IOCPU.cpp   [plain text]


/*
 * Copyright (c) 1999-2016 Apple Inc.  All rights reserved.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
 *
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. The rights granted to you under the License
 * may not be used to create, or enable the creation or redistribution of,
 * unlawful or unlicensed copies of an Apple operating system, or to
 * circumvent, violate, or enable the circumvention or violation of, any
 * terms of an Apple operating system software license agreement.
 *
 * Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this file.
 *
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 *
 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
 */

extern "C" {
#include <machine/machine_routines.h>
#include <pexpert/pexpert.h>
#include <kern/cpu_number.h>
extern void kperf_kernel_configure(char *);
}

#include <IOKit/IOLib.h>
#include <IOKit/IOPlatformExpert.h>
#include <IOKit/pwr_mgt/RootDomain.h>
#include <IOKit/pwr_mgt/IOPMPrivate.h>
#include <IOKit/IOUserClient.h>
#include <IOKit/IOKitKeysPrivate.h>
#include <IOKit/IOCPU.h>
#include "IOKitKernelInternal.h"

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#include <kern/queue.h>
#include <kern/sched_prim.h>

extern "C" void console_suspend();
extern "C" void console_resume();
extern "C" void sched_override_recommended_cores_for_sleep(void);
extern "C" void sched_restore_recommended_cores_after_sleep(void);

typedef kern_return_t (*iocpu_platform_action_t)(void * refcon0, void * refcon1, uint32_t priority,
    void * param1, void * param2, void * param3,
    const char * name);

struct iocpu_platform_action_entry {
	queue_chain_t                     link;
	iocpu_platform_action_t           action;
	int32_t                           priority;
	const char *                      name;
	void *                            refcon0;
	void *                            refcon1;
	boolean_t                         callout_in_progress;
	struct iocpu_platform_action_entry * alloc_list;
};
typedef struct iocpu_platform_action_entry iocpu_platform_action_entry_t;

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

static IOLock *gIOCPUsLock;
static OSArray *gIOCPUs;
static const OSSymbol *gIOCPUStateKey;
static OSString *gIOCPUStateNames[kIOCPUStateCount];

enum{
	kQueueSleep       = 0,
	kQueueWake        = 1,
	kQueueQuiesce     = 2,
	kQueueActive      = 3,
	kQueueHaltRestart = 4,
	kQueuePanic       = 5,
	kQueueCount       = 6
};

const OSSymbol *                gIOPlatformSleepActionKey;
const OSSymbol *                gIOPlatformWakeActionKey;
const OSSymbol *                gIOPlatformQuiesceActionKey;
const OSSymbol *                gIOPlatformActiveActionKey;
const OSSymbol *                gIOPlatformHaltRestartActionKey;
const OSSymbol *                gIOPlatformPanicActionKey;

static queue_head_t             gActionQueues[kQueueCount];
static const OSSymbol *         gActionSymbols[kQueueCount];

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

static void
iocpu_add_platform_action(queue_head_t * queue, iocpu_platform_action_entry_t * entry)
{
	iocpu_platform_action_entry_t * next;

	queue_iterate(queue, next, iocpu_platform_action_entry_t *, link)
	{
		if (next->priority > entry->priority) {
			queue_insert_before(queue, entry, next, iocpu_platform_action_entry_t *, link);
			return;
		}
	}
	queue_enter(queue, entry, iocpu_platform_action_entry_t *, link); // at tail
}

static void
iocpu_remove_platform_action(iocpu_platform_action_entry_t * entry)
{
	remque(&entry->link);
}

static kern_return_t
iocpu_run_platform_actions(queue_head_t * queue, uint32_t first_priority, uint32_t last_priority,
    void * param1, void * param2, void * param3, boolean_t allow_nested_callouts)
{
	kern_return_t                ret = KERN_SUCCESS;
	kern_return_t                result = KERN_SUCCESS;
	iocpu_platform_action_entry_t * next;

