kern_symfile.c   [plain text]


/*
 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
 *
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. The rights granted to you under the License
 * may not be used to create, or enable the creation or redistribution of,
 * unlawful or unlicensed copies of an Apple operating system, or to
 * circumvent, violate, or enable the circumvention or violation of, any
 * terms of an Apple operating system software license agreement.
 *
 * Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this file.
 *
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
 */
/* Copyright (c) 1998 Apple Computer, Inc.  All rights reserved.
 *
 *	File:	bsd/kern/kern_symfile.c
 *
 * HISTORY
 */

#include <mach/vm_param.h>

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/signalvar.h>
#include <sys/resourcevar.h>
#include <sys/namei.h>
#include <sys/vnode_internal.h>
#include <sys/proc_internal.h>
#include <sys/kauth.h>
#include <sys/timeb.h>
#include <sys/times.h>
#include <sys/acct.h>
#include <sys/file_internal.h>
#include <sys/uio.h>
#include <sys/kernel.h>
#include <sys/stat.h>
#include <sys/disk.h>
#include <sys/conf.h>
#include <sys/content_protection.h>
#include <sys/fsctl.h>

#include <mach-o/loader.h>
#include <mach-o/nlist.h>

#include <kern/kalloc.h>
#include <vm/vm_kern.h>
#include <pexpert/pexpert.h>
#include <IOKit/IOPolledInterface.h>

#define HIBERNATE_MIN_PHYSICAL_LBA_512    (34)
#define HIBERNATE_MIN_PHYSICAL_LBA_4096   (6)
#define HIBERNATE_MIN_FILE_SIZE           (1024*1024)

/* This function is called from kern_sysctl in the current process context;
 * it is exported with the System6.0.exports, but this appears to be a legacy
 * export, as there are no internal consumers.
 */
int
get_kernel_symfile(__unused proc_t p, __unused char const **symfile);
int
get_kernel_symfile(__unused proc_t p, __unused char const **symfile)
{
	return KERN_FAILURE;
}

struct kern_direct_file_io_ref_t {
	vfs_context_t      ctx;
	struct vnode      * vp;
	dev_t               device;
	uint32_t            blksize;
	off_t               filelength;
	char                cf;
	char                pinned;
	char                frozen;
	char                wbcranged;
};


static int
file_ioctl(void * p1, void * p2, u_long theIoctl, caddr_t result)
{
	dev_t device = *(dev_t*) p1;

	return (*bdevsw[major(device)].d_ioctl)
	       (device, theIoctl, result, S_IFBLK, p2);
}

static int
device_ioctl(void * p1, __unused void * p2, u_long theIoctl, caddr_t result)
{
	return VNOP_IOCTL(p1, theIoctl, result, 0, p2);
}

static int
kern_ioctl_file_extents(struct kern_direct_file_io_ref_t * ref, u_long theIoctl, off_t offset, off_t end)
{
	int error = 0;
	int (*do_ioctl)(void * p1, void * p2, u_long theIoctl, caddr_t result);
	void * p1;
	void * p2;
	uint64_t    fileblk;
	size_t      filechunk;
	dk_extent_t  extent;
	dk_unmap_t   unmap;
	_dk_cs_pin_t pin;

	bzero(&extent, sizeof(dk_extent_t));
	bzero(&unmap, sizeof(dk_unmap_t));
	bzero(&pin, sizeof(pin));
	if (ref->vp->v_type == VREG) {
		p1 = &ref->device;
		p2 = kernproc;
		do_ioctl = &file_ioctl;
	} else {
		/* Partition. */
		p1 = ref->vp;
		p2 = ref->ctx;
		do_ioctl = &device_ioctl;
	}

	if (_DKIOCCSPINEXTENT == theIoctl) {
		/* Tell CS the image size, so it knows whether to place the subsequent pins SSD/HDD */
		pin.cp_extent.length = end;
		pin.cp_flags = _DKIOCCSHIBERNATEIMGSIZE;
		(void) do_ioctl(p1, p2, _DKIOCCSPINEXTENT, (caddr_t)&pin);
	} else if (_DKIOCCSUNPINEXTENT == theIoctl) {
		/* Tell CS hibernation is done, so it can stop blocking overlapping writes */
		pin.cp_flags = _DKIOCCSPINDISCARDBLACKLIST;
		(void) do_ioctl(p1, p2, _DKIOCCSUNPINEXTENT, (caddr_t)&pin);
	}

