ccn.h   [plain text]


/*
 *  ccn.h
 *  corecrypto
 *
 *  Created by Michael Brouwer on 7/25/10.
 *  Copyright 2010,2011 Apple Inc. All rights reserved.
 *
 */

#ifndef _CORECRYPTO_CCN_H_
#define _CORECRYPTO_CCN_H_

#include <corecrypto/cc_config.h>
#include <corecrypto/cc_priv.h>  /* TODO: Get rid of this include in this header. */
#include <stdint.h>

typedef uint8_t cc_byte;
typedef size_t cc_size;

#if  CCN_UNIT_SIZE == 8
typedef uint64_t cc_unit;          // 64 bit unit
//typedef uint128_t cc_dunit;         // 128 bit double width unit
#define CCN_LOG2_BITS_PER_UNIT  6  // 2^6 = 64 bits
#define CC_UNIT_C(x) UINT64_C(x)
#elif  CCN_UNIT_SIZE == 4
typedef uint32_t cc_unit;          // 32 bit unit
typedef uint64_t cc_dunit;         // 64 bit double width unit
#define CCN_LOG2_BITS_PER_UNIT  5  // 2^5 = 32 bits
#define CC_UNIT_C(x) UINT32_C(x)
#elif CCN_UNIT_SIZE == 2
typedef uint16_t cc_unit;          // 16 bit unit
typedef uint32_t cc_dunit;         // 32 bit double width unit
#define CCN_LOG2_BITS_PER_UNIT  4  // 2^4 = 16 bits
#define CC_UNIT_C(x) UINT16_C(x)
#elif CCN_UNIT_SIZE == 1
typedef uint8_t cc_unit;           // 8 bit unit
typedef uint16_t cc_dunit;         // 16 bit double width unit
#define CCN_LOG2_BITS_PER_UNIT  3  // 2^3 = 8 bits
#define CC_UNIT_C(x) UINT8_C(x)
#else
#error invalid CCN_UNIT_SIZE
#endif

// All mp types have units in little endian unit order.
typedef cc_unit *ccn_t;                // n unit long mp
typedef cc_unit *ccnp1_t;              // n + 1 unit long mp
typedef cc_unit *cc2n_t;               // 2 * n unit long mp
typedef cc_unit *cc2np2_t;             // 2 * n + 2 unit long mp
typedef const cc_unit *ccn_in_t;       // n unit long mp
typedef const cc_unit *ccnp1_in_t;     // n + 1 unit long mp
typedef const cc_unit *cc2n_in_t;      // 2 * n unit long mp
typedef const cc_unit *cc2np2_in_t;    // 2 * n + 2 unit long mp

#define CCN_UNIT_BITS  (sizeof(cc_unit) * 8)
#define CCN_UNIT_MASK  ((cc_unit)~0)


/* Conversions between n sizeof and bits */

/* Returns the sizeof a ccn vector of length _n_ units. */
#define ccn_sizeof_n(_n_)  (sizeof(cc_unit) * (_n_))

/* Returns the count (n) of a ccn vector that can represent _bits_. */
#define ccn_nof(_bits_)  (((_bits_) + CCN_UNIT_BITS - 1) / CCN_UNIT_BITS)

/* Returns the sizeof a ccn vector that can represent _bits_. */
#define ccn_sizeof(_bits_)  (ccn_sizeof_n(ccn_nof(_bits_)))

/* Returns the count (n) of a ccn vector that can represent _size_ bytes. */
#define ccn_nof_size(_size_)  (((_size_) + CCN_UNIT_SIZE - 1) / CCN_UNIT_SIZE)

/* Return the max number of bits a ccn vector of _n_ units can hold. */
#define ccn_bitsof_n(_n_)  ((_n_) * CCN_UNIT_BITS)

/* Return the max number of bits a ccn vector of _size_ bytes can hold. */
#define ccn_bitsof_size(_size_)  ((_size_) * 8)

/* Return the size of a ccn of size bytes in bytes. */
#define ccn_sizeof_size(_size_)  ccn_sizeof_n(ccn_nof_size(_size_))

/* Returns the value of bit _k_ of _ccn_, both are only evaluated once.  */
#define ccn_bit(_ccn_, _k_) ({__typeof__ (_k_) __k = (_k_); \
    1 & ((_ccn_)[__k / CCN_UNIT_BITS] >> (__k & (CCN_UNIT_BITS - 1)));})