	queue_iterate(queue, next, iocpu_platform_action_entry_t *, link)
	{
		uint32_t pri = (next->priority < 0) ? -next->priority : next->priority;
		if ((pri >= first_priority) && (pri <= last_priority)) {
			//kprintf("[%p]", next->action);
			if (!allow_nested_callouts && !next->callout_in_progress) {
				next->callout_in_progress = TRUE;
				ret = (*next->action)(next->refcon0, next->refcon1, pri, param1, param2, param3, next->name);
				next->callout_in_progress = FALSE;
			} else if (allow_nested_callouts) {
				ret = (*next->action)(next->refcon0, next->refcon1, pri, param1, param2, param3, next->name);
			}
		}
		if (KERN_SUCCESS == result) {
			result = ret;
		}
	}
	return result;
}

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

extern "C" kern_return_t
IOCPURunPlatformQuiesceActions(void)
{
	assert(preemption_enabled() == false);
	return iocpu_run_platform_actions(&gActionQueues[kQueueQuiesce], 0, 0U - 1,
	           NULL, NULL, NULL, TRUE);
}

extern "C" kern_return_t
IOCPURunPlatformActiveActions(void)
{
	assert(preemption_enabled() == false);
	return iocpu_run_platform_actions(&gActionQueues[kQueueActive], 0, 0U - 1,
	           NULL, NULL, NULL, TRUE);
}

extern "C" kern_return_t
IOCPURunPlatformHaltRestartActions(uint32_t message)
{
	if (!gActionQueues[kQueueHaltRestart].next) {
		return kIOReturnNotReady;
	}
	return iocpu_run_platform_actions(&gActionQueues[kQueueHaltRestart], 0, 0U - 1,
	           (void *)(uintptr_t) message, NULL, NULL, TRUE);
}

extern "C" kern_return_t
IOCPURunPlatformPanicActions(uint32_t message)
{
	// Don't allow nested calls of panic actions
	if (!gActionQueues[kQueuePanic].next) {
		return kIOReturnNotReady;
	}
	return iocpu_run_platform_actions(&gActionQueues[kQueuePanic], 0, 0U - 1,
	           (void *)(uintptr_t) message, NULL, NULL, FALSE);
}


extern "C" kern_return_t
IOCPURunPlatformPanicSyncAction(void *addr, uint32_t offset, uint32_t len)
{
	PE_panic_save_context_t context = {
		.psc_buffer = addr,
		.psc_offset = offset,
		.psc_length = len
	};

	// Don't allow nested calls of panic actions
	if (!gActionQueues[kQueuePanic].next) {
		return kIOReturnNotReady;
	}
	return iocpu_run_platform_actions(&gActionQueues[kQueuePanic], 0, 0U - 1,
	           (void *)(uintptr_t)(kPEPanicSync), &context, NULL, FALSE);
}

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

static kern_return_t
IOServicePlatformAction(void * refcon0, void * refcon1, uint32_t priority,
    void * param1, void * param2, void * param3,
    const char * service_name)
{
	IOReturn         ret;
	IOService *      service  = (IOService *)      refcon0;
	const OSSymbol * function = (const OSSymbol *) refcon1;

	kprintf("%s -> %s\n", function->getCStringNoCopy(), service_name);

	ret = service->callPlatformFunction(function, false,
	    (void *)(uintptr_t) priority, param1, param2, param3);

	return ret;
}

static void
IOInstallServicePlatformAction(IOService * service, uint32_t qidx)
{
	iocpu_platform_action_entry_t * entry;
	OSNumber *       num;
	uint32_t         priority;
	const OSSymbol * key = gActionSymbols[qidx];
	queue_head_t *   queue = &gActionQueues[qidx];
	bool             reverse;
	bool             uniq;

	num = OSDynamicCast(OSNumber, service->getProperty(key));
	if (!num) {
		return;
	}

	reverse = false;
	uniq    = false;
	switch (qidx) {
	case kQueueWake:
	case kQueueActive:
		reverse = true;
		break;
	case kQueueHaltRestart:
	case kQueuePanic:
		uniq = true;
		break;
	}
	if (uniq) {
		queue_iterate(queue, entry, iocpu_platform_action_entry_t *, link)
		{
			if (service == entry->refcon0) {
				return;
			}
		}
	}

