGE 0x807 /* struct rusage DEPRECATED do not use. * This struct has longs in it */ #define TASK_CRASHINFO_RUSAGE_INFO 0x808 /* struct rusage_info_v3 from resource.h */ #define TASK_CRASHINFO_PROC_NAME 0x809 /* char * */ #define TASK_CRASHINFO_PROC_STARTTIME 0x80B /* struct timeval64 */ #define TASK_CRASHINFO_USERSTACK 0x80C /* uint64_t */ #define TASK_CRASHINFO_ARGSLEN 0x80D #define TASK_CRASHINFO_EXCEPTION_CODES 0x80E /* mach_exception_data_t */ #define TASK_CRASHINFO_PROC_PATH 0x80F /* string of len MAXPATHLEN */ #define TASK_CRASHINFO_PROC_CSFLAGS 0x810 /* uint32_t */ #define TASK_CRASHINFO_PROC_STATUS 0x811 /* char */ #define TASK_CRASHINFO_UID 0x812 /* uid_t */ #define TASK_CRASHINFO_GID 0x813 /* gid_t */ #define TASK_CRASHINFO_PROC_ARGC 0x814 /* int */ #define TASK_CRASHINFO_PROC_FLAGS 0x815 /* unsigned int */ #define TASK_CRASHINFO_CPUTYPE 0x816 /* cpu_type_t */ #define TASK_CRASHINFO_WORKQUEUEINFO 0x817 /* struct proc_workqueueinfo */ #define TASK_CRASHINFO_RESPONSIBLE_PID 0x818 /* pid_t */ #define TASK_CRASHINFO_DIRTY_FLAGS 0x819 /* int */ #define TASK_CRASHINFO_CRASHED_THREADID 0x81A /* uint64_t */ #define TASK_CRASHINFO_COALITION_ID 0x81B /* uint64_t */ #define TASK_CRASHINFO_UDATA_PTRS 0x81C /* uint64_t */ #define TASK_CRASHINFO_MEMORY_LIMIT 0x81D /* uint64_t */ #define TASK_CRASHINFO_LEDGER_INTERNAL 0x81E /* uint64_t */ #define TASK_CRASHINFO_LEDGER_INTERNAL_COMPRESSED 0x81F /* uint64_t */ #define TASK_CRASHINFO_LEDGER_IOKIT_MAPPED 0x820 /* uint64_t */ #define TASK_CRASHINFO_LEDGER_ALTERNATE_ACCOUNTING 0x821 /* uint64_t */ #define TASK_CRASHINFO_LEDGER_ALTERNATE_ACCOUNTING_COMPRESSED 0x822 /* uint64_t */ #define TASK_CRASHINFO_LEDGER_PURGEABLE_NONVOLATILE 0x823 /* uint64_t */ #define TASK_CRASHINFO_LEDGER_PURGEABLE_NONVOLATILE_COMPRESSED 0x824 /* uint64_t */ #define TASK_CRASHINFO_LEDGER_PAGE_TABLE 0x825 /* uint64_t */ #define TASK_CRASHINFO_LEDGER_PHYS_FOOTPRINT 0x826 /* uint64_t */ #define TASK_CRASHINFO_LEDGER_PHYS_FOOTPRINT_LIFETIME_MAX 0x827 /* uint64_t */ #define TASK_CRASHINFO_LEDGER_NETWORK_NONVOLATILE 0x828 /* uint64_t */ #define TASK_CRASHINFO_LEDGER_NETWORK_NONVOLATILE_COMPRESSED 0x829 /* uint64_t */ #define TASK_CRASHINFO_LEDGER_WIRED_MEM 0x82A /* uint64_t */ #define TASK_CRASHINFO_PROC_PERSONA_ID 0x82B /* uid_t */ #define TASK_CRASHINFO_MEMORY_LIMIT_INCREASE 0x82C /* uint32_t */ #define TASK_CRASHINFO_LEDGER_TAGGED_FOOTPRINT 0x82D /* uint64_t */ #define TASK_CRASHINFO_LEDGER_TAGGED_FOOTPRINT_COMPRESSED 0x82E /* uint64_t */ #define TASK_CRASHINFO_LEDGER_MEDIA_FOOTPRINT 0x82F /* uint64_t */ #define TASK_CRASHINFO_LEDGER_MEDIA_FOOTPRINT_COMPRESSED 0x830 /* uint64_t */ #define TASK_CRASHINFO_LEDGER_GRAPHICS_FOOTPRINT 0x831 /* uint64_t */ #define TASK_CRASHINFO_LEDGER_GRAPHICS_FOOTPRINT_COMPRESSED 0x832 /* uint64_t */ #define TASK_CRASHINFO_LEDGER_NEURAL_FOOTPRINT 0x833 /* uint64_t */ #define TASK_CRASHINFO_LEDGER_NEURAL_FOOTPRINT_COMPRESSED 0x834 /* uint64_t */ #define TASK_CRASHINFO_MEMORYSTATUS_EFFECTIVE_PRIORITY 0x835 /* int32_t */ #define TASK_CRASHINFO_END KCDATA_TYPE_BUFFER_END /**************** definitions for os reasons *********************/ #define EXIT_REASON_SNAPSHOT 0x1001 #define EXIT_REASON_USER_DESC 0x1002 /* string description of reason */ #define EXIT_REASON_USER_PAYLOAD 0x1003 /* user payload data */ #define EXIT_REASON_CODESIGNING_INFO 0x1004 #define EXIT_REASON_WORKLOOP_ID 0x1005 #define EXIT_REASON_DISPATCH_QUEUE_NO 0x1006 struct exit_reason_snapshot { uint32_t ers_namespace; uint64_t ers_code; /* end of version 1 of exit_reason_snapshot. sizeof v1 was 12 */ uint64_t ers_flags; } __attribute__((packed)); #define EXIT_REASON_CODESIG_PATH_MAX 1024 struct codesigning_exit_reason_info { uint64_t ceri_virt_addr; uint64_t ceri_file_offset; char ceri_pathname[EXIT_REASON_CODESIG_PATH_MAX]; char ceri_filename[EXIT_REASON_CODESIG_PATH_MAX]; uint64_t ceri_codesig_modtime_secs; uint64_t ceri_codesig_modtime_nsecs; uint64_t ceri_page_modtime_secs; uint64_t ceri_page_modtime_nsecs; uint8_t ceri_path_truncated; uint8_t ceri_object_codesigned; uint8_t ceri_page_codesig_validated; uint8_t ceri_page_codesig_tainted; uint8_t ceri_page_codesig_nx; uint8_t ceri_page_wpmapped; uint8_t ceri_page_slid; uint8_t ceri_page_dirty; uint32_t ceri_page_shadow_depth; } __attribute__((packed)); #define EXIT_REASON_USER_DESC_MAX_LEN 1024 #define EXIT_REASON_PAYLOAD_MAX_LEN 2048 /**************** safe iterators *********************/ typedef struct kcdata_iter { kcdata_item_t item; void *end; } kcdata_iter_t; static inline kcdata_iter_t kcdata_iter(void *buffer, unsigned long size) { kcdata_iter_t iter; iter.item = (kcdata_item_t) buffer; iter.end = (void*) (((uintptr_t)buffer) + size); return iter; } static inline kcdata_iter_t kcdata_iter_unsafe(void *buffer) __attribute__((deprecated)); static inline kcdata_iter_t kcdata_iter_unsafe(void *buffer) { kcdata_iter_t iter; iter.item = (kcdata_item_t) buffer; iter.end = (void*) (uintptr_t) ~0; return iter; } static const kcdata_iter_t kcdata_invalid_iter = { .item = NULL, .end = NULL }; static inline int kcdata_iter_valid(kcdata_iter_t iter) { return ((uintptr_t)iter.item + sizeof(struct kcdata_item) <= (uintptr_t)iter.end) && ((uintptr_t)iter.item + sizeof(struct kcdata_item) + iter.item->size <= (uintptr_t)iter.end); } static inline kcdata_iter_t kcdata_iter_next(kcdata_iter_t iter) { iter.item = (kcdata_item_t) (((uintptr_t)iter.item) + sizeof(struct kcdata_item) + (iter.item->size)); return iter; } static inline uint32_t kcdata_iter_type(kcdata_iter_t iter) { if ((iter.item->type & ~0xfu) == KCDATA_TYPE_ARRAY_PAD0) { return KCDATA_TYPE_ARRAY; } else { return iter.item->type; } } static inline uint32_t kcdata_calc_padding(uint32_t size) { /* calculate number of bytes to add to size to get something divisible by 16 */ return (-size) & 0xf; } static inline uint32_t kcdata_flags_get_padding(uint64_t