	for (; offset < end; offset += filechunk) {
		if (ref->vp->v_type == VREG) {
			daddr64_t blkno;
			filechunk = 1 * 1024 * 1024 * 1024;
			if (filechunk > (size_t)(end - offset)) {
				filechunk = (size_t)(end - offset);
			}
			error = VNOP_BLOCKMAP(ref->vp, offset, filechunk, &blkno,
			    &filechunk, NULL, VNODE_WRITE | VNODE_BLOCKMAP_NO_TRACK, NULL);
			if (error) {
				break;
			}
			if (-1LL == blkno) {
				continue;
			}
			fileblk = blkno * ref->blksize;
		} else if ((ref->vp->v_type == VBLK) || (ref->vp->v_type == VCHR)) {
			fileblk = offset;
			filechunk = (unsigned long)((ref->filelength > ULONG_MAX) ? ULONG_MAX: ref->filelength);
		}

		if (DKIOCUNMAP == theIoctl) {
			extent.offset = fileblk;
			extent.length = filechunk;
			unmap.extents = &extent;
			unmap.extentsCount = 1;
			error = do_ioctl(p1, p2, theIoctl, (caddr_t)&unmap);
//          printf("DKIOCUNMAP(%d) 0x%qx, 0x%qx\n", error, extent.offset, extent.length);
		} else if (_DKIOCCSPINEXTENT == theIoctl) {
			pin.cp_extent.offset = fileblk;
			pin.cp_extent.length = filechunk;
			pin.cp_flags = _DKIOCCSPINFORHIBERNATION;
			error = do_ioctl(p1, p2, theIoctl, (caddr_t)&pin);
			if (error && (ENOTTY != error)) {
				printf("_DKIOCCSPINEXTENT(%d) 0x%qx, 0x%qx\n", error, pin.cp_extent.offset, pin.cp_extent.length);
			}
		} else if (_DKIOCCSUNPINEXTENT == theIoctl) {
			pin.cp_extent.offset = fileblk;
			pin.cp_extent.length = filechunk;
			pin.cp_flags = _DKIOCCSPINFORHIBERNATION;
			error = do_ioctl(p1, p2, theIoctl, (caddr_t)&pin);
			if (error && (ENOTTY != error)) {
				printf("_DKIOCCSUNPINEXTENT(%d) 0x%qx, 0x%qx\n", error, pin.cp_extent.offset, pin.cp_extent.length);
			}
		} else {
			error = EINVAL;
		}

		if (error) {
			break;
		}
	}
	return error;
}

extern uint32_t freespace_mb(vnode_t vp);

struct kern_direct_file_io_ref_t *
kern_open_file_for_direct_io(const char * name,
    uint32_t iflags,
    kern_get_file_extents_callback_t callback,
    void * callback_ref,
    off_t set_file_size,
    off_t fs_free_size,
    off_t write_file_offset,
    void * write_file_addr,
    size_t write_file_len,
    dev_t * partition_device_result,
    dev_t * image_device_result,
    uint64_t * partitionbase_result,
    uint64_t * maxiocount_result,
    uint32_t * oflags)
{
	struct kern_direct_file_io_ref_t * ref;

	proc_t            p;
	struct vnode_attr va;
	dk_apfs_wbc_range_t wbc_range;
	int               error;
	off_t             f_offset;
	uint64_t          fileblk;
	size_t            filechunk;
	uint64_t          physoffset, minoffset;
	dev_t             device;
	dev_t             target = 0;
	int               isssd = 0;
	uint32_t          flags = 0;
	uint32_t          blksize;
	off_t             maxiocount, count, segcount, wbctotal;
	boolean_t         locked = FALSE;
	int               fmode;
	mode_t                    cmode;
	struct            nameidata nd;
	u_int32_t         ndflags;
	off_t             mpFree;

	int (*do_ioctl)(void * p1, void * p2, u_long theIoctl, caddr_t result);
	void * p1 = NULL;
	void * p2 = NULL;

	error = EFAULT;

	ref = (struct kern_direct_file_io_ref_t *) kalloc(sizeof(struct kern_direct_file_io_ref_t));
	if (!ref) {
		error = EFAULT;
		goto out;
	}