	entry = IONew(iocpu_platform_action_entry_t, 1);
	entry->action = &IOServicePlatformAction;
	entry->name = service->getName();
	priority = num->unsigned32BitValue();
	if (reverse) {
		entry->priority = -priority;
	} else {
		entry->priority = priority;
	}
	entry->refcon0 = service;
	entry->refcon1 = (void *) key;
	entry->callout_in_progress = FALSE;

	iocpu_add_platform_action(queue, entry);
}

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

void
IOCPUInitialize(void)
{
	gIOCPUsLock = IOLockAlloc();
	gIOCPUs     = OSArray::withCapacity(1);

	for (uint32_t qidx = kQueueSleep; qidx < kQueueCount; qidx++) {
		queue_init(&gActionQueues[qidx]);
	}

	gIOCPUStateKey = OSSymbol::withCStringNoCopy("IOCPUState");

	gIOCPUStateNames[kIOCPUStateUnregistered] =
	    OSString::withCStringNoCopy("Unregistered");
	gIOCPUStateNames[kIOCPUStateUninitalized] =
	    OSString::withCStringNoCopy("Uninitalized");
	gIOCPUStateNames[kIOCPUStateStopped] =
	    OSString::withCStringNoCopy("Stopped");
	gIOCPUStateNames[kIOCPUStateRunning] =
	    OSString::withCStringNoCopy("Running");

	gIOPlatformSleepActionKey        = gActionSymbols[kQueueSleep]
	            = OSSymbol::withCStringNoCopy(kIOPlatformSleepActionKey);
	gIOPlatformWakeActionKey         = gActionSymbols[kQueueWake]
	            = OSSymbol::withCStringNoCopy(kIOPlatformWakeActionKey);
	gIOPlatformQuiesceActionKey      = gActionSymbols[kQueueQuiesce]
	            = OSSymbol::withCStringNoCopy(kIOPlatformQuiesceActionKey);
	gIOPlatformActiveActionKey       = gActionSymbols[kQueueActive]
	            = OSSymbol::withCStringNoCopy(kIOPlatformActiveActionKey);
	gIOPlatformHaltRestartActionKey  = gActionSymbols[kQueueHaltRestart]
	            = OSSymbol::withCStringNoCopy(kIOPlatformHaltRestartActionKey);
	gIOPlatformPanicActionKey = gActionSymbols[kQueuePanic]
	            = OSSymbol::withCStringNoCopy(kIOPlatformPanicActionKey);
}

IOReturn
IOInstallServicePlatformActions(IOService * service)
{
	IOLockLock(gIOCPUsLock);

	IOInstallServicePlatformAction(service, kQueueHaltRestart);
	IOInstallServicePlatformAction(service, kQueuePanic);

	IOLockUnlock(gIOCPUsLock);

	return kIOReturnSuccess;
}

IOReturn
IORemoveServicePlatformActions(IOService * service)
{
	iocpu_platform_action_entry_t * entry;
	iocpu_platform_action_entry_t * next;

	IOLockLock(gIOCPUsLock);

	for (uint32_t qidx = kQueueSleep; qidx < kQueueCount; qidx++) {
		next = (typeof(entry))queue_first(&gActionQueues[qidx]);
		while (!queue_end(&gActionQueues[qidx], &next->link)) {
			entry = next;
			next = (typeof(entry))queue_next(&entry->link);
			if (service == entry->refcon0) {
				iocpu_remove_platform_action(entry);
				IODelete(entry, iocpu_platform_action_entry_t, 1);
			}
		}
	}