#define ccn_set_bit(_ccn_, _k_, _v_) ({__typeof__ (_k_) __k = (_k_);        \
    if (_v_)                                                                \
        (_ccn_)[__k/CCN_UNIT_BITS] |= CC_UNIT_C(1) << (__k & (CCN_UNIT_BITS - 1));     \
    else                                                                    \
        (_ccn_)[__k/CCN_UNIT_BITS] &= ~(CC_UNIT_C(1) << (__k & (CCN_UNIT_BITS - 1)));  \
    })

/* Macros for making ccn constants.  You must use list of CCN64_C() instances
 separated by commas, with an optional smaller sized CCN32_C, CCN16_C, or
 CCN8_C() instance at the end of the list, when making macros to declare
 larger sized constants. */
#define CCN8_C(a0) CC_UNIT_C(0x##a0)

#if CCN_UNIT_SIZE >= 2
#define CCN16_C(a1,a0) CC_UNIT_C(0x##a1##a0)
#define ccn16_v(a0)  (a0)
#elif CCN_UNIT_SIZE == 1
#define CCN16_C(a1,a0) CCN8_C(a0),CCN8_C(a1)
#define ccn16_v(a0)  (a0 & UINT8_C(0xff)),(a0 >> 8)
#endif

#if CCN_UNIT_SIZE >= 4
#define CCN32_C(a3,a2,a1,a0) CC_UNIT_C(0x##a3##a2##a1##a0)
#define ccn32_v(a0)  (a0)
#else
#define CCN32_C(a3,a2,a1,a0) CCN16_C(a1,a0),CCN16_C(a3,a2)
#define ccn32_v(a0)  ccn16_v(a0 & UINT16_C(0xffff)),ccn16_v(a0 >> 16)
#endif

#if CCN_UNIT_SIZE == 8
#define CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0) CC_UNIT_C(0x##a7##a6##a5##a4##a3##a2##a1##a0)
#define CCN40_C(a4,a3,a2,a1,a0) CC_UNIT_C(0x##a4##a3##a2##a1##a0)
#define ccn64_v(a0)  (a0)
//#define ccn64_32(a1,a0)  ((a1 << 32) | a0)
//#define ccn_uint64(a,i) (a[i])
#else
#define CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0) CCN32_C(a3,a2,a1,a0),CCN32_C(a7,a6,a5,a4)
#define CCN40_C(a4,a3,a2,a1,a0) CCN32_C(a3,a2,a1,a0),CCN8_C(a4)
#define ccn64_v(a0)  ccn32_v((uint64_t)a0 & UINT32_C(0xffffffff)),ccn32_v((uint64_t)a0 >> 32)
//#define ccn64_32(a1,a0)  ccn32_v(a0),ccn32_v(a1)
//#define ccn_uint64(a,i) ((uint64_t)ccn_uint32(a, i << 1 + 1) << 32 | (uint64_t)ccn_uint32(a, i << 1))
#endif

/* Macro's for reading uint32_t and uint64_t from ccns, the index is in 32 or
   64 bit units respectively. */
#if CCN_UNIT_SIZE == 8
//#define ccn_uint16(a,i) ((i & 3) == 3 ? ((uint16_t)(a[i >> 2] >> 48)) : \
//    (i & 3) == 2 ? ((uint16_t)(a[i >> 2] >> 32) & UINT16_C(0xffff)) : \
//    (i & 3) == 1 ? ((uint16_t)(a[i >> 2] >> 16) & UINT16_C(0xffff)) : \
//    ((uint16_t)(a[i >> 1] & UINT16_C(0xffff))))
//#define ccn_uint32(a,i) (i & 1 ? ((uint32_t)(a[i >> 1] >> 32)) : ((uint32_t)(a[i >> 1] & UINT32_C(0xffffffff))))
#elif CCN_UNIT_SIZE == 4
//#define ccn16_v(a0)  (a0)
//#define ccn32_v(a0)  (a0)
//#define ccn_uint16(a,i) (i & 1 ? ((uint16_t)(a[i >> 1] >> 16)) : ((uint16_t)(a[i >> 1] & UINT16_C(0xffff))))
//#define ccn_uint32(a,i) (a[i])
#elif CCN_UNIT_SIZE == 2
//#define ccn16_v(a0)  (a0)
//#define ccn32_v(a0,a1)  (a1,a0)
//#define ccn_uint16(a,i) (a[i])
//#define ccn_uint32(a,i) (((uint32_t)a[i << 1 + 1]) << 16 | (uint32_t)a[i << 1]))
#elif CCN_UNIT_SIZE == 1
//#define ccn16_v(a0)  (a0 & UINT8_C(0xff)),(a0 >> 8)
//#define ccn_uint16(a,i) ((uint16_t)((a[i << 1 + 1] << 8) | a[i << 1]))
//#define ccn_uint32(a,i) ((uint32_t)ccn_uint16(a, i << 1 + 1) << 16 | (uint32_t)ccn_uint16(a, i << 1))
#endif