	bzero(ref, sizeof(*ref));
	p = kernproc;
	ref->ctx = vfs_context_kernel();

	fmode  = (kIOPolledFileCreate & iflags) ? (O_CREAT | FWRITE) : FWRITE;
	cmode =  S_IRUSR | S_IWUSR;
	ndflags = NOFOLLOW;
	NDINIT(&nd, LOOKUP, OP_OPEN, ndflags, UIO_SYSSPACE, CAST_USER_ADDR_T(name), ref->ctx);
	VATTR_INIT(&va);
	VATTR_SET(&va, va_mode, cmode);
	VATTR_SET(&va, va_dataprotect_flags, VA_DP_RAWENCRYPTED);
	VATTR_SET(&va, va_dataprotect_class, PROTECTION_CLASS_D);
	if ((error = vn_open_auth(&nd, &fmode, &va))) {
		kprintf("vn_open_auth(fmode: %d, cmode: %d) failed with error: %d\n", fmode, cmode, error);
		goto out;
	}

	ref->vp = nd.ni_vp;
	if (ref->vp->v_type == VREG) {
		vnode_lock_spin(ref->vp);
		SET(ref->vp->v_flag, VSWAP);
		vnode_unlock(ref->vp);
	}

	if (write_file_addr && write_file_len) {
		if ((error = kern_write_file(ref, write_file_offset, write_file_addr, write_file_len, IO_SKIP_ENCRYPTION))) {
			kprintf("kern_write_file() failed with error: %d\n", error);
			goto out;
		}
	}

	VATTR_INIT(&va);
	VATTR_WANTED(&va, va_rdev);
	VATTR_WANTED(&va, va_fsid);
	VATTR_WANTED(&va, va_devid);
	VATTR_WANTED(&va, va_data_size);
	VATTR_WANTED(&va, va_data_alloc);
	VATTR_WANTED(&va, va_nlink);
	error = EFAULT;
	if (vnode_getattr(ref->vp, &va, ref->ctx)) {
		goto out;
	}

	wbctotal = 0;
	mpFree = freespace_mb(ref->vp);
	mpFree <<= 20;
	kprintf("kern_direct_file(%s): vp size %qd, alloc %qd, mp free %qd, keep free %qd\n",
	    name, va.va_data_size, va.va_data_alloc, mpFree, fs_free_size);

	if (ref->vp->v_type == VREG) {
		/* Don't dump files with links. */
		if (va.va_nlink != 1) {
			goto out;
		}

		device = (VATTR_IS_SUPPORTED(&va, va_devid)) ? va.va_devid : va.va_fsid;
		ref->filelength = va.va_data_size;

		p1 = &device;
		p2 = p;
		do_ioctl = &file_ioctl;

		if (kIOPolledFileHibernate & iflags) {
			error = do_ioctl(p1, p2, DKIOCAPFSGETWBCRANGE, (caddr_t) &wbc_range);
			ref->wbcranged = (error == 0);
		}
		if (ref->wbcranged) {
			uint32_t idx;
			assert(wbc_range.count <= (sizeof(wbc_range.extents) / sizeof(wbc_range.extents[0])));
			for (idx = 0; idx < wbc_range.count; idx++) {
				wbctotal += wbc_range.extents[idx].length;
			}
			kprintf("kern_direct_file(%s): wbc %qd\n", name, wbctotal);
			if (wbctotal) {
				target = wbc_range.dev;
			}
		}

		if (set_file_size) {
			if (wbctotal) {
				if (wbctotal >= set_file_size) {
					set_file_size = HIBERNATE_MIN_FILE_SIZE;
				} else {
					set_file_size -= wbctotal;
					if (set_file_size < HIBERNATE_MIN_FILE_SIZE) {
						set_file_size = HIBERNATE_MIN_FILE_SIZE;
					}
				}
			}
			if (fs_free_size) {
				mpFree += va.va_data_alloc;
				if ((mpFree < set_file_size) || ((mpFree - set_file_size) < fs_free_size)) {
					error = ENOSPC;
					goto out;
				}
			}
			error = vnode_setsize(ref->vp, set_file_size, IO_NOZEROFILL | IO_NOAUTH, ref->ctx);
			if (error) {
				goto out;
			}
			ref->filelength = set_file_size;
		}
	} else if ((ref->vp->v_type == VBLK) || (ref->vp->v_type == VCHR)) {
		/* Partition. */
		device = va.va_rdev;

		p1 = ref->vp;
		p2 = ref->ctx;
		do_ioctl = &device_ioctl;
	} else {
		/* Don't dump to non-regular files. */
		error = EFAULT;
		goto out;
	}
	ref->device = device;