	IOLockUnlock(gIOCPUsLock);

	return kIOReturnSuccess;
}


/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

kern_return_t
PE_cpu_start(cpu_id_t target,
    vm_offset_t start_paddr, vm_offset_t arg_paddr)
{
	IOCPU *targetCPU = (IOCPU *)target;

	if (targetCPU == NULL) {
		return KERN_FAILURE;
	}
	return targetCPU->startCPU(start_paddr, arg_paddr);
}

void
PE_cpu_halt(cpu_id_t target)
{
	IOCPU *targetCPU = (IOCPU *)target;

	targetCPU->haltCPU();
}

void
PE_cpu_signal(cpu_id_t source, cpu_id_t target)
{
	IOCPU *sourceCPU = (IOCPU *)source;
	IOCPU *targetCPU = (IOCPU *)target;

	sourceCPU->signalCPU(targetCPU);
}

void
PE_cpu_signal_deferred(cpu_id_t source, cpu_id_t target)
{
	IOCPU *sourceCPU = (IOCPU *)source;
	IOCPU *targetCPU = (IOCPU *)target;

	sourceCPU->signalCPUDeferred(targetCPU);
}

void
PE_cpu_signal_cancel(cpu_id_t source, cpu_id_t target)
{
	IOCPU *sourceCPU = (IOCPU *)source;
	IOCPU *targetCPU = (IOCPU *)target;

	sourceCPU->signalCPUCancel(targetCPU);
}

void
PE_cpu_machine_init(cpu_id_t target, boolean_t bootb)
{
	IOCPU *targetCPU = OSDynamicCast(IOCPU, (OSObject *)target);

	if (targetCPU == NULL) {
		panic("%s: invalid target CPU %p", __func__, target);
	}

	targetCPU->initCPU(bootb);
#if defined(__arm__) || defined(__arm64__)
	if (!bootb && (targetCPU->getCPUNumber() == (UInt32)master_cpu)) {
		ml_set_is_quiescing(false);
	}
#endif /* defined(__arm__) || defined(__arm64__) */
}

void
PE_cpu_machine_quiesce(cpu_id_t target)
{
	IOCPU *targetCPU = (IOCPU*)target;
#if defined(__arm__) || defined(__arm64__)
	if (targetCPU->getCPUNumber() == (UInt32)master_cpu) {
		ml_set_is_quiescing(true);
	}
#endif /* defined(__arm__) || defined(__arm64__) */
	targetCPU->quiesceCPU();
}

#if defined(__arm__) || defined(__arm64__)
static perfmon_interrupt_handler_func pmi_handler = NULL;

kern_return_t
PE_cpu_perfmon_interrupt_install_handler(perfmon_interrupt_handler_func handler)
{
	pmi_handler = handler;

	return KERN_SUCCESS;
}

void
PE_cpu_perfmon_interrupt_enable(cpu_id_t target, boolean_t enable)
{
	IOCPU *targetCPU = (IOCPU*)target;

	if (targetCPU == nullptr) {
		return;
	}

	if (enable) {
		targetCPU->getProvider()->registerInterrupt(1, targetCPU, (IOInterruptAction)pmi_handler, NULL);
		targetCPU->getProvider()->enableInterrupt(1);
	} else {
		targetCPU->getProvider()->disableInterrupt(1);
	}
}
#endif

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

#define super IOService

OSDefineMetaClassAndAbstractStructors(IOCPU, IOService);
OSMetaClassDefineReservedUnused(IOCPU, 0);
OSMetaClassDefineReservedUnused(IOCPU, 1);
OSMetaClassDefineReservedUnused(IOCPU, 2);
OSMetaClassDefineReservedUnused(IOCPU, 3);
OSMetaClassDefineReservedUnused(IOCPU, 4);
OSMetaClassDefineReservedUnused(IOCPU, 5);
OSMetaClassDefineReservedUnused(IOCPU, 6);
OSMetaClassDefineReservedUnused(IOCPU, 7);

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

void
IOCPUSleepKernel(void)
{
#if defined(__x86_64__)
	extern IOCPU *currentShutdownTarget;
#endif
	long cnt, numCPUs;
	IOCPU *target;
	IOCPU *bootCPU = NULL;
	IOPMrootDomain  *rootDomain = IOService::getPMRootDomain();

	kprintf("IOCPUSleepKernel\n");
#if defined(__arm64__)
	sched_override_recommended_cores_for_sleep();
#endif