/* Macro's for reading uint32_t and uint64_t from ccns, the index is in 32 or
 64 bit units respectively. */
#if CCN_UNIT_SIZE == 8

#define ccn64_32(a1,a0) (((cc_unit)a1) << 32 | ((cc_unit)a0))
#define ccn32_32(a0) a0
#if __LITTLE_ENDIAN__
#define ccn32_32_parse(p,i) (((uint32_t *)p)[i])
#else
#define ccn32_32_parse(p,i) (((uint32_t *)p)[i^1])
#endif
#define ccn32_32_null 0

#define ccn64_64(a0) a0
#define ccn64_64_parse(p,i) p[i]
#define ccn64_64_null 0

#elif CCN_UNIT_SIZE == 4

#define ccn32_32(a0) a0
#define ccn32_32_parse(p,i) p[i]
#define ccn32_32_null 0
#define ccn64_32(a1,a0) ccn32_32(a0),ccn32_32(a1)

#define ccn64_64(a1,a0) a0,a1
#define ccn64_64_parse(p,i) p[1+(i<<1)],p[i<<1]
#define ccn64_64_null 0,0

#elif CCN_UNIT_SIZE == 2

#define ccn32_32(a1,a0) a0,a1
#define ccn32_32_parse(p,i) p[1+(i<<1)],p[i<<1]
#define ccn32_32_null 0,0
#define ccn64_32(a3,a2,a1,a0) ccn32_32(a1,a0),ccn32_32(a3,a2)

#define ccn64_64(a3,a2,a1,a0) a0,a1,a2,a3
#define ccn64_64_parse(p,i) p[3+(i<<2)],p[2+(i<<2)],p[1+(i<<2)],p[i<<2]
#define ccn64_64_null 0,0,0,0

#elif CCN_UNIT_SIZE == 1

#define ccn32_32(a3,a2,a1,a0) a0,a1,a2,a3
#define ccn32_32_parse(p,i) p[3+(i<<2)],p[2+(i<<2)],p[1+(i<<2)],p[i<<2]
#define ccn32_32_null 0,0,0,0
#define ccn64_32(a7,a6,a5,a4,a3,a2,a1,a0) ccn32_32(a3,a2,a1,a0),ccn32_32(a7,a6,a5,a4)

#define ccn64_64(a7,a6,a5,a4,a3,a2,a1,a0) a0,a1,a2,a3,a4,a5,a6,a7
#define ccn64_64_parse(p,i)  p[7+(i<<3)],p[6+(i<<3)],p[5+(i<<3)],p[4+(i<<3)],p[3+(i<<3)],p[2+(i<<3)],p[1+(i<<3)],p[i<<3]
#define ccn64_64_null  0,0,0,0,0,0,0,0

#endif


/* Macros to construct fixed size ccn arrays from 64 or 32 bit quantities. */
#define ccn192_64(a2,a1,a0) ccn64_64(a0),ccn64_64(a1),ccn64_64(a2)
#define ccn224_32(a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn32_32(a6)
#define ccn256_32(a7,a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn64_32(a7,a6)
#define ccn384_32(a11,a10,a9,a8,a7,a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn64_32(a7,a6),ccn64_32(a9,a8),ccn64_32(a11,a10)


#define CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
    CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0),\
    CCN64_C(b7,b6,b5,b4,b3,b2,b1,b0),\
    CCN64_C(c7,c6,c5,c4,c3,c2,c1,c0)

#define CCN200_C(d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
    CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
    CCN8_C(d0)

