vm_unix.c   [plain text]


/*
 * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
 *
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. The rights granted to you under the License
 * may not be used to create, or enable the creation or redistribution of,
 * unlawful or unlicensed copies of an Apple operating system, or to
 * circumvent, violate, or enable the circumvention or violation of, any
 * terms of an Apple operating system software license agreement.
 *
 * Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this file.
 *
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
 */
/*
 * Mach Operating System
 * Copyright (c) 1987 Carnegie-Mellon University
 * All rights reserved.  The CMU software License Agreement specifies
 * the terms and conditions for use and redistribution.
 */
/*
 * NOTICE: This file was modified by SPARTA, Inc. in 2006 to introduce
 * support for mandatory and extensible security protections.  This notice
 * is included in support of clause 2.2 (b) of the Apple Public License,
 * Version 2.0.
 */
#include <vm/vm_options.h>

#include <kern/task.h>
#include <kern/thread.h>
#include <kern/debug.h>
#include <kern/extmod_statistics.h>
#include <mach/mach_traps.h>
#include <mach/port.h>
#include <mach/sdt.h>
#include <mach/task.h>
#include <mach/task_access.h>
#include <mach/task_special_ports.h>
#include <mach/time_value.h>
#include <mach/vm_map.h>
#include <mach/vm_param.h>
#include <mach/vm_prot.h>

#include <sys/file_internal.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/dir.h>
#include <sys/namei.h>
#include <sys/proc_internal.h>
#include <sys/kauth.h>
#include <sys/vm.h>
#include <sys/file.h>
#include <sys/vnode_internal.h>
#include <sys/mount.h>
#include <sys/trace.h>
#include <sys/kernel.h>
#include <sys/ubc_internal.h>
#include <sys/user.h>
#include <sys/syslog.h>
#include <sys/stat.h>
#include <sys/sysproto.h>
#include <sys/mman.h>
#include <sys/sysctl.h>
#include <sys/cprotect.h>
#include <sys/kpi_socket.h>
#include <sys/kas_info.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#if NECP
#include <net/necp.h>
#endif /* NECP */

#include <security/audit/audit.h>
#include <security/mac.h>
#include <bsm/audit_kevents.h>

#include <kern/kalloc.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <vm/vm_pageout.h>

#include <mach/shared_region.h>
#include <vm/vm_shared_region.h>

#include <vm/vm_protos.h>

#include <sys/kern_memorystatus.h>
#include <sys/kern_memorystatus_freeze.h>

#if CONFIG_MACF
#include <security/mac_framework.h>
#endif

#if CONFIG_CSR
#include <sys/csr.h>
#endif /* CONFIG_CSR */
#include <IOKit/IOBSD.h>

int _shared_region_map_and_slide(struct proc*, int, unsigned int, struct shared_file_mapping_np*, uint32_t, user_addr_t, user_addr_t);
int shared_region_copyin_mappings(struct proc*, user_addr_t, unsigned int, struct shared_file_mapping_np *);

#if VM_MAP_DEBUG_APPLE_PROTECT
SYSCTL_INT(_vm, OID_AUTO, map_debug_apple_protect, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_map_debug_apple_protect, 0, "");
#endif /* VM_MAP_DEBUG_APPLE_PROTECT */

#if VM_MAP_DEBUG_FOURK
SYSCTL_INT(_vm, OID_AUTO, map_debug_fourk, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_map_debug_fourk, 0, "");
#endif /* VM_MAP_DEBUG_FOURK */

#if DEVELOPMENT || DEBUG

static int
sysctl_kmem_alloc_contig SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
	vm_offset_t     kaddr;
	kern_return_t   kr;
	int     error = 0;
	int     size = 0;

	error = sysctl_handle_int(oidp, &size, 0, req);
	if (error || !req->newptr) {
		return error;
	}

	kr = kmem_alloc_contig(kernel_map, &kaddr, (vm_size_t)size, 0, 0, 0, 0, VM_KERN_MEMORY_IOKIT);

	if (kr == KERN_SUCCESS) {
		kmem_free(kernel_map, kaddr, size);
	}

	return error;
}

SYSCTL_PROC(_vm, OID_AUTO, kmem_alloc_contig, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED,
    0, 0, &sysctl_kmem_alloc_contig, "I", "");

extern int vm_region_footprint;
SYSCTL_INT(_vm, OID_AUTO, region_footprint, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, &vm_region_footprint, 0, "");
static int
sysctl_vm_self_region_footprint SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2, oidp)
	int     error = 0;
	int     value;

	value = task_self_region_footprint();
	error = SYSCTL_OUT(req, &value, sizeof(int));
	if (error) {
		return error;
	}

	if (!req->newptr) {
		return 0;
	}

	error = SYSCTL_IN(req, &value, sizeof(int));
	if (error) {
		return error;
	}
	task_self_region_footprint_set(value);
	return 0;
}
SYSCTL_PROC(_vm, OID_AUTO, self_region_footprint, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED | CTLFLAG_MASKED, 0, 0, &sysctl_vm_self_region_footprint, "I", "");

#endif /* DEVELOPMENT || DEBUG */


#if CONFIG_EMBEDDED

#if DEVELOPMENT || DEBUG
extern int panic_on_unsigned_execute;
SYSCTL_INT(_vm, OID_AUTO, panic_on_unsigned_execute, CTLFLAG_RW | CTLFLAG_LOCKED, &panic_on_unsigned_execute, 0, "");
#endif /* DEVELOPMENT || DEBUG */

extern int log_executable_mem_entry;
extern int cs_executable_create_upl;
extern int cs_executable_mem_entry;
extern int cs_executable_wire;
SYSCTL_INT(_vm, OID_AUTO, log_executable_mem_entry, CTLFLAG_RD | CTLFLAG_LOCKED, &log_executable_mem_entry, 0, "");
SYSCTL_INT(_vm, OID_AUTO, cs_executable_create_upl, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_executable_create_upl, 0, "");
SYSCTL_INT(_vm, OID_AUTO, cs_executable_mem_entry, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_executable_mem_entry, 0, "");
SYSCTL_INT(_vm, OID_AUTO, cs_executable_wire, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_executable_wire, 0, "");
#endif /* CONFIG_EMBEDDED */

#if DEVELOPMENT || DEBUG
extern int radar_20146450;
SYSCTL_INT(_vm, OID_AUTO, radar_20146450, CTLFLAG_RW | CTLFLAG_LOCKED, &radar_20146450, 0, "");

extern int macho_printf;
SYSCTL_INT(_vm, OID_AUTO, macho_printf, CTLFLAG_RW | CTLFLAG_LOCKED, &macho_printf, 0, "");

extern int apple_protect_pager_data_request_debug;
SYSCTL_INT(_vm, OID_AUTO, apple_protect_pager_data_request_debug, CTLFLAG_RW | CTLFLAG_LOCKED, &apple_protect_pager_data_request_debug, 0, "");

#if __arm__ || __arm64__
/* These are meant to support the page table accounting unit test. */
extern unsigned int arm_hardware_page_size;
extern unsigned int arm_pt_desc_size;
extern unsigned int arm_pt_root_size;
extern unsigned int free_page_size_tt_count;
extern unsigned int free_two_page_size_tt_count;
extern unsigned int free_tt_count;
extern unsigned int inuse_user_tteroot_count;
extern unsigned int inuse_kernel_tteroot_count;
extern unsigned int inuse_user_ttepages_count;
extern unsigned int inuse_kernel_ttepages_count;
extern unsigned int inuse_user_ptepages_count;
extern unsigned int inuse_kernel_ptepages_count;
SYSCTL_UINT(_vm, OID_AUTO, native_hw_pagesize, CTLFLAG_RD | CTLFLAG_LOCKED, &arm_hardware_page_size, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, arm_pt_desc_size, CTLFLAG_RD | CTLFLAG_LOCKED, &arm_pt_desc_size, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, arm_pt_root_size, CTLFLAG_RD | CTLFLAG_LOCKED, &arm_pt_root_size, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, free_1page_tte_root, CTLFLAG_RD | CTLFLAG_LOCKED, &free_page_size_tt_count, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, free_2page_tte_root, CTLFLAG_RD | CTLFLAG_LOCKED, &free_two_page_size_tt_count, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, free_tte_root, CTLFLAG_RD | CTLFLAG_LOCKED, &free_tt_count, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, user_tte_root, CTLFLAG_RD | CTLFLAG_LOCKED, &inuse_user_tteroot_count, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, kernel_tte_root, CTLFLAG_RD | CTLFLAG_LOCKED, &inuse_kernel_tteroot_count, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, user_tte_pages, CTLFLAG_RD | CTLFLAG_LOCKED, &inuse_user_ttepages_count, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, kernel_tte_pages, CTLFLAG_RD | CTLFLAG_LOCKED, &inuse_kernel_ttepages_count, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, user_pte_pages, CTLFLAG_RD | CTLFLAG_LOCKED, &inuse_user_ptepages_count, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, kernel_pte_pages, CTLFLAG_RD | CTLFLAG_LOCKED, &inuse_kernel_ptepages_count, 0, "");
#if DEVELOPMENT || DEBUG
extern unsigned long pmap_asid_flushes;
SYSCTL_ULONG(_vm, OID_AUTO, pmap_asid_flushes, CTLFLAG_RD | CTLFLAG_LOCKED, &pmap_asid_flushes, "");
#endif
#endif /* __arm__ || __arm64__ */

#if __arm64__
extern int fourk_pager_data_request_debug;
SYSCTL_INT(_vm, OID_AUTO, fourk_pager_data_request_debug, CTLFLAG_RW | CTLFLAG_LOCKED, &fourk_pager_data_request_debug, 0, "");
#endif /* __arm64__ */
#endif /* DEVELOPMENT || DEBUG */

SYSCTL_INT(_vm, OID_AUTO, vm_do_collapse_compressor, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_counters.do_collapse_compressor, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_do_collapse_compressor_pages, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_counters.do_collapse_compressor_pages, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_do_collapse_terminate, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_counters.do_collapse_terminate, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_do_collapse_terminate_failure, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_counters.do_collapse_terminate_failure, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_should_cow_but_wired, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_counters.should_cow_but_wired, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_create_upl_extra_cow, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_counters.create_upl_extra_cow, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_create_upl_extra_cow_pages, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_counters.create_upl_extra_cow_pages, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_create_upl_lookup_failure_write, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_counters.create_upl_lookup_failure_write, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_create_upl_lookup_failure_copy, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_counters.create_upl_lookup_failure_copy, 0, "");
#if VM_SCAN_FOR_SHADOW_CHAIN
static int vm_shadow_max_enabled = 0;    /* Disabled by default */
extern int proc_shadow_max(void);
static int
vm_shadow_max SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2, oidp)
	int value = 0;

	if (vm_shadow_max_enabled) {
		value = proc_shadow_max();
	}

	return SYSCTL_OUT(req, &value, sizeof(value));
}
SYSCTL_PROC(_vm, OID_AUTO, vm_shadow_max, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
    0, 0, &vm_shadow_max, "I", "");

SYSCTL_INT(_vm, OID_AUTO, vm_shadow_max_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_shadow_max_enabled, 0, "");