	IORegistryIterator * iter;
	OSOrderedSet *       all;
	IOService *          service;

	rootDomain->tracePoint( kIOPMTracePointSleepPlatformActions );

	iter = IORegistryIterator::iterateOver( gIOServicePlane,
	    kIORegistryIterateRecursively );
	if (iter) {
		all = NULL;
		do{
			if (all) {
				all->release();
			}
			all = iter->iterateAll();
		}while (!iter->isValid());
		iter->release();

		if (all) {
			while ((service = (IOService *) all->getFirstObject())) {
				for (uint32_t qidx = kQueueSleep; qidx <= kQueueActive; qidx++) {
					IOInstallServicePlatformAction(service, qidx);
				}
				all->removeObject(service);
			}
			all->release();
		}
	}

	iocpu_run_platform_actions(&gActionQueues[kQueueSleep], 0, 0U - 1,
	    NULL, NULL, NULL, TRUE);

	rootDomain->tracePoint( kIOPMTracePointSleepCPUs );

	numCPUs = gIOCPUs->getCount();
#if defined(__x86_64__)
	currentShutdownTarget = NULL;
#endif

	integer_t old_pri;
	thread_t self = current_thread();

	/*
	 * We need to boost this thread's priority to the maximum kernel priority to
	 * ensure we can urgently preempt ANY thread currently executing on the
	 * target CPU.  Note that realtime threads have their own mechanism to eventually
	 * demote their priority below MAXPRI_KERNEL if they hog the CPU for too long.
	 */
	old_pri = thread_kern_get_pri(self);
	thread_kern_set_pri(self, thread_kern_get_kernel_maxpri());

	// Sleep the CPUs.
	cnt = numCPUs;
	while (cnt--) {
		target = OSDynamicCast(IOCPU, gIOCPUs->getObject(cnt));

		// We make certain that the bootCPU is the last to sleep
		// We'll skip it for now, and halt it after finishing the
		// non-boot CPU's.
		if (target->getCPUNumber() == (UInt32)master_cpu) {
			bootCPU = target;
		} else if (target->getCPUState() == kIOCPUStateRunning) {
#if defined(__x86_64__)
			currentShutdownTarget = target;
#endif
			target->haltCPU();
		}
	}

	assert(bootCPU != NULL);
	assert(cpu_number() == master_cpu);

	console_suspend();

	rootDomain->tracePoint( kIOPMTracePointSleepPlatformDriver );
	rootDomain->stop_watchdog_timer();

	/*
	 * Now sleep the boot CPU, including calling the kQueueQuiesce actions.
	 * The system sleeps here.
	 */

	bootCPU->haltCPU();

	/*
	 * The system is now coming back from sleep on the boot CPU.
	 * The kQueueActive actions have already been called.
	 */

	rootDomain->start_watchdog_timer();
	rootDomain->tracePoint( kIOPMTracePointWakePlatformActions );

	console_resume();

	iocpu_run_platform_actions(&gActionQueues[kQueueWake], 0, 0U - 1,
	    NULL, NULL, NULL, TRUE);

	iocpu_platform_action_entry_t * entry;
	for (uint32_t qidx = kQueueSleep; qidx <= kQueueActive; qidx++) {
		while (!(queue_empty(&gActionQueues[qidx]))) {
			entry = (typeof(entry))queue_first(&gActionQueues[qidx]);
			iocpu_remove_platform_action(entry);
			IODelete(entry, iocpu_platform_action_entry_t, 1);
		}
	}

	rootDomain->tracePoint( kIOPMTracePointWakeCPUs );

	// Wake the other CPUs.
	for (cnt = 0; cnt < numCPUs; cnt++) {
		target = OSDynamicCast(IOCPU, gIOCPUs->getObject(cnt));

		// Skip the already-woken boot CPU.
		if (target->getCPUNumber() != (UInt32)master_cpu) {
			if (target->getCPUState() == kIOCPUStateRunning) {
				panic("Spurious wakeup of cpu %u", (unsigned int)(target->getCPUNumber()));
			}

			if (target->getCPUState() == kIOCPUStateStopped) {
				processor_start(target->getMachProcessor());
			}
		}
	}

