IODataQueue.cpp   [plain text]


/*
 * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
 *
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. The rights granted to you under the License
 * may not be used to create, or enable the creation or redistribution of,
 * unlawful or unlicensed copies of an Apple operating system, or to
 * circumvent, violate, or enable the circumvention or violation of, any
 * terms of an Apple operating system software license agreement.
 *
 * Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this file.
 *
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
 */

#define DISABLE_DATAQUEUE_WARNING

#include <IOKit/IODataQueue.h>

#undef DISABLE_DATAQUEUE_WARNING

#include <IOKit/IODataQueueShared.h>
#include <IOKit/IOLib.h>
#include <IOKit/IOMemoryDescriptor.h>
#include <libkern/OSAtomic.h>

struct IODataQueueInternal {
	mach_msg_header_t msg;
	UInt32            queueSize;
};

#ifdef enqueue
#undef enqueue
#endif

#ifdef dequeue
#undef dequeue
#endif

#define super OSObject

OSDefineMetaClassAndStructors(IODataQueue, OSObject)

IODataQueue *IODataQueue::withCapacity(UInt32 size)
{
	IODataQueue *dataQueue = new IODataQueue;

	if (dataQueue) {
		if (!dataQueue->initWithCapacity(size)) {
			dataQueue->release();
			dataQueue = NULL;
		}
	}

	return dataQueue;
}

IODataQueue *
IODataQueue::withEntries(UInt32 numEntries, UInt32 entrySize)
{
	IODataQueue *dataQueue = new IODataQueue;

	if (dataQueue) {
		if (!dataQueue->initWithEntries(numEntries, entrySize)) {
			dataQueue->release();
			dataQueue = NULL;
		}
	}

	return dataQueue;
}

Boolean
IODataQueue::initWithCapacity(UInt32 size)
{
	vm_size_t allocSize = 0;

	if (!super::init()) {
		return false;
	}

	if (size > UINT32_MAX - DATA_QUEUE_MEMORY_HEADER_SIZE) {
		return false;
	}

	allocSize = round_page(size + DATA_QUEUE_MEMORY_HEADER_SIZE);

	if (allocSize < size) {
		return false;
	}

	assert(!notifyMsg);
	notifyMsg = IONew(IODataQueueInternal, 1);
	if (!notifyMsg) {
		return false;
	}
	bzero(notifyMsg, sizeof(IODataQueueInternal));
	((IODataQueueInternal *)notifyMsg)->queueSize = size;

	dataQueue = (IODataQueueMemory *)IOMallocAligned(allocSize, PAGE_SIZE);
	if (dataQueue == NULL) {
		return false;
	}
	bzero(dataQueue, allocSize);

	dataQueue->queueSize    = size;
//  dataQueue->head         = 0;
//  dataQueue->tail         = 0;

	return true;
}

Boolean
IODataQueue::initWithEntries(UInt32 numEntries, UInt32 entrySize)
{
	// Checking overflow for (numEntries + 1)*(entrySize + DATA_QUEUE_ENTRY_HEADER_SIZE):
	//  check (entrySize + DATA_QUEUE_ENTRY_HEADER_SIZE)
	if ((entrySize > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) ||
	    //  check (numEntries + 1)
	    (numEntries > UINT32_MAX - 1) ||
	    //  check (numEntries + 1)*(entrySize + DATA_QUEUE_ENTRY_HEADER_SIZE)
	    (entrySize + DATA_QUEUE_ENTRY_HEADER_SIZE > UINT32_MAX / (numEntries + 1))) {
		return false;
	}

	return initWithCapacity((numEntries + 1) * (DATA_QUEUE_ENTRY_HEADER_SIZE + entrySize));
}

void
IODataQueue::free()
{
	if (notifyMsg) {
		if (dataQueue) {
			IOFreeAligned(dataQueue, round_page(((IODataQueueInternal *)notifyMsg)->queueSize + DATA_QUEUE_MEMORY_HEADER_SIZE));
			dataQueue = NULL;
		}

		IODelete(notifyMsg, IODataQueueInternal, 1);
		notifyMsg = NULL;
	}

	super::free();

	return;
}

Boolean
IODataQueue::enqueue(void * data, UInt32 dataSize)
{
	UInt32             head;
	UInt32             tail;
	UInt32             newTail;
	const UInt32       entrySize = dataSize + DATA_QUEUE_ENTRY_HEADER_SIZE;
	UInt32             queueSize;
	IODataQueueEntry * entry;

	// Check for overflow of entrySize
	if (dataSize > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) {
		return false;
	}

	// Force a single read of head and tail
	// See rdar://problem/40780584 for an explanation of relaxed/acquire barriers
	tail = __c11_atomic_load((_Atomic UInt32 *)&dataQueue->tail, __ATOMIC_RELAXED);
	head = __c11_atomic_load((_Atomic UInt32 *)&dataQueue->head, __ATOMIC_ACQUIRE);

	// Check for underflow of (dataQueue->queueSize - tail)
	queueSize = ((IODataQueueInternal *) notifyMsg)->queueSize;
	if ((queueSize < tail) || (queueSize < head)) {
		return false;
	}

	if (tail >= head) {
		// Is there enough room at the end for the entry?
		if ((entrySize <= UINT32_MAX - tail) &&
		    ((tail + entrySize) <= queueSize)) {
			entry = (IODataQueueEntry *)((UInt8 *)dataQueue->queue + tail);

			entry->size = dataSize;
			__nochk_memcpy(&entry->data, data, dataSize);

			// The tail can be out of bound when the size of the new entry
			// exactly matches the available space at the end of the queue.
			// The tail can range from 0 to dataQueue->queueSize inclusive.

			newTail = tail + entrySize;
		} else if (head > entrySize) { // Is there enough room at the beginning?
			// Wrap around to the beginning, but do not allow the tail to catch
			// up to the head.

			dataQueue->queue->size = dataSize;

			// We need to make sure that there is enough room to set the size before
			// doing this. The user client checks for this and will look for the size
			// at the beginning if there isn't room for it at the end.

			if ((queueSize - tail) >= DATA_QUEUE_ENTRY_HEADER_SIZE) {
				((IODataQueueEntry *)((UInt8 *)dataQueue->queue + tail))->size = dataSize;
			}

			__nochk_memcpy(&dataQueue->queue->data, data, dataSize);
			newTail = entrySize;
		} else {
			return false; // queue is full
		}
	} else {
		// Do not allow the tail to catch up to the head when the queue is full.
		// That's why the comparison uses a '>' rather than '>='.

		if ((head - tail) > entrySize) {
			entry = (IODataQueueEntry *)((UInt8 *)dataQueue->queue + tail);

			entry->size = dataSize;
			__nochk_memcpy(&entry->data, data, dataSize);
			newTail = tail + entrySize;
		} else {
			return false; // queue is full
		}
	}

	// Publish the data we just enqueued
	__c11_atomic_store((_Atomic UInt32 *)&dataQueue->tail, newTail, __ATOMIC_RELEASE);

	if (tail != head) {
		//
		// The memory barrier below paris with the one in ::dequeue
		// so that either our store to the tail cannot be missed by
		// the next dequeue attempt, or we will observe the dequeuer
		// making the queue empty.
		//
		// Of course, if we already think the queue is empty,
		// there's no point paying this extra cost.
		//
		__c11_atomic_thread_fence(__ATOMIC_SEQ_CST);
		head = __c11_atomic_load((_Atomic UInt32 *)&dataQueue->head, __ATOMIC_RELAXED);
	}

	if (tail == head) {
		// Send notification (via mach message) that data is now available.
		sendDataAvailableNotification();
	}
	return true;
}

void
IODataQueue::setNotificationPort(mach_port_t port)
{
	mach_msg_header_t * msgh;

	msgh = &((IODataQueueInternal *) notifyMsg)->msg;
	bzero(msgh, sizeof(mach_msg_header_t));
	msgh->msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0);
	msgh->msgh_size = sizeof(mach_msg_header_t);
	msgh->msgh_remote_port = port;
}

void
IODataQueue::sendDataAvailableNotification()
{
	kern_return_t       kr;
	mach_msg_header_t * msgh;

	msgh = &((IODataQueueInternal *) notifyMsg)->msg;
	if (msgh->msgh_remote_port) {
		kr = mach_msg_send_from_kernel_with_options(msgh, msgh->msgh_size, MACH_SEND_TIMEOUT, MACH_MSG_TIMEOUT_NONE);
		switch (kr) {
		case MACH_SEND_TIMED_OUT: // Notification already sent
		case MACH_MSG_SUCCESS:
		case MACH_SEND_NO_BUFFER:
			break;
		default:
			IOLog("%s: dataAvailableNotification failed - msg_send returned: %d\n", /*getName()*/ "IODataQueue", kr);
			break;
		}
	}
}

IOMemoryDescriptor *
IODataQueue::getMemoryDescriptor()
{
	IOMemoryDescriptor *descriptor = NULL;
	UInt32              queueSize;

	queueSize = ((IODataQueueInternal *) notifyMsg)->queueSize;
	if (dataQueue != NULL) {
		descriptor = IOMemoryDescriptor::withAddress(dataQueue, queueSize + DATA_QUEUE_MEMORY_HEADER_SIZE, kIODirectionOutIn);
	}

	return descriptor;
}