#endif /* VM_SCAN_FOR_SHADOW_CHAIN */

SYSCTL_INT(_vm, OID_AUTO, vm_debug_events, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_debug_events, 0, "");

__attribute__((noinline)) int __KERNEL_WAITING_ON_TASKGATED_CHECK_ACCESS_UPCALL__(
	mach_port_t task_access_port, int32_t calling_pid, uint32_t calling_gid, int32_t target_pid);
/*
 * Sysctl's related to data/stack execution.  See osfmk/vm/vm_map.c
 */

#if DEVELOPMENT || DEBUG
extern int allow_stack_exec, allow_data_exec;

SYSCTL_INT(_vm, OID_AUTO, allow_stack_exec, CTLFLAG_RW | CTLFLAG_LOCKED, &allow_stack_exec, 0, "");
SYSCTL_INT(_vm, OID_AUTO, allow_data_exec, CTLFLAG_RW | CTLFLAG_LOCKED, &allow_data_exec, 0, "");

#endif /* DEVELOPMENT || DEBUG */

static const char *prot_values[] = {
	"none",
	"read-only",
	"write-only",
	"read-write",
	"execute-only",
	"read-execute",
	"write-execute",
	"read-write-execute"
};

void
log_stack_execution_failure(addr64_t vaddr, vm_prot_t prot)
{
	printf("Data/Stack execution not permitted: %s[pid %d] at virtual address 0x%qx, protections were %s\n",
	    current_proc()->p_comm, current_proc()->p_pid, vaddr, prot_values[prot & VM_PROT_ALL]);
}

/*
 * shared_region_unnest_logging: level of logging of unnesting events
 * 0	- no logging
 * 1	- throttled logging of unexpected unnesting events (default)
 * 2	- unthrottled logging of unexpected unnesting events
 * 3+	- unthrottled logging of all unnesting events
 */
int shared_region_unnest_logging = 1;

SYSCTL_INT(_vm, OID_AUTO, shared_region_unnest_logging, CTLFLAG_RW | CTLFLAG_LOCKED,
    &shared_region_unnest_logging, 0, "");

int vm_shared_region_unnest_log_interval = 10;
int shared_region_unnest_log_count_threshold = 5;

/*
 * Shared cache path enforcement.
 */

#ifndef CONFIG_EMBEDDED
static int scdir_enforce = 1;
static char scdir_path[] = "/var/db/dyld/";
#else
static int scdir_enforce = 0;
static char scdir_path[] = "/System/Library/Caches/com.apple.dyld/";
#endif

#ifndef SECURE_KERNEL
static int sysctl_scdir_enforce SYSCTL_HANDLER_ARGS
{
#if CONFIG_CSR
	if (csr_check(CSR_ALLOW_UNRESTRICTED_FS) != 0) {
		printf("Failed attempt to set vm.enforce_shared_cache_dir sysctl\n");
		return EPERM;
	}
#endif /* CONFIG_CSR */
	return sysctl_handle_int(oidp, arg1, arg2, req);
}

SYSCTL_PROC(_vm, OID_AUTO, enforce_shared_cache_dir, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &scdir_enforce, 0, sysctl_scdir_enforce, "I", "");
#endif

/* These log rate throttling state variables aren't thread safe, but
 * are sufficient unto the task.
 */
static int64_t last_unnest_log_time = 0;
static int shared_region_unnest_log_count = 0;

void
log_unnest_badness(
	vm_map_t        m,
	vm_map_offset_t s,
	vm_map_offset_t e,
	boolean_t       is_nested_map,
	vm_map_offset_t lowest_unnestable_addr)
{
	struct timeval  tv;

	if (shared_region_unnest_logging == 0) {
		return;
	}

	if (shared_region_unnest_logging <= 2 &&
	    is_nested_map &&
	    s >= lowest_unnestable_addr) {
		/*
		 * Unnesting of writable map entries is fine.
		 */
		return;
	}

	if (shared_region_unnest_logging <= 1) {
		microtime(&tv);
		if ((tv.tv_sec - last_unnest_log_time) <
		    vm_shared_region_unnest_log_interval) {
			if (shared_region_unnest_log_count++ >
			    shared_region_unnest_log_count_threshold) {
				return;
			}
		} else {
			last_unnest_log_time = tv.tv_sec;
			shared_region_unnest_log_count = 0;
		}
	}

	DTRACE_VM4(log_unnest_badness,
	    vm_map_t, m,
	    vm_map_offset_t, s,
	    vm_map_offset_t, e,
	    vm_map_offset_t, lowest_unnestable_addr);
	printf("%s[%d] triggered unnest of range 0x%qx->0x%qx of DYLD shared region in VM map %p. While not abnormal for debuggers, this increases system memory footprint until the target exits.\n", current_proc()->p_comm, current_proc()->p_pid, (uint64_t)s, (uint64_t)e, (void *) VM_KERNEL_ADDRPERM(m));
}

int
useracc(
	user_addr_t     addr,
	user_size_t     len,
	int     prot)
{
	vm_map_t        map;

	map = current_map();
	return vm_map_check_protection(
		map,
		vm_map_trunc_page(addr,
		vm_map_page_mask(map)),
		vm_map_round_page(addr + len,
		vm_map_page_mask(map)),
		prot == B_READ ? VM_PROT_READ : VM_PROT_WRITE);
}

int
vslock(
	user_addr_t     addr,
	user_size_t     len)
{
	kern_return_t   kret;
	vm_map_t        map;

	map = current_map();
	kret = vm_map_wire_kernel(map,
	    vm_map_trunc_page(addr,
	    vm_map_page_mask(map)),
	    vm_map_round_page(addr + len,
	    vm_map_page_mask(map)),
	    VM_PROT_READ | VM_PROT_WRITE, VM_KERN_MEMORY_BSD,
	    FALSE);

	switch (kret) {
	case KERN_SUCCESS:
		return 0;
	case KERN_INVALID_ADDRESS:
	case KERN_NO_SPACE:
		return ENOMEM;
	case KERN_PROTECTION_FAILURE:
		return EACCES;
	default:
		return EINVAL;
	}
}

int
vsunlock(
	user_addr_t addr,
	user_size_t len,
	__unused int dirtied)
{
#if FIXME  /* [ */
	pmap_t          pmap;
	vm_page_t       pg;
	vm_map_offset_t vaddr;
	ppnum_t         paddr;
#endif  /* FIXME ] */
	kern_return_t   kret;
	vm_map_t        map;

	map = current_map();

#if FIXME  /* [ */
	if (dirtied) {
		pmap = get_task_pmap(current_task());
		for (vaddr = vm_map_trunc_page(addr, PAGE_MASK);
		    vaddr < vm_map_round_page(addr + len, PAGE_MASK);
		    vaddr += PAGE_SIZE) {
			paddr = pmap_extract(pmap, vaddr);
			pg = PHYS_TO_VM_PAGE(paddr);
			vm_page_set_modified(pg);
		}
	}
#endif  /* FIXME ] */
#ifdef  lint
	dirtied++;
#endif  /* lint */
	kret = vm_map_unwire(map,
	    vm_map_trunc_page(addr,
	    vm_map_page_mask(map)),
	    vm_map_round_page(addr + len,
	    vm_map_page_mask(map)),
	    FALSE);
	switch (kret) {
	case KERN_SUCCESS:
		return 0;
	case KERN_INVALID_ADDRESS:
	case KERN_NO_SPACE:
		return ENOMEM;
	case KERN_PROTECTION_FAILURE:
		return EACCES;
	default:
		return EINVAL;
	}
}

int
subyte(
	user_addr_t addr,
	int byte)
{
	char character;

	character = (char)byte;
	return copyout((void *)&(character), addr, sizeof(char)) == 0 ? 0 : -1;
}

int
suibyte(
	user_addr_t addr,
	int byte)
{
	char character;

	character = (char)byte;
	return copyout((void *)&(character), addr, sizeof(char)) == 0 ? 0 : -1;
}

int
fubyte(user_addr_t addr)
{
	unsigned char byte;

	if (copyin(addr, (void *) &byte, sizeof(char))) {
		return -1;
	}
	return byte;
}

int
fuibyte(user_addr_t addr)
{
	unsigned char byte;

	if (copyin(addr, (void *) &(byte), sizeof(char))) {
		return -1;
	}
	return byte;
}

int
suword(
	user_addr_t addr,
	long word)
{
	return copyout((void *) &word, addr, sizeof(int)) == 0 ? 0 : -1;
}

long
fuword(user_addr_t addr)
{
	long word = 0;

	if (copyin(addr, (void *) &word, sizeof(int))) {
		return -1;
	}
	return word;
}

/* suiword and fuiword are the same as suword and fuword, respectively */

int
suiword(
	user_addr_t addr,
	long word)
{
	return copyout((void *) &word, addr, sizeof(int)) == 0 ? 0 : -1;
}

long
fuiword(user_addr_t addr)
{
	long word = 0;

	if (copyin(addr, (void *) &word, sizeof(int))) {
		return -1;
	}
	return word;
}

/*
 * With a 32-bit kernel and mixed 32/64-bit user tasks, this interface allows the
 * fetching and setting of process-sized size_t and pointer values.
 */
int
sulong(user_addr_t addr, int64_t word)
{
	if (IS_64BIT_PROCESS(current_proc())) {
		return copyout((void *)&word, addr, sizeof(word)) == 0 ? 0 : -1;
	} else {
		return suiword(addr, (long)word);
	}
}

int64_t
fulong(user_addr_t addr)
{
	int64_t longword;

	if (IS_64BIT_PROCESS(current_proc())) {
		if (copyin(addr, (void *)&longword, sizeof(longword)) != 0) {
			return -1;
		}
		return longword;
	} else {
		return (int64_t)fuiword(addr);
	}
}

int
suulong(user_addr_t addr, uint64_t uword)
{
	if (IS_64BIT_PROCESS(current_proc())) {
		return copyout((void *)&uword, addr, sizeof(uword)) == 0 ? 0 : -1;
	} else {
		return suiword(addr, (uint32_t)uword);
	}
}

uint64_t
fuulong(user_addr_t addr)
{
	uint64_t ulongword;

	if (IS_64BIT_PROCESS(current_proc())) {
		if (copyin(addr, (void *)&ulongword, sizeof(ulongword)) != 0) {
			return -1ULL;
		}
		return ulongword;
	} else {
		return (uint64_t)fuiword(addr);
	}
}

int
swapon(__unused proc_t procp, __unused struct swapon_args *uap, __unused int *retval)
{
	return ENOTSUP;
}

/*
 * pid_for_task
 *
 * Find the BSD process ID for the Mach task associated with the given Mach port
 * name
 *
 * Parameters:	args		User argument descriptor (see below)
 *
 * Indirect parameters:	args->t		Mach port name
 *                      args->pid	Process ID (returned value; see below)
 *
 * Returns:	KERL_SUCCESS	Success
 *              KERN_FAILURE	Not success
 *
 * Implicit returns: args->pid		Process ID
 *
 */
kern_return_t
pid_for_task(
	struct pid_for_task_args *args)
{
	mach_port_name_t        t = args->t;
	user_addr_t             pid_addr  = args->pid;
	proc_t p;
	task_t          t1;
	int     pid = -1;
	kern_return_t   err = KERN_SUCCESS;