#if defined(__arm64__)
	sched_restore_recommended_cores_after_sleep();
#endif

	thread_kern_set_pri(self, old_pri);
}

bool
IOCPU::start(IOService *provider)
{
	OSData *busFrequency, *cpuFrequency, *timebaseFrequency;

	if (!super::start(provider)) {
		return false;
	}

	_cpuGroup = gIOCPUs;
	cpuNub = provider;

	IOLockLock(gIOCPUsLock);
	gIOCPUs->setObject(this);
	IOLockUnlock(gIOCPUsLock);

	// Correct the bus, cpu and timebase frequencies in the device tree.
	if (gPEClockFrequencyInfo.bus_frequency_hz < 0x100000000ULL) {
		busFrequency = OSData::withBytesNoCopy((void *)&gPEClockFrequencyInfo.bus_clock_rate_hz, 4);
	} else {
		busFrequency = OSData::withBytesNoCopy((void *)&gPEClockFrequencyInfo.bus_frequency_hz, 8);
	}
	provider->setProperty("bus-frequency", busFrequency);
	busFrequency->release();

	if (gPEClockFrequencyInfo.cpu_frequency_hz < 0x100000000ULL) {
		cpuFrequency = OSData::withBytesNoCopy((void *)&gPEClockFrequencyInfo.cpu_clock_rate_hz, 4);
	} else {
		cpuFrequency = OSData::withBytesNoCopy((void *)&gPEClockFrequencyInfo.cpu_frequency_hz, 8);
	}
	provider->setProperty("clock-frequency", cpuFrequency);
	cpuFrequency->release();

	timebaseFrequency = OSData::withBytesNoCopy((void *)&gPEClockFrequencyInfo.timebase_frequency_hz, 4);
	provider->setProperty("timebase-frequency", timebaseFrequency);
	timebaseFrequency->release();

	super::setProperty("IOCPUID", getRegistryEntryID(), sizeof(uint64_t) * 8);

	setCPUNumber(0);
	setCPUState(kIOCPUStateUnregistered);

	return true;
}

void
IOCPU::detach(IOService *provider)
{
	super::detach(provider);
	IOLockLock(gIOCPUsLock);
	unsigned int index = gIOCPUs->getNextIndexOfObject(this, 0);
	if (index != (unsigned int)-1) {
		gIOCPUs->removeObject(index);
	}
	IOLockUnlock(gIOCPUsLock);
}

OSObject *
IOCPU::getProperty(const OSSymbol *aKey) const
{
	if (aKey == gIOCPUStateKey) {
		return gIOCPUStateNames[_cpuState];
	}

	return super::getProperty(aKey);
}

bool
IOCPU::setProperty(const OSSymbol *aKey, OSObject *anObject)
{
	if (aKey == gIOCPUStateKey) {
		return false;
	}

	return super::setProperty(aKey, anObject);
}

bool
IOCPU::serializeProperties(OSSerialize *serialize) const
{
	bool result;
	OSDictionary *dict = dictionaryWithProperties();
	if (!dict) {
		return false;
	}
	dict->setObject(gIOCPUStateKey, gIOCPUStateNames[_cpuState]);
	result = dict->serialize(serialize);
	dict->release();
	return result;
}

IOReturn
IOCPU::setProperties(OSObject *properties)
{
	OSDictionary *dict = OSDynamicCast(OSDictionary, properties);
	OSString     *stateStr;
	IOReturn     result;

	if (dict == NULL) {
		return kIOReturnUnsupported;
	}

	stateStr = OSDynamicCast(OSString, dict->getObject(gIOCPUStateKey));
	if (stateStr != NULL) {
		result = IOUserClient::clientHasPrivilege(current_task(), kIOClientPrivilegeAdministrator);
		if (result != kIOReturnSuccess) {
			return result;
		}

		if (setProperty(gIOCPUStateKey, stateStr)) {
			return kIOReturnSuccess;
		}

		return kIOReturnUnsupported;
	}

	return kIOReturnUnsupported;
}

void
IOCPU::signalCPU(IOCPU */*target*/)
{
}

void
IOCPU::signalCPUDeferred(IOCPU *target)
{
	// Our CPU may not support deferred IPIs,
	// so send a regular IPI by default
	signalCPU(target);
}