	// probe for CF
	dk_corestorage_info_t cs_info;
	memset(&cs_info, 0, sizeof(dk_corestorage_info_t));
	error = do_ioctl(p1, p2, DKIOCCORESTORAGE, (caddr_t)&cs_info);
	ref->cf = (error == 0) && (cs_info.flags & DK_CORESTORAGE_ENABLE_HOTFILES);

	// get block size

	error = do_ioctl(p1, p2, DKIOCGETBLOCKSIZE, (caddr_t) &ref->blksize);
	if (error) {
		goto out;
	}

	if (ref->blksize == 4096) {
		minoffset = HIBERNATE_MIN_PHYSICAL_LBA_4096 * ref->blksize;
	} else {
		minoffset = HIBERNATE_MIN_PHYSICAL_LBA_512 * ref->blksize;
	}

	if (ref->vp->v_type != VREG) {
		error = do_ioctl(p1, p2, DKIOCGETBLOCKCOUNT, (caddr_t) &fileblk);
		if (error) {
			goto out;
		}
		ref->filelength = fileblk * ref->blksize;
	}

	// pin logical extents, CS version

	error = kern_ioctl_file_extents(ref, _DKIOCCSPINEXTENT, 0, ref->filelength);
	if (error && (ENOTTY != error)) {
		goto out;
	}
	ref->pinned = (error == 0);

	// pin logical extents, apfs version

	error = VNOP_IOCTL(ref->vp, FSCTL_FREEZE_EXTENTS, NULL, 0, ref->ctx);
	if (error && (ENOTTY != error)) {
		goto out;
	}
	ref->frozen = (error == 0);

	// generate the block list

	error = do_ioctl(p1, p2, DKIOCLOCKPHYSICALEXTENTS, NULL);
	if (error) {
		goto out;
	}
	locked = TRUE;

	f_offset = 0;
	for (; f_offset < ref->filelength; f_offset += filechunk) {
		if (ref->vp->v_type == VREG) {
			filechunk = 1 * 1024 * 1024 * 1024;
			daddr64_t blkno;

			error = VNOP_BLOCKMAP(ref->vp, f_offset, filechunk, &blkno,
			    &filechunk, NULL, VNODE_WRITE | VNODE_BLOCKMAP_NO_TRACK, NULL);
			if (error) {
				goto out;
			}
			if (-1LL == blkno) {
				continue;
			}
			fileblk = blkno * ref->blksize;
		} else if ((ref->vp->v_type == VBLK) || (ref->vp->v_type == VCHR)) {
			fileblk = f_offset;
			filechunk = f_offset ? 0 : (unsigned long)ref->filelength;
		}

		physoffset = 0;
		while (physoffset < filechunk) {
			dk_physical_extent_t getphysreq;
			bzero(&getphysreq, sizeof(getphysreq));

			getphysreq.offset = fileblk + physoffset;
			getphysreq.length = (filechunk - physoffset);
			error = do_ioctl(p1, p2, DKIOCGETPHYSICALEXTENT, (caddr_t) &getphysreq);
			if (error) {
				goto out;
			}
			if (!target) {
				target = getphysreq.dev;
			} else if (target != getphysreq.dev) {
				error = ENOTSUP;
				goto out;
			}

			assert(getphysreq.offset >= minoffset);

#if HIBFRAGMENT
			uint64_t rev;
			for (rev = 4096; rev <= getphysreq.length; rev += 4096) {
				callback(callback_ref, getphysreq.offset + getphysreq.length - rev, 4096);
			}
#else
			callback(callback_ref, getphysreq.offset, getphysreq.length);
#endif
			physoffset += getphysreq.length;
		}
	}
	if (ref->wbcranged) {
		uint32_t idx;
		for (idx = 0; idx < wbc_range.count; idx++) {
			assert(wbc_range.extents[idx].offset >= minoffset);
			callback(callback_ref, wbc_range.extents[idx].offset, wbc_range.extents[idx].length);
		}
	}
	callback(callback_ref, 0ULL, 0ULL);

	if (ref->vp->v_type == VREG) {
		p1 = &target;
	} else {
		p1 = &target;
		p2 = p;
		do_ioctl = &file_ioctl;
	}