#define CCN224_C(d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
    CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
    CCN32_C(d3,d2,d1,d0)

#define CCN232_C(d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
    CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
    CCN40_C(d4,d3,d2,d1,d0)

#define CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
    CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
    CCN64_C(d7,d6,d5,d4,d3,d2,d1,d0)

#define CCN264_C(e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
    CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
    CCN8_C(e0)

#define CCN384_C(f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
    CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
    CCN64_C(e7,e6,e5,e4,e3,e2,e1,e0),\
    CCN64_C(f7,f6,f5,f4,f3,f2,f1,f0)

#define CCN392_C(g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
    CCN384_C(f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
    CCN8_C(g0)

#define CCN528_C(i1,i0,h7,h6,h5,h4,h3,h2,h1,h0,g7,g6,g5,g4,g3,g2,g1,g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
    CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
    CCN256_C(h7,h6,h5,h4,h3,h2,h1,h0,g7,g6,g5,g4,g3,g2,g1,g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0),\
    CCN16_C(i1,i0)

#define CCN192_N  ccn_nof(192)
#define CCN224_N  ccn_nof(224)
#define CCN256_N  ccn_nof(256)
#define CCN384_N  ccn_nof(384)
#define CCN521_N  ccn_nof(521)

#if defined(_ARM_ARCH_6) || defined(_ARM_ARCH_7)
#if CCN_USE_BUILTIN_CLZ
CC_INLINE CC_CONST
cc_unit cc_clz(cc_unit data)
{
    return __builtin_clzl(data);
}
#else
CC_INLINE CC_CONST
cc_unit cc_clz(cc_unit data)
{
    __asm__ ("clz %0, %1\n" : "=l" (data) : "l" (data));
    return data;
}
#endif /* CCN_USE_BUILTIN_CLZ */
#endif /* !defined(_ARM_ARCH_6) && !defined(_ARM_ARCH_7) */


#if CCN_N_INLINE
/* Return the number of used units after stripping leading 0 units.  */
CC_INLINE CC_PURE CC_NONNULL2 
cc_size ccn_n(cc_size n, const cc_unit *s) {
#if 1
    while (n-- && s[n] == 0) {}
    return n + 1;
#elif 0
    while (n && s[n - 1] == 0) {
        n -= 1;
    }
    return n;
#else
    if (n & 1) {
        if (s[n - 1])
            return n;
        n &= ~1;
    }
    if (n & 2) {
        cc_unit a[2] = { s[n - 1], s[n - 2] };
        if (a[0])
            return n - 1;
        if (a[1])
            return n - 2;
        n &= ~2;
    }
    while (n) {
        cc_unit a[4] = { s[n - 1], s[n - 2], s[n - 3], s[n - 4] };
        if (a[0])
            return n - 1;
        if (a[1])
            return n - 2;
        if (a[2])
            return n - 3;
        if (a[3])
            return n - 4;
        n -= 4;
    }
    return n;
#endif
}
#else
/* Return the number of used units after stripping leading 0 units.  */
CC_PURE CC_NONNULL2
cc_size ccn_n(cc_size n, const cc_unit *s);
#endif

/* s >> k -> r return bits shifted out of least significant word in bits [0, n>
 { N bit, scalar -> N bit } N = n * sizeof(cc_unit) * 8
 the _multi version doesn't return the shifted bits, but does support multiple
 word shifts.  */
CC_NONNULL((2,3))
cc_unit ccn_shift_right(cc_size n, cc_unit *r, const cc_unit *s, size_t k);
CC_NONNULL((2,3))
void ccn_shift_right_multi(cc_size n, cc_unit *r,const cc_unit *s, size_t k);

/* s << k -> r return bits shifted out of most significant word in bits [0, n>
 { N bit, scalar -> N bit } N = n * sizeof(cc_unit) * 8
 the _multi version doesn't return the shifted bits, but does support multiple
 word shifts */
CC_NONNULL((2,3))
cc_unit ccn_shift_left(cc_size n, cc_unit *r, const cc_unit *s, size_t k);
CC_NONNULL((2,3))
void ccn_shift_left_multi(cc_size n, cc_unit *r, const cc_unit *s, size_t k);