	AUDIT_MACH_SYSCALL_ENTER(AUE_PIDFORTASK);
	AUDIT_ARG(mach_port1, t);

	t1 = port_name_to_task_inspect(t);

	if (t1 == TASK_NULL) {
		err = KERN_FAILURE;
		goto pftout;
	} else {
		p = get_bsdtask_info(t1);
		if (p) {
			pid  = proc_pid(p);
			err = KERN_SUCCESS;
		} else if (is_corpsetask(t1)) {
			pid = task_pid(t1);
			err = KERN_SUCCESS;
		} else {
			err = KERN_FAILURE;
		}
	}
	task_deallocate(t1);
pftout:
	AUDIT_ARG(pid, pid);
	(void) copyout((char *) &pid, pid_addr, sizeof(int));
	AUDIT_MACH_SYSCALL_EXIT(err);
	return err;
}

/*
 *
 * tfp_policy = KERN_TFP_POLICY_DENY; Deny Mode: None allowed except for self
 * tfp_policy = KERN_TFP_POLICY_DEFAULT; default mode: all posix checks and upcall via task port for authentication
 *
 */
static  int tfp_policy = KERN_TFP_POLICY_DEFAULT;

/*
 *	Routine:	task_for_pid_posix_check
 *	Purpose:
 *			Verify that the current process should be allowed to
 *			get the target process's task port. This is only
 *			permitted if:
 *			- The current process is root
 *			OR all of the following are true:
 *			- The target process's real, effective, and saved uids
 *			  are the same as the current proc's euid,
 *			- The target process's group set is a subset of the
 *			  calling process's group set, and
 *			- The target process hasn't switched credentials.
 *
 *	Returns:	TRUE: permitted
 *			FALSE: denied
 */
static int
task_for_pid_posix_check(proc_t target)
{
	kauth_cred_t targetcred, mycred;
	uid_t myuid;
	int allowed;

	/* No task_for_pid on bad targets */
	if (target->p_stat == SZOMB) {
		return FALSE;
	}

	mycred = kauth_cred_get();
	myuid = kauth_cred_getuid(mycred);

	/* If we're running as root, the check passes */
	if (kauth_cred_issuser(mycred)) {
		return TRUE;
	}

	/* We're allowed to get our own task port */
	if (target == current_proc()) {
		return TRUE;
	}

	/*
	 * Under DENY, only root can get another proc's task port,
	 * so no more checks are needed.
	 */
	if (tfp_policy == KERN_TFP_POLICY_DENY) {
		return FALSE;
	}

	targetcred = kauth_cred_proc_ref(target);
	allowed = TRUE;

	/* Do target's ruid, euid, and saved uid match my euid? */
	if ((kauth_cred_getuid(targetcred) != myuid) ||
	    (kauth_cred_getruid(targetcred) != myuid) ||
	    (kauth_cred_getsvuid(targetcred) != myuid)) {
		allowed = FALSE;
		goto out;
	}

	/* Are target's groups a subset of my groups? */
	if (kauth_cred_gid_subset(targetcred, mycred, &allowed) ||
	    allowed == 0) {
		allowed = FALSE;
		goto out;
	}

	/* Has target switched credentials? */
	if (target->p_flag & P_SUGID) {
		allowed = FALSE;
		goto out;
	}

out:
	kauth_cred_unref(&targetcred);
	return allowed;
}

/*
 *	__KERNEL_WAITING_ON_TASKGATED_CHECK_ACCESS_UPCALL__
 *
 *	Description:	Waits for the user space daemon to respond to the request
 *			we made. Function declared non inline to be visible in
 *			stackshots and spindumps as well as debugging.
 */
__attribute__((noinline)) int
__KERNEL_WAITING_ON_TASKGATED_CHECK_ACCESS_UPCALL__(
	mach_port_t task_access_port, int32_t calling_pid, uint32_t calling_gid, int32_t target_pid)
{
	return check_task_access(task_access_port, calling_pid, calling_gid, target_pid);
}

/*
 *	Routine:	task_for_pid
 *	Purpose:
 *		Get the task port for another "process", named by its
 *		process ID on the same host as "target_task".
 *
 *		Only permitted to privileged processes, or processes
 *		with the same user ID.
 *
 *		Note: if pid == 0, an error is return no matter who is calling.
 *
 * XXX This should be a BSD system call, not a Mach trap!!!
 */
kern_return_t
task_for_pid(
	struct task_for_pid_args *args)
{
	mach_port_name_t        target_tport = args->target_tport;
	int                     pid = args->pid;
	user_addr_t             task_addr = args->t;
	proc_t                  p = PROC_NULL;
	task_t                  t1 = TASK_NULL;
	task_t                  task = TASK_NULL;
	mach_port_name_t        tret = MACH_PORT_NULL;
	ipc_port_t              tfpport = MACH_PORT_NULL;
	void * sright;
	int error = 0;

	AUDIT_MACH_SYSCALL_ENTER(AUE_TASKFORPID);
	AUDIT_ARG(pid, pid);
	AUDIT_ARG(mach_port1, target_tport);

	/* Always check if pid == 0 */
	if (pid == 0) {
		(void) copyout((char *)&t1, task_addr, sizeof(mach_port_name_t));
		AUDIT_MACH_SYSCALL_EXIT(KERN_FAILURE);
		return KERN_FAILURE;
	}

	t1 = port_name_to_task(target_tport);
	if (t1 == TASK_NULL) {
		(void) copyout((char *)&t1, task_addr, sizeof(mach_port_name_t));
		AUDIT_MACH_SYSCALL_EXIT(KERN_FAILURE);
		return KERN_FAILURE;
	}


	p = proc_find(pid);
	if (p == PROC_NULL) {
		error = KERN_FAILURE;
		goto tfpout;
	}

#if CONFIG_AUDIT
	AUDIT_ARG(process, p);
#endif

	if (!(task_for_pid_posix_check(p))) {
		error = KERN_FAILURE;
		goto tfpout;
	}

	if (p->task == TASK_NULL) {
		error = KERN_SUCCESS;
		goto tfpout;
	}

#if CONFIG_MACF
	error = mac_proc_check_get_task(kauth_cred_get(), p);
	if (error) {
		error = KERN_FAILURE;
		goto tfpout;
	}
#endif

	/* Grab a task reference since the proc ref might be dropped if an upcall to task access server is made */
	task = p->task;
	task_reference(task);

	/* If we aren't root and target's task access port is set... */
	if (!kauth_cred_issuser(kauth_cred_get()) &&
	    p != current_proc() &&
	    (task_get_task_access_port(task, &tfpport) == 0) &&
	    (tfpport != IPC_PORT_NULL)) {
		if (tfpport == IPC_PORT_DEAD) {
			error = KERN_PROTECTION_FAILURE;
			goto tfpout;
		}

		/*
		 * Drop the proc_find proc ref before making an upcall
		 * to taskgated, since holding a proc_find
		 * ref while making an upcall can cause deadlock.
		 */
		proc_rele(p);
		p = PROC_NULL;

		/* Call up to the task access server */
		error = __KERNEL_WAITING_ON_TASKGATED_CHECK_ACCESS_UPCALL__(tfpport, proc_selfpid(), kauth_getgid(), pid);

		if (error != MACH_MSG_SUCCESS) {
			if (error == MACH_RCV_INTERRUPTED) {
				error = KERN_ABORTED;
			} else {
				error = KERN_FAILURE;
			}
			goto tfpout;
		}
	}

	/* Grant task port access */
	extmod_statistics_incr_task_for_pid(task);
	sright = (void *) convert_task_to_port(task);

	/* Check if the task has been corpsified */
	if (is_corpsetask(task)) {
		/* task ref consumed by convert_task_to_port */
		task = TASK_NULL;
		ipc_port_release_send(sright);
		error = KERN_FAILURE;
		goto tfpout;
	}

	/* task ref consumed by convert_task_to_port */
	task = TASK_NULL;
	tret = ipc_port_copyout_send(
		sright,
		get_task_ipcspace(current_task()));

	error = KERN_SUCCESS;

tfpout:
	task_deallocate(t1);
	AUDIT_ARG(mach_port2, tret);
	(void) copyout((char *) &tret, task_addr, sizeof(mach_port_name_t));

	if (tfpport != IPC_PORT_NULL) {
		ipc_port_release_send(tfpport);
	}
	if (task != TASK_NULL) {
		task_deallocate(task);
	}
	if (p != PROC_NULL) {
		proc_rele(p);
	}
	AUDIT_MACH_SYSCALL_EXIT(error);
	return error;
}

/*
 *	Routine:	task_name_for_pid
 *	Purpose:
 *		Get the task name port for another "process", named by its
 *		process ID on the same host as "target_task".
 *
 *		Only permitted to privileged processes, or processes
 *		with the same user ID.
 *
 * XXX This should be a BSD system call, not a Mach trap!!!
 */

kern_return_t
task_name_for_pid(
	struct task_name_for_pid_args *args)
{
	mach_port_name_t        target_tport = args->target_tport;
	int                     pid = args->pid;
	user_addr_t             task_addr = args->t;
	proc_t          p = PROC_NULL;
	task_t          t1;
	mach_port_name_t        tret;
	void * sright;
	int error = 0, refheld = 0;
	kauth_cred_t target_cred;

	AUDIT_MACH_SYSCALL_ENTER(AUE_TASKNAMEFORPID);
	AUDIT_ARG(pid, pid);
	AUDIT_ARG(mach_port1, target_tport);

	t1 = port_name_to_task(target_tport);
	if (t1 == TASK_NULL) {
		(void) copyout((char *)&t1, task_addr, sizeof(mach_port_name_t));
		AUDIT_MACH_SYSCALL_EXIT(KERN_FAILURE);
		return KERN_FAILURE;
	}

	p = proc_find(pid);
	if (p != PROC_NULL) {
		AUDIT_ARG(process, p);
		target_cred = kauth_cred_proc_ref(p);
		refheld = 1;

		if ((p->p_stat != SZOMB)
		    && ((current_proc() == p)
		    || kauth_cred_issuser(kauth_cred_get())
		    || ((kauth_cred_getuid(target_cred) == kauth_cred_getuid(kauth_cred_get())) &&
		    ((kauth_cred_getruid(target_cred) == kauth_getruid()))))) {
			if (p->task != TASK_NULL) {
				task_reference(p->task);
#if CONFIG_MACF
				error = mac_proc_check_get_task_name(kauth_cred_get(), p);
				if (error) {
					task_deallocate(p->task);
					goto noperm;
				}
#endif
				sright = (void *)convert_task_name_to_port(p->task);
				tret = ipc_port_copyout_send(sright,
				    get_task_ipcspace(current_task()));
			} else {
				tret  = MACH_PORT_NULL;
			}

			AUDIT_ARG(mach_port2, tret);
			(void) copyout((char *)&tret, task_addr, sizeof(mach_port_name_t));
			task_deallocate(t1);
			error = KERN_SUCCESS;
			goto tnfpout;
		}
	}