	// get partition base

	if (partitionbase_result) {
		error = do_ioctl(p1, p2, DKIOCGETBASE, (caddr_t) partitionbase_result);
		if (error) {
			goto out;
		}
	}

	// get block size & constraints

	error = do_ioctl(p1, p2, DKIOCGETBLOCKSIZE, (caddr_t) &blksize);
	if (error) {
		goto out;
	}

	maxiocount = 1 * 1024 * 1024 * 1024;

	error = do_ioctl(p1, p2, DKIOCGETMAXBLOCKCOUNTREAD, (caddr_t) &count);
	if (error) {
		count = 0;
	}
	count *= blksize;
	if (count && (count < maxiocount)) {
		maxiocount = count;
	}

	error = do_ioctl(p1, p2, DKIOCGETMAXBLOCKCOUNTWRITE, (caddr_t) &count);
	if (error) {
		count = 0;
	}
	count *= blksize;
	if (count && (count < maxiocount)) {
		maxiocount = count;
	}

	error = do_ioctl(p1, p2, DKIOCGETMAXBYTECOUNTREAD, (caddr_t) &count);
	if (error) {
		count = 0;
	}
	if (count && (count < maxiocount)) {
		maxiocount = count;
	}

	error = do_ioctl(p1, p2, DKIOCGETMAXBYTECOUNTWRITE, (caddr_t) &count);
	if (error) {
		count = 0;
	}
	if (count && (count < maxiocount)) {
		maxiocount = count;
	}

	error = do_ioctl(p1, p2, DKIOCGETMAXSEGMENTBYTECOUNTREAD, (caddr_t) &count);
	if (!error) {
		error = do_ioctl(p1, p2, DKIOCGETMAXSEGMENTCOUNTREAD, (caddr_t) &segcount);
	}
	if (error) {
		count = segcount = 0;
	}
	count *= segcount;
	if (count && (count < maxiocount)) {
		maxiocount = count;
	}

	error = do_ioctl(p1, p2, DKIOCGETMAXSEGMENTBYTECOUNTWRITE, (caddr_t) &count);
	if (!error) {
		error = do_ioctl(p1, p2, DKIOCGETMAXSEGMENTCOUNTWRITE, (caddr_t) &segcount);
	}
	if (error) {
		count = segcount = 0;
	}
	count *= segcount;
	if (count && (count < maxiocount)) {
		maxiocount = count;
	}

	kprintf("max io 0x%qx bytes\n", maxiocount);
	if (maxiocount_result) {
		*maxiocount_result = maxiocount;
	}

	error = do_ioctl(p1, p2, DKIOCISSOLIDSTATE, (caddr_t)&isssd);
	if (!error && isssd) {
		flags |= kIOPolledFileSSD;
	}

	if (partition_device_result) {
		*partition_device_result = device;
	}
	if (image_device_result) {
		*image_device_result = target;
	}
	if (oflags) {
		*oflags = flags;
	}

	if ((ref->vp->v_type == VBLK) || (ref->vp->v_type == VCHR)) {
		vnode_close(ref->vp, FWRITE, ref->ctx);
		ref->vp = NULLVP;
		ref->ctx = NULL;
	}

out:
	printf("kern_open_file_for_direct_io(%p, %d)\n", ref, error);


	if (error && locked) {
		p1 = &device;
		(void) do_ioctl(p1, p2, DKIOCUNLOCKPHYSICALEXTENTS, NULL);
	}

	if (error && ref) {
		if (ref->vp) {
			(void) kern_ioctl_file_extents(ref, _DKIOCCSUNPINEXTENT, 0, (ref->pinned && ref->cf) ? ref->filelength : 0);