/* s == 0 -> return 0 | s > 0 -> return index (starting at 1) of most
 significant bit that is 1.
 { N bit } N = n * sizeof(cc_unit) * 8 */
CC_NONNULL2
size_t ccn_bitlen(cc_size n, const cc_unit *s);

/* Returns the number of bits which are zero before the first one bit
   counting from least to most significant bit. */
size_t ccn_trailing_zeros(cc_size n, const cc_unit *s);

/* s == 0 -> return true | s != 0 -> return false
 { N bit } N = n * sizeof(cc_unit) * 8 */
#define ccn_is_zero(_n_, _s_) (!ccn_n(_n_, _s_))

/* s == 1 -> return true | s != 1 -> return false
 { N bit } N = n * sizeof(cc_unit) * 8 */
#define ccn_is_one(_n_, _s_) (ccn_n(_n_, _s_) == 1 && _s_[0] == 1)

#if CCN_CMP_INLINE
CC_INLINE CC_PURE CC_NONNULL((2,3))
int ccn_cmp(cc_size n, const cc_unit *s, const cc_unit *t) {
	while (n) {
        n--;
        cc_unit si = s[n];
        cc_unit ti = t[n];
        if (si != ti)
            return si > ti ? 1 : -1;
	}
	return n;
}
#else
/* s < t -> return - 1 | s == t -> return 0 | s > t -> return 1
 { N bit, N bit -> int } N = n * sizeof(cc_unit) * 8 */
CC_PURE CC_NONNULL((2,3))
int ccn_cmp(cc_size n, const cc_unit *s, const cc_unit *t);
#endif

/* s < t -> return - 1 | s == t -> return 0 | s > t -> return 1
 { N bit, M bit -> int } N = ns * sizeof(cc_unit) * 8  M = nt * sizeof(cc_unit) * 8 */
CC_INLINE
int ccn_cmpn(cc_size ns, const cc_unit *s,
             cc_size nt, const cc_unit *t) {
    if (ns > nt) {
        return 1;
    } else if (ns < nt) {
        return -1;
    }
    return ccn_cmp(ns, s, t);
}

/* s - t -> r return 1 iff t > s
 { N bit, N bit -> N bit } N = n * sizeof(cc_unit) * 8 */
CC_NONNULL((2,3,4))
cc_unit ccn_sub(cc_size n, cc_unit *r, const cc_unit *s, const cc_unit *t);

/* s - v -> r return 1 iff v > s return 0 otherwise.
 { N bit, sizeof(cc_unit) * 8 bit -> N bit } N = n * sizeof(cc_unit) * 8 */
CC_NONNULL((2,3))
cc_unit ccn_sub1(cc_size n, cc_unit *r, const cc_unit *s, cc_unit v);

/* s - t -> r return 1 iff t > s
 { N bit, NT bit -> N bit  NT <= N} N = n * sizeof(cc_unit) * 8 */
CC_INLINE
CC_NONNULL((2,3,5))
cc_unit ccn_subn(cc_size n, cc_unit *r,const cc_unit *s,
             cc_size nt, const cc_unit *t) {
    return ccn_sub1(n - nt, r + nt, s + nt, ccn_sub(nt, r, s, t));
}


/* s + t -> r return carry if result doesn't fit in n bits.
 { N bit, N bit -> N bit } N = n * sizeof(cc_unit) * 8 */
CC_NONNULL((2,3,4))
cc_unit ccn_add(cc_size n, cc_unit *r, const cc_unit *s, const cc_unit *t);

/* s + v -> r return carry if result doesn't fit in n bits.
 { N bit, sizeof(cc_unit) * 8 bit -> N bit } N = n * sizeof(cc_unit) * 8 */
CC_NONNULL((2,3))
cc_unit ccn_add1(cc_size n, cc_unit *r, const cc_unit *s, cc_unit v);

/* s + t -> r return carry if result doesn't fit in n bits
 { N bit, NT bit -> N bit  NT <= N} N = n * sizeof(cc_unit) * 8 */
CC_INLINE
CC_NONNULL((2,3,5))
cc_unit ccn_addn(cc_size n, cc_unit *r, const cc_unit *s,
                 cc_size nt, const cc_unit *t) {
    return ccn_add1(n - nt, r + nt, s + nt, ccn_add(nt, r, s, t));
}

CC_NONNULL((4,5))
void ccn_divmod(cc_size n, cc_unit *q, cc_unit *r, const cc_unit *s, const cc_unit *t);