#if CONFIG_MACF
noperm:
#endif
	task_deallocate(t1);
	tret = MACH_PORT_NULL;
	(void) copyout((char *) &tret, task_addr, sizeof(mach_port_name_t));
	error = KERN_FAILURE;
tnfpout:
	if (refheld != 0) {
		kauth_cred_unref(&target_cred);
	}
	if (p != PROC_NULL) {
		proc_rele(p);
	}
	AUDIT_MACH_SYSCALL_EXIT(error);
	return error;
}

kern_return_t
pid_suspend(struct proc *p __unused, struct pid_suspend_args *args, int *ret)
{
	task_t  target = NULL;
	proc_t  targetproc = PROC_NULL;
	int     pid = args->pid;
	int     error = 0;
	mach_port_t tfpport = MACH_PORT_NULL;

#if CONFIG_MACF
	error = mac_proc_check_suspend_resume(p, MAC_PROC_CHECK_SUSPEND);
	if (error) {
		error = EPERM;
		goto out;
	}
#endif

	if (pid == 0) {
		error = EPERM;
		goto out;
	}

	targetproc = proc_find(pid);
	if (targetproc == PROC_NULL) {
		error = ESRCH;
		goto out;
	}

	if (!task_for_pid_posix_check(targetproc) &&
	    !IOTaskHasEntitlement(current_task(), PROCESS_RESUME_SUSPEND_ENTITLEMENT)) {
		error = EPERM;
		goto out;
	}

	target = targetproc->task;
#ifndef CONFIG_EMBEDDED
	if (target != TASK_NULL) {
		/* If we aren't root and target's task access port is set... */
		if (!kauth_cred_issuser(kauth_cred_get()) &&
		    targetproc != current_proc() &&
		    (task_get_task_access_port(target, &tfpport) == 0) &&
		    (tfpport != IPC_PORT_NULL)) {
			if (tfpport == IPC_PORT_DEAD) {
				error = EACCES;
				goto out;
			}

			/* Call up to the task access server */
			error = __KERNEL_WAITING_ON_TASKGATED_CHECK_ACCESS_UPCALL__(tfpport, proc_selfpid(), kauth_getgid(), pid);

			if (error != MACH_MSG_SUCCESS) {
				if (error == MACH_RCV_INTERRUPTED) {
					error = EINTR;
				} else {
					error = EPERM;
				}
				goto out;
			}
		}
	}
#endif

	task_reference(target);
	error = task_pidsuspend(target);
	if (error) {
		if (error == KERN_INVALID_ARGUMENT) {
			error = EINVAL;
		} else {
			error = EPERM;
		}
	}
#if CONFIG_MEMORYSTATUS
	else {
		memorystatus_on_suspend(targetproc);
	}
#endif

	task_deallocate(target);

out:
	if (tfpport != IPC_PORT_NULL) {
		ipc_port_release_send(tfpport);
	}

	if (targetproc != PROC_NULL) {
		proc_rele(targetproc);
	}
	*ret = error;
	return error;
}

kern_return_t
debug_control_port_for_pid(struct debug_control_port_for_pid_args *args)
{
	mach_port_name_t        target_tport = args->target_tport;
	int                     pid = args->pid;
	user_addr_t             task_addr = args->t;
	proc_t                  p = PROC_NULL;
	task_t                  t1 = TASK_NULL;
	task_t                  task = TASK_NULL;
	mach_port_name_t        tret = MACH_PORT_NULL;
	ipc_port_t              tfpport = MACH_PORT_NULL;
	ipc_port_t              sright = NULL;
	int                     error = 0;


	AUDIT_MACH_SYSCALL_ENTER(AUE_DBGPORTFORPID);
	AUDIT_ARG(pid, pid);
	AUDIT_ARG(mach_port1, target_tport);

	/* Always check if pid == 0 */
	if (pid == 0) {
		(void) copyout((char *)&t1, task_addr, sizeof(mach_port_name_t));
		AUDIT_MACH_SYSCALL_EXIT(KERN_FAILURE);
		return KERN_FAILURE;
	}

	t1 = port_name_to_task(target_tport);
	if (t1 == TASK_NULL) {
		(void) copyout((char *)&t1, task_addr, sizeof(mach_port_name_t));
		AUDIT_MACH_SYSCALL_EXIT(KERN_FAILURE);
		return KERN_FAILURE;
	}


	p = proc_find(pid);
	if (p == PROC_NULL) {
		error = KERN_FAILURE;
		goto tfpout;
	}

#if CONFIG_AUDIT
	AUDIT_ARG(process, p);
#endif

	if (!(task_for_pid_posix_check(p))) {
		error = KERN_FAILURE;
		goto tfpout;
	}

	if (p->task == TASK_NULL) {
		error = KERN_SUCCESS;
		goto tfpout;
	}

	/* Grab a task reference since the proc ref might be dropped if an upcall to task access server is made */
	task = p->task;
	task_reference(task);


	if (!IOTaskHasEntitlement(current_task(), DEBUG_PORT_ENTITLEMENT)) {
#if CONFIG_MACF
		error = mac_proc_check_get_task(kauth_cred_get(), p);
		if (error) {
			error = KERN_FAILURE;
			goto tfpout;
		}
#endif

		/* If we aren't root and target's task access port is set... */
		if (!kauth_cred_issuser(kauth_cred_get()) &&
		    p != current_proc() &&
		    (task_get_task_access_port(task, &tfpport) == 0) &&
		    (tfpport != IPC_PORT_NULL)) {
			if (tfpport == IPC_PORT_DEAD) {
				error = KERN_PROTECTION_FAILURE;
				goto tfpout;
			}

			/*
			 * Drop the proc_find proc ref before making an upcall
			 * to taskgated, since holding a proc_find
			 * ref while making an upcall can cause deadlock.
			 */
			proc_rele(p);
			p = PROC_NULL;

			/* Call up to the task access server */
			error = __KERNEL_WAITING_ON_TASKGATED_CHECK_ACCESS_UPCALL__(tfpport, proc_selfpid(), kauth_getgid(), pid);

			if (error != MACH_MSG_SUCCESS) {
				if (error == MACH_RCV_INTERRUPTED) {
					error = KERN_ABORTED;
				} else {
					error = KERN_FAILURE;
				}
				goto tfpout;
			}
		}
	}

	/* Check if the task has been corpsified */
	if (is_corpsetask(task)) {
		error = KERN_FAILURE;
		goto tfpout;
	}

	error = task_get_debug_control_port(task, &sright);
	if (error != KERN_SUCCESS) {
		goto tfpout;
	}

	tret = ipc_port_copyout_send(
		sright,
		get_task_ipcspace(current_task()));

	error = KERN_SUCCESS;

tfpout:
	task_deallocate(t1);
	AUDIT_ARG(mach_port2, tret);
	(void) copyout((char *) &tret, task_addr, sizeof(mach_port_name_t));

	if (tfpport != IPC_PORT_NULL) {
		ipc_port_release_send(tfpport);
	}
	if (task != TASK_NULL) {
		task_deallocate(task);
	}
	if (p != PROC_NULL) {
		proc_rele(p);
	}
	AUDIT_MACH_SYSCALL_EXIT(error);
	return error;
}

kern_return_t
pid_resume(struct proc *p __unused, struct pid_resume_args *args, int *ret)
{
	task_t  target = NULL;
	proc_t  targetproc = PROC_NULL;
	int     pid = args->pid;
	int     error = 0;
	mach_port_t tfpport = MACH_PORT_NULL;

#if CONFIG_MACF
	error = mac_proc_check_suspend_resume(p, MAC_PROC_CHECK_RESUME);
	if (error) {
		error = EPERM;
		goto out;
	}
#endif

	if (pid == 0) {
		error = EPERM;
		goto out;
	}

	targetproc = proc_find(pid);
	if (targetproc == PROC_NULL) {
		error = ESRCH;
		goto out;
	}

	if (!task_for_pid_posix_check(targetproc) &&
	    !IOTaskHasEntitlement(current_task(), PROCESS_RESUME_SUSPEND_ENTITLEMENT)) {
		error = EPERM;
		goto out;
	}

	target = targetproc->task;
#ifndef CONFIG_EMBEDDED
	if (target != TASK_NULL) {
		/* If we aren't root and target's task access port is set... */
		if (!kauth_cred_issuser(kauth_cred_get()) &&
		    targetproc != current_proc() &&
		    (task_get_task_access_port(target, &tfpport) == 0) &&
		    (tfpport != IPC_PORT_NULL)) {
			if (tfpport == IPC_PORT_DEAD) {
				error = EACCES;
				goto out;
			}

			/* Call up to the task access server */
			error = __KERNEL_WAITING_ON_TASKGATED_CHECK_ACCESS_UPCALL__(tfpport, proc_selfpid(), kauth_getgid(), pid);

			if (error != MACH_MSG_SUCCESS) {
				if (error == MACH_RCV_INTERRUPTED) {
					error = EINTR;
				} else {
					error = EPERM;
				}
				goto out;
			}
		}
	}
#endif

#if CONFIG_EMBEDDED
#if SOCKETS
	resume_proc_sockets(targetproc);
#endif /* SOCKETS */
#endif /* CONFIG_EMBEDDED */

	task_reference(target);

#if CONFIG_MEMORYSTATUS
	memorystatus_on_resume(targetproc);
#endif

	error = task_pidresume(target);
	if (error) {
		if (error == KERN_INVALID_ARGUMENT) {
			error = EINVAL;
		} else {
			if (error == KERN_MEMORY_ERROR) {
				psignal(targetproc, SIGKILL);
				error = EIO;
			} else {
				error = EPERM;
			}
		}
	}

	task_deallocate(target);

out:
	if (tfpport != IPC_PORT_NULL) {
		ipc_port_release_send(tfpport);
	}

	if (targetproc != PROC_NULL) {
		proc_rele(targetproc);
	}

	*ret = error;
	return error;
}

#if CONFIG_EMBEDDED
/*
 * Freeze the specified process (provided in args->pid), or find and freeze a PID.
 * When a process is specified, this call is blocking, otherwise we wake up the
 * freezer thread and do not block on a process being frozen.
 */
kern_return_t
pid_hibernate(struct proc *p __unused, struct pid_hibernate_args *args, int *ret)
{
	int     error = 0;
	proc_t  targetproc = PROC_NULL;
	int     pid = args->pid;

#ifndef CONFIG_FREEZE
	#pragma unused(pid)
#else

#if CONFIG_MACF
	error = mac_proc_check_suspend_resume(p, MAC_PROC_CHECK_HIBERNATE);
	if (error) {
		error = EPERM;
		goto out;
	}
#endif

	/*
	 * If a pid has been provided, we obtain the process handle and call task_for_pid_posix_check().
	 */

	if (pid >= 0) {
		targetproc = proc_find(pid);

		if (targetproc == PROC_NULL) {
			error = ESRCH;
			goto out;
		}

		if (!task_for_pid_posix_check(targetproc)) {
			error = EPERM;
			goto out;
		}
	}

	if (pid == -2) {
		vm_pageout_anonymous_pages();
	} else if (pid == -1) {
		memorystatus_on_inactivity(targetproc);
	} else {
		error = memorystatus_freeze_process_sync(targetproc);
	}

out:

#endif /* CONFIG_FREEZE */

	if (targetproc != PROC_NULL) {
		proc_rele(targetproc);
	}
	*ret = error;
	return error;
}
#endif /* CONFIG_EMBEDDED */

#if SOCKETS
int
networking_memstatus_callout(proc_t p, uint32_t status)
{
	struct filedesc *fdp;
	int i;

	/*
	 * proc list lock NOT held
	 * proc lock NOT held
	 * a reference on the proc has been held / shall be dropped by the caller.
	 */
	LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_NOTOWNED);
	LCK_MTX_ASSERT(&p->p_mlock, LCK_MTX_ASSERT_NOTOWNED);

	proc_fdlock(p);
	fdp = p->p_fd;
	for (i = 0; i < fdp->fd_nfiles; i++) {
		struct fileproc *fp;

		fp = fdp->fd_ofiles[i];
		if (fp == NULL || (fdp->fd_ofileflags[i] & UF_RESERVED) != 0) {
			continue;
		}
		switch (FILEGLOB_DTYPE(fp->f_fglob)) {
#if NECP
		case DTYPE_NETPOLICY:
			necp_fd_memstatus(p, status,
			    (struct necp_fd_data *)fp->f_fglob->fg_data);
			break;
#endif /* NECP */
		default:
			break;
		}
	}
	proc_fdunlock(p);

	return 1;
}


static int
networking_defunct_callout(proc_t p, void *arg)
{
	struct pid_shutdown_sockets_args *args = arg;
	int pid = args->pid;
	int level = args->level;
	struct filedesc *fdp;
	int i;

	proc_fdlock(p);
	fdp = p->p_fd;
	for (i = 0; i < fdp->fd_nfiles; i++) {
		struct fileproc *fp = fdp->fd_ofiles[i];
		struct fileglob *fg;

		if (fp == NULL || (fdp->fd_ofileflags[i] & UF_RESERVED) != 0) {
			continue;
		}

		fg = fp->f_fglob;
		switch (FILEGLOB_DTYPE(fg)) {
		case DTYPE_SOCKET: {
			struct socket *so = (struct socket *)fg->fg_data;
			if (p->p_pid == pid || so->last_pid == pid ||
			    ((so->so_flags & SOF_DELEGATED) && so->e_pid == pid)) {
				/* Call networking stack with socket and level */
				(void) socket_defunct(p, so, level);
			}
			break;
		}
#if NECP
		case DTYPE_NETPOLICY:
			/* first pass: defunct necp and get stats for ntstat */
			if (p->p_pid == pid) {
				necp_fd_defunct(p,
				    (struct necp_fd_data *)fg->fg_data);
			}
			break;
#endif /* NECP */
		default:
			break;
		}
	}

	proc_fdunlock(p);

	return PROC_RETURNED;
}

int
pid_shutdown_sockets(struct proc *p __unused, struct pid_shutdown_sockets_args *args, int *ret)
{
	int                             error = 0;
	proc_t                          targetproc = PROC_NULL;
	int                             pid = args->pid;
	int                             level = args->level;

	if (level != SHUTDOWN_SOCKET_LEVEL_DISCONNECT_SVC &&
	    level != SHUTDOWN_SOCKET_LEVEL_DISCONNECT_ALL) {
		error = EINVAL;
		goto out;
	}

#if CONFIG_MACF
	error = mac_proc_check_suspend_resume(p, MAC_PROC_CHECK_SHUTDOWN_SOCKETS);
	if (error) {
		error = EPERM;
		goto out;
	}
#endif

	targetproc = proc_find(pid);
	if (targetproc == PROC_NULL) {
		error = ESRCH;
		goto out;
	}

	if (!task_for_pid_posix_check(targetproc) &&
	    !IOTaskHasEntitlement(current_task(), PROCESS_RESUME_SUSPEND_ENTITLEMENT)) {
		error = EPERM;
		goto out;
	}

	proc_iterate(PROC_ALLPROCLIST | PROC_NOWAITTRANS,
	    networking_defunct_callout, args, NULL, NULL);

out:
	if (targetproc != PROC_NULL) {
		proc_rele(targetproc);
	}
	*ret = error;
	return error;
}

#endif /* SOCKETS */

static int
sysctl_settfp_policy(__unused struct sysctl_oid *oidp, void *arg1,
    __unused int arg2, struct sysctl_req *req)
{
	int error = 0;
	int new_value;

	error = SYSCTL_OUT(req, arg1, sizeof(int));
	if (error || req->newptr == USER_ADDR_NULL) {
		return error;
	}

	if (!kauth_cred_issuser(kauth_cred_get())) {
		return EPERM;
	}

	if ((error = SYSCTL_IN(req, &new_value, sizeof(int)))) {
		goto out;
	}
	if ((new_value == KERN_TFP_POLICY_DENY)
	    || (new_value == KERN_TFP_POLICY_DEFAULT)) {
		tfp_policy = new_value;
	} else {
		error = EINVAL;
	}
out:
	return error;
}

#if defined(SECURE_KERNEL)
static int kern_secure_kernel = 1;
#else
static int kern_secure_kernel = 0;
#endif

SYSCTL_INT(_kern, OID_AUTO, secure_kernel, CTLFLAG_RD | CTLFLAG_LOCKED, &kern_secure_kernel, 0, "");

SYSCTL_NODE(_kern, KERN_TFP, tfp, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "tfp");
SYSCTL_PROC(_kern_tfp, KERN_TFP_POLICY, policy, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
    &tfp_policy, sizeof(uint32_t), &sysctl_settfp_policy, "I", "policy");

SYSCTL_INT(_vm, OID_AUTO, shared_region_trace_level, CTLFLAG_RW | CTLFLAG_LOCKED,
    &shared_region_trace_level, 0, "");
SYSCTL_INT(_vm, OID_AUTO, shared_region_version, CTLFLAG_RD | CTLFLAG_LOCKED,
    &shared_region_version, 0, "");
SYSCTL_INT(_vm, OID_AUTO, shared_region_persistence, CTLFLAG_RW | CTLFLAG_LOCKED,
    &shared_region_persistence, 0, "");

/*
 * shared_region_check_np:
 *
 * This system call is intended for dyld.
 *
 * dyld calls this when any process starts to see if the process's shared
 * region is already set up and ready to use.
 * This call returns the base address of the first mapping in the
 * process's shared region's first mapping.
 * dyld will then check what's mapped at that address.
 *
 * If the shared region is empty, dyld will then attempt to map the shared
 * cache file in the shared region via the shared_region_map_np() system call.
 *
 * If something's already mapped in the shared region, dyld will check if it
 * matches the shared cache it would like to use for that process.
 * If it matches, evrything's ready and the process can proceed and use the
 * shared region.
 * If it doesn't match, dyld will unmap the shared region and map the shared
 * cache into the process's address space via mmap().
 *
 * ERROR VALUES
 * EINVAL	no shared region
 * ENOMEM	shared region is empty
 * EFAULT	bad address for "start_address"
 */
int
shared_region_check_np(
	__unused struct proc                    *p,
	struct shared_region_check_np_args      *uap,
	__unused int                            *retvalp)
{
	vm_shared_region_t      shared_region;
	mach_vm_offset_t        start_address = 0;
	int                     error;
	kern_return_t           kr;

	SHARED_REGION_TRACE_DEBUG(
		("shared_region: %p [%d(%s)] -> check_np(0x%llx)\n",
		(void *)VM_KERNEL_ADDRPERM(current_thread()),
		p->p_pid, p->p_comm,
		(uint64_t)uap->start_address));

	/* retrieve the current tasks's shared region */
	shared_region = vm_shared_region_get(current_task());
	if (shared_region != NULL) {
		/* retrieve address of its first mapping... */
		kr = vm_shared_region_start_address(shared_region,
		    &start_address);
		if (kr != KERN_SUCCESS) {
			error = ENOMEM;
		} else {
			/* ... and give it to the caller */
			error = copyout(&start_address,
			    (user_addr_t) uap->start_address,
			    sizeof(start_address));
			if (error) {
				SHARED_REGION_TRACE_ERROR(
					("shared_region: %p [%d(%s)] "
					"check_np(0x%llx) "
					"copyout(0x%llx) error %d\n",
					(void *)VM_KERNEL_ADDRPERM(current_thread()),
					p->p_pid, p->p_comm,
					(uint64_t)uap->start_address, (uint64_t)start_address,
					error));
			}
		}
		vm_shared_region_deallocate(shared_region);
	} else {
		/* no shared region ! */
		error = EINVAL;
	}

	SHARED_REGION_TRACE_DEBUG(
		("shared_region: %p [%d(%s)] check_np(0x%llx) <- 0x%llx %d\n",
		(void *)VM_KERNEL_ADDRPERM(current_thread()),
		p->p_pid, p->p_comm,
		(uint64_t)uap->start_address, (uint64_t)start_address, error));

	return error;
}


int
shared_region_copyin_mappings(
	struct proc                     *p,
	user_addr_t                     user_mappings,
	unsigned int                    mappings_count,
	struct shared_file_mapping_np   *mappings)
{
	int             error = 0;
	vm_size_t       mappings_size = 0;

	/* get the list of mappings the caller wants us to establish */
	mappings_size = (vm_size_t) (mappings_count * sizeof(mappings[0]));
	error = copyin(user_mappings,
	    mappings,
	    mappings_size);
	if (error) {
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map(): "
			"copyin(0x%llx, %d) failed (error=%d)\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm,
			(uint64_t)user_mappings, mappings_count, error));
	}
	return error;
}
/*
 * shared_region_map_np()
 *
 * This system call is intended for dyld.
 *
 * dyld uses this to map a shared cache file into a shared region.
 * This is usually done only the first time a shared cache is needed.
 * Subsequent processes will just use the populated shared region without
 * requiring any further setup.
 */
int
_shared_region_map_and_slide(
	struct proc                             *p,
	int                                     fd,
	uint32_t                                mappings_count,
	struct shared_file_mapping_np           *mappings,
	uint32_t                                slide,
	user_addr_t                             slide_start,
	user_addr_t                             slide_size)
{
	int                             error;
	kern_return_t                   kr;
	struct fileproc                 *fp;
	struct vnode                    *vp, *root_vp, *scdir_vp;
	struct vnode_attr               va;
	off_t                           fs;
	memory_object_size_t            file_size;
#if CONFIG_MACF
	vm_prot_t                       maxprot = VM_PROT_ALL;
#endif
	memory_object_control_t         file_control;
	struct vm_shared_region         *shared_region;
	uint32_t                        i;

	SHARED_REGION_TRACE_DEBUG(
		("shared_region: %p [%d(%s)] -> map\n",
		(void *)VM_KERNEL_ADDRPERM(current_thread()),
		p->p_pid, p->p_comm));

	shared_region = NULL;
	fp = NULL;
	vp = NULL;
	scdir_vp = NULL;

	/* get file structure from file descriptor */
	error = fp_lookup(p, fd, &fp, 0);
	if (error) {
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map: "
			"fd=%d lookup failed (error=%d)\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm, fd, error));
		goto done;
	}