flags) { return flags & KCDATA_FLAGS_STRUCT_PADDING_MASK; } /* see comment above about has_padding */ static inline int kcdata_iter_is_legacy_item(kcdata_iter_t iter, uint32_t legacy_size) { uint32_t legacy_size_padded = legacy_size + kcdata_calc_padding(legacy_size); return iter.item->size == legacy_size_padded && (iter.item->flags & (KCDATA_FLAGS_STRUCT_PADDING_MASK | KCDATA_FLAGS_STRUCT_HAS_PADDING)) == 0; } static inline uint32_t kcdata_iter_size(kcdata_iter_t iter) { uint32_t legacy_size = 0; switch (kcdata_iter_type(iter)) { case KCDATA_TYPE_ARRAY: case KCDATA_TYPE_CONTAINER_BEGIN: return iter.item->size; case STACKSHOT_KCTYPE_THREAD_SNAPSHOT: { legacy_size = sizeof(struct thread_snapshot_v2); if (kcdata_iter_is_legacy_item(iter, legacy_size)) { return legacy_size; } goto not_legacy; } case STACKSHOT_KCTYPE_SHAREDCACHE_LOADINFO: { legacy_size = sizeof(struct dyld_uuid_info_64); if (kcdata_iter_is_legacy_item(iter, legacy_size)) { return legacy_size; } goto not_legacy; } not_legacy: default: if (iter.item->size < kcdata_flags_get_padding(iter.item->flags)) { return 0; } else { return iter.item->size - kcdata_flags_get_padding(iter.item->flags); } } } static inline uint64_t kcdata_iter_flags(kcdata_iter_t iter) { return iter.item->flags; } static inline void * kcdata_iter_payload(kcdata_iter_t iter) { return &iter.item->data; } static inline uint32_t kcdata_iter_array_elem_type(kcdata_iter_t iter) { return (iter.item->flags >> 32) & UINT32_MAX; } static inline uint32_t kcdata_iter_array_elem_count(kcdata_iter_t iter) { return (iter.item->flags) & UINT32_MAX; } /* KCDATA_TYPE_ARRAY is ambiguous about the size of the array elements. Size is * calculated as total_size / elements_count, but total size got padded out to a * 16 byte alignment. New kernels will generate KCDATA_TYPE_ARRAY_PAD* instead * to explicitly tell us how much padding was used. Here we have a fixed, never * to be altered list of the sizes of array elements that were used before I * discovered this issue. If you find a KCDATA_TYPE_ARRAY that is not one of * these types, treat it as invalid data. */ static inline uint32_t kcdata_iter_array_size_switch(kcdata_iter_t iter) { switch (kcdata_iter_array_elem_type(iter)) { case KCDATA_TYPE_LIBRARY_LOADINFO: return sizeof(struct dyld_uuid_info_32); case KCDATA_TYPE_LIBRARY_LOADINFO64: return sizeof(struct dyld_uuid_info_64); case STACKSHOT_KCTYPE_KERN_STACKFRAME: case STACKSHOT_KCTYPE_USER_STACKFRAME: return sizeof(struct stack_snapshot_frame32); case STACKSHOT_KCTYPE_KERN_STACKFRAME64: case STACKSHOT_KCTYPE_USER_STACKFRAME64: return sizeof(struct stack_snapshot_frame64); case STACKSHOT_KCTYPE_DONATING_PIDS: return sizeof(int32_t); case STACKSHOT_KCTYPE_THREAD_DELTA_SNAPSHOT: return sizeof(struct thread_delta_snapshot_v2); // This one is only here to make some unit tests work. It should be OK to // remove. case TASK_CRASHINFO_CRASHED_THREADID: return sizeof(uint64_t); default: return 0; } } static inline int kcdata_iter_array_valid(kcdata_iter_t iter) { if (!kcdata_iter_valid(iter)) { return 0; } if (kcdata_iter_type(iter) != KCDATA_TYPE_ARRAY) { return 0; } if (kcdata_iter_array_elem_count(iter) == 0) { return iter.item->size == 0; } if (iter.item->type == KCDATA_TYPE_ARRAY) { uint32_t elem_size = kcdata_iter_array_size_switch(iter); if (elem_size == 0) { return 0; } /* sizes get aligned to the nearest 16. */ return kcdata_iter_array_elem_count(iter) <= iter.item->size / elem_size && iter.item->size % kcdata_iter_array_elem_count(iter) < 16; } else { return (iter.item->type & 0xf) <= iter.item->size && kcdata_iter_array_elem_count(iter) <= iter.item->size - (iter.item->type & 0xf) && (iter.item->size - (iter.item->type & 0xf)) % kcdata_iter_array_elem_count(iter) == 0; } } static inline uint32_t kcdata_iter_array_elem_size(kcdata_iter_t iter) { if (iter.item->type == KCDATA_TYPE_ARRAY) { return kcdata_iter_array_size_switch(iter); } if (kcdata_iter_array_elem_count(iter) == 0) { return 0; } return (iter.item->size - (iter.item->type & 0xf)) / kcdata_iter_array_elem_count(iter); } static inline int kcdata_iter_container_valid(kcdata_iter_t iter) { return kcdata_iter_valid(iter) && kcdata_iter_type(iter) == KCDATA_TYPE_CONTAINER_BEGIN && iter.item->size >= sizeof(uint32_t); } static inline uint32_t kcdata_iter_container_type(kcdata_iter_t iter) { return *(uint32_t *) kcdata_iter_payload(iter); } static inline uint64_t kcdata_iter_container_id(kcdata_iter_t iter) { return iter.item->flags; } #define KCDATA_ITER_FOREACH(iter) for(; kcdata_iter_valid(iter) && iter.item->type != KCDATA_TYPE_BUFFER_END; iter = kcdata_iter_next(iter)) #define KCDATA_ITER_FOREACH_FAILED(iter) (!kcdata_iter_valid(iter) || (iter).item->type != KCDATA_TYPE_BUFFER_END) static inline kcdata_iter_t kcdata_iter_find_type(kcdata_iter_t iter, uint32_t type) { KCDATA_ITER_FOREACH(iter) { if (kcdata_iter_type(iter) == type) { return iter; } } return kcdata_invalid_iter; } static inline int kcdata_iter_data_with_desc_valid(kcdata_iter_t iter, uint32_t minsize) { return kcdata_iter_valid(iter) && kcdata_iter_size(iter) >= KCDATA_DESC_MAXLEN + minsize && ((char*)kcdata_iter_payload(iter))[KCDATA_DESC_MAXLEN - 1] == 0; } static inline char * kcdata_iter_string(kcdata_iter_t iter, uint32_t offset) { if (offset > kcdata_iter_size(iter)) { return NULL; } uint32_t maxlen = kcdata_iter_size(iter) - offset; char *s = ((char*)kcdata_iter_payload(iter)) + offset; if (strnlen(s, maxlen) < maxlen) { return s; } else { return NULL; } } static inline void kcdata_iter_get_data_with_desc(kcdata_iter_t iter, char **desc_ptr, void **data_ptr, uint32_t *size_ptr) { if (desc_ptr) { *desc_ptr = (char *)kcdata_iter_payload(iter); } if (data_ptr) { *data_ptr = (void *)((uintptr_t)kcdata_iter_payload(iter) + KCDATA_DESC_MAXLEN); } if (size_ptr) { *size_ptr = kcdata_iter_size(iter) - KCDATA_DESC_MAXLEN; } } #endif