void
IOCPU::signalCPUCancel(IOCPU */*target*/)
{
	// Meant to cancel signals sent by
	// signalCPUDeferred; unsupported
	// by default
}

void
IOCPU::enableCPUTimeBase(bool /*enable*/)
{
}

UInt32
IOCPU::getCPUNumber(void)
{
	return _cpuNumber;
}

void
IOCPU::setCPUNumber(UInt32 cpuNumber)
{
	_cpuNumber = cpuNumber;
	super::setProperty("IOCPUNumber", _cpuNumber, 32);
}

UInt32
IOCPU::getCPUState(void)
{
	return _cpuState;
}

void
IOCPU::setCPUState(UInt32 cpuState)
{
	if (cpuState < kIOCPUStateCount) {
		_cpuState = cpuState;
	}
}

OSArray *
IOCPU::getCPUGroup(void)
{
	return _cpuGroup;
}

UInt32
IOCPU::getCPUGroupSize(void)
{
	return _cpuGroup->getCount();
}

processor_t
IOCPU::getMachProcessor(void)
{
	return machProcessor;
}


/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

#undef super
#define super IOInterruptController

OSDefineMetaClassAndStructors(IOCPUInterruptController, IOInterruptController);

OSMetaClassDefineReservedUnused(IOCPUInterruptController, 1);
OSMetaClassDefineReservedUnused(IOCPUInterruptController, 2);
OSMetaClassDefineReservedUnused(IOCPUInterruptController, 3);
OSMetaClassDefineReservedUnused(IOCPUInterruptController, 4);
OSMetaClassDefineReservedUnused(IOCPUInterruptController, 5);



/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

IOReturn
IOCPUInterruptController::initCPUInterruptController(int sources)
{
	return initCPUInterruptController(sources, sources);
}

IOReturn
IOCPUInterruptController::initCPUInterruptController(int sources, int cpus)
{
	int cnt;

	if (!super::init()) {
		return kIOReturnInvalid;
	}

	numSources = sources;
	numCPUs = cpus;

	vectors = (IOInterruptVector *)IOMalloc(numSources * sizeof(IOInterruptVector));
	if (vectors == NULL) {
		return kIOReturnNoMemory;
	}
	bzero(vectors, numSources * sizeof(IOInterruptVector));

	// Allocate a lock for each vector
	for (cnt = 0; cnt < numSources; cnt++) {
		vectors[cnt].interruptLock = IOLockAlloc();
		if (vectors[cnt].interruptLock == NULL) {
			for (cnt = 0; cnt < numSources; cnt++) {
				if (vectors[cnt].interruptLock != NULL) {
					IOLockFree(vectors[cnt].interruptLock);
				}
			}
			return kIOReturnNoResources;
		}
	}

	ml_init_max_cpus(numSources);

#if KPERF
	/*
	 * kperf allocates based on the number of CPUs and requires them to all be
	 * accounted for.
	 */
	boolean_t found_kperf = FALSE;
	char kperf_config_str[64];
	found_kperf = PE_parse_boot_arg_str("kperf", kperf_config_str, sizeof(kperf_config_str));
	if (found_kperf && kperf_config_str[0] != '\0') {
		kperf_kernel_configure(kperf_config_str);
	}
#endif /* KPERF */

	return kIOReturnSuccess;
}

void
IOCPUInterruptController::registerCPUInterruptController(void)
{
	registerService();

	getPlatform()->registerInterruptController(gPlatformInterruptControllerName,
	    this);
}

void
IOCPUInterruptController::setCPUInterruptProperties(IOService *service)
{
	int          cnt;
	OSArray      *controller;
	OSArray      *specifier;
	OSData       *tmpData;
	long         tmpLong;

	if ((service->getProperty(gIOInterruptControllersKey) != NULL) &&
	    (service->getProperty(gIOInterruptSpecifiersKey) != NULL)) {
		return;
	}