	/* make sure we're attempting to map a vnode */
	if (FILEGLOB_DTYPE(fp->f_fglob) != DTYPE_VNODE) {
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map: "
			"fd=%d not a vnode (type=%d)\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm,
			fd, FILEGLOB_DTYPE(fp->f_fglob)));
		error = EINVAL;
		goto done;
	}

	/* we need at least read permission on the file */
	if (!(fp->f_fglob->fg_flag & FREAD)) {
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map: "
			"fd=%d not readable\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm, fd));
		error = EPERM;
		goto done;
	}

	/* get vnode from file structure */
	error = vnode_getwithref((vnode_t) fp->f_fglob->fg_data);
	if (error) {
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map: "
			"fd=%d getwithref failed (error=%d)\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm, fd, error));
		goto done;
	}
	vp = (struct vnode *) fp->f_fglob->fg_data;

	/* make sure the vnode is a regular file */
	if (vp->v_type != VREG) {
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map(%p:'%s'): "
			"not a file (type=%d)\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm,
			(void *)VM_KERNEL_ADDRPERM(vp),
			vp->v_name, vp->v_type));
		error = EINVAL;
		goto done;
	}

#if CONFIG_MACF
	/* pass in 0 for the offset argument because AMFI does not need the offset
	 *       of the shared cache */
	error = mac_file_check_mmap(vfs_context_ucred(vfs_context_current()),
	    fp->f_fglob, VM_PROT_ALL, MAP_FILE, 0, &maxprot);
	if (error) {
		goto done;
	}
#endif /* MAC */

	/* The calling process cannot be chroot-ed. */
	root_vp = p->p_fd->fd_rdir;
	if (root_vp == NULL) {
		root_vp = rootvnode;
	} else {
		SHARED_REGION_TRACE_ERROR(
			("calling process [%d(%s)] is chroot-ed, permission denied\n",
			p->p_pid, p->p_comm));
		error = EPERM;
		goto done;
	}

	/* The shared cache file must be owned by root */
	VATTR_INIT(&va);
	VATTR_WANTED(&va, va_uid);
	VATTR_WANTED(&va, va_flags);
	error = vnode_getattr(vp, &va, vfs_context_current());
	if (error) {
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map(%p:'%s'): "
			"vnode_getattr(%p) failed (error=%d)\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm,
			(void *)VM_KERNEL_ADDRPERM(vp), vp->v_name,
			(void *)VM_KERNEL_ADDRPERM(vp), error));
		goto done;
	}
	if (va.va_uid != 0) {
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map(%p:'%s'): "
			"owned by uid=%d instead of 0\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm,
			(void *)VM_KERNEL_ADDRPERM(vp),
			vp->v_name, va.va_uid));
		error = EPERM;
		goto done;
	}

#if CONFIG_CSR
	if (csr_check(CSR_ALLOW_UNRESTRICTED_FS) != 0 &&
	    !(va.va_flags & SF_RESTRICTED)) {
		/*
		 * CSR is not configured in CSR_ALLOW_UNRESTRICTED_FS mode, and
		 * the shared cache file is NOT SIP-protected, so reject the
		 * mapping request
		 */
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map(%p:'%s'), "
			"vnode is not SIP-protected. \n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm, (void *)VM_KERNEL_ADDRPERM(vp),
			vp->v_name));
		error = EPERM;
		goto done;
	}
#else
	/* Devices without SIP/ROSP need to make sure that the shared cache is on the root volume. */
	if (vp->v_mount != root_vp->v_mount) {
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map(%p:'%s'): "
			"not on process's root volume\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm,
			(void *)VM_KERNEL_ADDRPERM(vp), vp->v_name));
		error = EPERM;
		goto done;
	}
#endif /* CONFIG_CSR */

	if (scdir_enforce) {
		/* get vnode for scdir_path */
		error = vnode_lookup(scdir_path, 0, &scdir_vp, vfs_context_current());
		if (error) {
			SHARED_REGION_TRACE_ERROR(
				("shared_region: %p [%d(%s)] map(%p:'%s'): "
				"vnode_lookup(%s) failed (error=%d)\n",
				(void *)VM_KERNEL_ADDRPERM(current_thread()),
				p->p_pid, p->p_comm,
				(void *)VM_KERNEL_ADDRPERM(vp), vp->v_name,
				scdir_path, error));
			goto done;
		}

		/* ensure parent is scdir_vp */
		if (vnode_parent(vp) != scdir_vp) {
			SHARED_REGION_TRACE_ERROR(
				("shared_region: %p [%d(%s)] map(%p:'%s'): "
				"shared cache file not in %s\n",
				(void *)VM_KERNEL_ADDRPERM(current_thread()),
				p->p_pid, p->p_comm,
				(void *)VM_KERNEL_ADDRPERM(vp),
				vp->v_name, scdir_path));
			error = EPERM;
			goto done;
		}
	}

	/* get vnode size */
	error = vnode_size(vp, &fs, vfs_context_current());
	if (error) {
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map(%p:'%s'): "
			"vnode_size(%p) failed (error=%d)\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm,
			(void *)VM_KERNEL_ADDRPERM(vp), vp->v_name,
			(void *)VM_KERNEL_ADDRPERM(vp), error));
		goto done;
	}
	file_size = fs;

	/* get the file's memory object handle */
	file_control = ubc_getobject(vp, UBC_HOLDOBJECT);
	if (file_control == MEMORY_OBJECT_CONTROL_NULL) {
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map(%p:'%s'): "
			"no memory object\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm,
			(void *)VM_KERNEL_ADDRPERM(vp), vp->v_name));
		error = EINVAL;
		goto done;
	}

	/* check that the mappings are properly covered by code signatures */
	if (!cs_system_enforcement()) {
		/* code signing is not enforced: no need to check */
	} else {
		for (i = 0; i < mappings_count; i++) {
			if (mappings[i].sfm_init_prot & VM_PROT_ZF) {
				/* zero-filled mapping: not backed by the file */
				continue;
			}
			if (ubc_cs_is_range_codesigned(vp,
			    mappings[i].sfm_file_offset,
			    mappings[i].sfm_size)) {
				/* this mapping is fully covered by code signatures */
				continue;
			}
			SHARED_REGION_TRACE_ERROR(
				("shared_region: %p [%d(%s)] map(%p:'%s'): "
				"mapping #%d/%d [0x%llx:0x%llx:0x%llx:0x%x:0x%x] "
				"is not code-signed\n",
				(void *)VM_KERNEL_ADDRPERM(current_thread()),
				p->p_pid, p->p_comm,
				(void *)VM_KERNEL_ADDRPERM(vp), vp->v_name,
				i, mappings_count,
				mappings[i].sfm_address,
				mappings[i].sfm_size,
				mappings[i].sfm_file_offset,
				mappings[i].sfm_max_prot,
				mappings[i].sfm_init_prot));
			error = EINVAL;
			goto done;
		}
	}

	/* get the process's shared region (setup in vm_map_exec()) */
	shared_region = vm_shared_region_trim_and_get(current_task());
	if (shared_region == NULL) {
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map(%p:'%s'): "
			"no shared region\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm,
			(void *)VM_KERNEL_ADDRPERM(vp), vp->v_name));
		error = EINVAL;
		goto done;
	}

	/* map the file into that shared region's submap */
	kr = vm_shared_region_map_file(shared_region,
	    mappings_count,
	    mappings,
	    file_control,
	    file_size,
	    (void *) p->p_fd->fd_rdir,
	    slide,
	    slide_start,
	    slide_size);
	if (kr != KERN_SUCCESS) {
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map(%p:'%s'): "
			"vm_shared_region_map_file() failed kr=0x%x\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm,
			(void *)VM_KERNEL_ADDRPERM(vp), vp->v_name, kr));
		switch (kr) {
		case KERN_INVALID_ADDRESS:
			error = EFAULT;
			break;
		case KERN_PROTECTION_FAILURE:
			error = EPERM;
			break;
		case KERN_NO_SPACE:
			error = ENOMEM;
			break;
		case KERN_FAILURE:
		case KERN_INVALID_ARGUMENT:
		default:
			error = EINVAL;
			break;
		}
		goto done;
	}

	error = 0;

	vnode_lock_spin(vp);

	vp->v_flag |= VSHARED_DYLD;

	vnode_unlock(vp);

	/* update the vnode's access time */
	if (!(vnode_vfsvisflags(vp) & MNT_NOATIME)) {
		VATTR_INIT(&va);
		nanotime(&va.va_access_time);
		VATTR_SET_ACTIVE(&va, va_access_time);
		vnode_setattr(vp, &va, vfs_context_current());
	}

	if (p->p_flag & P_NOSHLIB) {
		/* signal that this process is now using split libraries */
		OSBitAndAtomic(~((uint32_t)P_NOSHLIB), &p->p_flag);
	}

done:
	if (vp != NULL) {
		/*
		 * release the vnode...
		 * ubc_map() still holds it for us in the non-error case
		 */
		(void) vnode_put(vp);
		vp = NULL;
	}
	if (fp != NULL) {
		/* release the file descriptor */
		fp_drop(p, fd, fp, 0);
		fp = NULL;
	}
	if (scdir_vp != NULL) {
		(void)vnode_put(scdir_vp);
		scdir_vp = NULL;
	}

	if (shared_region != NULL) {
		vm_shared_region_deallocate(shared_region);
	}

	SHARED_REGION_TRACE_DEBUG(
		("shared_region: %p [%d(%s)] <- map\n",
		(void *)VM_KERNEL_ADDRPERM(current_thread()),
		p->p_pid, p->p_comm));

	return error;
}

int
shared_region_map_and_slide_np(
	struct proc                             *p,
	struct shared_region_map_and_slide_np_args      *uap,
	__unused int                                    *retvalp)
{
	struct shared_file_mapping_np   *mappings;
	unsigned int                    mappings_count = uap->count;
	kern_return_t                   kr = KERN_SUCCESS;
	uint32_t                        slide = uap->slide;

#define SFM_MAX_STACK   8
	struct shared_file_mapping_np   stack_mappings[SFM_MAX_STACK];

	/* Is the process chrooted?? */
	if (p->p_fd->fd_rdir != NULL) {
		kr = EINVAL;
		goto done;
	}

	if ((kr = vm_shared_region_sliding_valid(slide)) != KERN_SUCCESS) {
		if (kr == KERN_INVALID_ARGUMENT) {
			/*
			 * This will happen if we request sliding again
			 * with the same slide value that was used earlier
			 * for the very first sliding.
			 */
			kr = KERN_SUCCESS;
		}
		goto done;
	}

	if (mappings_count == 0) {
		SHARED_REGION_TRACE_INFO(
			("shared_region: %p [%d(%s)] map(): "
			"no mappings\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm));
		kr = 0; /* no mappings: we're done ! */
		goto done;
	} else if (mappings_count <= SFM_MAX_STACK) {
		mappings = &stack_mappings[0];
	} else {
		SHARED_REGION_TRACE_ERROR(
			("shared_region: %p [%d(%s)] map(): "
			"too many mappings (%d)\n",
			(void *)VM_KERNEL_ADDRPERM(current_thread()),
			p->p_pid, p->p_comm,
			mappings_count));
		kr = KERN_FAILURE;
		goto done;
	}

	if ((kr = shared_region_copyin_mappings(p, uap->mappings, uap->count, mappings))) {
		goto done;
	}


	kr = _shared_region_map_and_slide(p, uap->fd, mappings_count, mappings,
	    slide,
	    uap->slide_start, uap->slide_size);
	if (kr != KERN_SUCCESS) {
		return kr;
	}

done:
	return kr;
}

/* sysctl overflow room */

SYSCTL_INT(_vm, OID_AUTO, pagesize, CTLFLAG_RD | CTLFLAG_LOCKED,
    (int *) &page_size, 0, "vm page size");