CC_NONNULL((2,3,4))
void ccn_lcm(cc_size n, cc_unit *r2n, const cc_unit *s, const cc_unit *t);


/* s * t -> r
 { n bit, n bit -> 2 * n bit } n = count * sizeof(cc_unit) * 8 */
CC_NONNULL((2,3,4))
void ccn_mul(cc_size n, cc_unit *r_2n, const cc_unit *s, const cc_unit *t);

CC_NONNULL((2,3))
cc_unit ccn_mul1(cc_size n, cc_unit *r, const cc_unit *s, const cc_unit v);
CC_NONNULL((2,3))
cc_unit ccn_addmul1(cc_size n, cc_unit *r, const cc_unit *s, const cc_unit v);

#if 0
/* a % d -> n
   {2 * n bit, n bit -> n bit } n = count * sizeof(cc_unit) * 8 */
CC_NONNULL((2,3,4))
void ccn_mod(cc_size n, cc_unit *r, const cc_unit *a_2n, const cc_unit *d);
#endif

/* r = gcd(s, t).
   N bit, N bit -> N bit */
CC_NONNULL((2,3,4))
void ccn_gcd(cc_size n, cc_unit *r, const cc_unit *s, const cc_unit *t);

/* r = gcd(s, t).
 N bit, N bit -> O bit */
CC_NONNULL((2,4,6))
void ccn_gcdn(cc_size rn, cc_unit *r, cc_size sn, const cc_unit *s, cc_size tn, const cc_unit *t);

/* r = (data, len) treated as a big endian byte array, return -1 if data
 doesn't fit in r, return 0 otherwise. */
CC_NONNULL((2,4))
int ccn_read_uint(cc_size n, cc_unit *r, size_t data_size, const uint8_t *data);

/* r = (data, len) treated as a big endian byte array, return -1 if data
 doesn't fit in r, return 0 otherwise. 
 ccn_read_uint strips leading zeroes and doesn't care about sign. */
#define ccn_read_int(n, r, data_size, data) ccn_read_uint(n, r, data_size, data)

/* Return actual size in bytes needed to serialize s. */
CC_PURE CC_NONNULL2
size_t ccn_write_uint_size(cc_size n, const cc_unit *s);

/* Serialize s, to out.
   First byte of byte stream is the m.s. byte of s,
   regardless of the size of cc_unit.

   No assumption is made about the alignment of out.

   The out_size argument should be the value returned from ccn_write_uint_size,
   and is also the exact number of bytes this function will write to out.
   If out_size if less than the value returned by ccn_write_uint_size, only the
   first out_size non-zero most significant octects of s will be written. */
CC_NONNULL((2,4))
void ccn_write_uint(cc_size n, const cc_unit *s, size_t out_size, void *out);


CC_INLINE CC_NONNULL((2,4))
cc_size ccn_write_uint_padded(cc_size n, const cc_unit* s, size_t out_size, uint8_t* to)
{
    size_t bytesInKey = ccn_write_uint_size(n, s);
    cc_size offset = (out_size > bytesInKey) ? out_size - bytesInKey : 0;

    cc_zero(offset, to);
    ccn_write_uint(n, s, out_size - offset, to + offset);

    return offset;
}


/*  Return actual size in bytes needed to serialize s as int 
    (adding leading zero if high bit is set). */
CC_PURE CC_NONNULL2
size_t ccn_write_int_size(cc_size n, const cc_unit *s);

/*  Serialize s, to out.
    First byte of byte stream is the m.s. byte of s,
    regardless of the size of cc_unit.

    No assumption is made about the alignment of out.