			if (ref->frozen) {
				(void) VNOP_IOCTL(ref->vp, FSCTL_THAW_EXTENTS, NULL, 0, ref->ctx);
			}
			if (ref->wbcranged) {
				(void) do_ioctl(p1, p2, DKIOCAPFSRELEASEWBCRANGE, (caddr_t) NULL);
			}
			vnode_close(ref->vp, FWRITE, ref->ctx);
			ref->vp = NULLVP;
		}
		ref->ctx = NULL;
		kfree(ref, sizeof(struct kern_direct_file_io_ref_t));
		ref = NULL;
	}

	return ref;
}

int
kern_write_file(struct kern_direct_file_io_ref_t * ref, off_t offset, void * addr, size_t len, int ioflag)
{
	assert(len <= INT32_MAX);
	return vn_rdwr(UIO_WRITE, ref->vp,
	           addr, (int)len, offset,
	           UIO_SYSSPACE, ioflag | IO_SYNC | IO_NODELOCKED | IO_UNIT,
	           vfs_context_ucred(ref->ctx), (int *) 0,
	           vfs_context_proc(ref->ctx));
}

int
kern_read_file(struct kern_direct_file_io_ref_t * ref, off_t offset, void * addr, size_t len, int ioflag)
{
	assert(len <= INT32_MAX);
	return vn_rdwr(UIO_READ, ref->vp,
	           addr, (int)len, offset,
	           UIO_SYSSPACE, ioflag | IO_SYNC | IO_NODELOCKED | IO_UNIT,
	           vfs_context_ucred(ref->ctx), (int *) 0,
	           vfs_context_proc(ref->ctx));
}


struct mount *
kern_file_mount(struct kern_direct_file_io_ref_t * ref)
{
	return ref->vp->v_mount;
}

void
kern_close_file_for_direct_io(struct kern_direct_file_io_ref_t * ref,
    off_t write_offset, void * addr, size_t write_length,
    off_t discard_offset, off_t discard_end)
{
	int error;
	printf("kern_close_file_for_direct_io(%p)\n", ref);

	if (!ref) {
		return;
	}

	if (ref->vp) {
		int (*do_ioctl)(void * p1, void * p2, u_long theIoctl, caddr_t result);
		void * p1;
		void * p2;

		discard_offset = ((discard_offset + ref->blksize - 1) & ~(((off_t) ref->blksize) - 1));
		discard_end    = ((discard_end)                       & ~(((off_t) ref->blksize) - 1));

		if (ref->vp->v_type == VREG) {
			p1 = &ref->device;
			p2 = kernproc;
			do_ioctl = &file_ioctl;
		} else {
			/* Partition. */
			p1 = ref->vp;
			p2 = ref->ctx;
			do_ioctl = &device_ioctl;
		}
		(void) do_ioctl(p1, p2, DKIOCUNLOCKPHYSICALEXTENTS, NULL);

		//XXX If unmapping extents then don't also need to unpin; except ...
		//XXX if file unaligned (HFS 4k / Fusion 128k) then pin is superset and
		//XXX unmap is subset, so save extra walk over file extents (and the risk
		//XXX that CF drain starts) vs leaving partial units pinned to SSD
		//XXX (until whatever was sharing also unmaps).  Err on cleaning up fully.
		boolean_t will_unmap = (!ref->pinned || ref->cf) && (discard_end > discard_offset);
		boolean_t will_unpin = (ref->pinned && ref->cf /* && !will_unmap */);

		(void) kern_ioctl_file_extents(ref, _DKIOCCSUNPINEXTENT, 0, (will_unpin) ? ref->filelength : 0);

		if (will_unmap) {
			(void) kern_ioctl_file_extents(ref, DKIOCUNMAP, discard_offset, (ref->cf) ? ref->filelength : discard_end);
		}

		if (ref->frozen) {
			(void) VNOP_IOCTL(ref->vp, FSCTL_THAW_EXTENTS, NULL, 0, ref->ctx);
		}
		if (ref->wbcranged) {
			(void) do_ioctl(p1, p2, DKIOCAPFSRELEASEWBCRANGE, (caddr_t) NULL);
		}

		if (addr && write_length) {
			(void) kern_write_file(ref, write_offset, addr, write_length, IO_SKIP_ENCRYPTION);
		}

		error = vnode_close(ref->vp, FWRITE, ref->ctx);

		ref->vp = NULLVP;
		kprintf("vnode_close(%d)\n", error);

	}

	ref->ctx = NULL;

	kfree(ref, sizeof(struct kern_direct_file_io_ref_t));
}