ccsha256_ltc_compress.c   [plain text]


/*
 *  ccsha256_ltc_compress.c
 *  corecrypto
 *
 *  Created on 12/03/2010
 *
 *  Copyright (c) 2010,2011,2015 Apple Inc. All rights reserved.
 *
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
 *
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. The rights granted to you under the License
 * may not be used to create, or enable the creation or redistribution of,
 * unlawful or unlicensed copies of an Apple operating system, or to
 * circumvent, violate, or enable the circumvention or violation of, any
 * terms of an Apple operating system software license agreement.
 *
 * Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this file.
 *
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
 */

/*
 * Parts of this code adapted from LibTomCrypt
 *
 * LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 */

#include <corecrypto/ccsha2.h>
#include <corecrypto/cc_priv.h>
#include "ccsha2_internal.h"

#if !CC_KERNEL || !CC_USE_ASM

#if CCSHA2_SHA256_USE_SHA512_K
#define K(i) ((uint32_t)(ccsha512_K[i] >> 32))
#else
#define K(i) ccsha256_K[i]
#endif

// Various logical functions
#define Ch(x, y, z) (z ^ (x & (y ^ z)))
#define Maj(x, y, z) (((x | y) & z) | (x & y))
#define S(x, n) CC_RORc(x, n)
#define R(x, n) ((x) >> (n))
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))

#define set_W(i) CC_LOAD32_BE(W[i], buf + (4 * (i)))

// the round function
#define RND(a, b, c, d, e, f, g, h, i)              \
    t0 = h + Sigma1(e) + Ch(e, f, g) + K(i) + W[i]; \
    t1 = Sigma0(a) + Maj(a, b, c);                  \
    d += t0;                                        \
    h = t0 + t1;

// compress 512-bits
void
ccsha256_ltc_compress(ccdigest_state_t state, size_t nblocks, const void *in)
{
	uint32_t W[64], t0, t1;
	uint32_t S[8];
	int i;
	uint32_t *s = ccdigest_u32(state);
	const unsigned char *buf = in;

	while (nblocks--) {
		// schedule W 0..15
		for (i = 0; i < 16; i += 1) {
			set_W(i);
		}

		// schedule W 16..63
		for (; i < 64; i++) {
			W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
		}

		// copy state into S
		S[0] = s[0];
		S[1] = s[1];
		S[2] = s[2];
		S[3] = s[3];
		S[4] = s[4];
		S[5] = s[5];
		S[6] = s[6];
		S[7] = s[7];

		// Compress
#if CC_SMALL_CODE
		for (i = 0; i < 64; i += 1) {
			t0 = S[7] + Sigma1(S[4]) + Ch(S[4], S[5], S[6]) + K(i) + W[i];
			t1 = Sigma0(S[0]) + Maj(S[0], S[1], S[2]);
			S[7] = S[6];
			S[6] = S[5];
			S[5] = S[4];
			S[4] = S[3] + t0;
			S[3] = S[2];
			S[2] = S[1];
			S[1] = S[0];
			S[0] = t0 + t1;
		}
#else
		for (i = 0; i < 64; i += 8) {
			RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i + 0);
			RND(S[7], S[0], S[1], S[2], S[3], S[4], S[5], S[6], i + 1);
			RND(S[6], S[7], S[0], S[1], S[2], S[3], S[4], S[5], i + 2);
			RND(S[5], S[6], S[7], S[0], S[1], S[2], S[3], S[4], i + 3);
			RND(S[4], S[5], S[6], S[7], S[0], S[1], S[2], S[3], i + 4);
			RND(S[3], S[4], S[5], S[6], S[7], S[0], S[1], S[2], i + 5);
			RND(S[2], S[3], S[4], S[5], S[6], S[7], S[0], S[1], i + 6);
			RND(S[1], S[2], S[3], S[4], S[5], S[6], S[7], S[0], i + 7);
		}
#endif

		// feedback
		s[0] += S[0];
		s[1] += S[1];
		s[2] += S[2];
		s[3] += S[3];
		s[4] += S[4];
		s[5] += S[5];
		s[6] += S[6];
		s[7] += S[7];

		buf += CCSHA256_BLOCK_SIZE / sizeof(buf[0]);
	}
}

#endif