    The out_size argument should be the value returned from ccn_write_int_size,
    and is also the exact number of bytes this function will write to out.
    If out_size if less than the value returned by ccn_write_int_size, only the
    first out_size non-zero most significant octects of s will be written. */
CC_NONNULL((2,4))
void ccn_write_int(cc_size n, const cc_unit *s, size_t out_size, void *out);


/* s^2 -> r
 { n bit -> 2 * n bit } */
CC_INLINE CC_NONNULL((2,3))
void ccn_sqr(cc_size n, cc_unit *r, const cc_unit *s) {
    ccn_mul(n, r, s, s);
}

/* s -> r
 { n bit -> n bit } */
CC_NONNULL((2,3))
void ccn_set(cc_size n, cc_unit *r, const cc_unit *s);

CC_INLINE CC_NONNULL2
void ccn_zero(cc_size n, cc_unit *r) {
    CC_BZERO(r, ccn_sizeof_n(n));
}

/* Burn (zero fill or otherwise overwrite) n cc_units of stack space. */
void ccn_burn_stack(cc_size n);

CC_INLINE CC_NONNULL2
void ccn_seti(cc_size n, cc_unit *r, cc_unit v) {
    /* assert(n > 0); */
    r[0] = v;
    ccn_zero(n - 1, r + 1);
}

CC_INLINE CC_NONNULL((2,4))
void ccn_setn(cc_size n, cc_unit *r, CC_UNUSED const cc_size s_size, const cc_unit *s) {
    /* FIXME: assert not available in kernel.
    assert(n > 0);
    assert(s_size > 0);
    assert(s_size <= n);
    */
    ccn_set(s_size, r, s);
    ccn_zero(n - s_size, r + s_size);
}

#define CC_SWAP_HOST_BIG_64(x) \
    ((uint64_t)((((uint64_t)(x) & 0xff00000000000000ULL) >> 56) | \
    (((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \
    (((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \
    (((uint64_t)(x) & 0x000000ff00000000ULL) >>  8) | \
    (((uint64_t)(x) & 0x00000000ff000000ULL) <<  8) | \
    (((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \
    (((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \
    (((uint64_t)(x) & 0x00000000000000ffULL) << 56)))
#define CC_SWAP_HOST_BIG_32(x) \
    ((((x) & 0xff000000) >> 24) | \
    (((x) & 0x00ff0000) >>  8) | \
    (((x) & 0x0000ff00) <<  8) | \
    (((x) & 0x000000ff) <<  24) )
#define CC_SWAP_HOST_BIG_16(x) \
    (((x) & 0xff00) >>  8) | \
    (((x) & 0x00ff) <<  8) | \

/* This should probably move if we move ccn_swap out of line. */
#if CCN_UNIT_SIZE == 8
#define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_64(x)
#elif CCN_UNIT_SIZE == 4
#define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_32(x)
#elif CCN_UNIT_SIZE == 2
#define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_16(x)
#elif CCN_UNIT_SIZE == 1
#define CC_UNIT_TO_BIG(x) (x)
#else
#error unsupported CCN_UNIT_SIZE
#endif

/* Swap units in r in place from cc_unit vector byte order to big endian byte order (or back). */
CC_INLINE CC_NONNULL2
void ccn_swap(cc_size n, cc_unit *r) {
    cc_unit *e;
    for (e = r + n - 1; r < e; ++r, --e) {
        cc_unit t = CC_UNIT_TO_BIG(*r);
        *r = CC_UNIT_TO_BIG(*e);
        *e = t;
    }
    if (n & 1)
        *r = CC_UNIT_TO_BIG(*r);
}

CC_INLINE CC_NONNULL2 CC_NONNULL3 CC_NONNULL4
void ccn_xor(cc_size n, cc_unit *r, const cc_unit *s, const cc_unit *t) {
    while (n--) {
        r[n] = s[n] ^ t[n];
    }
}

/* Debugging */
CC_NONNULL2
void ccn_print(cc_size n, const cc_unit *s);
CC_NONNULL3
void ccn_lprint(cc_size n, const char *label, const cc_unit *s);

/* Forward declaration so we don't depend on ccrng.h. */
struct ccrng_state;

#if 0
CC_INLINE CC_NONNULL((2,3))
int ccn_random(cc_size n, cc_unit *r, struct ccrng_state *rng) {
    return (RNG)->generate((RNG), ccn_sizeof_n(n), (unsigned char *)r);
}
#else
#define ccn_random(_n_,_r_,_ccrng_ctx_) \
    ccrng_generate(_ccrng_ctx_, ccn_sizeof_n(_n_), (unsigned char *)_r_);
#endif

/* Make a ccn of size ccn_nof(nbits) units with up to nbits sized random value. */
CC_NONNULL((2,3))
int ccn_random_bits(cc_size nbits, cc_unit *r, struct ccrng_state *rng);

#endif /* _CORECRYPTO_CCN_H_ */