/* vm_page_free_target is provided as a makeshift solution for applications that want to
 *       allocate buffer space, possibly purgeable memory, but not cause inactive pages to be
 *       reclaimed. It allows the app to calculate how much memory is free outside the free target. */
extern unsigned int     vm_page_free_target;
SYSCTL_INT(_vm, OID_AUTO, vm_page_free_target, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_free_target, 0, "Pageout daemon free target");

SYSCTL_INT(_vm, OID_AUTO, memory_pressure, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_pageout_state.vm_memory_pressure, 0, "Memory pressure indicator");

static int
vm_ctl_page_free_wanted SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
	unsigned int page_free_wanted;

	page_free_wanted = mach_vm_ctl_page_free_wanted();
	return SYSCTL_OUT(req, &page_free_wanted, sizeof(page_free_wanted));
}
SYSCTL_PROC(_vm, OID_AUTO, page_free_wanted,
    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
    0, 0, vm_ctl_page_free_wanted, "I", "");

extern unsigned int     vm_page_purgeable_count;
SYSCTL_INT(_vm, OID_AUTO, page_purgeable_count, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_purgeable_count, 0, "Purgeable page count");

extern unsigned int     vm_page_purgeable_wired_count;
SYSCTL_INT(_vm, OID_AUTO, page_purgeable_wired_count, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_purgeable_wired_count, 0, "Wired purgeable page count");

extern unsigned int vm_page_kern_lpage_count;
SYSCTL_INT(_vm, OID_AUTO, kern_lpage_count, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_kern_lpage_count, 0, "kernel used large pages");

#if DEVELOPMENT || DEBUG
extern uint64_t get_pages_grabbed_count(void);

static int
pages_grabbed SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2, oidp)
	uint64_t value = get_pages_grabbed_count();
	return SYSCTL_OUT(req, &value, sizeof(value));
}

SYSCTL_PROC(_vm, OID_AUTO, pages_grabbed, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
    0, 0, &pages_grabbed, "QU", "Total pages grabbed");
SYSCTL_ULONG(_vm, OID_AUTO, pages_freed, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_pageout_vminfo.vm_page_pages_freed, "Total pages freed");

SYSCTL_INT(_vm, OID_AUTO, pageout_purged_objects, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_pageout_debug.vm_pageout_purged_objects, 0, "System purged object count");
SYSCTL_UINT(_vm, OID_AUTO, pageout_cleaned_busy, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_pageout_debug.vm_pageout_cleaned_busy, 0, "Cleaned pages busy (deactivated)");
SYSCTL_UINT(_vm, OID_AUTO, pageout_cleaned_nolock, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_pageout_debug.vm_pageout_cleaned_nolock, 0, "Cleaned pages no-lock (deactivated)");

SYSCTL_UINT(_vm, OID_AUTO, pageout_cleaned_volatile_reactivated, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_pageout_debug.vm_pageout_cleaned_volatile_reactivated, 0, "Cleaned pages volatile reactivated");
SYSCTL_UINT(_vm, OID_AUTO, pageout_cleaned_fault_reactivated, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_pageout_debug.vm_pageout_cleaned_fault_reactivated, 0, "Cleaned pages fault reactivated");
SYSCTL_UINT(_vm, OID_AUTO, pageout_cleaned_reactivated, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_pageout_debug.vm_pageout_cleaned_reactivated, 0, "Cleaned pages reactivated");         /* sum of all reactivated AND busy and nolock (even though those actually get reDEactivated */
SYSCTL_ULONG(_vm, OID_AUTO, pageout_cleaned, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_pageout_vminfo.vm_pageout_freed_cleaned, "Cleaned pages freed");
SYSCTL_UINT(_vm, OID_AUTO, pageout_cleaned_reference_reactivated, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_pageout_debug.vm_pageout_cleaned_reference_reactivated, 0, "Cleaned pages reference reactivated");
SYSCTL_UINT(_vm, OID_AUTO, pageout_enqueued_cleaned, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_pageout_debug.vm_pageout_enqueued_cleaned, 0, "");         /* sum of next two */
#endif

extern int madvise_free_debug;
SYSCTL_INT(_vm, OID_AUTO, madvise_free_debug, CTLFLAG_RW | CTLFLAG_LOCKED,
    &madvise_free_debug, 0, "zero-fill on madvise(MADV_FREE*)");

SYSCTL_INT(_vm, OID_AUTO, page_reusable_count, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.reusable_count, 0, "Reusable page count");
SYSCTL_QUAD(_vm, OID_AUTO, reusable_success, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.reusable_pages_success, "");
SYSCTL_QUAD(_vm, OID_AUTO, reusable_failure, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.reusable_pages_failure, "");
SYSCTL_QUAD(_vm, OID_AUTO, reusable_pages_shared, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.reusable_pages_shared, "");
SYSCTL_QUAD(_vm, OID_AUTO, all_reusable_calls, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.all_reusable_calls, "");
SYSCTL_QUAD(_vm, OID_AUTO, partial_reusable_calls, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.partial_reusable_calls, "");
SYSCTL_QUAD(_vm, OID_AUTO, reuse_success, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.reuse_pages_success, "");
SYSCTL_QUAD(_vm, OID_AUTO, reuse_failure, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.reuse_pages_failure, "");
SYSCTL_QUAD(_vm, OID_AUTO, all_reuse_calls, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.all_reuse_calls, "");
SYSCTL_QUAD(_vm, OID_AUTO, partial_reuse_calls, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.partial_reuse_calls, "");
SYSCTL_QUAD(_vm, OID_AUTO, can_reuse_success, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.can_reuse_success, "");
SYSCTL_QUAD(_vm, OID_AUTO, can_reuse_failure, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.can_reuse_failure, "");
SYSCTL_QUAD(_vm, OID_AUTO, reusable_reclaimed, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.reusable_reclaimed, "");
SYSCTL_QUAD(_vm, OID_AUTO, reusable_nonwritable, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.reusable_nonwritable, "");
SYSCTL_QUAD(_vm, OID_AUTO, reusable_shared, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.reusable_shared, "");
SYSCTL_QUAD(_vm, OID_AUTO, free_shared, CTLFLAG_RD | CTLFLAG_LOCKED,
    &vm_page_stats_reusable.free_shared, "");


extern unsigned int vm_page_free_count, vm_page_speculative_count;
SYSCTL_UINT(_vm, OID_AUTO, page_free_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_free_count, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, page_speculative_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_speculative_count, 0, "");

extern unsigned int vm_page_cleaned_count;
SYSCTL_UINT(_vm, OID_AUTO, page_cleaned_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_cleaned_count, 0, "Cleaned queue size");

extern unsigned int vm_page_pageable_internal_count, vm_page_pageable_external_count;
SYSCTL_UINT(_vm, OID_AUTO, page_pageable_internal_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_pageable_internal_count, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, page_pageable_external_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_pageable_external_count, 0, "");

/* pageout counts */
SYSCTL_UINT(_vm, OID_AUTO, pageout_inactive_clean, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_state.vm_pageout_inactive_clean, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, pageout_inactive_used, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_state.vm_pageout_inactive_used, 0, "");

SYSCTL_ULONG(_vm, OID_AUTO, pageout_inactive_dirty_internal, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_vminfo.vm_pageout_inactive_dirty_internal, "");
SYSCTL_ULONG(_vm, OID_AUTO, pageout_inactive_dirty_external, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_vminfo.vm_pageout_inactive_dirty_external, "");
SYSCTL_ULONG(_vm, OID_AUTO, pageout_speculative_clean, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_vminfo.vm_pageout_freed_speculative, "");
SYSCTL_ULONG(_vm, OID_AUTO, pageout_freed_external, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_vminfo.vm_pageout_freed_external, "");
SYSCTL_ULONG(_vm, OID_AUTO, pageout_freed_speculative, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_vminfo.vm_pageout_freed_speculative, "");
SYSCTL_ULONG(_vm, OID_AUTO, pageout_freed_cleaned, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_vminfo.vm_pageout_freed_cleaned, "");


/* counts of pages prefaulted when entering a memory object */
extern int64_t vm_prefault_nb_pages, vm_prefault_nb_bailout;
SYSCTL_QUAD(_vm, OID_AUTO, prefault_nb_pages, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_prefault_nb_pages, "");
SYSCTL_QUAD(_vm, OID_AUTO, prefault_nb_bailout, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_prefault_nb_bailout, "");

#if defined (__x86_64__)
extern unsigned int vm_clump_promote_threshold;
SYSCTL_UINT(_vm, OID_AUTO, vm_clump_promote_threshold, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_clump_promote_threshold, 0, "clump size threshold for promotes");
#if DEVELOPMENT || DEBUG
extern unsigned long vm_clump_stats[];
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats1, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[1], "free page allocations from clump of 1 page");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats2, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[2], "free page allocations from clump of 2 pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats3, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[3], "free page allocations from clump of 3 pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats4, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[4], "free page allocations from clump of 4 pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats5, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[5], "free page allocations from clump of 5 pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats6, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[6], "free page allocations from clump of 6 pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats7, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[7], "free page allocations from clump of 7 pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats8, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[8], "free page allocations from clump of 8 pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats9, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[9], "free page allocations from clump of 9 pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats10, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[10], "free page allocations from clump of 10 pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats11, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[11], "free page allocations from clump of 11 pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats12, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[12], "free page allocations from clump of 12 pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats13, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[13], "free page allocations from clump of 13 pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats14, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[14], "free page allocations from clump of 14 pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats15, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[15], "free page allocations from clump of 15 pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_stats16, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_stats[16], "free page allocations from clump of 16 pages");
extern unsigned long vm_clump_allocs, vm_clump_inserts, vm_clump_inrange, vm_clump_promotes;
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_alloc, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_allocs, "free page allocations");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_inserts, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_inserts, "free page insertions");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_inrange, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_inrange, "free page insertions that are part of vm_pages");
SYSCTL_LONG(_vm, OID_AUTO, vm_clump_promotes, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_clump_promotes, "pages promoted to head");
#endif  /* if DEVELOPMENT || DEBUG */
#endif  /* #if defined (__x86_64__) */

#if CONFIG_SECLUDED_MEMORY

SYSCTL_UINT(_vm, OID_AUTO, num_tasks_can_use_secluded_mem, CTLFLAG_RD | CTLFLAG_LOCKED, &num_tasks_can_use_secluded_mem, 0, "");
extern unsigned int vm_page_secluded_target;
extern unsigned int vm_page_secluded_count;
extern unsigned int vm_page_secluded_count_free;
extern unsigned int vm_page_secluded_count_inuse;
extern unsigned int vm_page_secluded_count_over_target;
SYSCTL_UINT(_vm, OID_AUTO, page_secluded_target, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_secluded_target, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, page_secluded_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_secluded_count, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, page_secluded_count_free, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_secluded_count_free, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, page_secluded_count_inuse, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_secluded_count_inuse, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, page_secluded_count_over_target, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_secluded_count_over_target, 0, "");

extern struct vm_page_secluded_data vm_page_secluded;
SYSCTL_UINT(_vm, OID_AUTO, page_secluded_eligible, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_secluded.eligible_for_secluded, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, page_secluded_grab_success_free, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_secluded.grab_success_free, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, page_secluded_grab_success_other, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_secluded.grab_success_other, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, page_secluded_grab_failure_locked, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_secluded.grab_failure_locked, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, page_secluded_grab_failure_state, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_secluded.grab_failure_state, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, page_secluded_grab_failure_dirty, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_secluded.grab_failure_dirty, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, page_secluded_grab_for_iokit, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_secluded.grab_for_iokit, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, page_secluded_grab_for_iokit_success, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_secluded.grab_for_iokit_success, 0, "");

#endif /* CONFIG_SECLUDED_MEMORY */

#include <kern/thread.h>
#include <sys/user.h>

void vm_pageout_io_throttle(void);

void
vm_pageout_io_throttle(void)
{
	struct uthread *uthread = get_bsdthread_info(current_thread());

	/*
	 * thread is marked as a low priority I/O type
	 * and the I/O we issued while in this cleaning operation
	 * collided with normal I/O operations... we'll
	 * delay in order to mitigate the impact of this
	 * task on the normal operation of the system
	 */

	if (uthread->uu_lowpri_window) {
		throttle_lowpri_io(1);
	}
}

int
vm_pressure_monitor(
	__unused struct proc *p,
	struct vm_pressure_monitor_args *uap,
	int *retval)
{
	kern_return_t   kr;
	uint32_t        pages_reclaimed;
	uint32_t        pages_wanted;

	kr = mach_vm_pressure_monitor(
		(boolean_t) uap->wait_for_pressure,
		uap->nsecs_monitored,
		(uap->pages_reclaimed) ? &pages_reclaimed : NULL,
		&pages_wanted);

	switch (kr) {
	case KERN_SUCCESS:
		break;
	case KERN_ABORTED:
		return EINTR;
	default:
		return EINVAL;
	}

	if (uap->pages_reclaimed) {
		if (copyout((void *)&pages_reclaimed,
		    uap->pages_reclaimed,
		    sizeof(pages_reclaimed)) != 0) {
			return EFAULT;
		}
	}

	*retval = (int) pages_wanted;
	return 0;
}

int
kas_info(struct proc *p,
    struct kas_info_args *uap,
    int *retval __unused)
{
#ifdef SECURE_KERNEL
	(void)p;
	(void)uap;
	return ENOTSUP;
#else /* !SECURE_KERNEL */
	int                     selector = uap->selector;
	user_addr_t     valuep = uap->value;
	user_addr_t     sizep = uap->size;
	user_size_t size;
	int                     error;

	if (!kauth_cred_issuser(kauth_cred_get())) {
		return EPERM;
	}

#if CONFIG_MACF
	error = mac_system_check_kas_info(kauth_cred_get(), selector);
	if (error) {
		return error;
	}
#endif

	if (IS_64BIT_PROCESS(p)) {
		user64_size_t size64;
		error = copyin(sizep, &size64, sizeof(size64));
		size = (user_size_t)size64;
	} else {
		user32_size_t size32;
		error = copyin(sizep, &size32, sizeof(size32));
		size = (user_size_t)size32;
	}
	if (error) {
		return error;
	}

	switch (selector) {
	case KAS_INFO_KERNEL_TEXT_SLIDE_SELECTOR:
	{
		uint64_t slide = vm_kernel_slide;

		if (sizeof(slide) != size) {
			return EINVAL;
		}

		if (IS_64BIT_PROCESS(p)) {
			user64_size_t size64 = (user64_size_t)size;
			error = copyout(&size64, sizep, sizeof(size64));
		} else {
			user32_size_t size32 = (user32_size_t)size;
			error = copyout(&size32, sizep, sizeof(size32));
		}
		if (error) {
			return error;
		}

		error = copyout(&slide, valuep, sizeof(slide));
		if (error) {
			return error;
		}
	}
	break;
	default:
		return EINVAL;
	}

	return 0;
#endif /* !SECURE_KERNEL */
}


#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wcast-qual"
#pragma clang diagnostic ignored "-Wunused-function"

static void
asserts()
{
	static_assert(sizeof(vm_min_kernel_address) == sizeof(unsigned long));
	static_assert(sizeof(vm_max_kernel_address) == sizeof(unsigned long));
}

SYSCTL_ULONG(_vm, OID_AUTO, vm_min_kernel_address, CTLFLAG_RD, (unsigned long *) &vm_min_kernel_address, "");
SYSCTL_ULONG(_vm, OID_AUTO, vm_max_kernel_address, CTLFLAG_RD, (unsigned long *) &vm_max_kernel_address, "");
#pragma clang diagnostic pop

extern uint32_t vm_page_pages;
SYSCTL_UINT(_vm, OID_AUTO, pages, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_pages, 0, "");

extern uint32_t vm_page_busy_absent_skipped;
SYSCTL_UINT(_vm, OID_AUTO, page_busy_absent_skipped, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_busy_absent_skipped, 0, "");

extern uint32_t vm_page_upl_tainted;
SYSCTL_UINT(_vm, OID_AUTO, upl_pages_tainted, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_upl_tainted, 0, "");

extern uint32_t vm_page_iopl_tainted;
SYSCTL_UINT(_vm, OID_AUTO, iopl_pages_tainted, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_iopl_tainted, 0, "");

#if (__arm__ || __arm64__) && (DEVELOPMENT || DEBUG)
extern int vm_footprint_suspend_allowed;
SYSCTL_INT(_vm, OID_AUTO, footprint_suspend_allowed, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_footprint_suspend_allowed, 0, "");

extern void pmap_footprint_suspend(vm_map_t map, boolean_t suspend);
static int
sysctl_vm_footprint_suspend SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
	int error = 0;
	int new_value;

	if (req->newptr == USER_ADDR_NULL) {
		return 0;
	}
	error = SYSCTL_IN(req, &new_value, sizeof(int));
	if (error) {
		return error;
	}
	if (!vm_footprint_suspend_allowed) {
		if (new_value != 0) {
			/* suspends are not allowed... */
			return 0;
		}
		/* ... but let resumes proceed */
	}
	DTRACE_VM2(footprint_suspend,
	    vm_map_t, current_map(),
	    int, new_value);

	pmap_footprint_suspend(current_map(), new_value);

	return 0;
}
SYSCTL_PROC(_vm, OID_AUTO, footprint_suspend,
    CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_ANYBODY | CTLFLAG_LOCKED | CTLFLAG_MASKED,
    0, 0, &sysctl_vm_footprint_suspend, "I", "");
#endif /* (__arm__ || __arm64__) && (DEVELOPMENT || DEBUG) */

extern uint64_t vm_map_corpse_footprint_count;
extern uint64_t vm_map_corpse_footprint_size_avg;
extern uint64_t vm_map_corpse_footprint_size_max;
extern uint64_t vm_map_corpse_footprint_full;
extern uint64_t vm_map_corpse_footprint_no_buf;
SYSCTL_QUAD(_vm, OID_AUTO, corpse_footprint_count,
    CTLFLAG_RD | CTLFLAG_LOCKED, &vm_map_corpse_footprint_count, "");
SYSCTL_QUAD(_vm, OID_AUTO, corpse_footprint_size_avg,
    CTLFLAG_RD | CTLFLAG_LOCKED, &vm_map_corpse_footprint_size_avg, "");
SYSCTL_QUAD(_vm, OID_AUTO, corpse_footprint_size_max,
    CTLFLAG_RD | CTLFLAG_LOCKED, &vm_map_corpse_footprint_size_max, "");
SYSCTL_QUAD(_vm, OID_AUTO, corpse_footprint_full,
    CTLFLAG_RD | CTLFLAG_LOCKED, &vm_map_corpse_footprint_full, "");
SYSCTL_QUAD(_vm, OID_AUTO, corpse_footprint_no_buf,
    CTLFLAG_RD | CTLFLAG_LOCKED, &vm_map_corpse_footprint_no_buf, "");

#if PMAP_CS
extern uint64_t vm_cs_defer_to_pmap_cs;
extern uint64_t vm_cs_defer_to_pmap_cs_not;
SYSCTL_QUAD(_vm, OID_AUTO, cs_defer_to_pmap_cs,
    CTLFLAG_RD | CTLFLAG_LOCKED, &vm_cs_defer_to_pmap_cs, "");
SYSCTL_QUAD(_vm, OID_AUTO, cs_defer_to_pmap_cs_not,
    CTLFLAG_RD | CTLFLAG_LOCKED, &vm_cs_defer_to_pmap_cs_not, "");
#endif /* PMAP_CS */

extern uint64_t shared_region_pager_copied;
extern uint64_t shared_region_pager_slid;
extern uint64_t shared_region_pager_slid_error;
extern uint64_t shared_region_pager_reclaimed;
SYSCTL_QUAD(_vm, OID_AUTO, shared_region_pager_copied,
    CTLFLAG_RD | CTLFLAG_LOCKED, &shared_region_pager_copied, "");
SYSCTL_QUAD(_vm, OID_AUTO, shared_region_pager_slid,
    CTLFLAG_RD | CTLFLAG_LOCKED, &shared_region_pager_slid, "");
SYSCTL_QUAD(_vm, OID_AUTO, shared_region_pager_slid_error,
    CTLFLAG_RD | CTLFLAG_LOCKED, &shared_region_pager_slid_error, "");
SYSCTL_QUAD(_vm, OID_AUTO, shared_region_pager_reclaimed,
    CTLFLAG_RD | CTLFLAG_LOCKED, &shared_region_pager_reclaimed, "");

#if MACH_ASSERT
extern int pmap_ledgers_panic_leeway;
SYSCTL_INT(_vm, OID_AUTO, pmap_ledgers_panic_leeway, CTLFLAG_RW | CTLFLAG_LOCKED, &pmap_ledgers_panic_leeway, 0, "");
#endif /* MACH_ASSERT */

extern int vm_protect_privileged_from_untrusted;
SYSCTL_INT(_vm, OID_AUTO, protect_privileged_from_untrusted,
    CTLFLAG_RW | CTLFLAG_LOCKED, &vm_protect_privileged_from_untrusted, 0, "");
extern uint64_t vm_copied_on_read;
SYSCTL_QUAD(_vm, OID_AUTO, copied_on_read,
    CTLFLAG_RD | CTLFLAG_LOCKED, &vm_copied_on_read, "");