	// Create the interrupt specifer array.
	specifier = OSArray::withCapacity(numSources);
	for (cnt = 0; cnt < numSources; cnt++) {
		tmpLong = cnt;
		tmpData = OSData::withBytes(&tmpLong, sizeof(tmpLong));
		specifier->setObject(tmpData);
		tmpData->release();
	}
	;

	// Create the interrupt controller array.
	controller = OSArray::withCapacity(numSources);
	for (cnt = 0; cnt < numSources; cnt++) {
		controller->setObject(gPlatformInterruptControllerName);
	}

	// Put the two arrays into the property table.
	service->setProperty(gIOInterruptControllersKey, controller);
	service->setProperty(gIOInterruptSpecifiersKey, specifier);
	controller->release();
	specifier->release();
}

void
IOCPUInterruptController::enableCPUInterrupt(IOCPU *cpu)
{
	IOInterruptHandler handler = OSMemberFunctionCast(
		IOInterruptHandler, this, &IOCPUInterruptController::handleInterrupt);

	assert(numCPUs > 0);

	ml_install_interrupt_handler(cpu, cpu->getCPUNumber(), this, handler, NULL);

	IOTakeLock(vectors[0].interruptLock);
	++enabledCPUs;

	if (enabledCPUs == numCPUs) {
		IOService::cpusRunning();
		thread_wakeup(this);
	}
	IOUnlock(vectors[0].interruptLock);
}

IOReturn
IOCPUInterruptController::registerInterrupt(IOService *nub,
    int source,
    void *target,
    IOInterruptHandler handler,
    void *refCon)
{
	IOInterruptVector *vector;

	// Interrupts must be enabled, as this can allocate memory.
	assert(ml_get_interrupts_enabled() == TRUE);

	if (source >= numSources) {
		return kIOReturnNoResources;
	}

	vector = &vectors[source];

	// Get the lock for this vector.
	IOTakeLock(vector->interruptLock);

	// Make sure the vector is not in use.
	if (vector->interruptRegistered) {
		IOUnlock(vector->interruptLock);
		return kIOReturnNoResources;
	}

	// Fill in vector with the client's info.
	vector->handler = handler;
	vector->nub     = nub;
	vector->source  = source;
	vector->target  = target;
	vector->refCon  = refCon;

	// Get the vector ready.  It starts hard disabled.
	vector->interruptDisabledHard = 1;
	vector->interruptDisabledSoft = 1;
	vector->interruptRegistered   = 1;

	IOUnlock(vector->interruptLock);

	IOTakeLock(vectors[0].interruptLock);
	if (enabledCPUs != numCPUs) {
		assert_wait(this, THREAD_UNINT);
		IOUnlock(vectors[0].interruptLock);
		thread_block(THREAD_CONTINUE_NULL);
	} else {
		IOUnlock(vectors[0].interruptLock);
	}

	return kIOReturnSuccess;
}

IOReturn
IOCPUInterruptController::getInterruptType(IOService */*nub*/,
    int /*source*/,
    int *interruptType)
{
	if (interruptType == NULL) {
		return kIOReturnBadArgument;
	}

	*interruptType = kIOInterruptTypeLevel;

	return kIOReturnSuccess;
}

IOReturn
IOCPUInterruptController::enableInterrupt(IOService */*nub*/,
    int /*source*/)
{
//  ml_set_interrupts_enabled(true);
	return kIOReturnSuccess;
}

IOReturn
IOCPUInterruptController::disableInterrupt(IOService */*nub*/,
    int /*source*/)
{
//  ml_set_interrupts_enabled(false);
	return kIOReturnSuccess;
}

IOReturn
IOCPUInterruptController::causeInterrupt(IOService */*nub*/,
    int /*source*/)
{
	ml_cause_interrupt();
	return kIOReturnSuccess;
}

IOReturn
IOCPUInterruptController::handleInterrupt(void */*refCon*/,
    IOService */*nub*/,
    int source)
{
	IOInterruptVector *vector;

	vector = &vectors[source];

	if (!vector->interruptRegistered) {
		return kIOReturnInvalid;
	}

	vector->handler(vector->target, vector->refCon,
	    vector->nub, vector->source);

	return kIOReturnSuccess;
}

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */