parse.y   [plain text]


/* Source code parsing and tree node generation for the GNU compiler
   for the Java(TM) language.
   Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
   Free Software Foundation, Inc.
   Contributed by Alexandre Petit-Bianco (apbianco@cygnus.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.

Java and all Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.
The Free Software Foundation is independent of Sun Microsystems, Inc.  */

/* This file parses java source code and issues a tree node image
suitable for code generation (byte code and targeted CPU assembly
language).

The grammar conforms to the Java grammar described in "The Java(TM)
Language Specification. J. Gosling, B. Joy, G. Steele. Addison Wesley
1996, ISBN 0-201-63451-1"

The following modifications were brought to the original grammar:

method_body: added the rule '| block SC_TK'
static_initializer: added the rule 'static block SC_TK'.

Note: All the extra rules described above should go away when the
      empty_statement rule will work.

statement_nsi: 'nsi' should be read no_short_if.

Some rules have been modified to support JDK1.1 inner classes
definitions and other extensions.  */

%{
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include <dirent.h>
#include "tree.h"
#include "rtl.h"
#include "real.h"
#include "obstack.h"
#include "toplev.h"
#include "pretty-print.h"
#include "diagnostic.h"
#include "flags.h"
#include "java-tree.h"
#include "jcf.h"
#include "lex.h"
#include "parse.h"
#include "zipfile.h"
#include "convert.h"
#include "buffer.h"
#include "function.h"
#include "except.h"
#include "ggc.h"
#include "debug.h"
#include "tree-inline.h"
#include "tree-dump.h"
#include "cgraph.h"
#include "target.h"

/* Local function prototypes */
static char *java_accstring_lookup (int);
static const char *accessibility_string (int);
static void  classitf_redefinition_error (const char *,tree, tree, tree);
static void  variable_redefinition_error (tree, tree, tree, int);
static tree  create_class (int, tree, tree, tree);
static tree  create_interface (int, tree, tree);
static void  end_class_declaration (int);
static tree  find_field (tree, tree);
static tree lookup_field_wrapper (tree, tree);
static int   duplicate_declaration_error_p (tree, tree, tree);
static void  register_fields (int, tree, tree);
static tree parser_qualified_classname (tree);
static int  parser_check_super (tree, tree, tree);
static int  parser_check_super_interface (tree, tree, tree);
static void check_modifiers_consistency (int);
static tree lookup_cl (tree);
static tree lookup_java_method2 (tree, tree, int);
static tree method_header (int, tree, tree, tree);
static void fix_method_argument_names (tree ,tree);
static tree method_declarator (tree, tree);
static void parse_warning_context (tree cl, const char *gmsgid, ...) ATTRIBUTE_GCC_DIAG(2,3);
#ifdef USE_MAPPED_LOCATION
static void issue_warning_error_from_context
  (source_location, const char *gmsgid, va_list *);
#else
static void issue_warning_error_from_context
  (tree, const char *gmsgid, va_list *);
#endif
static void parse_ctor_invocation_error (void);
static tree parse_jdk1_1_error (const char *);
static void complete_class_report_errors (jdep *);
static int process_imports (void);
static void read_import_dir (tree);
static int find_in_imports_on_demand (tree, tree);
static void find_in_imports (tree, tree);
static bool inner_class_accessible (tree, tree);
static void check_inner_class_access (tree, tree, tree);
static int check_pkg_class_access (tree, tree, bool, tree);
static tree resolve_package (tree, tree *, tree *);
static tree resolve_class (tree, tree, tree, tree);
static void declare_local_variables (int, tree, tree);
static void dump_java_tree (enum tree_dump_index, tree);
static void source_start_java_method (tree);
static void source_end_java_method (void);
static tree find_name_in_single_imports (tree);
static void check_abstract_method_header (tree);
static tree lookup_java_interface_method2 (tree, tree);
static tree resolve_expression_name (tree, tree *);
static tree maybe_create_class_interface_decl (tree, tree, tree, tree);
static int check_class_interface_creation (int, int, tree, tree, tree, tree);
static tree patch_method_invocation (tree, tree, tree, int, int *, tree *);
static tree resolve_and_layout (tree, tree);
static tree qualify_and_find (tree, tree, tree);
static tree resolve_no_layout (tree, tree);
static int invocation_mode (tree, int);
static tree find_applicable_accessible_methods_list (int, tree, tree, tree);
static void search_applicable_methods_list (int, tree, tree, tree, tree *, tree *);
static tree find_most_specific_methods_list (tree, tree);
static int argument_types_convertible (tree, tree);
static tree patch_invoke (tree, tree, tree);
static int maybe_use_access_method (int, tree *, tree *);
static tree lookup_method_invoke (int, tree, tree, tree, tree);
static tree register_incomplete_type (int, tree, tree, tree);
static tree check_inner_circular_reference (tree, tree);
static tree check_circular_reference (tree);
static tree obtain_incomplete_type (tree);
static tree java_complete_lhs (tree);
static tree java_complete_tree (tree);
static tree maybe_generate_pre_expand_clinit (tree);
static int analyze_clinit_body (tree, tree);
static int maybe_yank_clinit (tree);
static void start_complete_expand_method (tree);
static void java_complete_expand_method (tree);
static void java_expand_method_bodies (tree);
static int  unresolved_type_p (tree, tree *);
static void create_jdep_list (struct parser_ctxt *);
static tree build_expr_block (tree, tree);
static tree enter_block (void);
static tree exit_block (void);
static tree lookup_name_in_blocks (tree);
static void maybe_absorb_scoping_blocks (void);
static tree build_method_invocation (tree, tree);
static tree build_new_invocation (tree, tree);
static tree build_assignment (int, int, tree, tree);
static tree build_binop (enum tree_code, int, tree, tree);
static tree patch_assignment (tree, tree);
static tree patch_binop (tree, tree, tree, int);
static tree build_unaryop (int, int, tree);
static tree build_incdec (int, int, tree, int);
static tree patch_unaryop (tree, tree);
static tree build_cast (int, tree, tree);
static tree build_null_of_type (tree);
static tree patch_cast (tree, tree);
static int valid_ref_assignconv_cast_p (tree, tree, int);
static int valid_builtin_assignconv_identity_widening_p (tree, tree);
static int valid_cast_to_p (tree, tree);
static int valid_method_invocation_conversion_p (tree, tree);
static tree try_builtin_assignconv (tree, tree, tree);
static tree try_reference_assignconv (tree, tree);
static tree build_unresolved_array_type (tree);
static int build_type_name_from_array_name (tree, tree *);
static tree build_array_from_name (tree, tree, tree, tree *);
static tree build_array_ref (int, tree, tree);
static tree patch_array_ref (tree);
#ifdef USE_MAPPED_LOCATION
static tree make_qualified_name (tree, tree, source_location);
#else
static tree make_qualified_name (tree, tree, int);
#endif
static tree merge_qualified_name (tree, tree);
static tree make_qualified_primary (tree, tree, int);
static int resolve_qualified_expression_name (tree, tree *, tree *, tree *);
static void qualify_ambiguous_name (tree);
static tree resolve_field_access (tree, tree *, tree *);
static tree build_newarray_node (tree, tree, int);
static tree patch_newarray (tree);
static tree resolve_type_during_patch (tree);
static tree build_this (int);
static tree build_wfl_wrap (tree, int);
static tree build_return (int, tree);
static tree patch_return (tree);
static tree maybe_access_field (tree, tree, tree);
static int complete_function_arguments (tree);
static int check_for_static_method_reference (tree, tree, tree, tree, tree);
static int not_accessible_p (tree, tree, tree, int);
static void check_deprecation (tree, tree);
static int class_in_current_package (tree);
static tree build_if_else_statement (int, tree, tree, tree);
static tree patch_if_else_statement (tree);
static tree add_stmt_to_block (tree, tree, tree);
static tree patch_exit_expr (tree);
static tree build_labeled_block (int, tree);
static tree finish_labeled_statement (tree, tree);
static tree build_bc_statement (int, int, tree);
static tree patch_bc_statement (tree);
static tree patch_loop_statement (tree);
static tree build_new_loop (tree);
static tree build_loop_body (int, tree, int);
static tree finish_loop_body (int, tree, tree, int);
static tree build_debugable_stmt (int, tree);
static tree finish_for_loop (int, tree, tree, tree);
static tree patch_switch_statement (tree);
static tree string_constant_concatenation (tree, tree);
static tree build_string_concatenation (tree, tree);
static tree patch_string_cst (tree);
static tree patch_string (tree);
static tree encapsulate_with_try_catch (int, tree, tree, tree);
#ifdef USE_MAPPED_LOCATION
static tree build_assertion (source_location, tree, tree);
#else
static tree build_assertion (int, tree, tree);
#endif
static tree build_try_statement (int, tree, tree);
static tree build_try_finally_statement (int, tree, tree);
static tree patch_try_statement (tree);
static tree patch_synchronized_statement (tree, tree);
static tree patch_throw_statement (tree, tree);
static void add_exception_to_throws (tree, tree);
#ifdef USE_MAPPED_LOCATION
static void check_thrown_exceptions (source_location, tree, tree);
#else
static void check_thrown_exceptions (int, tree, tree);
#endif
static int check_thrown_exceptions_do (tree);
static bool ctors_unchecked_throws_clause_p (tree);
static void check_concrete_throws_clauses (tree, tree, tree, tree);
static void check_throws_clauses (tree, tree, tree);
static void finish_method_declaration (tree);
static tree build_super_invocation (tree);
static int verify_constructor_circularity (tree, tree);
static char *constructor_circularity_msg (tree, tree);
static tree build_this_super_qualified_invocation (int, tree, tree, int, int);
static const char *get_printable_method_name (tree);
static tree patch_conditional_expr (tree, tree, tree);
static tree generate_finit (tree);
static tree generate_instinit (tree);
static tree build_instinit_invocation (tree);
static void fix_constructors (tree);
static tree build_alias_initializer_parameter_list (int, tree, tree, int *);
static tree craft_constructor (tree, tree);
static tree get_constructor_super (tree);
static tree create_artificial_method (tree, int, tree, tree, tree);
static void start_artificial_method_body (tree);
static void end_artificial_method_body (tree);
static int check_method_redefinition (tree, tree);
static int check_method_types_complete (tree);
static bool hack_is_accessible_p (tree, tree);
static void java_check_regular_methods (tree);
static void check_interface_throws_clauses (tree, tree);
static void java_check_abstract_methods (tree);
static void unreachable_stmt_error (tree);
static int not_accessible_field_error (tree, tree);
static tree find_expr_with_wfl (tree);
static void missing_return_error (tree);
static tree build_new_array_init (int, tree);
static tree patch_new_array_init (tree, tree);
static tree maybe_build_array_element_wfl (tree);
static int array_constructor_check_entry (tree, constructor_elt *);
static const char *purify_type_name (const char *);
static tree fold_constant_for_init (tree, tree);
static jdeplist *reverse_jdep_list (struct parser_ctxt *);
static void static_ref_err (tree, tree, tree);
static void parser_add_interface (tree, tree, tree);
static void add_superinterfaces (tree, tree);
static tree jdep_resolve_class (jdep *);
static int note_possible_classname (const char *, int);
static void java_complete_expand_classes (void);
static void java_complete_expand_class (tree);
static void java_complete_expand_methods (tree);
static tree cut_identifier_in_qualified (tree);
static tree java_stabilize_reference (tree);
static tree do_unary_numeric_promotion (tree);
static char * operator_string (tree);
static tree do_merge_string_cste (tree, const char *, int, int);
static tree merge_string_cste (tree, tree, int);
static tree java_refold (tree);
static int java_decl_equiv (tree, tree);
static int binop_compound_p (enum tree_code);
static tree search_loop (tree);
static int labeled_block_contains_loop_p (tree, tree);
static int check_abstract_method_definitions (int, tree, tree);
static void java_check_abstract_method_definitions (tree);
static void java_debug_context_do (int);
static void java_parser_context_push_initialized_field (void);
static void java_parser_context_pop_initialized_field (void);
static tree reorder_static_initialized (tree);
static void java_parser_context_suspend (void);
static void java_parser_context_resume (void);
static int pop_current_osb (struct parser_ctxt *);

/* JDK 1.1 work. FIXME */

static tree maybe_make_nested_class_name (tree);
static int make_nested_class_name (tree);
static void link_nested_class_to_enclosing (void);
static tree resolve_inner_class (tree, tree, tree, tree);
static tree find_as_inner_class (tree, tree, tree);
static tree find_as_inner_class_do (tree, tree);
static int check_inner_class_redefinition (tree, tree);

static tree build_thisn_assign (void);
static tree build_current_thisn (tree);
static tree build_access_to_thisn (tree, tree, int);
static tree maybe_build_thisn_access_method (tree);

static tree build_nested_field_access (tree, tree);
static tree build_nested_field_access_methods (tree);
static tree build_nested_field_access_method (tree, tree, tree, tree, tree);
static tree build_nested_field_access_expr (int, tree, tree, tree, tree);
static tree build_nested_method_access_method (tree);
static tree build_new_access_id (void);

static int nested_member_access_p (tree, tree);
static int nested_field_expanded_access_p (tree, tree *, tree *, tree *);
static tree nested_field_access_fix (tree, tree, tree);

static tree build_incomplete_class_ref (int, tree);
static tree patch_incomplete_class_ref (tree);
static tree create_anonymous_class (tree);
static void patch_anonymous_class (tree, tree, tree);
static void add_inner_class_fields (tree, tree);

static tree build_dot_class_method (tree);
static tree build_dot_class_method_invocation (tree, tree);
static void create_new_parser_context (int);
static tree maybe_build_class_init_for_field (tree, tree);

static int emit_test_initialization (void **, void *);

static char *string_convert_int_cst (tree);

/* Number of error found so far. */
int java_error_count;
/* Number of warning found so far. */
int java_warning_count;
/* Cyclic inheritance report, as it can be set by layout_class */
const char *cyclic_inheritance_report;

/* The current parser context */
struct parser_ctxt *ctxp;

/* List of things that were analyzed for which code will be generated */
struct parser_ctxt *ctxp_for_generation = NULL;
struct parser_ctxt *ctxp_for_generation_last = NULL;

/* binop_lookup maps token to tree_code. It is used where binary
   operations are involved and required by the parser. RDIV_EXPR
   covers both integral/floating point division. The code is changed
   once the type of both operator is worked out.  */

static const enum tree_code binop_lookup[19] =
  {
    PLUS_EXPR, MINUS_EXPR, MULT_EXPR, RDIV_EXPR, TRUNC_MOD_EXPR,
    LSHIFT_EXPR, RSHIFT_EXPR, URSHIFT_EXPR,
    BIT_AND_EXPR, BIT_XOR_EXPR, BIT_IOR_EXPR,
    TRUTH_ANDIF_EXPR, TRUTH_ORIF_EXPR,
    EQ_EXPR, NE_EXPR, GT_EXPR, GE_EXPR, LT_EXPR, LE_EXPR,
   };
#define BINOP_LOOKUP(VALUE) 						\
  binop_lookup [((VALUE) - PLUS_TK) % ARRAY_SIZE (binop_lookup)]

/* This is the end index for binary operators that can also be used
   in compound assignments. */
#define BINOP_COMPOUND_CANDIDATES 11

/* The "$L" identifier we use to create labels.  */
static GTY(()) tree label_id;

/* The "StringBuffer" identifier used for the String `+' operator. */
static GTY(()) tree wfl_string_buffer;

/* The "append" identifier used for String `+' operator.  */
static GTY(()) tree wfl_append;

/* The "toString" identifier used for String `+' operator. */
static GTY(()) tree wfl_to_string;

/* The "java.lang" import qualified name.  */
static GTY(()) tree java_lang_id;

/* The generated `inst$' identifier used for generated enclosing
   instance/field access functions.  */
static GTY(()) tree inst_id;

/* Context and flag for static blocks */
static GTY(()) tree current_static_block;

/* The generated `write_parm_value$' identifier.  */
static GTY(()) tree wpv_id;

/* Hold THIS for the scope of the current method decl.  */
static GTY(()) tree current_this;

/* Hold a list of catch clauses list. The first element of this list is
   the list of the catch clauses of the currently analyzed try block. */
static GTY(()) tree currently_caught_type_list;

/* This holds a linked list of all the case labels for the current
   switch statement.  It is only used when checking to see if there
   are duplicate labels.  FIXME: probably this should just be attached
   to the switch itself; then it could be referenced via
   `ctxp->current_loop'.  */
static GTY(()) tree case_label_list;

/* Anonymous class counter. Will be reset to 1 every time a non
   anonymous class gets created. */
static int anonymous_class_counter = 1;

static GTY(()) tree src_parse_roots[1];

/* All classes seen from source code */
#define gclass_list src_parse_roots[0]

/* Check modifiers. If one doesn't fit, retrieve it in its declaration
   line and point it out.  */
/* Should point out the one that don't fit. ASCII/unicode, going
   backward. FIXME */

#define check_modifiers(__message, __value, __mask) do {	\
  if ((__value) & ~(__mask))					\
    {								\
      size_t i, remainder = (__value) & ~(__mask);	       	\
      for (i = 0; i < ARRAY_SIZE (ctxp->modifier_ctx); i++)	\
        if ((1 << i) & remainder)				\
	  parse_error_context (ctxp->modifier_ctx [i], (__message), \
			       java_accstring_lookup (1 << i)); \
    }								\
} while (0)

%}

%union {
  tree node;
  int sub_token;
  struct {
    int token;
#ifdef USE_MAPPED_LOCATION
    source_location location;
#else
    int location;
#endif
  } operator;
  int value;
}

%{
#ifdef USE_MAPPED_LOCATION
#define SET_EXPR_LOCATION_FROM_TOKEN(EXPR, TOKEN) \
  SET_EXPR_LOCATION(EXPR, (TOKEN).location)
#else
#define SET_EXPR_LOCATION_FROM_TOKEN(EXPR, TOKEN) \
  (EXPR_WFL_LINECOL (EXPR) = (TOKEN).location)
#endif

#include "lex.c"
%}

%pure_parser

/* Things defined here have to match the order of what's in the
   binop_lookup table.  */

%token   PLUS_TK         MINUS_TK        MULT_TK         DIV_TK    REM_TK
%token   LS_TK           SRS_TK          ZRS_TK
%token   AND_TK          XOR_TK          OR_TK
%token   BOOL_AND_TK BOOL_OR_TK
%token   EQ_TK NEQ_TK GT_TK GTE_TK LT_TK LTE_TK

/* This maps to the same binop_lookup entry than the token above */

%token   PLUS_ASSIGN_TK  MINUS_ASSIGN_TK MULT_ASSIGN_TK DIV_ASSIGN_TK
%token   REM_ASSIGN_TK
%token   LS_ASSIGN_TK    SRS_ASSIGN_TK   ZRS_ASSIGN_TK
%token   AND_ASSIGN_TK   XOR_ASSIGN_TK   OR_ASSIGN_TK


/* Modifier TOKEN have to be kept in this order. Don't scramble it */

%token   PUBLIC_TK       PRIVATE_TK         PROTECTED_TK
%token   STATIC_TK       FINAL_TK           SYNCHRONIZED_TK
%token   VOLATILE_TK     TRANSIENT_TK       NATIVE_TK
%token   PAD_TK          ABSTRACT_TK        STRICT_TK
%token   MODIFIER_TK

/* Keep those two in order, too */
%token   DECR_TK INCR_TK

/* From now one, things can be in any order */

%token   DEFAULT_TK      IF_TK              THROW_TK
%token   BOOLEAN_TK      DO_TK              IMPLEMENTS_TK
%token   THROWS_TK       BREAK_TK           IMPORT_TK
%token   ELSE_TK         INSTANCEOF_TK      RETURN_TK
%token   VOID_TK         CATCH_TK           INTERFACE_TK
%token   CASE_TK         EXTENDS_TK         FINALLY_TK
%token   SUPER_TK        WHILE_TK           CLASS_TK
%token   SWITCH_TK       CONST_TK           TRY_TK
%token   FOR_TK          NEW_TK             CONTINUE_TK
%token   GOTO_TK         PACKAGE_TK         THIS_TK
%token   ASSERT_TK

%token   BYTE_TK         SHORT_TK           INT_TK            LONG_TK
%token   CHAR_TK         INTEGRAL_TK

%token   FLOAT_TK        DOUBLE_TK          FP_TK

%token   ID_TK

%token   REL_QM_TK         REL_CL_TK NOT_TK  NEG_TK

%token   ASSIGN_ANY_TK   ASSIGN_TK
%token   OP_TK  CP_TK  OCB_TK  CCB_TK  OSB_TK  CSB_TK  SC_TK  C_TK DOT_TK

%token   STRING_LIT_TK   CHAR_LIT_TK        INT_LIT_TK        FP_LIT_TK
%token   TRUE_TK         FALSE_TK           BOOL_LIT_TK       NULL_TK

%type    <value>	modifiers MODIFIER_TK final synchronized

%type    <node>		super ID_TK identifier
%type    <node>		name simple_name qualified_name
%type	 <node>		type_declaration compilation_unit
			field_declaration method_declaration extends_interfaces
                        interfaces interface_type_list
                        import_declarations package_declaration
                        type_declarations interface_body
			interface_member_declaration constant_declaration
			interface_member_declarations interface_type
			abstract_method_declaration
%type	 <node>		class_body_declaration class_member_declaration
			static_initializer constructor_declaration block
%type	 <node>		class_body_declarations constructor_header
%type    <node>		class_or_interface_type class_type class_type_list
			constructor_declarator explicit_constructor_invocation
%type    <node>         dim_expr dim_exprs this_or_super throws

%type	 <node>		variable_declarator_id variable_declarator
			variable_declarators variable_initializer
			variable_initializers constructor_body
			array_initializer

%type	 <node>		class_body block_end constructor_block_end
%type	 <node>		statement statement_without_trailing_substatement
			labeled_statement if_then_statement label_decl
			if_then_else_statement while_statement for_statement
			statement_nsi labeled_statement_nsi do_statement
			if_then_else_statement_nsi while_statement_nsi
			for_statement_nsi statement_expression_list for_init
			for_update statement_expression expression_statement
			primary_no_new_array expression primary array_type
			array_creation_initialized array_creation_uninitialized
			class_instance_creation_expression field_access
			method_invocation array_access something_dot_new
			argument_list postfix_expression while_expression
			post_increment_expression post_decrement_expression
			unary_expression_not_plus_minus unary_expression
			pre_increment_expression pre_decrement_expression
			cast_expression
			multiplicative_expression additive_expression
			shift_expression relational_expression
			equality_expression and_expression
			exclusive_or_expression inclusive_or_expression
			conditional_and_expression conditional_or_expression
			conditional_expression assignment_expression
			left_hand_side assignment for_header for_begin
			constant_expression do_statement_begin empty_statement
			switch_statement synchronized_statement throw_statement
			try_statement assert_statement
			switch_expression switch_block
			catches catch_clause catch_clause_parameter finally
			anonymous_class_creation trap_overflow_corner_case
%type    <node>         return_statement break_statement continue_statement

%type    <operator>     ASSIGN_TK      MULT_ASSIGN_TK  DIV_ASSIGN_TK
%type    <operator>     REM_ASSIGN_TK  PLUS_ASSIGN_TK  MINUS_ASSIGN_TK
%type    <operator>     LS_ASSIGN_TK   SRS_ASSIGN_TK   ZRS_ASSIGN_TK
%type    <operator>     AND_ASSIGN_TK  XOR_ASSIGN_TK   OR_ASSIGN_TK
%type    <operator>     ASSIGN_ANY_TK  assignment_operator
%token   <operator>     EQ_TK GTE_TK ZRS_TK SRS_TK GT_TK LTE_TK LS_TK
%token   <operator>     BOOL_AND_TK AND_TK BOOL_OR_TK OR_TK INCR_TK PLUS_TK
%token   <operator>     DECR_TK MINUS_TK MULT_TK DIV_TK XOR_TK REM_TK NEQ_TK
%token   <operator>     NEG_TK REL_QM_TK REL_CL_TK NOT_TK LT_TK OCB_TK CCB_TK
%token   <operator>     OP_TK OSB_TK DOT_TK THROW_TK INSTANCEOF_TK
%type    <operator>	THIS_TK SUPER_TK RETURN_TK BREAK_TK CONTINUE_TK
%type	 <operator>     CASE_TK DEFAULT_TK TRY_TK CATCH_TK SYNCHRONIZED_TK
%type	 <operator>     NEW_TK ASSERT_TK

%type	 <node>		method_body

%type    <node>		literal INT_LIT_TK FP_LIT_TK BOOL_LIT_TK CHAR_LIT_TK
			STRING_LIT_TK NULL_TK VOID_TK

%type	 <node>		IF_TK WHILE_TK FOR_TK

%type    <node>         formal_parameter_list formal_parameter
                        method_declarator method_header

%type	 <node>		primitive_type reference_type type
			BOOLEAN_TK INTEGRAL_TK FP_TK

/* Added or modified JDK 1.1 rule types  */
%type	 <node>		type_literals

%%
/* 19.2 Production from 2.3: The Syntactic Grammar  */
goal:  compilation_unit
		{}
;

/* 19.3 Productions from 3: Lexical structure  */
literal:
	INT_LIT_TK
|	FP_LIT_TK
|	BOOL_LIT_TK
|	CHAR_LIT_TK
|       STRING_LIT_TK
|       NULL_TK
;

/* 19.4 Productions from 4: Types, Values and Variables  */
type:
	primitive_type
|	reference_type
;

primitive_type:
	INTEGRAL_TK
|	FP_TK
|	BOOLEAN_TK
;

reference_type:
	class_or_interface_type
|	array_type
;

class_or_interface_type:
	name
;

class_type:
	class_or_interface_type	/* Default rule */
;

interface_type:
	 class_or_interface_type
;

array_type:
	primitive_type dims
		{
		  int osb = pop_current_osb (ctxp);
		  tree t = build_java_array_type (($1), -1);
		  while (--osb)
		    t = build_unresolved_array_type (t);
		  $$ = t;
		}
|	name dims
		{
		  int osb = pop_current_osb (ctxp);
		  tree t = $1;
		  while (osb--)
		    t = build_unresolved_array_type (t);
		  $$ = t;
		}
;

/* 19.5 Productions from 6: Names  */
name:
	simple_name		/* Default rule */
|	qualified_name		/* Default rule */
;

simple_name:
	identifier		/* Default rule */
;

qualified_name:
	name DOT_TK identifier
		{ $$ = make_qualified_name ($1, $3, $2.location); }
;

identifier:
	ID_TK
;

/* 19.6: Production from 7: Packages  */
compilation_unit:
		{$$ = NULL;}
|	package_declaration
|	import_declarations
|	type_declarations
|       package_declaration import_declarations
|       package_declaration type_declarations
|       import_declarations type_declarations
|       package_declaration import_declarations type_declarations
;

import_declarations:
	import_declaration
		{
		  $$ = NULL;
		}
|	import_declarations import_declaration
		{
		  $$ = NULL;
		}
;

type_declarations:
	type_declaration
| 	type_declarations type_declaration
;

package_declaration:
	PACKAGE_TK name SC_TK
		{
		  ctxp->package = EXPR_WFL_NODE ($2);
		}
|	PACKAGE_TK error
		{yyerror ("Missing name"); RECOVER;}
|	PACKAGE_TK name error
		{yyerror ("';' expected"); RECOVER;}
;

import_declaration:
	single_type_import_declaration
|	type_import_on_demand_declaration
;

single_type_import_declaration:
	IMPORT_TK name SC_TK
		{
		  tree name = EXPR_WFL_NODE ($2), last_name;
		  int   i = IDENTIFIER_LENGTH (name)-1;
		  const char *last = &IDENTIFIER_POINTER (name)[i];
		  while (last != IDENTIFIER_POINTER (name))
		    {
		      if (last [0] == '.')
			break;
		      last--;
		    }
		  last_name = get_identifier (++last);
		  if (IS_A_SINGLE_IMPORT_CLASSFILE_NAME_P (last_name))
		    {
		      tree err = find_name_in_single_imports (last_name);
		      if (err && err != name)
			parse_error_context
			  ($2, "Ambiguous class: %qs and %qs",
			   IDENTIFIER_POINTER (name),
			   IDENTIFIER_POINTER (err));
		      else
			REGISTER_IMPORT ($2, last_name);
		    }
		  else
		    REGISTER_IMPORT ($2, last_name);
		}
|	IMPORT_TK error
		{yyerror ("Missing name"); RECOVER;}
|	IMPORT_TK name error
		{yyerror ("';' expected"); RECOVER;}
;

type_import_on_demand_declaration:
	IMPORT_TK name DOT_TK MULT_TK SC_TK
		{
		  tree name = EXPR_WFL_NODE ($2);
		  tree it;
		  /* Search for duplicates. */
		  for (it = ctxp->import_demand_list; it; it = TREE_CHAIN (it))
		    if (EXPR_WFL_NODE (TREE_PURPOSE (it)) == name)
		      break;
		  /* Don't import the same thing more than once, just ignore
		     duplicates (7.5.2) */
		  if (! it)
		    {
		      read_import_dir ($2);
		      ctxp->import_demand_list =
			chainon (ctxp->import_demand_list,
				 build_tree_list ($2, NULL_TREE));
		    }
		}
|	IMPORT_TK name DOT_TK error
		{yyerror ("'*' expected"); RECOVER;}
|	IMPORT_TK name DOT_TK MULT_TK error
		{yyerror ("';' expected"); RECOVER;}
;

type_declaration:
	class_declaration
		{ end_class_declaration (0); }
|	interface_declaration
		{ end_class_declaration (0); }
|	empty_statement
|	error
		{
		  YYERROR_NOW;
		  yyerror ("Class or interface declaration expected");
		}
;

/* 19.7 Shortened from the original:
   modifiers: modifier | modifiers modifier
   modifier: any of public...  */
modifiers:
	MODIFIER_TK
		{
		  $$ = (1 << $1);
		}
|	modifiers MODIFIER_TK
		{
		  int acc = (1 << $2);
		  if ($$ & acc)
		    parse_error_context
		      (ctxp->modifier_ctx [$2], "Modifier %qs declared twice",
		       java_accstring_lookup (acc));
		  else
		    {
		      $$ |= acc;
		    }
		}
;

/* 19.8.1 Production from $8.1: Class Declaration */
class_declaration:
	modifiers CLASS_TK identifier super interfaces
		{ create_class ($1, $3, $4, $5); }
	class_body
		{;}
|	CLASS_TK identifier super interfaces
		{ create_class (0, $2, $3, $4); }
	class_body
		{;}
|	modifiers CLASS_TK error
		{ yyerror ("Missing class name"); RECOVER; }
|	CLASS_TK error
		{ yyerror ("Missing class name"); RECOVER; }
|       CLASS_TK identifier error
		{
		  if (!ctxp->class_err) yyerror ("'{' expected");
		  DRECOVER(class1);
		}
|       modifiers CLASS_TK identifier error
		{ if (!ctxp->class_err) yyerror ("'{' expected"); RECOVER; }
;

super:
		{ $$ = NULL; }
|	EXTENDS_TK class_type
		{ $$ = $2; }
|	EXTENDS_TK class_type error
		{yyerror ("'{' expected"); ctxp->class_err=1;}
|	EXTENDS_TK error
		{yyerror ("Missing super class name"); ctxp->class_err=1;}
;

interfaces:
		{ $$ = NULL_TREE; }
|	IMPLEMENTS_TK interface_type_list
		{ $$ = $2; }
|	IMPLEMENTS_TK error
		{
		  ctxp->class_err=1;
		  yyerror ("Missing interface name");
		}
;

interface_type_list:
	interface_type
		{
		  ctxp->interface_number = 1;
		  $$ = build_tree_list ($1, NULL_TREE);
		}
|	interface_type_list C_TK interface_type
		{
		  ctxp->interface_number++;
		  $$ = chainon ($1, build_tree_list ($3, NULL_TREE));
		}
|	interface_type_list C_TK error
		{yyerror ("Missing interface name"); RECOVER;}
;

class_body:
	OCB_TK CCB_TK
		{
		  $$ = GET_CPC ();
		}
|	OCB_TK class_body_declarations CCB_TK
		{
		  $$ = GET_CPC ();
		}
;

class_body_declarations:
	class_body_declaration
|	class_body_declarations class_body_declaration
;

class_body_declaration:
	class_member_declaration
|	static_initializer
|	constructor_declaration
|	block			/* Added, JDK1.1, instance initializer */
		{
		  if (!IS_EMPTY_STMT ($1))
		    {
		      TREE_CHAIN ($1) = CPC_INSTANCE_INITIALIZER_STMT (ctxp);
		      SET_CPC_INSTANCE_INITIALIZER_STMT (ctxp, $1);
		    }
		}
;

class_member_declaration:
	field_declaration
|	method_declaration
|	class_declaration	/* Added, JDK1.1 inner classes */
		{ end_class_declaration (1); }
|	interface_declaration	/* Added, JDK1.1 inner interfaces */
		{ end_class_declaration (1); }
|	empty_statement
;

/* 19.8.2 Productions from 8.3: Field Declarations  */
field_declaration:
	type variable_declarators SC_TK
		{ register_fields (0, $1, $2); }
|	modifiers type variable_declarators SC_TK
		{
		  check_modifiers
		    ("Illegal modifier %qs for field declaration",
		     $1, FIELD_MODIFIERS);
		  check_modifiers_consistency ($1);
		  register_fields ($1, $2, $3);
		}
;

variable_declarators:
	/* Should we use build_decl_list () instead ? FIXME */
	variable_declarator	/* Default rule */
|	variable_declarators C_TK variable_declarator
		{ $$ = chainon ($1, $3); }
|	variable_declarators C_TK error
		{yyerror ("Missing term"); RECOVER;}
;

variable_declarator:
	variable_declarator_id
		{ $$ = build_tree_list ($1, NULL_TREE); }
|	variable_declarator_id ASSIGN_TK variable_initializer
		{
		  if (java_error_count)
		    $3 = NULL_TREE;
		  $$ = build_tree_list
		    ($1, build_assignment ($2.token, $2.location, $1, $3));
		}
|	variable_declarator_id ASSIGN_TK error
		{
		  yyerror ("Missing variable initializer");
		  $$ = build_tree_list ($1, NULL_TREE);
		  RECOVER;
		}
|	variable_declarator_id ASSIGN_TK variable_initializer error
		{
		  yyerror ("';' expected");
		  $$ = build_tree_list ($1, NULL_TREE);
		  RECOVER;
		}
;

variable_declarator_id:
	identifier
|	variable_declarator_id OSB_TK CSB_TK
		{ $$ = build_unresolved_array_type ($1); }
|	identifier error
		{yyerror ("Invalid declaration"); DRECOVER(vdi);}
|	variable_declarator_id OSB_TK error
		{
		  yyerror ("']' expected");
		  DRECOVER(vdi);
		}
|	variable_declarator_id CSB_TK error
		{yyerror ("Unbalanced ']'"); DRECOVER(vdi);}
;

variable_initializer:
	expression
|	array_initializer
;

/* 19.8.3 Productions from 8.4: Method Declarations  */
method_declaration:
	method_header
		{
		  current_function_decl = $1;
		  if (current_function_decl
		      && TREE_CODE (current_function_decl) == FUNCTION_DECL)
		    source_start_java_method (current_function_decl);
		  else
		    current_function_decl = NULL_TREE;
		}
	method_body
		{ finish_method_declaration ($3); }
|	method_header error
		{YYNOT_TWICE yyerror ("'{' expected"); RECOVER;}
;

method_header:
	type method_declarator throws
		{ $$ = method_header (0, $1, $2, $3); }
|	VOID_TK method_declarator throws
		{ $$ = method_header (0, void_type_node, $2, $3); }
|	modifiers type method_declarator throws
		{ $$ = method_header ($1, $2, $3, $4); }
|	modifiers VOID_TK method_declarator throws
		{ $$ = method_header ($1, void_type_node, $3, $4); }
|	type error
		{
		  yyerror ("Invalid method declaration, method name required");
		  $$ = NULL_TREE;
		  RECOVER;
		}
|	modifiers type error
		{
		  yyerror ("Identifier expected");
		  $$ = NULL_TREE;
		  RECOVER;
		}
|	VOID_TK error
		{
		  yyerror ("Identifier expected");
		  $$ = NULL_TREE;
		  RECOVER;
		}
|	modifiers VOID_TK error
		{
		  yyerror ("Identifier expected");
		  $$ = NULL_TREE;
		  RECOVER;
		}
|	modifiers error
		{
		  yyerror ("Invalid method declaration, return type required");
		  $$ = NULL_TREE;
		  RECOVER;
		}
;

method_declarator:
	identifier OP_TK CP_TK
		{
		  ctxp->formal_parameter_number = 0;
		  $$ = method_declarator ($1, NULL_TREE);
		}
|	identifier OP_TK formal_parameter_list CP_TK
		{ $$ = method_declarator ($1, $3); }
|	method_declarator OSB_TK CSB_TK
		{
		  SET_EXPR_LOCATION_FROM_TOKEN (wfl_operator, $2);
		  TREE_PURPOSE ($1) =
		    build_unresolved_array_type (TREE_PURPOSE ($1));
		  parse_warning_context
		    (wfl_operator,
		     "Discouraged form of returned type specification");
		}
|	identifier OP_TK error
		{yyerror ("')' expected"); DRECOVER(method_declarator);}
|	method_declarator OSB_TK error
		{yyerror ("']' expected"); RECOVER;}
;

formal_parameter_list:
	formal_parameter
		{
		  ctxp->formal_parameter_number = 1;
		}
|	formal_parameter_list C_TK formal_parameter
		{
		  ctxp->formal_parameter_number += 1;
		  $$ = chainon ($1, $3);
		}
|	formal_parameter_list C_TK error
		{ yyerror ("Missing formal parameter term"); RECOVER; }
;

formal_parameter:
	type variable_declarator_id
		{
		  $$ = build_tree_list ($2, $1);
		}
|	final type variable_declarator_id /* Added, JDK1.1 final parms */
		{
		  $$ = build_tree_list ($3, $2);
		  ARG_FINAL_P ($$) = 1;
		}
|	type error
		{
		  yyerror ("Missing identifier"); RECOVER;
		  $$ = NULL_TREE;
		}
|	final type error
		{
		  yyerror ("Missing identifier"); RECOVER;
		  $$ = NULL_TREE;
		}
;

final:
	modifiers
		{
		  check_modifiers ("Illegal modifier %qs. Only %<final%> was expected here",
				   $1, ACC_FINAL);
		  if ($1 != ACC_FINAL)
		    MODIFIER_WFL (FINAL_TK) = build_wfl_node (NULL_TREE);
		}
;

throws:
		{ $$ = NULL_TREE; }
|	THROWS_TK class_type_list
		{ $$ = $2; }
|	THROWS_TK error
		{yyerror ("Missing class type term"); RECOVER;}
;

class_type_list:
	class_type
		{ $$ = build_tree_list ($1, $1); }
|	class_type_list C_TK class_type
		{ $$ = tree_cons ($3, $3, $1); }
|	class_type_list C_TK error
		{yyerror ("Missing class type term"); RECOVER;}
;

method_body:
	block
|	SC_TK { $$ = NULL_TREE; }
;

/* 19.8.4 Productions from 8.5: Static Initializers  */
static_initializer:
	static block
		{
		  TREE_CHAIN ($2) = CPC_STATIC_INITIALIZER_STMT (ctxp);
		  SET_CPC_STATIC_INITIALIZER_STMT (ctxp, $2);
		  current_static_block = NULL_TREE;
		}
;

static:				/* Test lval.sub_token here */
	modifiers
		{
		  check_modifiers ("Illegal modifier %qs for static initializer", $1, ACC_STATIC);
		  /* Can't have a static initializer in an innerclass */
		  if ($1 | ACC_STATIC &&
		      GET_CPC_LIST () && !TOPLEVEL_CLASS_DECL_P (GET_CPC ()))
		    parse_error_context
		      (MODIFIER_WFL (STATIC_TK),
		       "Can't define static initializer in class %qs. Static initializer can only be defined in top-level classes",
		       IDENTIFIER_POINTER (DECL_NAME (GET_CPC ())));
		  SOURCE_FRONTEND_DEBUG (("Modifiers: %d", $1));
		}
;

/* 19.8.5 Productions from 8.6: Constructor Declarations  */
constructor_declaration:
	constructor_header
		{
		  current_function_decl = $1;
		  source_start_java_method (current_function_decl);
		}
	constructor_body
		{ finish_method_declaration ($3); }
;

constructor_header:
	constructor_declarator throws
		{ $$ = method_header (0, NULL_TREE, $1, $2); }
|	modifiers constructor_declarator throws
		{ $$ = method_header ($1, NULL_TREE, $2, $3); }
;

constructor_declarator:
	simple_name OP_TK CP_TK
		{
		  ctxp->formal_parameter_number = 0;
		  $$ = method_declarator ($1, NULL_TREE);
		}
|	simple_name OP_TK formal_parameter_list CP_TK
		{ $$ = method_declarator ($1, $3); }
;

constructor_body:
	/* Unlike regular method, we always need a complete (empty)
	   body so we can safely perform all the required code
	   addition (super invocation and field initialization) */
	block_begin constructor_block_end
		{
		  BLOCK_EXPR_BODY ($2) = build_java_empty_stmt ();
		  $$ = $2;
		}
|	block_begin explicit_constructor_invocation constructor_block_end
		{ $$ = $3; }
|	block_begin block_statements constructor_block_end
		{ $$ = $3; }
|       block_begin explicit_constructor_invocation block_statements constructor_block_end
		{ $$ = $4; }
;

constructor_block_end:
	block_end
;

/* Error recovery for that rule moved down expression_statement: rule.  */
explicit_constructor_invocation:
	this_or_super OP_TK CP_TK SC_TK
		{
		  $$ = build_method_invocation ($1, NULL_TREE);
		  $$ = build_debugable_stmt (EXPR_WFL_LINECOL ($1), $$);
		  $$ = java_method_add_stmt (current_function_decl, $$);
		}
|	this_or_super OP_TK argument_list CP_TK SC_TK
		{
		  $$ = build_method_invocation ($1, $3);
		  $$ = build_debugable_stmt (EXPR_WFL_LINECOL ($1), $$);
		  $$ = java_method_add_stmt (current_function_decl, $$);
		}
        /* Added, JDK1.1 inner classes. Modified because the rule
	   'primary' couldn't work.  */
|	name DOT_TK SUPER_TK OP_TK argument_list CP_TK SC_TK
		{$$ = parse_jdk1_1_error ("explicit constructor invocation"); }
|	name DOT_TK SUPER_TK OP_TK CP_TK SC_TK
		{$$ = parse_jdk1_1_error ("explicit constructor invocation"); }
;

this_or_super:			/* Added, simplifies error diagnostics */
	THIS_TK
		{
		  tree wfl = build_wfl_node (this_identifier_node);
		  SET_EXPR_LOCATION_FROM_TOKEN (wfl, $1);
		  $$ = wfl;
		}
|	SUPER_TK
		{
		  tree wfl = build_wfl_node (super_identifier_node);
		  SET_EXPR_LOCATION_FROM_TOKEN (wfl, $1);
		  $$ = wfl;
		}
;

/* 19.9 Productions from 9: Interfaces  */
/* 19.9.1 Productions from 9.1: Interfaces Declarations  */
interface_declaration:
	INTERFACE_TK identifier
		{ create_interface (0, $2, NULL_TREE); }
	interface_body
		{ ; }
|	modifiers INTERFACE_TK identifier
		{ create_interface ($1, $3, NULL_TREE); }
	interface_body
		{ ; }
|	INTERFACE_TK identifier extends_interfaces
		{ create_interface (0, $2, $3);	}
	interface_body
		{ ; }
|	modifiers INTERFACE_TK identifier extends_interfaces
		{ create_interface ($1, $3, $4); }
	interface_body
		{ ; }
|	INTERFACE_TK identifier error
		{ yyerror ("'{' expected"); RECOVER; }
|	modifiers INTERFACE_TK identifier error
		{ yyerror ("'{' expected"); RECOVER; }
;

extends_interfaces:
	EXTENDS_TK interface_type
		{
		  ctxp->interface_number = 1;
		  $$ = build_tree_list ($2, NULL_TREE);
		}
|	extends_interfaces C_TK interface_type
		{
		  ctxp->interface_number++;
		  $$ = chainon ($1, build_tree_list ($3, NULL_TREE));
		}
|	EXTENDS_TK error
		{yyerror ("Invalid interface type"); RECOVER;}
|	extends_interfaces C_TK error
		{yyerror ("Missing term"); RECOVER;}
;

interface_body:
	OCB_TK CCB_TK
		{ $$ = NULL_TREE; }
|	OCB_TK interface_member_declarations CCB_TK
		{ $$ = NULL_TREE; }
;

interface_member_declarations:
	interface_member_declaration
|	interface_member_declarations interface_member_declaration
;

interface_member_declaration:
	constant_declaration
|	abstract_method_declaration
|	class_declaration	/* Added, JDK1.1 inner classes */
		{ end_class_declaration (1); }
|	interface_declaration	/* Added, JDK1.1 inner interfaces */
		{ end_class_declaration (1); }
|	empty_statement
;

constant_declaration:
	field_declaration
;

abstract_method_declaration:
	method_header SC_TK
		{
		  check_abstract_method_header ($1);
		  current_function_decl = NULL_TREE; /* FIXME ? */
		}
|	method_header error
		{yyerror ("';' expected"); RECOVER;}
;

/* 19.10 Productions from 10: Arrays  */
array_initializer:
	OCB_TK CCB_TK
		{ $$ = build_new_array_init ($1.location, NULL_TREE); }
|	OCB_TK C_TK CCB_TK
		{ $$ = build_new_array_init ($1.location, NULL_TREE); }
|	OCB_TK variable_initializers CCB_TK
		{ $$ = build_new_array_init ($1.location, $2); }
|	OCB_TK variable_initializers C_TK CCB_TK
		{ $$ = build_new_array_init ($1.location, $2); }
;

variable_initializers:
	variable_initializer
		{
		  $$ = tree_cons (maybe_build_array_element_wfl ($1),
				  $1, NULL_TREE);
		}
|	variable_initializers C_TK variable_initializer
		{
		  $$ = tree_cons (maybe_build_array_element_wfl ($3), $3, $1);
		}
|	variable_initializers C_TK error
		{yyerror ("Missing term"); RECOVER;}
;

/* 19.11 Production from 14: Blocks and Statements  */
block:
	block_begin block_end
		{ $$ = $2; }
|	block_begin block_statements block_end
		{ $$ = $3; }
;

block_begin:
	OCB_TK
		{ enter_block (); }
;

block_end:
	CCB_TK
		{
		  maybe_absorb_scoping_blocks ();
		  $$ = exit_block ();
		  if (!BLOCK_SUBBLOCKS ($$))
		    BLOCK_SUBBLOCKS ($$) = build_java_empty_stmt ();
		}
;

block_statements:
	block_statement
|	block_statements block_statement
;

block_statement:
	local_variable_declaration_statement
|	statement
		{ java_method_add_stmt (current_function_decl, $1); }
|	class_declaration	/* Added, JDK1.1 local classes */
		{
		  LOCAL_CLASS_P (TREE_TYPE (GET_CPC ())) = 1;
		  end_class_declaration (1);
		}
;

local_variable_declaration_statement:
	local_variable_declaration SC_TK /* Can't catch missing ';' here */
;

local_variable_declaration:
	type variable_declarators
		{ declare_local_variables (0, $1, $2); }
|	final type variable_declarators /* Added, JDK1.1 final locals */
		{ declare_local_variables ($1, $2, $3); }
;

statement:
	statement_without_trailing_substatement
|	labeled_statement
|	if_then_statement
|	if_then_else_statement
|	while_statement
|	for_statement
		{ $$ = exit_block (); }
;

statement_nsi:
	statement_without_trailing_substatement
|	labeled_statement_nsi
|	if_then_else_statement_nsi
|	while_statement_nsi
|	for_statement_nsi
		{ $$ = exit_block (); }
;

statement_without_trailing_substatement:
	block
|	empty_statement
|	expression_statement
|	switch_statement
|	do_statement
|	break_statement
|	continue_statement
|	return_statement
|	synchronized_statement
|	throw_statement
|	try_statement
|	assert_statement
;

empty_statement:
	SC_TK
		{
		  if (flag_extraneous_semicolon
		      && ! current_static_block
		      && (! current_function_decl ||
			  /* Verify we're not in a inner class declaration */
			  (GET_CPC () != TYPE_NAME
			   (DECL_CONTEXT (current_function_decl)))))

		    {
#ifdef USE_MAPPED_LOCATION
		      SET_EXPR_LOCATION (wfl_operator, input_location);
#else
		      EXPR_WFL_SET_LINECOL (wfl_operator, input_line, -1);
#endif
		      parse_warning_context (wfl_operator, "An empty declaration is a deprecated feature that should not be used");
		    }
		  $$ = build_java_empty_stmt ();
		}
;

label_decl:
	identifier REL_CL_TK
		{
		  $$ = build_labeled_block (EXPR_WFL_LINECOL ($1),
					    EXPR_WFL_NODE ($1));
		  pushlevel (2);
		  push_labeled_block ($$);
		  PUSH_LABELED_BLOCK ($$);
		}
;

labeled_statement:
	label_decl statement
		{ $$ = finish_labeled_statement ($1, $2); }
|	identifier error
		{yyerror ("':' expected"); RECOVER;}
;

labeled_statement_nsi:
	label_decl statement_nsi
		{ $$ = finish_labeled_statement ($1, $2); }
;

/* We concentrate here a bunch of error handling rules that we couldn't write
   earlier, because expression_statement catches a missing ';'.  */
expression_statement:
	statement_expression SC_TK
		{
		  /* We have a statement. Generate a WFL around it so
		     we can debug it */
#ifdef USE_MAPPED_LOCATION
		  $$ = expr_add_location ($1, input_location, 1);
#else
		  $$ = build_expr_wfl ($1, input_filename, input_line, 0);
		  JAVA_MAYBE_GENERATE_DEBUG_INFO ($$);
#endif
		  /* We know we have a statement, so set the debug
                     info to be eventually generate here. */
		}
|	error SC_TK
		{
		  YYNOT_TWICE yyerror ("Invalid expression statement");
		  DRECOVER (expr_stmt);
		}
|	error OCB_TK
		{
		  YYNOT_TWICE yyerror ("Invalid expression statement");
		  DRECOVER (expr_stmt);
		}
|	error CCB_TK
		{
		  YYNOT_TWICE yyerror ("Invalid expression statement");
		  DRECOVER (expr_stmt);
		}
|       this_or_super OP_TK error
		{yyerror ("')' expected"); RECOVER;}
|       this_or_super OP_TK CP_TK error
		{
		  parse_ctor_invocation_error ();
		  RECOVER;
		}
|       this_or_super OP_TK argument_list error
		{yyerror ("')' expected"); RECOVER;}
|       this_or_super OP_TK argument_list CP_TK error
		{
		  parse_ctor_invocation_error ();
		  RECOVER;
		}
|	name DOT_TK SUPER_TK error
		{yyerror ("'(' expected"); RECOVER;}
|	name DOT_TK SUPER_TK OP_TK error
		{yyerror ("')' expected"); RECOVER;}
|	name DOT_TK SUPER_TK OP_TK argument_list error
		{yyerror ("')' expected"); RECOVER;}
|	name DOT_TK SUPER_TK OP_TK argument_list CP_TK error
		{yyerror ("';' expected"); RECOVER;}
|	name DOT_TK SUPER_TK OP_TK CP_TK error
		{yyerror ("';' expected"); RECOVER;}
;

statement_expression:
	assignment
|	pre_increment_expression
|	pre_decrement_expression
|	post_increment_expression
|	post_decrement_expression
|	method_invocation
|	class_instance_creation_expression
;

if_then_statement:
	IF_TK OP_TK expression CP_TK statement
		{
		  $$ = build_if_else_statement ($2.location, $3,
						$5, NULL_TREE);
		}
|	IF_TK error
		{yyerror ("'(' expected"); RECOVER;}
|	IF_TK OP_TK error
		{yyerror ("Missing term"); RECOVER;}
|	IF_TK OP_TK expression error
		{yyerror ("')' expected"); RECOVER;}
;

if_then_else_statement:
	IF_TK OP_TK expression CP_TK statement_nsi ELSE_TK statement
		{ $$ = build_if_else_statement ($2.location, $3, $5, $7); }
;

if_then_else_statement_nsi:
	IF_TK OP_TK expression CP_TK statement_nsi ELSE_TK statement_nsi
		{ $$ = build_if_else_statement ($2.location, $3, $5, $7); }
;

switch_statement:
	switch_expression
		{
		  enter_block ();
		}
	switch_block
		{
		  /* Make into "proper list" of COMPOUND_EXPRs.
		     I.e. make the last statement also have its own
		     COMPOUND_EXPR. */
		  maybe_absorb_scoping_blocks ();
		  TREE_OPERAND ($1, 1) = exit_block ();
		  $$ = build_debugable_stmt (EXPR_WFL_LINECOL ($1), $1);
		}
;

switch_expression:
	SWITCH_TK OP_TK expression CP_TK
		{
		  $$ = build3 (SWITCH_EXPR, NULL_TREE, $3,
			       NULL_TREE, NULL_TREE);
		  SET_EXPR_LOCATION_FROM_TOKEN ($$, $2);
		}
|	SWITCH_TK error
		{yyerror ("'(' expected"); RECOVER;}
|	SWITCH_TK OP_TK error
		{yyerror ("Missing term or ')'"); DRECOVER(switch_statement);}
|	SWITCH_TK OP_TK expression CP_TK error
		{yyerror ("'{' expected"); RECOVER;}
;

/* Default assignment is there to avoid type node on switch_block
   node. */

switch_block:
	OCB_TK CCB_TK
		{ $$ = NULL_TREE; }
|	OCB_TK switch_labels CCB_TK
		{ $$ = NULL_TREE; }
|	OCB_TK switch_block_statement_groups CCB_TK
		{ $$ = NULL_TREE; }
|	OCB_TK switch_block_statement_groups switch_labels CCB_TK
		{ $$ = NULL_TREE; }
;

switch_block_statement_groups:
	switch_block_statement_group
|	switch_block_statement_groups switch_block_statement_group
;

switch_block_statement_group:
	switch_labels block_statements
;

switch_labels:
	switch_label
|	switch_labels switch_label
;

switch_label:
	CASE_TK constant_expression REL_CL_TK
		{
		  tree lab = build1 (CASE_EXPR, NULL_TREE, $2);
		  SET_EXPR_LOCATION_FROM_TOKEN (lab, $1);
		  java_method_add_stmt (current_function_decl, lab);
		}
|	DEFAULT_TK REL_CL_TK
		{
		  tree lab = make_node (DEFAULT_EXPR);
		  SET_EXPR_LOCATION_FROM_TOKEN (lab, $1);
		  java_method_add_stmt (current_function_decl, lab);
		}
|	CASE_TK error
		{yyerror ("Missing or invalid constant expression"); RECOVER;}
|	CASE_TK constant_expression error
		{yyerror ("':' expected"); RECOVER;}
|	DEFAULT_TK error
		{yyerror ("':' expected"); RECOVER;}
;

while_expression:
	WHILE_TK OP_TK expression CP_TK
		{
		  tree body = build_loop_body ($2.location, $3, 0);
		  $$ = build_new_loop (body);
		}
;

while_statement:
	while_expression statement
		{ $$ = finish_loop_body (0, NULL_TREE, $2, 0); }
|	WHILE_TK error
		{YYERROR_NOW; yyerror ("'(' expected"); RECOVER;}
|	WHILE_TK OP_TK error
		{yyerror ("Missing term and ')' expected"); RECOVER;}
|	WHILE_TK OP_TK expression error
		{yyerror ("')' expected"); RECOVER;}
;

while_statement_nsi:
	while_expression statement_nsi
		{ $$ = finish_loop_body (0, NULL_TREE, $2, 0); }
;

do_statement_begin:
	DO_TK
		{
		  tree body = build_loop_body (0, NULL_TREE, 1);
		  $$ = build_new_loop (body);
		}
	/* Need error handing here. FIXME */
;

do_statement:
	do_statement_begin statement WHILE_TK OP_TK expression CP_TK SC_TK
		{ $$ = finish_loop_body ($4.location, $5, $2, 1); }
;

for_statement:
	for_begin SC_TK expression SC_TK for_update CP_TK statement
		{
		  if (CONSTANT_CLASS_P ($3))
		    $3 = build_wfl_node ($3);
		  $$ = finish_for_loop (EXPR_WFL_LINECOL ($3), $3, $5, $7);
		}
|	for_begin SC_TK SC_TK for_update CP_TK statement
		{
		  $$ = finish_for_loop (0, NULL_TREE, $4, $6);
		  /* We have not condition, so we get rid of the EXIT_EXPR */
		  LOOP_EXPR_BODY_CONDITION_EXPR (LOOP_EXPR_BODY ($$), 0) =
		    build_java_empty_stmt ();
		}
|	for_begin SC_TK error
		{yyerror ("Invalid control expression"); RECOVER;}
|	for_begin SC_TK expression SC_TK error
		{yyerror ("Invalid update expression"); RECOVER;}
|	for_begin SC_TK SC_TK error
		{yyerror ("Invalid update expression"); RECOVER;}
;

for_statement_nsi:
	for_begin SC_TK expression SC_TK for_update CP_TK statement_nsi
		{ $$ = finish_for_loop (EXPR_WFL_LINECOL ($3), $3, $5, $7);}
|	for_begin SC_TK SC_TK for_update CP_TK statement_nsi
		{
		  $$ = finish_for_loop (0, NULL_TREE, $4, $6);
		  /* We have not condition, so we get rid of the EXIT_EXPR */
		  LOOP_EXPR_BODY_CONDITION_EXPR (LOOP_EXPR_BODY ($$), 0) =
		    build_java_empty_stmt ();
		}
;

for_header:
	FOR_TK OP_TK
		{
		  /* This scope defined for local variable that may be
                     defined within the scope of the for loop */
		  enter_block ();
		}
|	FOR_TK error
		{yyerror ("'(' expected"); DRECOVER(for_1);}
|	FOR_TK OP_TK error
		{yyerror ("Invalid init statement"); RECOVER;}
;

for_begin:
	for_header for_init
		{
		  /* We now declare the loop body. The loop is
                     declared as a for loop. */
		  tree body = build_loop_body (0, NULL_TREE, 0);
		  $$ =  build_new_loop (body);
		  FOR_LOOP_P ($$) = 1;
		  /* The loop is added to the current block the for
                     statement is defined within */
		  java_method_add_stmt (current_function_decl, $$);
		}
;
for_init:			/* Can be empty */
		{ $$ = build_java_empty_stmt (); }
|	statement_expression_list
		{
		  /* Init statement recorded within the previously
                     defined block scope */
		  $$ = java_method_add_stmt (current_function_decl, $1);
		}
|	local_variable_declaration
		{
		  /* Local variable are recorded within the previously
		     defined block scope */
		  $$ = NULL_TREE;
		}
|	statement_expression_list error
		{yyerror ("';' expected"); DRECOVER(for_init_1);}
;

for_update:			/* Can be empty */
		{$$ = build_java_empty_stmt ();}
|	statement_expression_list
		{ $$ = build_debugable_stmt (BUILD_LOCATION (), $1); }
;

statement_expression_list:
	statement_expression
		{ $$ = add_stmt_to_compound (NULL_TREE, NULL_TREE, $1); }
|	statement_expression_list C_TK statement_expression
		{ $$ = add_stmt_to_compound ($1, NULL_TREE, $3); }
|	statement_expression_list C_TK error
		{yyerror ("Missing term"); RECOVER;}
;

break_statement:
	BREAK_TK SC_TK
		{ $$ = build_bc_statement ($1.location, 1, NULL_TREE); }
|	BREAK_TK identifier SC_TK
		{ $$ = build_bc_statement ($1.location, 1, $2); }
|	BREAK_TK error
		{yyerror ("Missing term"); RECOVER;}
|	BREAK_TK identifier error
		{yyerror ("';' expected"); RECOVER;}
;

continue_statement:
	CONTINUE_TK SC_TK
		{ $$ = build_bc_statement ($1.location, 0, NULL_TREE); }
|       CONTINUE_TK identifier SC_TK
		{ $$ = build_bc_statement ($1.location, 0, $2); }
|	CONTINUE_TK error
		{yyerror ("Missing term"); RECOVER;}
|	CONTINUE_TK identifier error
		{yyerror ("';' expected"); RECOVER;}
;

return_statement:
	RETURN_TK SC_TK
		{ $$ = build_return ($1.location, NULL_TREE); }
|	RETURN_TK expression SC_TK
		{ $$ = build_return ($1.location, $2); }
|	RETURN_TK error
		{yyerror ("Missing term"); RECOVER;}
|	RETURN_TK expression error
		{yyerror ("';' expected"); RECOVER;}
;

throw_statement:
	THROW_TK expression SC_TK
		{
		  $$ = build1 (THROW_EXPR, NULL_TREE, $2);
		  SET_EXPR_LOCATION_FROM_TOKEN ($$, $1);
		}
|	THROW_TK error
		{yyerror ("Missing term"); RECOVER;}
|	THROW_TK expression error
		{yyerror ("';' expected"); RECOVER;}
;

assert_statement:
	ASSERT_TK expression REL_CL_TK expression SC_TK
		{
		  $$ = build_assertion ($1.location, $2, $4);
		}
|	ASSERT_TK expression SC_TK
		{
		  $$ = build_assertion ($1.location, $2, NULL_TREE);
		}
|	ASSERT_TK error
		{yyerror ("Missing term"); RECOVER;}
|	ASSERT_TK expression error
		{yyerror ("';' expected"); RECOVER;}
;

synchronized_statement:
	synchronized OP_TK expression CP_TK block
		{
		  $$ = build2 (SYNCHRONIZED_EXPR, NULL_TREE, $3, $5);
		  EXPR_WFL_LINECOL ($$) =
		    EXPR_WFL_LINECOL (MODIFIER_WFL (SYNCHRONIZED_TK));
		}
|	synchronized OP_TK expression CP_TK error
		{yyerror ("'{' expected"); RECOVER;}
|	synchronized error
		{yyerror ("'(' expected"); RECOVER;}
|	synchronized OP_TK error CP_TK
		{yyerror ("Missing term"); RECOVER;}
|	synchronized OP_TK error
		{yyerror ("Missing term"); RECOVER;}
;

synchronized:
	modifiers
		{
		  check_modifiers (
             "Illegal modifier %qs. Only %<synchronized%> was expected here",
				   $1, ACC_SYNCHRONIZED);
		  if ($1 != ACC_SYNCHRONIZED)
		    MODIFIER_WFL (SYNCHRONIZED_TK) =
		      build_wfl_node (NULL_TREE);
		}
;

try_statement:
	TRY_TK block catches
		{ $$ = build_try_statement ($1.location, $2, $3); }
|	TRY_TK block finally
		{ $$ = build_try_finally_statement ($1.location, $2, $3); }
|	TRY_TK block catches finally
		{ $$ = build_try_finally_statement
		    ($1.location, build_try_statement ($1.location,
						       $2, $3), $4);
		}
|	TRY_TK error
		{yyerror ("'{' expected"); DRECOVER (try_statement);}
;

catches:
	catch_clause
|	catches catch_clause
		{
		  TREE_CHAIN ($2) = $1;
		  $$ = $2;
		}
;

catch_clause:
	catch_clause_parameter block
		{
		  java_method_add_stmt (current_function_decl, $2);
		  exit_block ();
		  $$ = $1;
		}
;

catch_clause_parameter:
	CATCH_TK OP_TK formal_parameter CP_TK
		{
		  /* We add a block to define a scope for
		     formal_parameter (CCBP). The formal parameter is
		     declared initialized by the appropriate function
		     call */
                  tree ccpb;
                  tree init;
                  if ($3)
                    {
                      ccpb = enter_block ();
                      init = build_assignment
                        (ASSIGN_TK, $2.location, TREE_PURPOSE ($3),
                         build0 (JAVA_EXC_OBJ_EXPR, ptr_type_node));
                      declare_local_variables (0, TREE_VALUE ($3),
                                               build_tree_list 
					       (TREE_PURPOSE ($3), init));
                      $$ = build1 (JAVA_CATCH_EXPR, NULL_TREE, ccpb);
                      SET_EXPR_LOCATION_FROM_TOKEN ($$, $1);
                    }
                  else
                    {
                      $$ = error_mark_node;
                    }
		}
|	CATCH_TK error
		{yyerror ("'(' expected"); RECOVER; $$ = NULL_TREE;}
|	CATCH_TK OP_TK error
		{
		  yyerror ("Missing term or ')' expected");
		  RECOVER; $$ = NULL_TREE;
		}
|	CATCH_TK OP_TK error CP_TK /* That's for () */
		{yyerror ("Missing term"); RECOVER; $$ = NULL_TREE;}
;

finally:
	FINALLY_TK block
		{ $$ = $2; }
|	FINALLY_TK error
		{yyerror ("'{' expected"); RECOVER; }
;

/* 19.12 Production from 15: Expressions  */
primary:
	primary_no_new_array
|	array_creation_uninitialized
|	array_creation_initialized
;

primary_no_new_array:
	literal
|	THIS_TK
		{ $$ = build_this ($1.location); }
|	OP_TK expression CP_TK
		{$$ = $2;}
|	class_instance_creation_expression
|	field_access
|	method_invocation
|	array_access
|	type_literals
        /* Added, JDK1.1 inner classes. Documentation is wrong
           referring to a 'ClassName' (class_name) rule that doesn't
           exist. Used name: instead.  */
|	name DOT_TK THIS_TK
		{
		  tree wfl = build_wfl_node (this_identifier_node);
		  $$ = make_qualified_primary ($1, wfl, EXPR_WFL_LINECOL ($1));
		}
|	OP_TK expression error
		{yyerror ("')' expected"); RECOVER;}
|	name DOT_TK error
		{yyerror ("'class' or 'this' expected" ); RECOVER;}
|	primitive_type DOT_TK error
		{yyerror ("'class' expected" ); RECOVER;}
|	VOID_TK DOT_TK error
		{yyerror ("'class' expected" ); RECOVER;}
;

type_literals:
	name DOT_TK CLASS_TK
		{ $$ = build_incomplete_class_ref ($2.location, $1); }
|	array_type DOT_TK CLASS_TK
		{ $$ = build_incomplete_class_ref ($2.location, $1); }
|	primitive_type DOT_TK CLASS_TK
                { $$ = build_incomplete_class_ref ($2.location, $1); }
|	VOID_TK DOT_TK CLASS_TK
                {
                   $$ = build_incomplete_class_ref ($2.location,
                                                   void_type_node);
                }
;

class_instance_creation_expression:
	NEW_TK class_type OP_TK argument_list CP_TK
		{ $$ = build_new_invocation ($2, $4); }
|	NEW_TK class_type OP_TK CP_TK
		{ $$ = build_new_invocation ($2, NULL_TREE); }
|	anonymous_class_creation
        /* Added, JDK1.1 inner classes, modified to use name or
	   primary instead of primary solely which couldn't work in
	   all situations.  */
|	something_dot_new identifier OP_TK CP_TK
		{
		  tree ctor = build_new_invocation ($2, NULL_TREE);
		  $$ = make_qualified_primary ($1, ctor,
					       EXPR_WFL_LINECOL ($1));
		}
|	something_dot_new identifier OP_TK CP_TK class_body
|	something_dot_new identifier OP_TK argument_list CP_TK
		{
		  tree ctor = build_new_invocation ($2, $4);
		  $$ = make_qualified_primary ($1, ctor,
					       EXPR_WFL_LINECOL ($1));
		}
|	something_dot_new identifier OP_TK argument_list CP_TK class_body
|	NEW_TK error SC_TK
		{$$ = NULL_TREE; yyerror ("'(' expected"); DRECOVER(new_1);}
|	NEW_TK class_type error
		{$$ = NULL_TREE; yyerror ("'(' expected"); RECOVER;}
|	NEW_TK class_type OP_TK error
		{$$ = NULL_TREE; yyerror ("')' or term expected"); RECOVER;}
|	NEW_TK class_type OP_TK argument_list error
		{$$ = NULL_TREE; yyerror ("')' expected"); RECOVER;}
|	something_dot_new error
		{
		  $$ = NULL_TREE;
		  YYERROR_NOW;
		  yyerror ("Identifier expected");
		  RECOVER;
		}
|	something_dot_new identifier error
		{$$ = NULL_TREE; yyerror ("'(' expected"); RECOVER;}
;

/* Created after JDK1.1 rules originally added to
   class_instance_creation_expression, but modified to use
   'class_type' instead of 'TypeName' (type_name) which is mentioned
   in the documentation but doesn't exist. */

anonymous_class_creation:
	NEW_TK class_type OP_TK argument_list CP_TK
		{ create_anonymous_class ($2); }
        class_body
		{
		  tree id = build_wfl_node (DECL_NAME (GET_CPC ()));
		  EXPR_WFL_LINECOL (id) = EXPR_WFL_LINECOL ($2);

		  end_class_declaration (1);

		  /* Now we can craft the new expression */
		  $$ = build_new_invocation (id, $4);

		  /* Note that we can't possibly be here if
		     `class_type' is an interface (in which case the
		     anonymous class extends Object and implements
		     `class_type', hence its constructor can't have
		     arguments.) */

		  /* Otherwise, the innerclass must feature a
		     constructor matching `argument_list'. Anonymous
		     classes are a bit special: it's impossible to
		     define constructor for them, hence constructors
		     must be generated following the hints provided by
		     the `new' expression. Whether a super constructor
		     of that nature exists or not is to be verified
		     later on in get_constructor_super.

		     It's during the expansion of a `new' statement
		     referring to an anonymous class that a ctor will
		     be generated for the anonymous class, with the
		     right arguments. */

		}
|	NEW_TK class_type OP_TK CP_TK
		{ create_anonymous_class ($2); }
        class_body
		{
		  tree id = build_wfl_node (DECL_NAME (GET_CPC ()));
		  EXPR_WFL_LINECOL (id) = EXPR_WFL_LINECOL ($2);

		  end_class_declaration (1);

		  /* Now we can craft the new expression. The
                     statement doesn't need to be remember so that a
                     constructor can be generated, since its signature
                     is already known. */
		  $$ = build_new_invocation (id, NULL_TREE);
		}
;

something_dot_new:		/* Added, not part of the specs. */
	name DOT_TK NEW_TK
		{ $$ = $1; }
|	primary DOT_TK NEW_TK
		{ $$ = $1; }
;

argument_list:
	expression
		{
		  $$ = tree_cons (NULL_TREE, $1, NULL_TREE);
		  ctxp->formal_parameter_number = 1;
		}
|	argument_list C_TK expression
		{
		  ctxp->formal_parameter_number += 1;
		  $$ = tree_cons (NULL_TREE, $3, $1);
		}
|	argument_list C_TK error
		{yyerror ("Missing term"); RECOVER;}
;

array_creation_uninitialized:
	NEW_TK primitive_type dim_exprs
		{ $$ = build_newarray_node ($2, $3, 0); }
|	NEW_TK class_or_interface_type dim_exprs
		{ $$ = build_newarray_node ($2, $3, 0); }
|	NEW_TK primitive_type dim_exprs dims
		{ $$ = build_newarray_node ($2, $3, pop_current_osb (ctxp));}
|	NEW_TK class_or_interface_type dim_exprs dims
		{ $$ = build_newarray_node ($2, $3, pop_current_osb (ctxp));}
|	NEW_TK error CSB_TK
		{yyerror ("'[' expected"); DRECOVER ("]");}
|	NEW_TK error OSB_TK
		{yyerror ("']' expected"); RECOVER;}
;

array_creation_initialized:
        /* Added, JDK1.1 anonymous array. Initial documentation rule
           modified */
	NEW_TK class_or_interface_type dims array_initializer
		{
		  char *sig;
		  int osb = pop_current_osb (ctxp);
		  while (osb--)
		    obstack_grow (&temporary_obstack, "[]", 2);
		  obstack_1grow (&temporary_obstack, '\0');
		  sig = obstack_finish (&temporary_obstack);
		  $$ = build3 (NEW_ANONYMOUS_ARRAY_EXPR, NULL_TREE,
			       $2, get_identifier (sig), $4);
		}
|	NEW_TK primitive_type dims array_initializer
		{
		  int osb = pop_current_osb (ctxp);
		  tree type = $2;
		  while (osb--)
		    type = build_java_array_type (type, -1);
		  $$ = build3 (NEW_ANONYMOUS_ARRAY_EXPR, NULL_TREE,
			       build_pointer_type (type), NULL_TREE, $4);
		}
|	NEW_TK error CSB_TK
		{yyerror ("'[' expected"); DRECOVER ("]");}
|	NEW_TK error OSB_TK
		{yyerror ("']' expected"); RECOVER;}
;

dim_exprs:
	dim_expr
		{ $$ = build_tree_list (NULL_TREE, $1); }
|	dim_exprs dim_expr
		{ $$ = tree_cons (NULL_TREE, $2, $$); }
;

dim_expr:
	OSB_TK expression CSB_TK
		{
		  if (JNUMERIC_TYPE_P (TREE_TYPE ($2)))
		    {
		      $2 = build_wfl_node ($2);
		      TREE_TYPE ($2) = NULL_TREE;
		    }
		  EXPR_WFL_LINECOL ($2) = $1.location;
		  $$ = $2;
		}
|	OSB_TK expression error
		{yyerror ("']' expected"); RECOVER;}
|	OSB_TK error
		{
		  yyerror ("Missing term");
		  yyerror ("']' expected");
		  RECOVER;
		}
;

dims:
	OSB_TK CSB_TK
		{
		  int allocate = 0;
		  /* If not initialized, allocate memory for the osb
                     numbers stack */
		  if (!ctxp->osb_limit)
		    {
		      allocate = ctxp->osb_limit = 32;
		      ctxp->osb_depth = -1;
		    }
		  /* If capacity overflown, reallocate a bigger chunk */
		  else if (ctxp->osb_depth+1 == ctxp->osb_limit)
		    allocate = ctxp->osb_limit << 1;

		  if (allocate)
		    {
		      allocate *= sizeof (int);
		      if (ctxp->osb_number)
			ctxp->osb_number = xrealloc (ctxp->osb_number,
						     allocate);
		      else
			ctxp->osb_number = xmalloc (allocate);
		    }
		  ctxp->osb_depth++;
		  CURRENT_OSB (ctxp) = 1;
		}
|	dims OSB_TK CSB_TK
		{ CURRENT_OSB (ctxp)++; }
|	dims OSB_TK error
		{ yyerror ("']' expected"); RECOVER;}
;

field_access:
	primary DOT_TK identifier
		{ $$ = make_qualified_primary ($1, $3, $2.location); }
		/*  FIXME - REWRITE TO:
		{ $$ = build_binop (COMPONENT_REF, $2.location, $1, $3); } */
|	SUPER_TK DOT_TK identifier
		{
		  tree super_wfl = build_wfl_node (super_identifier_node);
		  SET_EXPR_LOCATION_FROM_TOKEN (super_wfl, $1);
		  $$ = make_qualified_name (super_wfl, $3, $2.location);
		}
|	SUPER_TK error
		{yyerror ("Field expected"); DRECOVER (super_field_acces);}
;

method_invocation:
	name OP_TK CP_TK
		{ $$ = build_method_invocation ($1, NULL_TREE); }
|	name OP_TK argument_list CP_TK
		{ $$ = build_method_invocation ($1, $3); }
|	primary DOT_TK identifier OP_TK CP_TK
		{
		  if (TREE_CODE ($1) == THIS_EXPR)
		    $$ = build_this_super_qualified_invocation
		      (1, $3, NULL_TREE, 0, $2.location);
		  else
		    {
		      tree invok = build_method_invocation ($3, NULL_TREE);
		      $$ = make_qualified_primary ($1, invok, $2.location);
		    }
		}
|	primary DOT_TK identifier OP_TK argument_list CP_TK
		{
		  if (TREE_CODE ($1) == THIS_EXPR)
		    $$ = build_this_super_qualified_invocation
		      (1, $3, $5, 0, $2.location);
		  else
		    {
		      tree invok = build_method_invocation ($3, $5);
		      $$ = make_qualified_primary ($1, invok, $2.location);
		    }
		}
|	SUPER_TK DOT_TK identifier OP_TK CP_TK
		{
		  $$ = build_this_super_qualified_invocation
		    (0, $3, NULL_TREE, $1.location, $2.location);
		}
|	SUPER_TK DOT_TK identifier OP_TK argument_list CP_TK
		{
		  $$ = build_this_super_qualified_invocation
		    (0, $3, $5, $1.location, $2.location);
		}
        /* Screws up thing. I let it here until I'm convinced it can
           be removed. FIXME
|	primary DOT_TK error
		{yyerror ("'(' expected"); DRECOVER(bad);} */
|	SUPER_TK DOT_TK error CP_TK
		{ yyerror ("'(' expected"); DRECOVER (method_invocation); }
|	SUPER_TK DOT_TK error DOT_TK
		{ yyerror ("'(' expected"); DRECOVER (method_invocation); }
;

array_access:
	name OSB_TK expression CSB_TK
		{ $$ = build_array_ref ($2.location, $1, $3); }
|	primary_no_new_array OSB_TK expression CSB_TK
		{ $$ = build_array_ref ($2.location, $1, $3); }
|	array_creation_initialized OSB_TK expression CSB_TK
		{ $$ = build_array_ref ($2.location, $1, $3); }
|	name OSB_TK error
		{
		  yyerror ("Missing term and ']' expected");
		  DRECOVER(array_access);
		}
|	name OSB_TK expression error
		{
		  yyerror ("']' expected");
		  DRECOVER(array_access);
		}
|	primary_no_new_array OSB_TK error
		{
		  yyerror ("Missing term and ']' expected");
		  DRECOVER(array_access);
		}
|	primary_no_new_array OSB_TK expression error
		{
		  yyerror ("']' expected");
		  DRECOVER(array_access);
		}
|	array_creation_initialized OSB_TK error
		{
		  yyerror ("Missing term and ']' expected");
		  DRECOVER(array_access);
		}
|	array_creation_initialized OSB_TK expression error
		{
		  yyerror ("']' expected");
		  DRECOVER(array_access);
		}
;

postfix_expression:
	primary
|	name
|	post_increment_expression
|	post_decrement_expression
;

post_increment_expression:
	postfix_expression INCR_TK
		{ $$ = build_incdec ($2.token, $2.location, $1, 1); }
;

post_decrement_expression:
	postfix_expression DECR_TK
		{ $$ = build_incdec ($2.token, $2.location, $1, 1); }
;

trap_overflow_corner_case:
	pre_increment_expression
|	pre_decrement_expression
|	PLUS_TK unary_expression
		{$$ = build_unaryop ($1.token, $1.location, $2); }
|	unary_expression_not_plus_minus
|	PLUS_TK error
		{yyerror ("Missing term"); RECOVER}
;

unary_expression:
	trap_overflow_corner_case
		{
		  if ($1)
		    error_if_numeric_overflow ($1);
		  $$ = $1;
		}
|	MINUS_TK trap_overflow_corner_case
		{$$ = build_unaryop ($1.token, $1.location, $2); }
|	MINUS_TK error
		{yyerror ("Missing term"); RECOVER}
;

pre_increment_expression:
	INCR_TK unary_expression
		{$$ = build_incdec ($1.token, $1.location, $2, 0); }
|	INCR_TK error
		{yyerror ("Missing term"); RECOVER}
;

pre_decrement_expression:
	DECR_TK unary_expression
		{$$ = build_incdec ($1.token, $1.location, $2, 0); }
|	DECR_TK error
		{yyerror ("Missing term"); RECOVER}
;

unary_expression_not_plus_minus:
	postfix_expression
|	NOT_TK unary_expression
		{$$ = build_unaryop ($1.token, $1.location, $2); }
|	NEG_TK unary_expression
 		{$$ = build_unaryop ($1.token, $1.location, $2); }
|	cast_expression
|       NOT_TK error
		{yyerror ("Missing term"); RECOVER}
|       NEG_TK error
		{yyerror ("Missing term"); RECOVER}
;

cast_expression:		/* Error handling here is potentially weak */
	OP_TK primitive_type dims CP_TK unary_expression
		{
		  tree type = $2;
		  int osb = pop_current_osb (ctxp);
		  while (osb--)
		    type = build_java_array_type (type, -1);
		  $$ = build_cast ($1.location, type, $5);
		}
|	OP_TK primitive_type CP_TK unary_expression
		{ $$ = build_cast ($1.location, $2, $4); }
|	OP_TK expression CP_TK unary_expression_not_plus_minus
		{ $$ = build_cast ($1.location, $2, $4); }
|	OP_TK name dims CP_TK unary_expression_not_plus_minus
		{
		  const char *ptr;
		  int osb = pop_current_osb (ctxp);
		  obstack_grow (&temporary_obstack,
				IDENTIFIER_POINTER (EXPR_WFL_NODE ($2)),
				IDENTIFIER_LENGTH (EXPR_WFL_NODE ($2)));
		  while (osb--)
		    obstack_grow (&temporary_obstack, "[]", 2);
		  obstack_1grow (&temporary_obstack, '\0');
		  ptr = obstack_finish (&temporary_obstack);
		  EXPR_WFL_NODE ($2) = get_identifier (ptr);
		  $$ = build_cast ($1.location, $2, $5);
		}
|	OP_TK primitive_type OSB_TK error
		{yyerror ("']' expected, invalid type expression");}
|       OP_TK error
		{
	          YYNOT_TWICE yyerror ("Invalid type expression"); RECOVER;
		  RECOVER;
		}
|	OP_TK primitive_type dims CP_TK error
		{yyerror ("Missing term"); RECOVER;}
|	OP_TK primitive_type CP_TK error
		{yyerror ("Missing term"); RECOVER;}
|	OP_TK name dims CP_TK error
		{yyerror ("Missing term"); RECOVER;}
;

multiplicative_expression:
	unary_expression
|	multiplicative_expression MULT_TK unary_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token),
				    $2.location, $1, $3);
		}
|	multiplicative_expression DIV_TK unary_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	multiplicative_expression REM_TK unary_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	multiplicative_expression MULT_TK error
		{yyerror ("Missing term"); RECOVER;}
|	multiplicative_expression DIV_TK error
		{yyerror ("Missing term"); RECOVER;}
|	multiplicative_expression REM_TK error
		{yyerror ("Missing term"); RECOVER;}
;

additive_expression:
	multiplicative_expression
|	additive_expression PLUS_TK multiplicative_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	additive_expression MINUS_TK multiplicative_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	additive_expression PLUS_TK error
		{yyerror ("Missing term"); RECOVER;}
|	additive_expression MINUS_TK error
		{yyerror ("Missing term"); RECOVER;}
;

shift_expression:
	additive_expression
|	shift_expression LS_TK additive_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	shift_expression SRS_TK additive_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	shift_expression ZRS_TK additive_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	shift_expression LS_TK error
		{yyerror ("Missing term"); RECOVER;}
|	shift_expression SRS_TK error
		{yyerror ("Missing term"); RECOVER;}
|	shift_expression ZRS_TK error
		{yyerror ("Missing term"); RECOVER;}
;

relational_expression:
	shift_expression
|	relational_expression LT_TK shift_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	relational_expression GT_TK shift_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	relational_expression LTE_TK shift_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	relational_expression GTE_TK shift_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	relational_expression INSTANCEOF_TK reference_type
		{ $$ = build_binop (INSTANCEOF_EXPR, $2.location, $1, $3); }
|	relational_expression LT_TK error
		{yyerror ("Missing term"); RECOVER;}
|	relational_expression GT_TK error
		{yyerror ("Missing term"); RECOVER;}
|	relational_expression LTE_TK error
		{yyerror ("Missing term"); RECOVER;}
|	relational_expression GTE_TK error
		{yyerror ("Missing term"); RECOVER;}
|	relational_expression INSTANCEOF_TK error
		{yyerror ("Invalid reference type"); RECOVER;}
;

equality_expression:
	relational_expression
|	equality_expression EQ_TK relational_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	equality_expression NEQ_TK relational_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	equality_expression EQ_TK error
		{yyerror ("Missing term"); RECOVER;}
|	equality_expression NEQ_TK error
		{yyerror ("Missing term"); RECOVER;}
;

and_expression:
	equality_expression
|	and_expression AND_TK equality_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	and_expression AND_TK error
		{yyerror ("Missing term"); RECOVER;}
;

exclusive_or_expression:
	and_expression
|	exclusive_or_expression XOR_TK and_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	exclusive_or_expression XOR_TK error
		{yyerror ("Missing term"); RECOVER;}
;

inclusive_or_expression:
	exclusive_or_expression
|	inclusive_or_expression OR_TK exclusive_or_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	inclusive_or_expression OR_TK error
		{yyerror ("Missing term"); RECOVER;}
;

conditional_and_expression:
	inclusive_or_expression
|	conditional_and_expression BOOL_AND_TK inclusive_or_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	conditional_and_expression BOOL_AND_TK error
		{yyerror ("Missing term"); RECOVER;}
;

conditional_or_expression:
	conditional_and_expression
|	conditional_or_expression BOOL_OR_TK conditional_and_expression
		{
		  $$ = build_binop (BINOP_LOOKUP ($2.token), $2.location,
				    $1, $3);
		}
|	conditional_or_expression BOOL_OR_TK error
		{yyerror ("Missing term"); RECOVER;}
;

conditional_expression:		/* Error handling here is weak */
	conditional_or_expression
|	conditional_or_expression REL_QM_TK expression REL_CL_TK conditional_expression
		{
		  $$ = build3 (CONDITIONAL_EXPR, NULL_TREE, $1, $3, $5);
		  SET_EXPR_LOCATION_FROM_TOKEN ($$, $2);
		}
|	conditional_or_expression REL_QM_TK REL_CL_TK error
		{
		  YYERROR_NOW;
		  yyerror ("Missing term");
		  DRECOVER (1);
		}
|	conditional_or_expression REL_QM_TK error
		{yyerror ("Missing term"); DRECOVER (2);}
|	conditional_or_expression REL_QM_TK expression REL_CL_TK error
		{yyerror ("Missing term"); DRECOVER (3);}
;

assignment_expression:
	conditional_expression
|	assignment
;

assignment:
	left_hand_side assignment_operator assignment_expression
		{ $$ = build_assignment ($2.token, $2.location, $1, $3); }
|	left_hand_side assignment_operator error
		{
		  YYNOT_TWICE yyerror ("Missing term");
		  DRECOVER (assign);
		}
;

left_hand_side:
	name
|	field_access
|	array_access
;

assignment_operator:
	ASSIGN_ANY_TK
|	ASSIGN_TK
;

expression:
	assignment_expression
;

constant_expression:
	expression
;

%%

/* Helper function to retrieve an OSB count. Should be used when the
   `dims:' rule is being used.  */

static int
pop_current_osb (struct parser_ctxt *ctxp)
{
  int to_return;

  if (ctxp->osb_depth < 0)
    abort ();

  to_return = CURRENT_OSB (ctxp);
  ctxp->osb_depth--;

  return to_return;
}



/* This section of the code deal with save/restoring parser contexts.
   Add mode documentation here. FIXME */

/* Helper function. Create a new parser context. With
   COPY_FROM_PREVIOUS set to a nonzero value, content of the previous
   context is copied, otherwise, the new context is zeroed. The newly
   created context becomes the current one.  */

static void
create_new_parser_context (int copy_from_previous)
{
  struct parser_ctxt *new;

  new = ggc_alloc (sizeof (struct parser_ctxt));
  if (copy_from_previous)
    {
      memcpy (new, ctxp, sizeof (struct parser_ctxt));
      /* This flag, indicating the context saves global values,
	 should only be set by java_parser_context_save_global.  */
      new->saved_data_ctx = 0;
    }
  else
    memset (new, 0, sizeof (struct parser_ctxt));

  new->next = ctxp;
  ctxp = new;
}

/* Create a new parser context and make it the current one. */

void
java_push_parser_context (void)
{
  create_new_parser_context (0);
}

void
java_pop_parser_context (int generate)
{
  tree current;
  struct parser_ctxt *next;

  if (!ctxp)
    return;

  next = ctxp->next;
  if (next)
    {
      input_location = ctxp->save_location;
      current_class = ctxp->class_type;
    }

  /* If the old and new lexers differ, then free the old one.  */
  if (ctxp->lexer && next && ctxp->lexer != next->lexer)
    java_destroy_lexer (ctxp->lexer);

  /* Set the single import class file flag to 0 for the current list
     of imported things */
  for (current = ctxp->import_list; current; current = TREE_CHAIN (current))
    IS_A_SINGLE_IMPORT_CLASSFILE_NAME_P (TREE_VALUE (current)) = 0;

  /* If we pushed a context to parse a class intended to be generated,
     we keep it so we can remember the class. What we could actually
     do is to just update a list of class names.  */
  if (generate)
    {
      if (ctxp_for_generation_last == NULL)
        ctxp_for_generation = ctxp;
      else
        ctxp_for_generation_last->next = ctxp;
      ctxp->next = NULL;
      ctxp_for_generation_last = ctxp;
    }

  /* And restore those of the previous context */
  if ((ctxp = next))		/* Assignment is really meant here */
    for (current = ctxp->import_list; current; current = TREE_CHAIN (current))
      IS_A_SINGLE_IMPORT_CLASSFILE_NAME_P (TREE_VALUE (current)) = 1;
}

/* Create a parser context for the use of saving some global
   variables.  */

void
java_parser_context_save_global (void)
{
  if (!ctxp)
    {
      java_push_parser_context ();
      ctxp->saved_data_ctx = 1;
    }

  /* If this context already stores data, create a new one suitable
     for data storage. */
  else if (ctxp->saved_data)
    {
      create_new_parser_context (1);
      ctxp->saved_data_ctx = 1;
    }

  ctxp->save_location = input_location;
  ctxp->class_type = current_class;
  ctxp->function_decl = current_function_decl;
  ctxp->saved_data = 1;
}

/* Restore some global variables from the previous context. Make the
   previous context the current one.  */

void
java_parser_context_restore_global (void)
{
  input_location = ctxp->save_location;
  current_class = ctxp->class_type;
  if (wfl_operator)
#ifdef USE_MAPPED_LOCATION
    SET_EXPR_LOCATION (wfl_operator, ctxp->save_location);
#else
    EXPR_WFL_FILENAME_NODE (wfl_operator) = get_identifier (input_filename);
#endif
  current_function_decl = ctxp->function_decl;
  ctxp->saved_data = 0;
  if (ctxp->saved_data_ctx)
    java_pop_parser_context (0);
}

/* Suspend vital data for the current class/function being parsed so
   that an other class can be parsed. Used to let local/anonymous
   classes be parsed.  */

static void
java_parser_context_suspend (void)
{
  /* This makes debugging through java_debug_context easier */
  static const char *const name = "<inner buffer context>";

  /* Duplicate the previous context, use it to save the globals we're
     interested in */
  create_new_parser_context (1);
  ctxp->function_decl = current_function_decl;
  ctxp->class_type = current_class;

  /* Then create a new context which inherits all data from the
     previous one. This will be the new current context  */
  create_new_parser_context (1);

  /* Help debugging */
  ctxp->next->filename = name;
}

/* Resume vital data for the current class/function being parsed so
   that an other class can be parsed. Used to let local/anonymous
   classes be parsed.  The trick is the data storing file position
   informations must be restored to their current value, so parsing
   can resume as if no context was ever saved. */

static void
java_parser_context_resume (void)
{
  struct parser_ctxt *old = ctxp;             /* This one is to be discarded */
  struct parser_ctxt *saver = old->next;      /* This one contain saved info */
  struct parser_ctxt *restored = saver->next; /* This one is the old current */

  /* We need to inherit the list of classes to complete/generate */
  restored->classd_list = old->classd_list;
  restored->class_list = old->class_list;

  /* Restore the current class and function from the saver */
  current_class = saver->class_type;
  current_function_decl = saver->function_decl;

  /* Retrieve the restored context */
  ctxp = restored;

  /* Re-installed the data for the parsing to carry on */
  memcpy (&ctxp->marker_begining, &old->marker_begining,
	  (size_t)(&ctxp->marker_end - &ctxp->marker_begining));
}

/* Add a new anchor node to which all statement(s) initializing static
   and non static initialized upon declaration field(s) will be
   linked.  */

static void
java_parser_context_push_initialized_field (void)
{
  tree node;

  node = build_tree_list (NULL_TREE, NULL_TREE);
  TREE_CHAIN (node) = CPC_STATIC_INITIALIZER_LIST (ctxp);
  CPC_STATIC_INITIALIZER_LIST (ctxp) = node;

  node = build_tree_list (NULL_TREE, NULL_TREE);
  TREE_CHAIN (node) = CPC_INITIALIZER_LIST (ctxp);
  CPC_INITIALIZER_LIST (ctxp) = node;

  node = build_tree_list (NULL_TREE, NULL_TREE);
  TREE_CHAIN (node) = CPC_INSTANCE_INITIALIZER_LIST (ctxp);
  CPC_INSTANCE_INITIALIZER_LIST (ctxp) = node;
}

/* Pop the lists of initialized field. If this lists aren't empty,
   remember them so we can use it to create and populate the finit$
   or <clinit> functions. */

static void
java_parser_context_pop_initialized_field (void)
{
  tree stmts;
  tree class_type = TREE_TYPE (GET_CPC ());

  if (CPC_INITIALIZER_LIST (ctxp))
    {
      stmts = CPC_INITIALIZER_STMT (ctxp);
      CPC_INITIALIZER_LIST (ctxp) = TREE_CHAIN (CPC_INITIALIZER_LIST (ctxp));
      if (stmts && !java_error_count)
	TYPE_FINIT_STMT_LIST (class_type) = reorder_static_initialized (stmts);
    }

  if (CPC_STATIC_INITIALIZER_LIST (ctxp))
    {
      stmts = CPC_STATIC_INITIALIZER_STMT (ctxp);
      CPC_STATIC_INITIALIZER_LIST (ctxp) =
	TREE_CHAIN (CPC_STATIC_INITIALIZER_LIST (ctxp));
      /* Keep initialization in order to enforce 8.5 */
      if (stmts && !java_error_count)
	TYPE_CLINIT_STMT_LIST (class_type) = nreverse (stmts);
    }

  /* JDK 1.1 instance initializers */
  if (CPC_INSTANCE_INITIALIZER_LIST (ctxp))
    {
      stmts = CPC_INSTANCE_INITIALIZER_STMT (ctxp);
      CPC_INSTANCE_INITIALIZER_LIST (ctxp) =
	TREE_CHAIN (CPC_INSTANCE_INITIALIZER_LIST (ctxp));
      if (stmts && !java_error_count)
	TYPE_II_STMT_LIST (class_type) = nreverse (stmts);
    }
}

static tree
reorder_static_initialized (tree list)
{
  /* We have to keep things in order. The alias initializer have to
     come first, then the initialized regular field, in reverse to
     keep them in lexical order. */
  tree marker, previous = NULL_TREE;
  for (marker = list; marker; previous = marker, marker = TREE_CHAIN (marker))
    if (TREE_CODE (marker) == TREE_LIST
	&& !TREE_VALUE (marker) && !TREE_PURPOSE (marker))
      break;

  /* No static initialized, the list is fine as is */
  if (!previous)
    list = TREE_CHAIN (marker);

  /* No marker? reverse the whole list */
  else if (!marker)
    list = nreverse (list);

  /* Otherwise, reverse what's after the marker and the new reordered
     sublist will replace the marker. */
  else
    {
      TREE_CHAIN (previous) = NULL_TREE;
      list = nreverse (list);
      list = chainon (TREE_CHAIN (marker), list);
    }
  return list;
}

/* Helper functions to dump the parser context stack.  */

#define TAB_CONTEXT(C) \
  {int i; for (i = 0; i < (C); i++) fputc (' ', stderr);}

static void
java_debug_context_do (int tab)
{
  struct parser_ctxt *copy = ctxp;
  while (copy)
    {
      TAB_CONTEXT (tab);
      fprintf (stderr, "ctxt: 0x%0lX\n", (unsigned long)copy);
      TAB_CONTEXT (tab);
      fprintf (stderr, "filename: %s\n", copy->filename);
      TAB_CONTEXT (tab);
      fprintf (stderr, "package: %s\n",
	       (copy->package ?
		IDENTIFIER_POINTER (copy->package) : "<none>"));
      TAB_CONTEXT (tab);
      fprintf (stderr, "context for saving: %d\n", copy->saved_data_ctx);
      TAB_CONTEXT (tab);
      fprintf (stderr, "saved data: %d\n", copy->saved_data);
      copy = copy->next;
      tab += 2;
    }
}

/* Dump the stacked up parser contexts. Intended to be called from a
   debugger.  */

void
java_debug_context (void)
{
  java_debug_context_do (0);
}



/* Flag for the error report routine to issue the error the first time
   it's called (overriding the default behavior which is to drop the
   first invocation and honor the second one, taking advantage of a
   richer context.  */
static int force_error = 0;

/* Reporting an constructor invocation error.  */
static void
parse_ctor_invocation_error (void)
{
  if (DECL_CONSTRUCTOR_P (current_function_decl))
    yyerror ("Constructor invocation must be first thing in a constructor");
  else
    yyerror ("Only constructors can invoke constructors");
}

/* Reporting JDK1.1 features not implemented.  */

static tree
parse_jdk1_1_error (const char *msg)
{
  sorry (": %qs JDK1.1(TM) feature", msg);
  java_error_count++;
  return build_java_empty_stmt ();
}

static int do_warning = 0;

void
yyerror (const char *msgid)
{
#ifdef USE_MAPPED_LOCATION
  static source_location elc;
  expanded_location xloc = expand_location (input_location);
  int current_line = xloc.line;
#else
  static java_lc elc;
  int save_lineno;
  int current_line = input_line;
#endif
  static int prev_lineno;
  static const char *prev_msg;

  char *remainder, *code_from_source;

  if (!force_error && prev_lineno == current_line)
    return;
#ifndef USE_MAPPED_LOCATION
  current_line = ctxp->lexer->token_start.line;
#endif

  /* Save current error location but report latter, when the context is
     richer.  */
  if (ctxp->java_error_flag == 0)
    {
      ctxp->java_error_flag = 1;
#ifdef USE_MAPPED_LOCATION
      elc = input_location;
#else
      elc = ctxp->lexer->token_start;
#endif
      /* Do something to use the previous line if we're reaching the
	 end of the file... */
#ifdef VERBOSE_SKELETON
      printf ("* Error detected (%s)\n", (msgid ? msgid : "(null)"));
#endif
      return;
    }

  /* Ignore duplicate message on the same line. BTW, this is dubious. FIXME */
  if (!force_error && msgid == prev_msg && prev_lineno == current_line)
    return;

  ctxp->java_error_flag = 0;
  if (do_warning)
    java_warning_count++;
  else
    java_error_count++;

#if 0 /* FIXME */
  if (elc.col == 0 && msgid && msgid[1] == ';')
    elc = ctxp->prev_line_end;
#endif

  prev_msg = msgid;

#ifdef USE_MAPPED_LOCATION
  prev_lineno = current_line;
  code_from_source = java_get_line_col (xloc.file, current_line, xloc.column);
#else
  save_lineno = input_line;
  prev_lineno = input_line = current_line;
  code_from_source = java_get_line_col (input_filename, current_line,
					ctxp->lexer->token_start.col);
#endif


  obstack_grow0 (&temporary_obstack,
		 code_from_source, strlen (code_from_source));
  remainder = obstack_finish (&temporary_obstack);
  if (do_warning)
    warning (0, "%s.\n%s", msgid, remainder);
  else
    error ("%s.\n%s", msgid, remainder);

  /* This allow us to cheaply avoid an extra 'Invalid expression
     statement' error report when errors have been already reported on
     the same line. This occurs when we report an error but don't have
     a synchronization point other than ';', which
     expression_statement is the only one to take care of.  */
#ifndef USE_MAPPED_LOCATION
  input_line = save_lineno;
#endif
  ctxp->prevent_ese = input_line;
}

static void
issue_warning_error_from_context (
#ifdef USE_MAPPED_LOCATION
				  source_location cl,
#else
				  tree cl,
#endif
				  const char *gmsgid, va_list *ap)
{
#ifdef USE_MAPPED_LOCATION
  source_location saved_location = input_location;
  expanded_location xloc = expand_location (cl);
#else
  java_lc save_lc = ctxp->lexer->token_start;
  const char *saved = ctxp->filename, *saved_input_filename;
#endif
  char buffer [4096];
  text_info text;

  text.err_no = errno;
  text.args_ptr = ap;
  text.format_spec = gmsgid;
  pp_format (global_dc->printer, &text);
  pp_output_formatted_text (global_dc->printer);
  strncpy (buffer, pp_formatted_text (global_dc->printer), sizeof (buffer) - 1);
  buffer[sizeof (buffer) - 1] = '\0';
  pp_clear_output_area (global_dc->printer);

  force_error = 1;

#ifdef USE_MAPPED_LOCATION
  if (xloc.file != NULL)
    {
      ctxp->filename = xloc.file;
      input_location = cl;
    }
#else
  ctxp->lexer->token_start.line = EXPR_WFL_LINENO (cl);
  ctxp->lexer->token_start.col  = (EXPR_WFL_COLNO (cl) == 0xfff ? -1
				   : EXPR_WFL_COLNO (cl) == 0xffe ? -2
				   : EXPR_WFL_COLNO (cl));

  /* We have a CL, that's a good reason for using it if it contains data */
  if (TREE_CODE (cl) == EXPR_WITH_FILE_LOCATION && EXPR_WFL_FILENAME_NODE (cl))
    ctxp->filename = EXPR_WFL_FILENAME (cl);
  saved_input_filename = input_filename;
  input_filename = ctxp->filename;
#endif
  java_error (NULL);
  java_error (buffer);
#ifdef USE_MAPPED_LOCATION
  input_location = saved_location;
#else
  ctxp->filename = saved;
  input_filename = saved_input_filename;
  ctxp->lexer->token_start = save_lc;
#endif
  force_error = 0;
}

/* Issue an error message at a current source line CL.
   FUTURE/FIXME:  change cl to be a source_location. */

void
parse_error_context (tree cl, const char *gmsgid, ...)
{
  va_list ap;
  va_start (ap, gmsgid);
#ifdef USE_MAPPED_LOCATION
  issue_warning_error_from_context (EXPR_LOCATION (cl), gmsgid, &ap);
#else
  issue_warning_error_from_context (cl, gmsgid, &ap);
#endif
  va_end (ap);
}

/* Issue a warning at a current source line CL.
   FUTURE/FIXME:  change cl to be a source_location. */

static void
parse_warning_context (tree cl, const char *gmsgid, ...)
{
  va_list ap;
  va_start (ap, gmsgid);

  do_warning = 1;
#ifdef USE_MAPPED_LOCATION
  issue_warning_error_from_context (EXPR_LOCATION (cl), gmsgid, &ap);
#else
  issue_warning_error_from_context (cl, gmsgid, &ap);
#endif
  do_warning = 0;
  va_end (ap);
}

static tree
find_expr_with_wfl (tree node)
{
  while (node)
    {
      enum tree_code_class code;
      tree to_return;

      switch (TREE_CODE (node))
	{
	case BLOCK:
	  node = BLOCK_EXPR_BODY (node);
	  continue;

	case COMPOUND_EXPR:
	  to_return = find_expr_with_wfl (TREE_OPERAND (node, 0));
	  if (to_return)
	    return to_return;
	  node = TREE_OPERAND (node, 1);
	  continue;

	case LOOP_EXPR:
	  node = TREE_OPERAND (node, 0);
	  continue;

	case LABELED_BLOCK_EXPR:
	  node = LABELED_BLOCK_BODY (node);
	  continue;

	default:
	  code = TREE_CODE_CLASS (TREE_CODE (node));
	  if (((code == tcc_unary) || (code == tcc_binary)
	       || (code == tcc_expression))
	      && EXPR_WFL_LINECOL (node))
	    return node;
	  return NULL_TREE;
	}
    }
  return NULL_TREE;
}

/* Issue a missing return statement error. Uses METHOD to figure the
   last line of the method the error occurs in.  */

static void
missing_return_error (tree method)
{
#ifdef USE_MAPPED_LOCATION
  SET_EXPR_LOCATION (wfl_operator, DECL_FUNCTION_LAST_LINE (method));
#else
  EXPR_WFL_SET_LINECOL (wfl_operator, DECL_FUNCTION_LAST_LINE (method), -2);
#endif
  parse_error_context (wfl_operator, "Missing return statement");
}

/* Issue an unreachable statement error. From NODE, find the next
   statement to report appropriately.  */
static void
unreachable_stmt_error (tree node)
{
  /* Browse node to find the next expression node that has a WFL. Use
     the location to report the error */
  if (TREE_CODE (node) == COMPOUND_EXPR)
    node = find_expr_with_wfl (TREE_OPERAND (node, 1));
  else
    node = find_expr_with_wfl (node);

  if (node)
    {
#ifdef USE_MAPPED_LOCATION
      SET_EXPR_LOCATION (wfl_operator, EXPR_LOCATION (node));
#else
      EXPR_WFL_SET_LINECOL (wfl_operator, EXPR_WFL_LINENO (node), -2);
#endif
      parse_error_context (wfl_operator, "Unreachable statement");
    }
  else
    abort ();
}

static int
not_accessible_field_error (tree wfl, tree decl)
{
  parse_error_context 
    (wfl, "Can't access %s field %<%s.%s%> from %qs",
     accessibility_string (get_access_flags_from_decl (decl)),
     GET_TYPE_NAME (DECL_CONTEXT (decl)),
     IDENTIFIER_POINTER (DECL_NAME (decl)),
     IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (current_class))));
  return 1;
}

int
java_report_errors (void)
{
  if (java_error_count)
    fprintf (stderr, "%d error%s",
	     java_error_count, (java_error_count == 1 ? "" : "s"));
  if (java_warning_count)
    fprintf (stderr, "%s%d warning%s", (java_error_count ? ", " : ""),
	     java_warning_count, (java_warning_count == 1 ? "" : "s"));
  if (java_error_count || java_warning_count)
    putc ('\n', stderr);
  return java_error_count;
}

static char *
java_accstring_lookup (int flags)
{
  static char buffer [80];
#define COPY_RETURN(S) {strcpy (buffer, S); return buffer;}

  /* Access modifier looked-up first for easier report on forbidden
     access. */
  if (flags & ACC_PUBLIC) COPY_RETURN ("public");
  if (flags & ACC_PRIVATE) COPY_RETURN ("private");
  if (flags & ACC_PROTECTED) COPY_RETURN ("protected");
  if (flags & ACC_STATIC) COPY_RETURN ("static");
  if (flags & ACC_FINAL) COPY_RETURN ("final");
  if (flags & ACC_SYNCHRONIZED) COPY_RETURN ("synchronized");
  if (flags & ACC_VOLATILE) COPY_RETURN ("volatile");
  if (flags & ACC_TRANSIENT) COPY_RETURN ("transient");
  if (flags & ACC_NATIVE) COPY_RETURN ("native");
  if (flags & ACC_INTERFACE) COPY_RETURN ("interface");
  if (flags & ACC_ABSTRACT) COPY_RETURN ("abstract");

  buffer [0] = '\0';
  return buffer;
#undef COPY_RETURN
}

/* Returns a string denoting the accessibility of a class or a member as
   indicated by FLAGS.  We need a separate function from
   java_accstring_lookup, as the latter can return spurious "static", etc.
   if package-private access is defined (in which case none of the
   relevant access control bits in FLAGS is set).  */

static const char *
accessibility_string (int flags)
{
  if (flags & ACC_PRIVATE) return "private";
  if (flags & ACC_PROTECTED) return "protected";
  if (flags & ACC_PUBLIC) return "public";

  return "package-private";
}

/* Issuing error messages upon redefinition of classes, interfaces or
   variables. */

static void
classitf_redefinition_error (const char *context, tree id, tree decl, tree cl)
{
  parse_error_context (cl, "%s %qs already defined in %s:%d",
		       context, IDENTIFIER_POINTER (id),
		       DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl));
  /* Here we should point out where its redefined. It's a unicode. FIXME */
}

static void
variable_redefinition_error (tree context, tree name, tree type, int line)
{
  const char *type_name;

  /* Figure a proper name for type. We might haven't resolved it */
  if (TREE_CODE (type) == POINTER_TYPE && !TREE_TYPE (type))
    type_name = IDENTIFIER_POINTER (TYPE_NAME (type));
  else
    type_name = lang_printable_name (type, 0);

  parse_error_context (context,
		       "Variable %qs is already defined in this method and was declared %<%s %s%> at line %d",
		       IDENTIFIER_POINTER (name),
		       type_name, IDENTIFIER_POINTER (name), line);
}

/* If ANAME is terminated with `[]', it indicates an array. This
   function returns the number of `[]' found and if this number is
   greater than zero, it extracts the array type name and places it in
   the node pointed to by TRIMMED unless TRIMMED is null.  */

static int
build_type_name_from_array_name (tree aname, tree *trimmed)
{
  const char *name = IDENTIFIER_POINTER (aname);
  int len = IDENTIFIER_LENGTH (aname);
  int array_dims;

  STRING_STRIP_BRACKETS (name, len, array_dims);

  if (array_dims && trimmed)
    *trimmed = get_identifier_with_length (name, len);

  return array_dims;
}

static tree
build_array_from_name (tree type, tree type_wfl, tree name, tree *ret_name)
{
  int more_dims = 0;

  /* Eventually get more dims */
  more_dims = build_type_name_from_array_name (name, &name);

  /* If we have, then craft a new type for this variable */
  if (more_dims)
    {
      tree save = type;

      /* If we have a pointer, use its type */
      if (TREE_CODE (type) == POINTER_TYPE)
        type = TREE_TYPE (type);

      /* Building the first dimension of a primitive type uses this
         function */
      if (JPRIMITIVE_TYPE_P (type))
	{
	  type = build_java_array_type (type, -1);
	  more_dims--;
	}
      /* Otherwise, if we have a WFL for this type, use it (the type
         is already an array on an unresolved type, and we just keep
         on adding dimensions) */
      else if (type_wfl)
	{
	  type = type_wfl;
	  more_dims += build_type_name_from_array_name (TYPE_NAME (save),
							NULL);
	}

      /* Add all the dimensions */
      while (more_dims--)
	type = build_unresolved_array_type (type);

      /* The type may have been incomplete in the first place */
      if (type_wfl)
	type = obtain_incomplete_type (type);
    }

  if (ret_name)
    *ret_name = name;
  return type;
}

/* Build something that the type identifier resolver will identify as
   being an array to an unresolved type. TYPE_WFL is a WFL on a
   identifier. */

static tree
build_unresolved_array_type (tree type_or_wfl)
{
  const char *ptr;
  tree wfl;

  /* TYPE_OR_WFL might be an array on a resolved type. In this case,
     just create a array type */
  if (TREE_CODE (type_or_wfl) == RECORD_TYPE)
    return build_java_array_type (type_or_wfl, -1);

  obstack_grow (&temporary_obstack,
		 IDENTIFIER_POINTER (EXPR_WFL_NODE (type_or_wfl)),
		 IDENTIFIER_LENGTH (EXPR_WFL_NODE (type_or_wfl)));
  obstack_grow0 (&temporary_obstack, "[]", 2);
  ptr = obstack_finish (&temporary_obstack);
#ifdef USE_MAPPED_LOCATION
  wfl = build_expr_wfl (get_identifier (ptr), EXPR_LOCATION (type_or_wfl));
#else
  wfl = build_expr_wfl (get_identifier (ptr),
			EXPR_WFL_FILENAME (type_or_wfl),
			EXPR_WFL_LINENO (type_or_wfl),
			EXPR_WFL_COLNO (type_or_wfl));
#endif
  /* Re-install the existing qualifications so that the type can be
     resolved properly. */
  EXPR_WFL_QUALIFICATION (wfl) = EXPR_WFL_QUALIFICATION (type_or_wfl);
  return wfl;
}

static void
parser_add_interface (tree class_decl, tree interface_decl, tree wfl)
{
  if (maybe_add_interface (TREE_TYPE (class_decl), TREE_TYPE (interface_decl)))
    parse_error_context (wfl, "Interface %qs repeated",
			 IDENTIFIER_POINTER (DECL_NAME (interface_decl)));
}

/* Bulk of common class/interface checks. Return 1 if an error was
   encountered. TAG is 0 for a class, 1 for an interface.  */

static int
check_class_interface_creation (int is_interface, int flags, tree raw_name,
				tree qualified_name, tree decl, tree cl)
{
  tree node;
  int sca = 0;			/* Static class allowed */
  int icaf = 0;			/* Inner class allowed flags */
  int uaaf = CLASS_MODIFIERS;	/* Usually allowed access flags */

  if (!quiet_flag)
    fprintf (stderr, " %s%s %s",
	     (CPC_INNER_P () ? "inner" : ""),
	     (is_interface ? "interface" : "class"),
	     IDENTIFIER_POINTER (qualified_name));

  /* Scope of an interface/class type name:
       - Can't be imported by a single type import
       - Can't already exists in the package */
  if (IS_A_SINGLE_IMPORT_CLASSFILE_NAME_P (raw_name)
      && (node = find_name_in_single_imports (raw_name))
      && !CPC_INNER_P ())
    {
      parse_error_context
	(cl, "%s name %qs clashes with imported type %qs",
	 (is_interface ? "Interface" : "Class"),
	 IDENTIFIER_POINTER (raw_name), IDENTIFIER_POINTER (node));
      return 1;
    }
  if (decl && CLASS_COMPLETE_P (decl))
    {
      classitf_redefinition_error ((is_interface ? "Interface" : "Class"),
				   qualified_name, decl, cl);
      return 1;
    }

  if (check_inner_class_redefinition (raw_name, cl))
    return 1;

  /* If public, file name should match class/interface name, except
     when dealing with an inner class */
  if (!CPC_INNER_P () && (flags & ACC_PUBLIC ))
    {
      const char *fname = input_filename;
      const char *f;

      for (f = fname + strlen (fname);
	   f != fname && ! IS_DIR_SEPARATOR (*f);
	   f--)
	;
      if (IS_DIR_SEPARATOR (*f))
	f++;
      if (strncmp (IDENTIFIER_POINTER (raw_name),
		   f , IDENTIFIER_LENGTH (raw_name)) ||
	  f [IDENTIFIER_LENGTH (raw_name)] != '.')
	parse_error_context
	  (cl, "Public %s %qs must be defined in a file called %<%s.java%>",
			     (is_interface ? "interface" : "class"),
			     IDENTIFIER_POINTER (qualified_name),
			     IDENTIFIER_POINTER (raw_name));
    }

  /* Static classes can be declared only in top level classes. Note:
     once static, a inner class is a top level class. */
  if (flags & ACC_STATIC)
    {
      /* Catch the specific error of declaring an class inner class
	 with no toplevel enclosing class. Prevent check_modifiers from
	 complaining a second time */
      if (CPC_INNER_P () && !TOPLEVEL_CLASS_DECL_P (GET_CPC()))
	{
	  parse_error_context (cl, "Inner class %qs can't be static. Static classes can only occur in interfaces and top-level classes",
			       IDENTIFIER_POINTER (qualified_name));
	  sca = ACC_STATIC;
	}
      /* Else, in the context of a top-level class declaration, let
         `check_modifiers' do its job, otherwise, give it a go */
      else
	sca = (GET_CPC_LIST () ? ACC_STATIC : 0);
    }

  /* Inner classes can be declared private or protected
     within their enclosing classes. */
  if (CPC_INNER_P ())
    {
      /* A class which is local to a block can't be public, private,
	 protected or static. But it is created final, so allow this
	 one. */
      if (current_function_decl)
	icaf = sca = uaaf = ACC_FINAL;
      else
	{
	  check_modifiers_consistency (flags);
	  icaf = ACC_PROTECTED;
	  if (! CLASS_INTERFACE (GET_CPC ()))
	    icaf |= ACC_PRIVATE;
	}
    }

  if (is_interface)
    {
      if (CPC_INNER_P ())
	uaaf = INTERFACE_INNER_MODIFIERS;
      else
	uaaf = INTERFACE_MODIFIERS;

      check_modifiers ("Illegal modifier %qs for interface declaration",
		       flags, uaaf);
    }
  else
    check_modifiers ((current_function_decl ?
		      "Illegal modifier %qs for local class declaration" :
		      "Illegal modifier %qs for class declaration"),
		     flags, uaaf|sca|icaf);
  return 0;
}

/* Construct a nested class name.  If the final component starts with
   a digit, return true.  Otherwise return false.  */
static int
make_nested_class_name (tree cpc_list)
{
  tree name;

  if (!cpc_list)
    return 0;

  make_nested_class_name (TREE_CHAIN (cpc_list));

  /* Pick the qualified name when dealing with the first upmost
     enclosing class */
  name = (TREE_CHAIN (cpc_list)
	  ? TREE_PURPOSE (cpc_list) : DECL_NAME (TREE_VALUE (cpc_list)));
  obstack_grow (&temporary_obstack,
		IDENTIFIER_POINTER (name), IDENTIFIER_LENGTH (name));
  obstack_1grow (&temporary_obstack, '$');

  return ISDIGIT (IDENTIFIER_POINTER (name)[0]);
}

/* Can't redefine a class already defined in an earlier scope. */

static int
check_inner_class_redefinition (tree raw_name, tree cl)
{
  tree scope_list;

  for (scope_list = GET_CPC_LIST (); scope_list;
       scope_list = GET_NEXT_ENCLOSING_CPC (scope_list))
    if (raw_name == GET_CPC_UN_NODE (scope_list))
      {
	parse_error_context
	  (cl, "The class name %qs is already defined in this scope. An inner class may not have the same simple name as any of its enclosing classes",
	   IDENTIFIER_POINTER (raw_name));
	return 1;
      }
  return 0;
}

/* Tries to find a decl for CLASS_TYPE within ENCLOSING.  May return an
   invisible/non-accessible matching decl when an accessible one could not be 
   found, in order to give a better error message when accessibility is 
   checked later.  */

static tree
resolve_inner_class (tree context, tree cl, tree enclosing, tree class_type)
{
  tree local_super = NULL_TREE;
  tree candidate = NULL_TREE;

  /* This hash table is used to register the classes we're going
     through when searching the current class as an inner class, in
     order to detect circular references.  */
  htab_t circularity_hash = htab_create (20, htab_hash_pointer, htab_eq_pointer,
					 NULL);

  while (enclosing)
    {
      tree decl;

      *htab_find_slot (circularity_hash, enclosing, INSERT) = enclosing;

      if ((decl = find_as_inner_class (enclosing, class_type, cl)))
        {
	  if (inner_class_accessible (decl, context))
	    {
	      candidate = decl;
	      break;
	    }
	  else
	    if (candidate == NULL_TREE)
	      candidate = decl;
	}	

      /* Now go to the upper classes, bail out if necessary.  We will
	 analyze the returned SUPER and act accordingly (see
	 do_resolve_class).  */
      if (JPRIMITIVE_TYPE_P (TREE_TYPE (enclosing))
	  || TREE_TYPE (enclosing) == void_type_node)
	{
	  parse_error_context (cl, "Qualifier must be a reference");
	  enclosing = NULL_TREE;
	  break;
	}
      local_super = CLASSTYPE_SUPER (TREE_TYPE (enclosing));
      if (!local_super || local_super == object_type_node)
        break;

      if (TREE_CODE (local_super) == POINTER_TYPE)
        local_super = do_resolve_class (NULL, NULL, local_super, NULL, NULL);
      else
	local_super = TYPE_NAME (local_super);

      /* We may not have checked for circular inheritance yet, so do so
         here to prevent an infinite loop. */
      if (htab_find (circularity_hash, local_super) != NULL)
        {
          if (!cl)
            cl = lookup_cl (enclosing);

          parse_error_context
            (cl, "Cyclic inheritance involving %s",
	     IDENTIFIER_POINTER (DECL_NAME (enclosing)));
	  enclosing = NULL_TREE;
        }
      else
	enclosing = local_super;
    }

  htab_delete (circularity_hash);

  /* We failed, but we might have found a matching class that wasn't 
     accessible.  Return that to get a better error message.  */
  return candidate;
}

/* Within ENCLOSING, find a decl for NAME and return it. NAME can be
   qualified. */

static tree
find_as_inner_class (tree enclosing, tree name, tree cl)
{
  tree qual, to_return;
  if (!enclosing)
    return NULL_TREE;

  name = TYPE_NAME (name);

  /* First search: within the scope of `enclosing', search for name */
  if (QUALIFIED_P (name) && cl && EXPR_WFL_NODE (cl) == name)
    qual = EXPR_WFL_QUALIFICATION (cl);
  else if (cl)
    qual = build_tree_list (cl, NULL_TREE);
  else
    qual = build_tree_list (build_unknown_wfl (name), NULL_TREE);

  if ((to_return = find_as_inner_class_do (qual, enclosing)))
    return to_return;

  /* We're dealing with a qualified name. Try to resolve thing until
     we get something that is an enclosing class. */
  if (QUALIFIED_P (name) && cl && EXPR_WFL_NODE (cl) == name)
    {
      tree acc = NULL_TREE, decl = NULL_TREE, ptr;

      for (qual = EXPR_WFL_QUALIFICATION (cl); qual && !decl;
	   qual = TREE_CHAIN (qual))
	{
	  acc = merge_qualified_name (acc,
				      EXPR_WFL_NODE (TREE_PURPOSE (qual)));
	  BUILD_PTR_FROM_NAME (ptr, acc);
	  decl = do_resolve_class (NULL_TREE, NULL_TREE, ptr, NULL_TREE, cl);
	}

      /* A NULL qual and a decl means that the search ended
         successfully?!? We have to do something then. FIXME */

      if (decl)
	enclosing = decl;
      else
	qual = EXPR_WFL_QUALIFICATION (cl);
    }
  /* Otherwise, create a qual for the other part of the resolution. */
  else
    qual = build_tree_list (build_unknown_wfl (name), NULL_TREE);

  return find_as_inner_class_do (qual, enclosing);
}

/* We go inside the list of sub classes and try to find a way
   through. */

static tree
find_as_inner_class_do (tree qual, tree enclosing)
{
  if (!qual)
    return NULL_TREE;

  for (; qual && enclosing; qual = TREE_CHAIN (qual))
    {
      tree name_to_match = EXPR_WFL_NODE (TREE_PURPOSE (qual));
      tree next_enclosing = NULL_TREE;
      tree inner_list;

      for (inner_list = DECL_INNER_CLASS_LIST (enclosing);
           inner_list; inner_list = TREE_CHAIN (inner_list))
	{
	  if (TREE_VALUE (inner_list) == name_to_match)
	    {
	      next_enclosing = TREE_PURPOSE (inner_list);
	      break;
	    }
	}
      enclosing = next_enclosing;
    }

  return (!qual && enclosing ? enclosing : NULL_TREE);
}

static void
link_nested_class_to_enclosing (void)
{
  if (GET_ENCLOSING_CPC ())
    {
      tree enclosing = GET_ENCLOSING_CPC_CONTEXT ();
      DECL_INNER_CLASS_LIST (enclosing) =
	tree_cons (GET_CPC (), GET_CPC_UN (),
		   DECL_INNER_CLASS_LIST (enclosing));
    }
}

static tree
maybe_make_nested_class_name (tree name)
{
  tree id = NULL_TREE;

  if (CPC_INNER_P ())
    {
      /* If we're in a function, we must append a number to create the
	 nested class name.  However, we don't do this if the class we
	 are constructing is anonymous, because in that case we'll
	 already have a number as the class name.  */
      if (! make_nested_class_name (GET_CPC_LIST ())
	  && current_function_decl != NULL_TREE
	  && ! ISDIGIT (IDENTIFIER_POINTER (name)[0]))
	{
	  char buf[10];
	  sprintf (buf, "%d", anonymous_class_counter);
	  ++anonymous_class_counter;
	  obstack_grow (&temporary_obstack, buf, strlen (buf));
	  obstack_1grow (&temporary_obstack, '$');
	}
      obstack_grow0 (&temporary_obstack,
		     IDENTIFIER_POINTER (name),
		     IDENTIFIER_LENGTH (name));
      id = get_identifier (obstack_finish (&temporary_obstack));
      if (ctxp->package)
	QUALIFIED_P (id) = 1;
    }
  return id;
}

/* If DECL is NULL, create and push a new DECL, record the current
   line CL and do other maintenance things.  */

static tree
maybe_create_class_interface_decl (tree decl, tree raw_name,
				   tree qualified_name, tree cl)
{
  if (!decl)
    decl = push_class (make_class (), qualified_name);

  /* Take care of the file and line business */
#ifdef USE_MAPPED_LOCATION
  DECL_SOURCE_LOCATION (decl) = EXPR_LOCATION (cl);
#else
  DECL_SOURCE_FILE (decl) = EXPR_WFL_FILENAME (cl);
  DECL_SOURCE_LINE (decl) = EXPR_WFL_LINENO (cl);
#endif
  CLASS_FROM_SOURCE_P (TREE_TYPE (decl)) = 1;
  CLASS_PARSED_P (TREE_TYPE (decl)) = 1;
#ifdef USE_MAPPED_LOCATION
  {
    tree tmp = maybe_get_identifier (EXPR_FILENAME (cl));
    CLASS_FROM_CURRENTLY_COMPILED_P (TREE_TYPE (decl)) =
      tmp && IS_A_COMMAND_LINE_FILENAME_P (tmp);
  }
#else
  CLASS_FROM_CURRENTLY_COMPILED_P (TREE_TYPE (decl)) =
    IS_A_COMMAND_LINE_FILENAME_P (EXPR_WFL_FILENAME_NODE (cl));
#endif

  PUSH_CPC (decl, raw_name);
  DECL_CONTEXT (decl) = GET_ENCLOSING_CPC_CONTEXT ();

  /* Link the declaration to the already seen ones */
  TREE_CHAIN (decl) = ctxp->class_list;
  ctxp->class_list = decl;

  /* Create a new nodes in the global lists */
  gclass_list = tree_cons (NULL_TREE, decl, gclass_list);
  all_class_list = tree_cons (NULL_TREE, decl, all_class_list);

  /* Install a new dependency list element */
  create_jdep_list (ctxp);

  /* We keep the compilation unit imports in the class so that
     they can be used later to resolve type dependencies that
     aren't necessary to solve now. */
  TYPE_IMPORT_LIST (TREE_TYPE (decl)) = ctxp->import_list;
  TYPE_IMPORT_DEMAND_LIST (TREE_TYPE (decl)) = ctxp->import_demand_list;

  TYPE_PACKAGE (TREE_TYPE (decl)) = ctxp->package;

  SOURCE_FRONTEND_DEBUG (("Defining class/interface %s",
			  IDENTIFIER_POINTER (qualified_name)));
  return decl;
}

static void
add_superinterfaces (tree decl, tree interface_list)
{
  tree node;
  /* Superinterface(s): if present and defined, parser_check_super_interface ()
     takes care of ensuring that:
       - This is an accessible interface type,
       - Circularity detection.
   parser_add_interface is then called. If present but not defined,
   the check operation is delayed until the super interface gets
   defined.  */
  for (node = interface_list; node; node = TREE_CHAIN (node))
    {
      tree current = TREE_PURPOSE (node);
      tree idecl = IDENTIFIER_CLASS_VALUE (EXPR_WFL_NODE (current));
      if (idecl && CLASS_LOADED_P (TREE_TYPE (idecl)))
	{
	  if (!parser_check_super_interface (idecl, decl, current))
	    parser_add_interface (decl, idecl, current);
	}
      else
	register_incomplete_type (JDEP_INTERFACE,
				  current, decl, NULL_TREE);
    }
}

/* Create an interface in pass1 and return its decl. Return the
   interface's decl in pass 2.  */

static tree
create_interface (int flags, tree id, tree super)
{
  tree raw_name = EXPR_WFL_NODE (id);
  tree q_name = parser_qualified_classname (raw_name);
  tree decl = IDENTIFIER_CLASS_VALUE (q_name);

  /* Certain syntax errors are making SUPER be like ID. Avoid this
     case. */
  if (ctxp->class_err && id == super)
    super = NULL;

  EXPR_WFL_NODE (id) = q_name;	/* Keep source location, even if refined. */

  /* Basic checks: scope, redefinition, modifiers */
  if (check_class_interface_creation (1, flags, raw_name, q_name, decl, id))
    {
      PUSH_ERROR ();
      return NULL_TREE;
    }

  /* Suspend the current parsing context if we're parsing an inner
     interface */
  if (CPC_INNER_P ())
    {
      java_parser_context_suspend ();
      /* Interface members are public. */
      if (CLASS_INTERFACE (GET_CPC ()))
	flags |= ACC_PUBLIC;
    }

  /* Push a new context for (static) initialized upon declaration fields */
  java_parser_context_push_initialized_field ();

  /* Interface modifiers check
       - public/abstract allowed (already done at that point)
       - abstract is obsolete (comes first, it's a warning, or should be)
       - Can't use twice the same (checked in the modifier rule) */
  if ((flags & ACC_ABSTRACT) && flag_redundant)
    parse_warning_context
      (MODIFIER_WFL (ABSTRACT_TK),
       "Redundant use of %<abstract%> modifier. Interface %qs is implicitly abstract", IDENTIFIER_POINTER (raw_name));

  /* Create a new decl if DECL is NULL, otherwise fix it */
  decl = maybe_create_class_interface_decl (decl, raw_name, q_name, id);

  /* Interfaces are always abstract. */
  flags |= ACC_ABSTRACT;

  /* Inner interfaces are always static.  */
  if (INNER_CLASS_DECL_P (decl))
    flags |= ACC_STATIC;

  /* Set super info and mark the class a complete */
  set_super_info (ACC_INTERFACE | flags, TREE_TYPE (decl),
		  object_type_node, ctxp->interface_number);
  ctxp->interface_number = 0;
  CLASS_COMPLETE_P (decl) = 1;
  add_superinterfaces (decl, super);

  /* Eventually sets the @deprecated tag flag */
  CHECK_DEPRECATED (decl);

  return decl;
}

/* Patch anonymous class CLASS, by either extending or implementing
   DEP.  */

static void
patch_anonymous_class (tree type_decl, tree class_decl, tree wfl)
{
  tree class = TREE_TYPE (class_decl);
  tree type =  TREE_TYPE (type_decl);
  tree binfo = TYPE_BINFO (class);

  /* If it's an interface, implement it */
  if (CLASS_INTERFACE (type_decl))
    {
      if (parser_check_super_interface (type_decl, class_decl, wfl))
	return;

      if (!VEC_space (tree, BINFO_BASE_BINFOS (binfo), 1))
	{
	   /* Extend the binfo - by reallocating and copying it. */
	  tree new_binfo;
	  tree base_binfo;
	  int i;
	  
	  new_binfo = make_tree_binfo ((BINFO_N_BASE_BINFOS (binfo) + 1) * 2);
	  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
	    BINFO_BASE_APPEND (new_binfo, base_binfo);
	  CLASS_HAS_SUPER_FLAG (new_binfo) = CLASS_HAS_SUPER_FLAG (binfo);
	  BINFO_VTABLE (new_binfo) = BINFO_VTABLE (binfo);
	  TYPE_BINFO (class) = new_binfo;
	}
      
      /* And add the interface */
      parser_add_interface (class_decl, type_decl, wfl);
    }
  /* Otherwise, it's a type we want to extend */
  else
    {
      if (parser_check_super (type_decl, class_decl, wfl))
	return;
      BINFO_TYPE (BINFO_BASE_BINFO (binfo, 0)) = type;
    }
}

/* Create an anonymous class which extends/implements TYPE_NAME, and return
   its decl.  */

static tree
create_anonymous_class (tree type_name)
{
  char buffer [80];
  tree super = NULL_TREE, itf = NULL_TREE;
  tree id, type_decl, class;

  /* The unqualified name of the anonymous class. It's just a number. */
  sprintf (buffer, "%d", anonymous_class_counter++);
  id = build_wfl_node (get_identifier (buffer));
  EXPR_WFL_LINECOL (id) = EXPR_WFL_LINECOL (type_name);

  /* We know about the type to extend/implement. We go ahead */
  if ((type_decl = IDENTIFIER_CLASS_VALUE (EXPR_WFL_NODE (type_name))))
    {
      /* Create a class which either implements on extends the designated
	 class. The class bears an inaccessible name. */
      if (CLASS_INTERFACE (type_decl))
	{
	  /* It's OK to modify it here. It's been already used and
             shouldn't be reused */
	  ctxp->interface_number = 1;
	  /* Interfaces should presented as a list of WFLs */
	  itf = build_tree_list (type_name, NULL_TREE);
	}
      else
	super = type_name;
    }

  class = create_class (ACC_FINAL, id, super, itf);

  /* We didn't know anything about the stuff. We register a dependence. */
  if (!type_decl)
    register_incomplete_type (JDEP_ANONYMOUS, type_name, class, NULL_TREE);

  ANONYMOUS_CLASS_P (TREE_TYPE (class)) = 1;
  return class;
}

/* Create a class in pass1 and return its decl. Return class
   interface's decl in pass 2.  */

static tree
create_class (int flags, tree id, tree super, tree interfaces)
{
  tree raw_name = EXPR_WFL_NODE (id);
  tree class_id, decl;
  tree super_decl_type;

  /* Certain syntax errors are making SUPER be like ID. Avoid this
     case. */
  if (ctxp->class_err && id == super)
    super = NULL;

  class_id = parser_qualified_classname (raw_name);
  decl = IDENTIFIER_CLASS_VALUE (class_id);
  EXPR_WFL_NODE (id) = class_id;

  /* Basic check: scope, redefinition, modifiers */
  if (check_class_interface_creation (0, flags, raw_name, class_id, decl, id))
    {
      PUSH_ERROR ();
      return NULL_TREE;
    }

  /* Suspend the current parsing context if we're parsing an inner
     class or an anonymous class. */
  if (CPC_INNER_P ())
    {
      java_parser_context_suspend ();
      /* Interface members are public. */
      if (CLASS_INTERFACE (GET_CPC ()))
	flags |= ACC_PUBLIC;
    }

  /* Push a new context for (static) initialized upon declaration fields */
  java_parser_context_push_initialized_field ();

  /* Class modifier check:
       - Allowed modifier (already done at that point)
       - abstract AND final forbidden
       - Public classes defined in the correct file */
  if ((flags & ACC_ABSTRACT) && (flags & ACC_FINAL))
    parse_error_context
      (id, "Class %qs can't be declared both abstract and final",
       IDENTIFIER_POINTER (raw_name));

  /* Create a new decl if DECL is NULL, otherwise fix it */
  decl = maybe_create_class_interface_decl (decl, raw_name, class_id, id);

  /* If SUPER exists, use it, otherwise use Object */
  if (super)
    {
      /* java.lang.Object can't extend anything.  */
      if (TREE_TYPE (IDENTIFIER_CLASS_VALUE (class_id)) == object_type_node)
	{
	  parse_error_context (id, "%<java.lang.Object%> can't extend anything");
	  return NULL_TREE;
	}

      super_decl_type =
	register_incomplete_type (JDEP_SUPER, super, decl, NULL_TREE);
    }
  else if (TREE_TYPE (decl) != object_type_node)
    super_decl_type = object_type_node;
  /* We're defining java.lang.Object */
  else
    super_decl_type = NULL_TREE;

  /* A class nested in an interface is implicitly static. */
  if (INNER_CLASS_DECL_P (decl)
      && CLASS_INTERFACE (TYPE_NAME (TREE_TYPE (DECL_CONTEXT (decl)))))
    {
      flags |= ACC_STATIC;
    }

  /* Set super info and mark the class as complete. */
  set_super_info (flags, TREE_TYPE (decl), super_decl_type,
		  ctxp->interface_number);
  ctxp->interface_number = 0;
  CLASS_COMPLETE_P (decl) = 1;
  add_superinterfaces (decl, interfaces);

  /* TYPE_VFIELD' is a compiler-generated field used to point to
     virtual function tables.  In gcj, every class has a common base
     virtual function table in java.lang.object.  */
  TYPE_VFIELD (TREE_TYPE (decl)) = TYPE_VFIELD (object_type_node);

  /* Add the private this$<n> field, Replicate final locals still in
     scope as private final fields mangled like val$<local_name>.
     This does not occur for top level (static) inner classes. */
  if (PURE_INNER_CLASS_DECL_P (decl))
    add_inner_class_fields (decl, current_function_decl);

  /* Eventually sets the @deprecated tag flag */
  CHECK_DEPRECATED (decl);

  /* Reset the anonymous class counter when declaring non inner classes */
  if (!INNER_CLASS_DECL_P (decl))
    anonymous_class_counter = 1;

  return decl;
}

/* End a class declaration: register the statements used to create
   finit$ and <clinit>, pop the current class and resume the prior
   parser context if necessary.  */

static void
end_class_declaration (int resume)
{
  /* If an error occurred, context weren't pushed and won't need to be
     popped by a resume. */
  int no_error_occurred = ctxp->next && GET_CPC () != error_mark_node;

  if (GET_CPC () != error_mark_node)
    dump_java_tree (TDI_class, GET_CPC ());

  java_parser_context_pop_initialized_field ();
  POP_CPC ();
  if (resume && no_error_occurred)
    java_parser_context_resume ();

  /* We're ending a class declaration, this is a good time to reset
     the interface cout. Note that might have been already done in
     create_interface, but if at that time an inner class was being
     dealt with, the interface count was reset in a context created
     for the sake of handling inner classes declaration. */
  ctxp->interface_number = 0;
}

static void
add_inner_class_fields (tree class_decl, tree fct_decl)
{
  tree block, marker, f;

  f = add_field (TREE_TYPE (class_decl),
		 build_current_thisn (TREE_TYPE (class_decl)),
		 build_pointer_type (TREE_TYPE (DECL_CONTEXT (class_decl))),
		 ACC_PRIVATE);
  FIELD_THISN (f) = 1;

  if (!fct_decl)
    return;

  for (block = GET_CURRENT_BLOCK (fct_decl);
       block && TREE_CODE (block) == BLOCK; block = BLOCK_SUPERCONTEXT (block))
    {
      tree decl;
      for (decl = BLOCK_EXPR_DECLS (block); decl; decl = TREE_CHAIN (decl))
	{
	  tree name, pname;
	  tree wfl, init, list;

	  /* Avoid non final arguments. */
	  if (!LOCAL_FINAL_P (decl))
	    continue;

	  MANGLE_OUTER_LOCAL_VARIABLE_NAME (name, DECL_NAME (decl));
	  MANGLE_ALIAS_INITIALIZER_PARAMETER_NAME_ID (pname, DECL_NAME (decl));
	  wfl = build_wfl_node (name);
	  init = build_wfl_node (pname);
	  /* Build an initialization for the field: it will be
	     initialized by a parameter added to finit$, bearing a
	     mangled name of the field itself (param$<n>.) The
	     parameter is provided to finit$ by the constructor
	     invoking it (hence the constructor will also feature a
	     hidden parameter, set to the value of the outer context
	     local at the time the inner class is created.)

	     Note: we take into account all possible locals that can
	     be accessed by the inner class. It's actually not trivial
	     to minimize these aliases down to the ones really
	     used. One way to do that would be to expand all regular
	     methods first, then finit$ to get a picture of what's
	     used.  It works with the exception that we would have to
	     go back on all constructor invoked in regular methods to
	     have their invocation reworked (to include the right amount
	     of alias initializer parameters.)

	     The only real way around, I think, is a first pass to
	     identify locals really used in the inner class. We leave
	     the flag FIELD_LOCAL_ALIAS_USED around for that future
	     use.

	     On the other hand, it only affect local inner classes,
	     whose constructors (and finit$ call) will be featuring
	     unnecessary arguments. It's easy for a developer to keep
	     this number of parameter down by using the `final'
	     keyword only when necessary. For the time being, we can
	     issue a warning on unnecessary finals. FIXME */
	  init = build_assignment (ASSIGN_TK, EXPR_WFL_LINECOL (wfl),
				   wfl, init);

	  /* Register the field. The TREE_LIST holding the part
	     initialized/initializer will be marked ARG_FINAL_P so
	     that the created field can be marked
	     FIELD_LOCAL_ALIAS. */
	  list = build_tree_list (wfl, init);
	  ARG_FINAL_P (list) = 1;
	  register_fields (ACC_PRIVATE | ACC_FINAL, TREE_TYPE (decl), list);
	}
    }

  if (!CPC_INITIALIZER_STMT (ctxp))
    return;

  /* If we ever registered an alias field, insert and marker to
     remember where the list ends. The second part of the list (the one
     featuring initialized fields) so it can be later reversed to
     enforce 8.5. The marker will be removed during that operation. */
  marker = build_tree_list (NULL_TREE, NULL_TREE);
  TREE_CHAIN (marker) = CPC_INITIALIZER_STMT (ctxp);
  SET_CPC_INITIALIZER_STMT (ctxp, marker);
}

/* Can't use lookup_field () since we don't want to load the class and
   can't set the CLASS_LOADED_P flag */

static tree
find_field (tree class, tree name)
{
  tree decl;
  for (decl = TYPE_FIELDS (class); decl; decl = TREE_CHAIN (decl))
    {
      if (DECL_NAME (decl) == name)
	return decl;
    }
  return NULL_TREE;
}

/* Wrap around lookup_field that doesn't potentially upset the value
   of CLASS */

static tree
lookup_field_wrapper (tree class, tree name)
{
  tree type = class;
  tree decl = NULL_TREE;
  java_parser_context_save_global ();

  /* Last chance: if we're within the context of an inner class, we
     might be trying to access a local variable defined in an outer
     context. We try to look for it now. */
  if (INNER_CLASS_TYPE_P (class) && TREE_CODE (name) == IDENTIFIER_NODE)
    {
      tree new_name;
      MANGLE_OUTER_LOCAL_VARIABLE_NAME (new_name, name);
      decl = lookup_field (&type, new_name);
      if (decl && decl != error_mark_node)
	FIELD_LOCAL_ALIAS_USED (decl) = 1;
    }
  if (!decl || decl == error_mark_node)
    {
      type = class;
      decl = lookup_field (&type, name);
    }

  /* If the field still hasn't been found, try the next enclosing context. */
  if (!decl && INNER_CLASS_TYPE_P (class))
    {
      tree outer_type = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (class)));
      decl = lookup_field_wrapper (outer_type, name);
    }

  java_parser_context_restore_global ();
  return decl == error_mark_node ? NULL : decl;
}

/* Find duplicate field within the same class declarations and report
   the error. Returns 1 if a duplicated field was found, 0
   otherwise.  */

static int
duplicate_declaration_error_p (tree new_field_name, tree new_type, tree cl)
{
  /* This might be modified to work with method decl as well */
  tree decl = find_field (TREE_TYPE (GET_CPC ()), new_field_name);
  if (decl)
    {
      char *t1 = xstrdup (purify_type_name
			 ((TREE_CODE (new_type) == POINTER_TYPE
			   && TREE_TYPE (new_type) == NULL_TREE) ?
			  IDENTIFIER_POINTER (TYPE_NAME (new_type)) :
			  lang_printable_name (new_type, 1)));
      /* The type may not have been completed by the time we report
	 the error */
      char *t2 = xstrdup (purify_type_name
			 ((TREE_CODE (TREE_TYPE (decl)) == POINTER_TYPE
			   && TREE_TYPE (TREE_TYPE (decl)) == NULL_TREE) ?
			  IDENTIFIER_POINTER (TYPE_NAME (TREE_TYPE (decl))) :
			  lang_printable_name (TREE_TYPE (decl), 1)));
      parse_error_context
	(cl, "Duplicate variable declaration: %<%s %s%> was %<%s %s%> (%s:%d)",
	 t1, IDENTIFIER_POINTER (new_field_name),
	 t2, IDENTIFIER_POINTER (DECL_NAME (decl)),
	 DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl));
      free (t1);
      free (t2);
      return 1;
    }
  return 0;
}

/* Field registration routine. If TYPE doesn't exist, field
   declarations are linked to the undefined TYPE dependency list, to
   be later resolved in java_complete_class () */

static void
register_fields (int flags, tree type, tree variable_list)
{
  tree current, saved_type;
  tree class_type = NULL_TREE;
  location_t saved_location = input_location;
  int must_chain = 0;
  tree wfl = NULL_TREE;

  if (GET_CPC ())
    class_type = TREE_TYPE (GET_CPC ());

  if (!class_type || class_type == error_mark_node)
    return;

  /* If we're adding fields to interfaces, those fields are public,
     static, final */
  if (CLASS_INTERFACE (TYPE_NAME (class_type)))
    {
      OBSOLETE_MODIFIER_WARNING (MODIFIER_WFL (PUBLIC_TK),
				 flags, ACC_PUBLIC, "interface field(s)");
      OBSOLETE_MODIFIER_WARNING (MODIFIER_WFL (STATIC_TK),
				 flags, ACC_STATIC, "interface field(s)");
      OBSOLETE_MODIFIER_WARNING (MODIFIER_WFL (FINAL_TK),
				 flags, ACC_FINAL, "interface field(s)");
      check_modifiers ("Illegal interface member modifier %qs", flags,
		       INTERFACE_FIELD_MODIFIERS);
      flags |= (ACC_PUBLIC | ACC_STATIC | ACC_FINAL);
    }

  /* Obtain a suitable type for resolution, if necessary */
  SET_TYPE_FOR_RESOLUTION (type, wfl, must_chain);

  /* If TYPE is fully resolved and we don't have a reference, make one */
  PROMOTE_RECORD_IF_COMPLETE (type, must_chain);

  for (current = variable_list, saved_type = type; current;
       current = TREE_CHAIN (current), type = saved_type)
    {
      tree real_type;
      tree field_decl;
      tree cl = TREE_PURPOSE (current);
      tree init = TREE_VALUE (current);
      tree current_name = EXPR_WFL_NODE (cl);

      /* Can't declare non-final static fields in inner classes */
      if ((flags & ACC_STATIC) && !TOPLEVEL_CLASS_TYPE_P (class_type)
          && !(flags & ACC_FINAL))
	parse_error_context
          (cl, "Field %qs can't be static in inner class %qs unless it is final",
	   IDENTIFIER_POINTER (EXPR_WFL_NODE (cl)),
	   lang_printable_name (class_type, 0));

      /* Process NAME, as it may specify extra dimension(s) for it */
      type = build_array_from_name (type, wfl, current_name, &current_name);

      /* Type adjustment. We may have just readjusted TYPE because
	 the variable specified more dimensions. Make sure we have
	 a reference if we can and don't have one already. Also
	 change the name if we have an init. */
      if (type != saved_type)
	{
	  PROMOTE_RECORD_IF_COMPLETE (type, must_chain);
	  if (init)
	    EXPR_WFL_NODE (TREE_OPERAND (init, 0)) = current_name;
	}

      real_type = GET_REAL_TYPE (type);
      /* Check for redeclarations */
      if (duplicate_declaration_error_p (current_name, real_type, cl))
	continue;

      /* Set input_line to the line the field was found and create a
         declaration for it. Eventually sets the @deprecated tag flag. */
#ifdef USE_MAPPED_LOCATION
      input_location = EXPR_LOCATION (cl);
#else
      input_line = EXPR_WFL_LINENO (cl);
#endif
      field_decl = add_field (class_type, current_name, real_type, flags);
      CHECK_DEPRECATED_NO_RESET (field_decl);

      /* If the field denotes a final instance variable, then we
	 allocate a LANG_DECL_SPECIFIC part to keep track of its
	 initialization. We also mark whether the field was
	 initialized upon its declaration. We don't do that if the
	 created field is an alias to a final local. */
      if (!ARG_FINAL_P (current) && (flags & ACC_FINAL))
	{
	  MAYBE_CREATE_VAR_LANG_DECL_SPECIFIC (field_decl);
	  DECL_FIELD_FINAL_WFL (field_decl) = cl;
	}

      /* If the couple initializer/initialized is marked ARG_FINAL_P,
	 we mark the created field FIELD_LOCAL_ALIAS, so that we can
	 hide parameters to this inner class finit$ and
	 constructors. It also means that the field isn't final per
	 say. */
      if (ARG_FINAL_P (current))
	{
	  FIELD_LOCAL_ALIAS (field_decl) = 1;
	  FIELD_FINAL (field_decl) = 0;
	}

      /* Check if we must chain. */
      if (must_chain)
	register_incomplete_type (JDEP_FIELD, wfl, field_decl, type);

      /* If we have an initialization value tied to the field */
      if (init)
	{
	  /* The field is declared static */
	  if (flags & ACC_STATIC)
	    {
	      /* We include the field and its initialization part into
		 a list used to generate <clinit>. After <clinit> is
		 walked, field initializations will be processed and
		 fields initialized with known constants will be taken
		 out of <clinit> and have their DECL_INITIAL set
		 appropriately. */
	      TREE_CHAIN (init) = CPC_STATIC_INITIALIZER_STMT (ctxp);
	      SET_CPC_STATIC_INITIALIZER_STMT (ctxp, init);
	      if (TREE_OPERAND (init, 1)
		  && TREE_CODE (TREE_OPERAND (init, 1)) == NEW_ARRAY_INIT)
		TREE_STATIC (TREE_OPERAND (init, 1)) = 1;
	    }
	  /* A non-static field declared with an immediate initialization is
	     to be initialized in <init>, if any.  This field is remembered
	     to be processed at the time of the generation of <init>. */
	  else
	    {
	      TREE_CHAIN (init) = CPC_INITIALIZER_STMT (ctxp);
	      SET_CPC_INITIALIZER_STMT (ctxp, init);
	    }
	  MODIFY_EXPR_FROM_INITIALIZATION_P (init) = 1;
	  DECL_INITIAL (field_decl) = TREE_OPERAND (init, 1);
	}
    }

  CLEAR_DEPRECATED;
  input_location = saved_location;
}

/* Generate finit$, using the list of initialized fields to populate
   its body. finit$'s parameter(s) list is adjusted to include the
   one(s) used to initialized the field(s) caching outer context
   local(s).  */

static tree
generate_finit (tree class_type)
{
  int count = 0;
  tree list = TYPE_FINIT_STMT_LIST (class_type);
  tree mdecl, current, parms;

  parms = build_alias_initializer_parameter_list (AIPL_FUNCTION_CREATION,
						  class_type, NULL_TREE,
						  &count);
  CRAFTED_PARAM_LIST_FIXUP (parms);
  mdecl = create_artificial_method (class_type, ACC_PRIVATE, void_type_node,
				    finit_identifier_node, parms);
  fix_method_argument_names (parms, mdecl);
  layout_class_method (class_type, CLASSTYPE_SUPER (class_type),
		       mdecl, NULL_TREE);
  DECL_FUNCTION_NAP (mdecl) = count;
  start_artificial_method_body (mdecl);

  for (current = list; current; current = TREE_CHAIN (current))
    java_method_add_stmt (mdecl,
			  build_debugable_stmt (EXPR_WFL_LINECOL (current),
						current));
  end_artificial_method_body (mdecl);
  return mdecl;
}

/* Generate a function to run the instance initialization code. The
   private method is called `instinit$'. Unless we're dealing with an
   anonymous class, we determine whether all ctors of CLASS_TYPE
   declare a checked exception in their `throws' clause in order to
   see whether it's necessary to encapsulate the instance initializer
   statements in a try/catch/rethrow sequence.  */

static tree
generate_instinit (tree class_type)
{
  tree current;
  tree compound = NULL_TREE;
  tree parms = tree_cons (this_identifier_node,
			  build_pointer_type (class_type), end_params_node);
  tree mdecl = create_artificial_method (class_type, ACC_PRIVATE,
					 void_type_node,
					 instinit_identifier_node, parms);

  layout_class_method (class_type, CLASSTYPE_SUPER (class_type),
		       mdecl, NULL_TREE);

  /* Gather all the statements in a compound */
  for (current = TYPE_II_STMT_LIST (class_type);
       current; current = TREE_CHAIN (current))
    compound = add_stmt_to_compound (compound, NULL_TREE, current);

  /* We need to encapsulate COMPOUND by a try/catch statement to
     rethrow exceptions that might occur in the instance initializer.
     We do that only if all ctors of CLASS_TYPE are set to catch a
     checked exception. This doesn't apply to anonymous classes (since
     they don't have declared ctors.) */
  if (!ANONYMOUS_CLASS_P (class_type) &&
      ctors_unchecked_throws_clause_p (class_type))
    {
      compound = encapsulate_with_try_catch (0, exception_type_node, compound,
					     build1 (THROW_EXPR, NULL_TREE,
						     build_wfl_node (wpv_id)));
      DECL_FUNCTION_THROWS (mdecl) = build_tree_list (NULL_TREE,
						      exception_type_node);
    }

  start_artificial_method_body (mdecl);
  java_method_add_stmt (mdecl, compound);
  end_artificial_method_body (mdecl);

  return mdecl;
}

/* FIXME */
static tree
build_instinit_invocation (tree class_type)
{
  tree to_return = NULL_TREE;

  if (TYPE_II_STMT_LIST (class_type))
    {
      tree parm = build_tree_list (NULL_TREE,
				   build_wfl_node (this_identifier_node));
      to_return =
	build_method_invocation (build_wfl_node (instinit_identifier_node),
				 parm);
    }
  return to_return;
}

/* Shared across method_declarator and method_header to remember the
   patch stage that was reached during the declaration of the method.
   A method DECL is built differently is there is no patch
   (JDEP_NO_PATCH) or a patch (JDEP_METHOD or JDEP_METHOD_RETURN)
   pending on the currently defined method.  */

static int patch_stage;

/* Check the method declaration and add the method to its current
   class.  If the argument list is known to contain incomplete types,
   the method is partially added and the registration will be resume
   once the method arguments resolved. If TYPE is NULL, we're dealing
   with a constructor.  */

static tree
method_header (int flags, tree type, tree mdecl, tree throws)
{
  tree type_wfl = NULL_TREE;
  tree meth_name = NULL_TREE;
  tree current, orig_arg, this_class = NULL;
  tree id, meth;
  location_t saved_location;
  int constructor_ok = 0, must_chain;
  int count;

  if (mdecl == error_mark_node)
    return error_mark_node;
  meth = TREE_VALUE (mdecl);
  id = TREE_PURPOSE (mdecl);

  check_modifiers_consistency (flags);

  if (GET_CPC ())
    this_class = TREE_TYPE (GET_CPC ());

  if (!this_class || this_class == error_mark_node)
    return NULL_TREE;

  /* There are some forbidden modifiers for an abstract method and its
     class must be abstract as well.  */
  if (type && (flags & ACC_ABSTRACT))
    {
      ABSTRACT_CHECK (flags, ACC_PRIVATE, id, "Private");
      ABSTRACT_CHECK (flags, ACC_STATIC, id, "Static");
      ABSTRACT_CHECK (flags, ACC_FINAL, id, "Final");
      ABSTRACT_CHECK (flags, ACC_NATIVE, id, "Native");
      ABSTRACT_CHECK (flags, ACC_SYNCHRONIZED, id, "Synchronized");
      ABSTRACT_CHECK (flags, ACC_STRICT, id, "Strictfp");
      if (!CLASS_ABSTRACT (TYPE_NAME (this_class))
	  && !CLASS_INTERFACE (TYPE_NAME (this_class)))
	parse_error_context
	  (id,
           "Class %qs must be declared abstract to define abstract method %qs",
	   IDENTIFIER_POINTER (DECL_NAME (GET_CPC ())),
	   IDENTIFIER_POINTER (EXPR_WFL_NODE (id)));
    }

  /* A native method can't be strictfp.  */
  if ((flags & ACC_NATIVE) && (flags & ACC_STRICT))
    parse_error_context (id, "native method %qs can't be strictfp",
			 IDENTIFIER_POINTER (EXPR_WFL_NODE (id)));
  /* No such thing as a transient or volatile method.  */
  if ((flags & ACC_TRANSIENT))
    parse_error_context (id, "method %qs can't be transient",
			 IDENTIFIER_POINTER (EXPR_WFL_NODE (id)));
  if ((flags & ACC_VOLATILE))
    parse_error_context (id, "method %qs can't be volatile",
			 IDENTIFIER_POINTER (EXPR_WFL_NODE (id)));

  /* Things to be checked when declaring a constructor */
  if (!type)
    {
      int ec = java_error_count;
      /* 8.6: Constructor declarations: we might be trying to define a
         method without specifying a return type. */
      if (EXPR_WFL_NODE (id) != GET_CPC_UN ())
	parse_error_context
	  (id, "Invalid method declaration, return type required");
      /* 8.6.3: Constructor modifiers */
      else
	{
	  JCONSTRUCTOR_CHECK (flags, ACC_ABSTRACT, id, "abstract");
	  JCONSTRUCTOR_CHECK (flags, ACC_STATIC, id, "static");
	  JCONSTRUCTOR_CHECK (flags, ACC_FINAL, id, "final");
	  JCONSTRUCTOR_CHECK (flags, ACC_NATIVE, id, "native");
	  JCONSTRUCTOR_CHECK (flags, ACC_SYNCHRONIZED, id, "synchronized");
	  JCONSTRUCTOR_CHECK (flags, ACC_STRICT, id, "strictfp");
	}
      /* If we found error here, we don't consider it's OK to tread
	 the method definition as a constructor, for the rest of this
	 function */
      if (ec == java_error_count)
	constructor_ok = 1;
    }

  /* Method declared within the scope of an interface are implicitly
     abstract and public. Conflicts with other erroneously provided
     modifiers are checked right after. */

  if (CLASS_INTERFACE (TYPE_NAME (this_class)))
    {
      /* If FLAGS isn't set because of a modifier, turn the
	 corresponding modifier WFL to NULL so we issue a warning on
	 the obsolete use of the modifier */
      if (!(flags & ACC_PUBLIC))
        MODIFIER_WFL (PUBLIC_TK) = NULL;
      if (!(flags & ACC_ABSTRACT))
        MODIFIER_WFL (ABSTRACT_TK) = NULL;
      flags |= ACC_PUBLIC;
      flags |= ACC_ABSTRACT;
    }

  /* Inner class can't declare static methods */
  if ((flags & ACC_STATIC) && !TOPLEVEL_CLASS_TYPE_P (this_class))
    {
      parse_error_context
	(id, "Method %qs can't be static in inner class %qs. Only members of interfaces and top-level classes can be static",
	 IDENTIFIER_POINTER (EXPR_WFL_NODE (id)),
	 lang_printable_name (this_class, 0));
    }

  /* Modifiers context reset moved up, so abstract method declaration
     modifiers can be later checked.  */

  /* Set constructor returned type to void and method name to <init>,
     unless we found an error identifier the constructor (in which
     case we retain the original name) */
  if (!type)
    {
      type = void_type_node;
      if (constructor_ok)
	meth_name = init_identifier_node;
    }
  else
    meth_name = EXPR_WFL_NODE (id);

  /* Do the returned type resolution and registration if necessary */
  SET_TYPE_FOR_RESOLUTION (type, type_wfl, must_chain);

  if (meth_name)
    type = build_array_from_name (type, type_wfl, meth_name, &meth_name);
  EXPR_WFL_NODE (id) = meth_name;
  PROMOTE_RECORD_IF_COMPLETE (type, must_chain);

  if (must_chain)
    {
      patch_stage = JDEP_METHOD_RETURN;
      register_incomplete_type (patch_stage, type_wfl, id, type);
      TREE_TYPE (meth) = GET_REAL_TYPE (type);
    }
  else
    TREE_TYPE (meth) = type;

  saved_location = input_location;
  /* When defining an abstract or interface method, the curly
     bracket at level 1 doesn't exist because there is no function
     body */
#ifdef USE_MAPPED_LOCATION
  input_location = (ctxp->first_ccb_indent1 ? ctxp->first_ccb_indent1 :
		    EXPR_LOCATION (id));
#else
  input_line = (ctxp->first_ccb_indent1 ? (int) ctxp->first_ccb_indent1 :
		EXPR_WFL_LINENO (id));
#endif

  /* Remember the original argument list */
  orig_arg = TYPE_ARG_TYPES (meth);

  if (patch_stage)		/* includes ret type and/or all args */
    {
      jdep *jdep;
      meth = add_method_1 (this_class, flags, meth_name, meth);
      /* Patch for the return type */
      if (patch_stage == JDEP_METHOD_RETURN)
	{
	  jdep = CLASSD_LAST (ctxp->classd_list);
	  JDEP_GET_PATCH (jdep) = &TREE_TYPE (TREE_TYPE (meth));
	}
      /* This is the stop JDEP. METH allows the function's signature
	 to be computed. */
      register_incomplete_type (JDEP_METHOD_END, NULL_TREE, meth, NULL_TREE);
    }
  else
    meth = add_method (this_class, flags, meth_name,
		       build_java_signature (meth));

  /* Remember final parameters */
  MARK_FINAL_PARMS (meth, orig_arg);

  /* Fix the method argument list so we have the argument name
     information */
  fix_method_argument_names (orig_arg, meth);

  /* Register the parameter number and re-install the current line
     number */
  DECL_MAX_LOCALS (meth) = ctxp->formal_parameter_number+1;
  input_location = saved_location;

  /* Register exception specified by the `throws' keyword for
     resolution and set the method decl appropriate field to the list.
     Note: the grammar ensures that what we get here are class
     types. */
  if (throws)
    {
      throws = nreverse (throws);
      for (current = throws; current; current = TREE_CHAIN (current))
	{
	  register_incomplete_type (JDEP_EXCEPTION, TREE_VALUE (current),
				    NULL_TREE, NULL_TREE);
	  JDEP_GET_PATCH (CLASSD_LAST (ctxp->classd_list)) =
	    &TREE_VALUE (current);
	}
      DECL_FUNCTION_THROWS (meth) = throws;
    }

  if (TREE_TYPE (GET_CPC ()) != object_type_node)
    DECL_FUNCTION_WFL (meth) = id;

  /* Set the flag if we correctly processed a constructor */
  if (constructor_ok)
    {
      DECL_CONSTRUCTOR_P (meth) = 1;
      /* Compute and store the number of artificial parameters declared
	 for this constructor */
      for (count = 0, current = TYPE_FIELDS (this_class); current;
	   current = TREE_CHAIN (current))
	if (FIELD_LOCAL_ALIAS (current))
	  count++;
      DECL_FUNCTION_NAP (meth) = count;
    }

  /* Eventually set the @deprecated tag flag */
  CHECK_DEPRECATED (meth);

  return meth;
}

static void
fix_method_argument_names (tree orig_arg, tree meth)
{
  tree arg = TYPE_ARG_TYPES (TREE_TYPE (meth));
  if (TREE_CODE (TREE_TYPE (meth)) == METHOD_TYPE)
    {
      TREE_PURPOSE (arg) = this_identifier_node;
      arg = TREE_CHAIN (arg);
    }
  while (orig_arg != end_params_node)
    {
      TREE_PURPOSE (arg) = TREE_PURPOSE (orig_arg);
      orig_arg = TREE_CHAIN (orig_arg);
      arg = TREE_CHAIN (arg);
    }
}

/* Complete the method declaration with METHOD_BODY.  */

static void
finish_method_declaration (tree method_body)
{
  int flags;

  if (!current_function_decl)
    return;

  flags = get_access_flags_from_decl (current_function_decl);

  /* 8.4.5 Method Body */
  if ((flags & ACC_ABSTRACT || flags & ACC_NATIVE) && method_body)
    {
      tree name = DECL_NAME (current_function_decl);
      parse_error_context (DECL_FUNCTION_WFL (current_function_decl),
			   "%s method %qs can't have a body defined",
			   (METHOD_NATIVE (current_function_decl) ?
			    "Native" : "Abstract"),
			   IDENTIFIER_POINTER (name));
      method_body = NULL_TREE;
    }
  else if (!(flags & ACC_ABSTRACT) && !(flags & ACC_NATIVE) && !method_body)
    {
      tree name = DECL_NAME (current_function_decl);
      parse_error_context
	(DECL_FUNCTION_WFL (current_function_decl),
	 "Non native and non abstract method %qs must have a body defined",
	 IDENTIFIER_POINTER (name));
      method_body = NULL_TREE;
    }

  if (flag_emit_class_files && method_body
      && TREE_CODE (method_body) == NOP_EXPR
      && TREE_TYPE (current_function_decl)
      && TREE_TYPE (TREE_TYPE (current_function_decl)) == void_type_node)
    method_body = build1 (RETURN_EXPR, void_type_node, NULL);

  BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (current_function_decl)) = method_body;
  maybe_absorb_scoping_blocks ();
  /* Exit function's body */
  exit_block ();
  /* Merge last line of the function with first line, directly in the
     function decl. It will be used to emit correct debug info. */
  DECL_FUNCTION_LAST_LINE (current_function_decl) = ctxp->last_ccb_indent1;

  /* Since function's argument's list are shared, reset the
     ARG_FINAL_P parameter that might have been set on some of this
     function parameters. */
  UNMARK_FINAL_PARMS (current_function_decl);

  /* So we don't have an irrelevant function declaration context for
     the next static block we'll see. */
  current_function_decl = NULL_TREE;
}

/* Build a an error message for constructor circularity errors.  */

static char *
constructor_circularity_msg (tree from, tree to)
{
  static char string [4096];
  char *t = xstrdup (lang_printable_name (from, 2));
  sprintf (string, "'%s' invokes '%s'", t, lang_printable_name (to, 2));
  free (t);
  return string;
}

/* Verify a circular call to METH. Return 1 if an error is found, 0
   otherwise.  */

static GTY(()) tree vcc_list;
static int
verify_constructor_circularity (tree meth, tree current)
{
  tree c;

  for (c = DECL_CONSTRUCTOR_CALLS (current); c; c = TREE_CHAIN (c))
    {
      if (TREE_VALUE (c) == meth)
	{
	  char *t;
	  if (vcc_list)
	    {
	      tree liste;
	      vcc_list = nreverse (vcc_list);
	      for (liste = vcc_list; liste; liste = TREE_CHAIN (liste))
		{
		  parse_error_context
		    (TREE_PURPOSE (TREE_PURPOSE (liste)), "%s",
		     constructor_circularity_msg
		      (TREE_VALUE (liste), TREE_VALUE (TREE_PURPOSE (liste))));
		  java_error_count--;
		}
	    }
	  t = xstrdup (lang_printable_name (meth, 2));
	  parse_error_context (TREE_PURPOSE (c),
			       "%s: recursive invocation of constructor %qs",
			       constructor_circularity_msg (current, meth), t);
	  free (t);
	  vcc_list = NULL_TREE;
	  return 1;
	}
    }
  for (c = DECL_CONSTRUCTOR_CALLS (current); c; c = TREE_CHAIN (c))
    {
      vcc_list = tree_cons (c, current, vcc_list);
      if (verify_constructor_circularity (meth, TREE_VALUE (c)))
	return 1;
      vcc_list = TREE_CHAIN (vcc_list);
    }
  return 0;
}

/* Check modifiers that can be declared but exclusively */

static void
check_modifiers_consistency (int flags)
{
  int acc_count = 0;
  tree cl = NULL_TREE;

  THIS_MODIFIER_ONLY (flags, ACC_PUBLIC, PUBLIC_TK, acc_count, cl);
  THIS_MODIFIER_ONLY (flags, ACC_PRIVATE, PRIVATE_TK, acc_count, cl);
  THIS_MODIFIER_ONLY (flags, ACC_PROTECTED, PROTECTED_TK, acc_count, cl);
  if (acc_count > 1)
    parse_error_context
      (cl, "Inconsistent member declaration.  At most one of %<public%>, %<private%>, or %<protected%> may be specified");

  acc_count = 0;
  cl = NULL_TREE;
  THIS_MODIFIER_ONLY (flags, ACC_FINAL, FINAL_TK, acc_count, cl);
  THIS_MODIFIER_ONLY (flags, ACC_VOLATILE, VOLATILE_TK, acc_count, cl);
  if (acc_count > 1)
    parse_error_context (cl,
			 "Inconsistent member declaration.  At most one of %<final%> or %<volatile%> may be specified");
}

/* Check the methode header METH for abstract specifics features */

static void
check_abstract_method_header (tree meth)
{
  int flags = get_access_flags_from_decl (meth);

  OBSOLETE_MODIFIER_WARNING2 (MODIFIER_WFL (ABSTRACT_TK), flags,
			      ACC_ABSTRACT, "abstract method",
			      IDENTIFIER_POINTER (DECL_NAME (meth)));
  OBSOLETE_MODIFIER_WARNING2 (MODIFIER_WFL (PUBLIC_TK), flags,
			      ACC_PUBLIC, "abstract method",
			      IDENTIFIER_POINTER (DECL_NAME (meth)));

  check_modifiers ("Illegal modifier %qs for interface method",
		  flags, INTERFACE_METHOD_MODIFIERS);
}

/* Create a FUNCTION_TYPE node and start augmenting it with the
   declared function arguments. Arguments type that can't be resolved
   are left as they are, but the returned node is marked as containing
   incomplete types.  */

static tree
method_declarator (tree id, tree list)
{
  tree arg_types = NULL_TREE, current, node;
  tree meth = make_node (FUNCTION_TYPE);
  jdep *jdep;

  patch_stage = JDEP_NO_PATCH;

  if (GET_CPC () == error_mark_node)
    return error_mark_node;

  /* If we're dealing with an inner class constructor, we hide the
     this$<n> decl in the name field of its parameter declaration.  We
     also might have to hide the outer context local alias
     initializers. Not done when the class is a toplevel class. */
  if (PURE_INNER_CLASS_DECL_P (GET_CPC ())
      && EXPR_WFL_NODE (id) == GET_CPC_UN ())
    {
      tree aliases_list, type, thisn;
      /* First the aliases, linked to the regular parameters */
      aliases_list =
	build_alias_initializer_parameter_list (AIPL_FUNCTION_DECLARATION,
						TREE_TYPE (GET_CPC ()),
						NULL_TREE, NULL);
      list = chainon (nreverse (aliases_list), list);

      /* Then this$<n> */
      type = TREE_TYPE (DECL_CONTEXT (GET_CPC ()));
      thisn = build_current_thisn (TREE_TYPE (GET_CPC ()));
      list = tree_cons (build_wfl_node (thisn), build_pointer_type (type),
			list);
    }

  for (current = list; current; current = TREE_CHAIN (current))
    {
      int must_chain = 0;
      tree wfl_name = TREE_PURPOSE (current);
      tree type = TREE_VALUE (current);
      tree name = EXPR_WFL_NODE (wfl_name);
      tree already, arg_node;
      tree type_wfl = NULL_TREE;
      tree real_type;

      /* Obtain a suitable type for resolution, if necessary */
      SET_TYPE_FOR_RESOLUTION (type, type_wfl, must_chain);

      /* Process NAME, as it may specify extra dimension(s) for it */
      type = build_array_from_name (type, type_wfl, name, &name);
      EXPR_WFL_NODE (wfl_name) = name;

      real_type = GET_REAL_TYPE (type);
      if (TREE_CODE (real_type) == RECORD_TYPE)
	{
	  real_type = promote_type (real_type);
	  if (TREE_CODE (type) == TREE_LIST)
	    TREE_PURPOSE (type) = real_type;
	}

      /* Check redefinition */
      for (already = arg_types; already; already = TREE_CHAIN (already))
	if (TREE_PURPOSE (already) == name)
	  {
	    parse_error_context
	      (wfl_name, "Variable %qs is used more than once in the argument list of method %qs",
	       IDENTIFIER_POINTER (name),
	       IDENTIFIER_POINTER (EXPR_WFL_NODE (id)));
	    break;
	  }

      /* If we've an incomplete argument type, we know there is a location
	 to patch when the type get resolved, later.  */
      jdep = NULL;
      if (must_chain)
	{
	  patch_stage = JDEP_METHOD;
	  type = register_incomplete_type (patch_stage,
					   type_wfl, wfl_name, type);
	  jdep = CLASSD_LAST (ctxp->classd_list);
	  JDEP_MISC (jdep) = id;
	}

      /* The argument node: a name and a (possibly) incomplete type.  */
      arg_node = build_tree_list (name, real_type);
      /* Remember arguments declared final. */
      ARG_FINAL_P (arg_node) = ARG_FINAL_P (current);

      if (jdep)
	JDEP_GET_PATCH (jdep) = &TREE_VALUE (arg_node);
      TREE_CHAIN (arg_node) = arg_types;
      arg_types = arg_node;
    }
  TYPE_ARG_TYPES (meth) = chainon (nreverse (arg_types), end_params_node);
  node = build_tree_list (id, meth);
  return node;
}

static int
unresolved_type_p (tree wfl, tree *returned)
{
  if (TREE_CODE (wfl) == EXPR_WITH_FILE_LOCATION)
    {
      if (returned)
	{
	  tree decl = IDENTIFIER_CLASS_VALUE (EXPR_WFL_NODE (wfl));
	  if (decl && current_class && (decl == TYPE_NAME (current_class)))
	    *returned = TREE_TYPE (decl);
	  else if (GET_CPC_UN () == EXPR_WFL_NODE (wfl))
	    *returned = TREE_TYPE (GET_CPC ());
	  else
	    *returned = NULL_TREE;
	}
      return 1;
    }
  if (returned)
    *returned = wfl;
  return 0;
}

/* From NAME, build a qualified identifier node using the
   qualification from the current package definition. */

static tree
parser_qualified_classname (tree name)
{
  tree nested_class_name;

  if ((nested_class_name = maybe_make_nested_class_name (name)))
    return nested_class_name;

  if (ctxp->package)
    return merge_qualified_name (ctxp->package, name);
  else
    return name;
}

/* Called once the type a interface extends is resolved. Returns 0 if
   everything is OK.  */

static int
parser_check_super_interface (tree super_decl, tree this_decl, tree this_wfl)
{
  tree super_type = TREE_TYPE (super_decl);

  /* Has to be an interface */
  if (!CLASS_INTERFACE (super_decl))
    {
      parse_error_context
	(this_wfl, "%s %qs can't implement/extend %s %qs",
	 (CLASS_INTERFACE (TYPE_NAME (TREE_TYPE (this_decl))) ?
	  "Interface" : "Class"),
	 IDENTIFIER_POINTER (DECL_NAME (this_decl)),
	 (TYPE_ARRAY_P (super_type) ? "array" : "class"),
	 IDENTIFIER_POINTER (DECL_NAME (super_decl)));
      return 1;
    }

  /* Check top-level interface access. Inner classes are subject to member
     access rules (6.6.1). */
  if (! INNER_CLASS_P (super_type)
      && check_pkg_class_access (DECL_NAME (super_decl),
				 NULL_TREE, true, this_decl))
    return 1;

  SOURCE_FRONTEND_DEBUG (("Completing interface %s with %s",
			  IDENTIFIER_POINTER (DECL_NAME (this_decl)),
			  IDENTIFIER_POINTER (DECL_NAME (super_decl))));
  return 0;
}

/* Makes sure that SUPER_DECL is suitable to extend THIS_DECL. Returns
   0 if everything is OK.  */

static int
parser_check_super (tree super_decl, tree this_decl, tree wfl)
{
  tree super_type = TREE_TYPE (super_decl);

  /* SUPER should be a CLASS (neither an array nor an interface) */
  if (TYPE_ARRAY_P (super_type) || CLASS_INTERFACE (TYPE_NAME (super_type)))
    {
      parse_error_context
	(wfl, "Class %qs can't subclass %s %qs",
	 IDENTIFIER_POINTER (DECL_NAME (this_decl)),
	 (CLASS_INTERFACE (TYPE_NAME (super_type)) ? "interface" : "array"),
	 IDENTIFIER_POINTER (DECL_NAME (super_decl)));
      return 1;
    }

  if (CLASS_FINAL (TYPE_NAME (super_type)))
    {
      parse_error_context (wfl, "Can't subclass final classes: %s",
			   IDENTIFIER_POINTER (DECL_NAME (super_decl)));
      return 1;
    }

  /* Check top-level class scope. Inner classes are subject to member access
     rules (6.6.1). */
  if (! INNER_CLASS_P (super_type)
      && (check_pkg_class_access (DECL_NAME (super_decl), wfl, true, NULL_TREE)))
    return 1;

  SOURCE_FRONTEND_DEBUG (("Completing class %s with %s",
			  IDENTIFIER_POINTER (DECL_NAME (this_decl)),
			  IDENTIFIER_POINTER (DECL_NAME (super_decl))));
  return 0;
}

/* Create a new dependency list and link it (in a LIFO manner) to the
   CTXP list of type dependency list.  */

static void
create_jdep_list (struct parser_ctxt *ctxp)
{
  jdeplist *new = xmalloc (sizeof (jdeplist));
  new->first = new->last = NULL;
  new->next = ctxp->classd_list;
  ctxp->classd_list = new;
}

static jdeplist *
reverse_jdep_list (struct parser_ctxt *ctxp)
{
  jdeplist *prev = NULL, *current, *next;
  for (current = ctxp->classd_list; current; current = next)
    {
      next = current->next;
      current->next = prev;
      prev = current;
    }
  return prev;
}

/* Create a fake pointer based on the ID stored in
   TYPE_NAME. TYPE_NAME can be a WFL or a incomplete type asking to be
   registered again. */

static tree
obtain_incomplete_type (tree type_name)
{
  tree ptr = NULL_TREE, name;

  if (TREE_CODE (type_name) == EXPR_WITH_FILE_LOCATION)
    name = EXPR_WFL_NODE (type_name);
  else if (INCOMPLETE_TYPE_P (type_name))
    name = TYPE_NAME (type_name);
  else
    abort ();

  /* Workaround from build_pointer_type for incomplete types.  */
  BUILD_PTR_FROM_NAME (ptr, name);
  TYPE_MODE (ptr) = ptr_mode;
  layout_type (ptr);

  return ptr;
}

/* Register a incomplete type whose name is WFL. Reuse PTR if PTR is
   non NULL instead of computing a new fake type based on WFL. The new
   dependency is inserted in the current type dependency list, in FIFO
   manner.  */

static tree
register_incomplete_type (int kind, tree wfl, tree decl, tree ptr)
{
  jdep *new = xmalloc (sizeof (jdep));

  if (!ptr && kind != JDEP_METHOD_END) /* JDEP_METHOD_END is a mere marker */
    ptr = obtain_incomplete_type (wfl);

  JDEP_KIND (new) = kind;
  JDEP_DECL (new) = decl;
  JDEP_TO_RESOLVE (new) = ptr;
  JDEP_WFL (new) = wfl;
  JDEP_CHAIN (new) = NULL;
  JDEP_MISC (new) = NULL_TREE;
  /* For some dependencies, set the enclosing class of the current
     class to be the enclosing context */
  if ((kind == JDEP_INTERFACE || kind == JDEP_ANONYMOUS || kind == JDEP_SUPER)
      && GET_ENCLOSING_CPC ())
    JDEP_ENCLOSING (new) = TREE_VALUE (GET_ENCLOSING_CPC ());
  else
    JDEP_ENCLOSING (new) = GET_CPC ();
  JDEP_GET_PATCH (new) = (tree *)NULL;

  JDEP_INSERT (ctxp->classd_list, new);

  return ptr;
}

/* This checks for circular references with innerclasses. We start
   from SOURCE and should never reach TARGET. Extended/implemented
   types in SOURCE have their enclosing context checked not to reach
   TARGET. When the last enclosing context of SOURCE is reached, its
   extended/implemented types are also checked not to reach TARGET.
   In case of error, WFL of the offending type is returned; NULL_TREE
   otherwise.  */

static tree
check_inner_circular_reference (tree source, tree target)
{
  tree base_binfo;
  tree ctx, cl;
  int i;

  for (i = 0; BINFO_BASE_ITERATE (TYPE_BINFO (source), i, base_binfo); i++)
    {
      tree su;

      /* We can end up with a NULL_TREE or an incomplete type here if
	 we encountered previous type resolution errors. It's safe to
	 simply ignore these cases.  */
      su = BINFO_TYPE (base_binfo);
      if (INCOMPLETE_TYPE_P (su))
	continue;

      if (inherits_from_p (su, target))
	return lookup_cl (TYPE_NAME (su));

      for (ctx = DECL_CONTEXT (TYPE_NAME (su)); ctx; ctx = DECL_CONTEXT (ctx))
	{
	  /* An enclosing context shouldn't be TARGET */
	  if (ctx == TYPE_NAME (target))
	    return lookup_cl (TYPE_NAME (su));

	  /* When we reach the enclosing last context, start a check
	     on it, with the same target */
	  if (! DECL_CONTEXT (ctx) &&
	      (cl = check_inner_circular_reference (TREE_TYPE (ctx), target)))
	    return cl;
	}
    }
  return NULL_TREE;
}

/* Explore TYPE's `extends' clause member(s) and return the WFL of the
   offending type if a circularity is detected. NULL_TREE is returned
   otherwise. TYPE can be an interface or a class.   */

static tree
check_circular_reference (tree type)
{
  tree base_binfo;
  int i;

  if (!BINFO_N_BASE_BINFOS (TYPE_BINFO (type)))
    return NULL_TREE;

  if (! CLASS_INTERFACE (TYPE_NAME (type)))
    {
      if (inherits_from_p (CLASSTYPE_SUPER (type), type))
	return lookup_cl (TYPE_NAME (type));
      return NULL_TREE;
    }

  for (i = 0; BINFO_BASE_ITERATE (TYPE_BINFO (type), i, base_binfo); i++)
    {
      if (BINFO_TYPE (base_binfo) != object_type_node
	  && interface_of_p (type, BINFO_TYPE (base_binfo)))
	return lookup_cl (TYPE_NAME (BINFO_TYPE (base_binfo)));
    }
  return NULL_TREE;
}

void
java_check_circular_reference (void)
{
  tree current;
  for (current = ctxp->class_list; current; current = TREE_CHAIN (current))
    {
      tree type = TREE_TYPE (current);
      tree cl;

      cl = check_circular_reference (type);
      if (! cl)
	cl = check_inner_circular_reference (type, type);
      if (cl)
	parse_error_context (cl, "Cyclic class inheritance%s",
			     (cyclic_inheritance_report ?
			      cyclic_inheritance_report : ""));
    }
}

/* Augment the parameter list PARM with parameters crafted to
   initialize outer context locals aliases. Through ARTIFICIAL, a
   count is kept of the number of crafted parameters. MODE governs
   what eventually gets created: something suitable for a function
   creation or a function invocation, either the constructor or
   finit$.  */

static tree
build_alias_initializer_parameter_list (int mode, tree class_type, tree parm,
					int *artificial)
{
  tree field;
  tree additional_parms = NULL_TREE;

  for (field = TYPE_FIELDS (class_type); field; field = TREE_CHAIN (field))
    if (FIELD_LOCAL_ALIAS (field))
      {
	const char *buffer = IDENTIFIER_POINTER (DECL_NAME (field));
	tree purpose = NULL_TREE, value = NULL_TREE, name = NULL_TREE;
	tree mangled_id;

	switch (mode)
	  {
	  case AIPL_FUNCTION_DECLARATION:
	    MANGLE_ALIAS_INITIALIZER_PARAMETER_NAME_STR (mangled_id,
							 &buffer [4]);
	    purpose = build_wfl_node (mangled_id);
	    if (TREE_CODE (TREE_TYPE (field)) == POINTER_TYPE)
	      value = build_wfl_node (TYPE_NAME (TREE_TYPE (field)));
	    else
	      value = TREE_TYPE (field);
	    break;

	  case AIPL_FUNCTION_CREATION:
	    MANGLE_ALIAS_INITIALIZER_PARAMETER_NAME_STR (purpose,
							 &buffer [4]);
	    value = TREE_TYPE (field);
	    break;

	  case AIPL_FUNCTION_FINIT_INVOCATION:
	    MANGLE_ALIAS_INITIALIZER_PARAMETER_NAME_STR (mangled_id,
							 &buffer [4]);
	    /* Now, this is wrong. purpose should always be the NAME
	       of something and value its matching value (decl, type,
	       etc...) FIXME -- but there is a lot to fix. */

	    /* When invoked for this kind of operation, we already
	       know whether a field is used or not. */
	    purpose = TREE_TYPE (field);
	    value = build_wfl_node (mangled_id);
	    break;

	  case AIPL_FUNCTION_CTOR_INVOCATION:
	    /* There are two case: the constructor invocation happens
	       outside the local inner, in which case, locales from the outer
	       context are directly used.

	       Otherwise, we fold to using the alias directly. */
	    if (class_type == current_class)
	      value = field;
	    else
	      {
		name = get_identifier (&buffer[4]);
		value = IDENTIFIER_LOCAL_VALUE (name);
	      }
	    break;
	  }
	additional_parms = tree_cons (purpose, value, additional_parms);
	if (artificial)
	  *artificial +=1;
      }
  if (additional_parms)
    {
      if (ANONYMOUS_CLASS_P (class_type)
          && mode == AIPL_FUNCTION_CTOR_INVOCATION)
        additional_parms = nreverse (additional_parms);
      parm = chainon (additional_parms, parm);
    }

   return parm;
}

/* Craft a constructor for CLASS_DECL -- what we should do when none
   where found. ARGS is non NULL when a special signature must be
   enforced. This is the case for anonymous classes.  */

static tree
craft_constructor (tree class_decl, tree args)
{
  tree class_type = TREE_TYPE (class_decl);
  tree parm = NULL_TREE;
  /* Inherit access flags for the constructor from its enclosing class. */
  int valid_ctor_flags = ACC_PUBLIC | ACC_PROTECTED | ACC_PRIVATE;
  int flags = (get_access_flags_from_decl (class_decl) & valid_ctor_flags);
  int i = 0, artificial = 0;
  tree decl, ctor_name;
  char buffer [80];

  ctor_name = init_identifier_node;

  /* If we're dealing with an inner class constructor, we hide the
     this$<n> decl in the name field of its parameter declaration. */
  if (PURE_INNER_CLASS_TYPE_P (class_type))
    {
      tree type = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (class_type)));
      parm = tree_cons (build_current_thisn (class_type),
			build_pointer_type (type), parm);

      /* Some more arguments to be hidden here. The values of the local
	 variables of the outer context that the inner class needs to see. */
      parm = build_alias_initializer_parameter_list (AIPL_FUNCTION_CREATION,
						     class_type, parm,
						     &artificial);
    }

  /* Then if there are any args to be enforced, enforce them now */
  for (; args && args != end_params_node; args = TREE_CHAIN (args))
    {
      /* If we see a `void *', we need to change it to Object.  */
      if (TREE_VALUE (args) == TREE_TYPE (null_pointer_node))
	TREE_VALUE (args) = object_ptr_type_node;

      sprintf (buffer, "parm%d", i++);
      parm = tree_cons (get_identifier (buffer), TREE_VALUE (args), parm);
    }

  CRAFTED_PARAM_LIST_FIXUP (parm);
  decl = create_artificial_method (class_type, flags, void_type_node,
				   ctor_name, parm);
  fix_method_argument_names (parm, decl);
  /* Now, mark the artificial parameters. */
  DECL_FUNCTION_NAP (decl) = artificial;
  DECL_FUNCTION_SYNTHETIC_CTOR (decl) = DECL_CONSTRUCTOR_P (decl) = 1;
  DECL_INLINE (decl) = 1;
  return decl;
}


/* Fix the constructors. This will be called right after circular
   references have been checked. It is necessary to fix constructors
   early even if no code generation will take place for that class:
   some generated constructor might be required by the class whose
   compilation triggered this one to be simply loaded.  */

void
java_fix_constructors (void)
{
  tree current;

  for (current = ctxp->class_list; current; current = TREE_CHAIN (current))
    {
      tree class_type = TREE_TYPE (current);
      int saw_ctor = 0;
      tree decl;

      if (CLASS_INTERFACE (TYPE_NAME (class_type)))
	continue;

      output_class = current_class = class_type;
      for (decl = TYPE_METHODS (class_type); decl; decl = TREE_CHAIN (decl))
	{
	  if (DECL_CONSTRUCTOR_P (decl))
	    {
	      fix_constructors (decl);
	      saw_ctor = 1;
	    }
	}

      /* Anonymous class constructor can't be generated that early. */
      if (!saw_ctor && !ANONYMOUS_CLASS_P (class_type))
	craft_constructor (current, NULL_TREE);
    }
}

/* safe_layout_class just makes sure that we can load a class without
   disrupting the current_class, input_file, input_line, etc, information
   about the class processed currently.  */

void
safe_layout_class (tree class)
{
  tree save_current_class = current_class;
  location_t save_location = input_location;

  layout_class (class);

  current_class = save_current_class;
  input_location = save_location;
}

static tree
jdep_resolve_class (jdep *dep)
{
  tree decl;
  
  /* Set the correct context for class resolution.  */
  current_class = TREE_TYPE (JDEP_ENCLOSING (dep));

  if (JDEP_RESOLVED_P (dep))
    decl = JDEP_RESOLVED_DECL (dep);
  else
    {
      decl = resolve_class (JDEP_ENCLOSING (dep), JDEP_TO_RESOLVE (dep),
			    JDEP_DECL (dep), JDEP_WFL (dep));
      JDEP_RESOLVED (dep, decl);
      /* If there is no WFL, that's ok.  We generate this warning
	 elsewhere.  */
      if (decl && JDEP_WFL (dep) != NULL_TREE)
	check_deprecation (JDEP_WFL (dep), decl);
    }

  if (!decl)
    complete_class_report_errors (dep);
  else if (INNER_CLASS_DECL_P (decl))
    {
      tree inner = TREE_TYPE (decl);
      if (! CLASS_LOADED_P (inner))
	{
	  safe_layout_class (inner);
	  if (TYPE_SIZE (inner) == error_mark_node)
	    TYPE_SIZE (inner) = NULL_TREE;
	}
      check_inner_class_access (decl, JDEP_ENCLOSING (dep), JDEP_WFL (dep));
    }
  return decl;
}

/* Complete unsatisfied class declaration and their dependencies */

void
java_complete_class (void)
{
  tree cclass;
  jdeplist *cclassd;
  int error_found;
  tree type;

  /* Process imports */
  process_imports ();

  /* Reverse things so we have the right order */
  ctxp->class_list = nreverse (ctxp->class_list);
  ctxp->classd_list = reverse_jdep_list (ctxp);

  for (cclassd = ctxp->classd_list, cclass = ctxp->class_list;
       cclass && cclassd;
       cclass = TREE_CHAIN (cclass), cclassd = CLASSD_CHAIN (cclassd))
    {
      jdep *dep;

      for (dep = CLASSD_FIRST (cclassd); dep; dep = JDEP_CHAIN (dep))
	{
	  tree decl;
	  if (!(decl = jdep_resolve_class (dep)))
	    continue;

	  /* Now it's time to patch */
	  switch (JDEP_KIND (dep))
	    {
	    case JDEP_SUPER:
	      /* Simply patch super */
	      if (parser_check_super (decl, JDEP_DECL (dep), JDEP_WFL (dep)))
		continue;
	      BINFO_TYPE (BINFO_BASE_BINFO
			  (TYPE_BINFO (TREE_TYPE (JDEP_DECL (dep))), 0))
		= TREE_TYPE (decl);
	      break;

	    case JDEP_FIELD:
	      {
		/* We do part of the job done in add_field */
		tree field_decl = JDEP_DECL (dep);
		tree field_type = TREE_TYPE (decl);
		if (TREE_CODE (field_type) == RECORD_TYPE)
		  field_type = promote_type (field_type);
		TREE_TYPE (field_decl) = field_type;
		DECL_ALIGN (field_decl) = 0;
		DECL_USER_ALIGN (field_decl) = 0;
		layout_decl (field_decl, 0);
		SOURCE_FRONTEND_DEBUG
		  (("Completed field/var decl '%s' with '%s'",
		    IDENTIFIER_POINTER (DECL_NAME (field_decl)),
		    IDENTIFIER_POINTER (DECL_NAME (decl))));
		break;
	      }
	    case JDEP_METHOD:	/* We start patching a method */
	    case JDEP_METHOD_RETURN:
	      error_found = 0;
	      while (1)
		{
		  if (decl)
		    {
		      type = TREE_TYPE(decl);
		      if (TREE_CODE (type) == RECORD_TYPE)
			type = promote_type (type);
		      JDEP_APPLY_PATCH (dep, type);
		      SOURCE_FRONTEND_DEBUG
			(((JDEP_KIND (dep) == JDEP_METHOD_RETURN ?
			   "Completing fct '%s' with ret type '%s'":
			   "Completing arg '%s' with type '%s'"),
			  IDENTIFIER_POINTER (EXPR_WFL_NODE
					      (JDEP_DECL_WFL (dep))),
			  IDENTIFIER_POINTER (DECL_NAME (decl))));
		    }
		  else
		    error_found = 1;
		  dep = JDEP_CHAIN (dep);
		  if (JDEP_KIND (dep) == JDEP_METHOD_END)
		    break;
		  else
		    decl = jdep_resolve_class (dep);
		}
	      if (!error_found)
		{
		  tree mdecl = JDEP_DECL (dep), signature;
		  /* Recompute and reset the signature, check first that
		     all types are now defined. If they're not,
		     don't build the signature. */
		  if (check_method_types_complete (mdecl))
		    {
		      signature = build_java_signature (TREE_TYPE (mdecl));
		      set_java_signature (TREE_TYPE (mdecl), signature);
		    }
		}
	      else
		continue;
	      break;

	    case JDEP_INTERFACE:
	      if (parser_check_super_interface (decl, JDEP_DECL (dep),
						JDEP_WFL (dep)))
		continue;
	      parser_add_interface (JDEP_DECL (dep), decl, JDEP_WFL (dep));
	      break;

	    case JDEP_PARM:
	    case JDEP_VARIABLE:
	      type = TREE_TYPE(decl);
	      if (TREE_CODE (type) == RECORD_TYPE)
		type = promote_type (type);
	      JDEP_APPLY_PATCH (dep, type);
	      break;

	    case JDEP_TYPE:
	      JDEP_APPLY_PATCH (dep, TREE_TYPE (decl));
	      SOURCE_FRONTEND_DEBUG
		(("Completing a random type dependency on a '%s' node",
		  tree_code_name [TREE_CODE (JDEP_DECL (dep))]));
	      break;

	    case JDEP_EXCEPTION:
	      JDEP_APPLY_PATCH (dep, TREE_TYPE (decl));
	      SOURCE_FRONTEND_DEBUG
		(("Completing '%s' 'throws' argument node",
		  IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep)))));
	      break;

	    case JDEP_ANONYMOUS:
	      patch_anonymous_class (decl, JDEP_DECL (dep), JDEP_WFL (dep));
	      break;

	    default:
	      abort ();
	    }
	}
    }
  return;
}

/* Resolve class CLASS_TYPE. Handle the case of trying to resolve an
   array.  */

static tree
resolve_class (tree enclosing, tree class_type, tree decl, tree cl)
{
  tree tname = TYPE_NAME (class_type);
  tree resolved_type = TREE_TYPE (class_type);
  int array_dims = 0;
  tree resolved_type_decl;

  if (resolved_type != NULL_TREE)
    {
      tree resolved_type_decl = TYPE_NAME (resolved_type);
      if (resolved_type_decl == NULL_TREE
	  || TREE_CODE (resolved_type_decl) == IDENTIFIER_NODE)
	{
	  resolved_type_decl = build_decl (TYPE_DECL,
					   TYPE_NAME (class_type),
					   resolved_type);
	}
      return resolved_type_decl;
    }

  /* 1- Check to see if we have an array. If true, find what we really
     want to resolve  */
  if ((array_dims = build_type_name_from_array_name (tname,
						     &TYPE_NAME (class_type))))
    WFL_STRIP_BRACKET (cl, cl);

  /* 2- Resolve the bare type */
  if (!(resolved_type_decl = do_resolve_class (enclosing, NULL_TREE, class_type,
					       decl, cl)))
    return NULL_TREE;
  resolved_type = TREE_TYPE (resolved_type_decl);

  /* 3- If we have an array, reconstruct the array down to its nesting */
  if (array_dims)
    {
      for (; array_dims; array_dims--)
	resolved_type = build_java_array_type (resolved_type, -1);
      resolved_type_decl = TYPE_NAME (resolved_type);
    }
  TREE_TYPE (class_type) = resolved_type;
  return resolved_type_decl;
}

/* Effectively perform the resolution of class CLASS_TYPE.  DECL or CL
   are used to report error messages; CL must either be NULL_TREE or a
   WFL wrapping a class.  Do not try to replace TYPE_NAME (class_type)
   by a variable, since it is changed by find_in_imports{_on_demand}
   and (but it doesn't really matter) qualify_and_find.  */

tree
do_resolve_class (tree enclosing, tree import_type, tree class_type, tree decl,
		  tree cl)
{
  tree new_class_decl = NULL_TREE;
  tree saved_enclosing_type = enclosing ? TREE_TYPE (enclosing) : NULL_TREE;
  tree candidate = NULL_TREE;
  tree decl_result;

  if (QUALIFIED_P (TYPE_NAME (class_type)))
    {
      /* If the type name is of the form `Q . Id', then Q is either a
	 package name or a class name.  First we try to find Q as a
	 class and then treat Id as a member type.  If we can't find Q
	 as a class then we fall through.  */
      tree q, left, left_type, right;
      if (split_qualified_name (&left, &right, TYPE_NAME (class_type)) == 0)
	{
	  BUILD_PTR_FROM_NAME (left_type, left);
	  q = do_resolve_class (enclosing, import_type, left_type, decl, cl);
	  if (q)
	    {
	      enclosing = q;
	      saved_enclosing_type = TREE_TYPE (q);
	      BUILD_PTR_FROM_NAME (class_type, right);
	    }
	}
    }

  if (enclosing)
    {
      tree context = enclosing;

      /* 0- Search in the current class as an inner class.
	 Maybe some code here should be added to load the class or
	 something, at least if the class isn't an inner class and ended
	 being loaded from class file. FIXME. */
      while (enclosing)
	{
	  new_class_decl = resolve_inner_class (context, cl, enclosing, class_type);
	  
	  if (new_class_decl)
	    {
	      if (inner_class_accessible (new_class_decl, context))
	        break;
	      else
	        if (candidate == NULL_TREE)
		  candidate = new_class_decl;
		new_class_decl = NULL_TREE;
	    }

	  /* Now that we've looked through all superclasses, try the enclosing
	     context. */
	  enclosing = DECL_CONTEXT (enclosing);
	}

      if (new_class_decl)
	return new_class_decl;
    }

  /* 1- Check for the type in single imports.  Look at enclosing classes and,
     if we're laying out a superclass, at the import list for the subclass.
     This will change TYPE_NAME() if something relevant is found. */
  if (import_type && TYPE_IMPORT_LIST (import_type))
    find_in_imports (import_type, class_type);
  find_in_imports (saved_enclosing_type, class_type);

  /* 2- And check for the type in the current compilation unit */
  if ((new_class_decl = IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type))))
    {
      if (!CLASS_LOADED_P (TREE_TYPE (new_class_decl)))
	load_class (TYPE_NAME (class_type), 0);
      return IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type));
    }

  /* 3- Search according to the current package definition */
  if (!QUALIFIED_P (TYPE_NAME (class_type)))
    {
      if ((new_class_decl = qualify_and_find (class_type, 
      		TYPE_PACKAGE (current_class), TYPE_NAME (class_type))))
	return new_class_decl;
    }

  /* 4- Check the import on demands. Don't allow bar.baz to be
     imported from foo.* */
  if (!QUALIFIED_P (TYPE_NAME (class_type)))
    {
      if (import_type
	  && TYPE_IMPORT_DEMAND_LIST (import_type)
	  && find_in_imports_on_demand (import_type, class_type))
        return NULL_TREE;
      if (find_in_imports_on_demand (saved_enclosing_type, class_type))
        return NULL_TREE;
    }

  /* If found in find_in_imports_on_demand, the type has already been
     loaded. */
  if ((new_class_decl = IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type))))
    return new_class_decl;

  /* 5- Check another compilation unit that bears the name of type */
  load_class (TYPE_NAME (class_type), 0);

  if (!cl)
    cl = lookup_cl (decl);

  /* If we don't have a value for CL, then we're being called recursively.
     We can't check package access just yet, but it will be taken care of
     by the caller. */
  if (cl)
    {
      if (check_pkg_class_access (TYPE_NAME (class_type), cl, true, NULL_TREE))
        return NULL_TREE;
    }

  /* 6- Last call for a resolution */
  decl_result = IDENTIFIER_CLASS_VALUE (TYPE_NAME (class_type));

  /* The final lookup might have registered a.b.c into a.b$c If we
     failed at the first lookup, progressively change the name if
     applicable and use the matching DECL instead. */
  if (!decl_result && QUALIFIED_P (TYPE_NAME (class_type)))
    {
      char *separator;
      tree name = TYPE_NAME (class_type);
      char *namebuffer = alloca (IDENTIFIER_LENGTH (name) + 1);

      strcpy (namebuffer, IDENTIFIER_POINTER (name));

      do {

       /* Reach the last '.', and if applicable, replace it by a `$' and
          see if this exists as a type. */
       if ((separator = strrchr (namebuffer, '.')))
         {
           *separator = '$';
           name = get_identifier (namebuffer);
           decl_result = IDENTIFIER_CLASS_VALUE (name);
         }
      } while (!decl_result && separator);
    }
  if (decl_result)
    return decl_result;
  else
    return candidate;
}

static tree
qualify_and_find (tree class_type, tree package, tree name)
{
  tree new_qualified = merge_qualified_name (package, name);
  tree new_class_decl;

  if (!IDENTIFIER_CLASS_VALUE (new_qualified))
    load_class (new_qualified, 0);
  if ((new_class_decl = IDENTIFIER_CLASS_VALUE (new_qualified)))
    {
      if (!CLASS_LOADED_P (TREE_TYPE (new_class_decl)))
	load_class (TREE_TYPE (new_class_decl), 0);
      TYPE_NAME (class_type) = new_qualified;
      return IDENTIFIER_CLASS_VALUE (new_qualified);
    }
  return NULL_TREE;
}

/* Resolve NAME and lay it out (if not done and if not the current
   parsed class). Return a decl node. This function is meant to be
   called when type resolution is necessary during the walk pass.  */

static tree
resolve_and_layout (tree something, tree cl)
{
  tree decl, decl_type;

  /* Don't do that on the current class */
  if (something == current_class)
    return TYPE_NAME (current_class);

  /* Don't do anything for void and other primitive types */
  if (JPRIMITIVE_TYPE_P (something) || something == void_type_node)
    return NULL_TREE;

  /* Pointer types can be reall pointer types or fake pointers. When
     finding a real pointer, recheck for primitive types */
  if (TREE_CODE (something) == POINTER_TYPE)
    {
      if (TREE_TYPE (something))
	{
	  something = TREE_TYPE (something);
	  if (JPRIMITIVE_TYPE_P (something) || something == void_type_node)
	    return NULL_TREE;
	}
      else
	something = TYPE_NAME (something);
    }

  /* Don't do anything for arrays of primitive types */
  if (TREE_CODE (something) == RECORD_TYPE && TYPE_ARRAY_P (something)
      && JPRIMITIVE_TYPE_P (TYPE_ARRAY_ELEMENT (something)))
    return NULL_TREE;

  /* Something might be a WFL */
  if (TREE_CODE (something) == EXPR_WITH_FILE_LOCATION)
    something = EXPR_WFL_NODE (something);

  /* Otherwise, if something is not and IDENTIFIER_NODE, it can be a
     TYPE_DECL or a real TYPE.  */
  else if (TREE_CODE (something) != IDENTIFIER_NODE)
    something = (TREE_CODE (TYPE_NAME (something)) == TYPE_DECL ?
	    DECL_NAME (TYPE_NAME (something)) : TYPE_NAME (something));

  if (!(decl = resolve_no_layout (something, cl)))
    return NULL_TREE;

  /* Resolve and layout if necessary */
  decl_type = TREE_TYPE (decl);
  layout_class_methods (decl_type);
  /* Check methods */
  if (CLASS_FROM_SOURCE_P (decl_type))
    java_check_methods (decl);
  /* Layout the type if necessary */
  if (decl_type != current_class && !CLASS_LOADED_P (decl_type))
    safe_layout_class (decl_type);

  return decl;
}

/* Resolve a class, returns its decl but doesn't perform any
   layout. The current parsing context is saved and restored */

static tree
resolve_no_layout (tree name, tree cl)
{
  tree ptr, decl;
  BUILD_PTR_FROM_NAME (ptr, name);
  java_parser_context_save_global ();
  decl = resolve_class (TYPE_NAME (current_class), ptr, NULL_TREE, cl);
  java_parser_context_restore_global ();

  return decl;
}

/* Called when reporting errors. Skip the '[]'s in a complex array
   type description that failed to be resolved. purify_type_name can't
   use an identifier tree.  */

static const char *
purify_type_name (const char *name)
{
  int len = strlen (name);
  int bracket_found;

  STRING_STRIP_BRACKETS (name, len, bracket_found);
  if (bracket_found)
    {
      char *stripped_name = xmemdup (name, len, len+1);
      stripped_name [len] = '\0';
      return stripped_name;
    }
  return name;
}

/* The type CURRENT refers to can't be found. We print error messages.  */

static void
complete_class_report_errors (jdep *dep)
{
  const char *name;

  if (!JDEP_WFL (dep))
    return;

  name = IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep)));
  switch (JDEP_KIND (dep))
    {
    case JDEP_SUPER:
      parse_error_context
	(JDEP_WFL (dep), "Superclass %qs of class %qs not found",
	 purify_type_name (name),
	 IDENTIFIER_POINTER (DECL_NAME (JDEP_DECL (dep))));
      break;
    case JDEP_FIELD:
      parse_error_context
	(JDEP_WFL (dep), "Type %qs not found in declaration of field %qs",
	 purify_type_name (name),
	 IDENTIFIER_POINTER (DECL_NAME (JDEP_DECL (dep))));
      break;
    case JDEP_METHOD:		/* Covers arguments */
      parse_error_context
	(JDEP_WFL (dep), "Type %qs not found in the declaration of the argument %qs of method %qs",
	 purify_type_name (name),
	 IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_DECL_WFL (dep))),
	 IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_MISC (dep))));
      break;
    case JDEP_METHOD_RETURN:	/* Covers return type */
      parse_error_context
	(JDEP_WFL (dep), "Type %qs not found in the declaration of the return type of method %qs",
	 purify_type_name (name),
	 IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_DECL_WFL (dep))));
      break;
    case JDEP_INTERFACE:
      parse_error_context
	(JDEP_WFL (dep), "Superinterface %qs of %s %qs not found",
	 IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep))),
	 (CLASS_OR_INTERFACE (JDEP_DECL (dep), "class", "interface")),
	 IDENTIFIER_POINTER (DECL_NAME (JDEP_DECL (dep))));
      break;
    case JDEP_VARIABLE:
      parse_error_context
	(JDEP_WFL (dep), "Type %qs not found in the declaration of the local variable %qs",
	 purify_type_name (IDENTIFIER_POINTER
			   (EXPR_WFL_NODE (JDEP_WFL (dep)))),
	 IDENTIFIER_POINTER (DECL_NAME (JDEP_DECL (dep))));
      break;
    case JDEP_EXCEPTION:	/* As specified by `throws' */
      parse_error_context
	  (JDEP_WFL (dep), "Class %qs not found in %<throws%>",
	 IDENTIFIER_POINTER (EXPR_WFL_NODE (JDEP_WFL (dep))));
      break;
    default:
      /* Fix for -Wall. Just break doing nothing. The error will be
         caught later */
      break;
    }
}

/* Return a static string containing the DECL prototype string. If
   DECL is a constructor, use the class name instead of the form
   <init> */

static const char *
get_printable_method_name (tree decl)
{
  const char *to_return;
  tree name = NULL_TREE;

  if (DECL_CONSTRUCTOR_P (decl))
    {
      name = DECL_NAME (decl);
      DECL_NAME (decl) = DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl)));
    }

  to_return = lang_printable_name (decl, 2);
  if (DECL_CONSTRUCTOR_P (decl))
    DECL_NAME (decl) = name;

  return to_return;
}

/* Track method being redefined inside the same class. As a side
   effect, set DECL_NAME to an IDENTIFIER (prior entering this
   function it's a FWL, so we can track errors more accurately.)  */

static int
check_method_redefinition (tree class, tree method)
{
  tree redef, sig;

  /* There's no need to verify <clinit> and finit$ and instinit$ */
  if (DECL_CLINIT_P (method)
      || DECL_FINIT_P (method) || DECL_INSTINIT_P (method))
    return 0;

  sig = TYPE_ARGUMENT_SIGNATURE (TREE_TYPE (method));
  for (redef = TYPE_METHODS (class); redef; redef = TREE_CHAIN (redef))
    {
      if (redef == method)
	break;
      if (DECL_NAME (redef) == DECL_NAME (method)
	  && sig == TYPE_ARGUMENT_SIGNATURE (TREE_TYPE (redef))
	  && !DECL_ARTIFICIAL (method))
	{
	  parse_error_context
	    (DECL_FUNCTION_WFL (method), "Duplicate %s declaration %qs",
	     (DECL_CONSTRUCTOR_P (redef) ? "constructor" : "method"),
	     get_printable_method_name (redef));
	  return 1;
	}
    }
  return 0;
}

/* Return 1 if check went ok, 0 otherwise.  */
static int
check_abstract_method_definitions (int do_interface, tree class_decl,
				   tree type)
{
  tree class = TREE_TYPE (class_decl);
  tree method, end_type;
  int ok = 1;

  end_type = (do_interface ? object_type_node : type);
  for (method = TYPE_METHODS (type); method; method = TREE_CHAIN (method))
    {
      tree other_super, other_method, method_sig, method_name;
      int found = 0;
      int end_type_reached = 0;

      if (!METHOD_ABSTRACT (method) || METHOD_FINAL (method))
	continue;

      /* Now verify that somewhere in between TYPE and CLASS,
	 abstract method METHOD gets a non abstract definition
	 that is inherited by CLASS.  */

      method_sig = build_java_signature (TREE_TYPE (method));
      method_name = DECL_NAME (method);
      if (TREE_CODE (method_name) == EXPR_WITH_FILE_LOCATION)
	method_name = EXPR_WFL_NODE (method_name);

      other_super = class;
      do {
	if (other_super == end_type)
	  end_type_reached = 1;

	/* Method search */
	for (other_method = TYPE_METHODS (other_super); other_method;
            other_method = TREE_CHAIN (other_method))
	  {
	    tree s = build_java_signature (TREE_TYPE (other_method));
	    tree other_name = DECL_NAME (other_method);

	    if (TREE_CODE (other_name) == EXPR_WITH_FILE_LOCATION)
	      other_name = EXPR_WFL_NODE (other_name);
	    if (!DECL_CLINIT_P (other_method)
		&& !DECL_CONSTRUCTOR_P (other_method)
		&& method_name == other_name
		&& method_sig == s
		&& !METHOD_ABSTRACT (other_method))
             {
               found = 1;
               break;
             }
	  }
	other_super = CLASSTYPE_SUPER (other_super);
      } while (!end_type_reached);

      /* Report that abstract METHOD didn't find an implementation
	 that CLASS can use. */
      if (!found)
	{
	  char *t = xstrdup (lang_printable_name
			    (TREE_TYPE (TREE_TYPE (method)), 0));
	  tree ccn = DECL_NAME (TYPE_NAME (DECL_CONTEXT (method)));

	  parse_error_context
	    (lookup_cl (class_decl),
	     "Class %qs doesn't define the abstract method %<%s %s%> from %s %<%s%>. This method must be defined or %s %qs must be declared abstract",
	     IDENTIFIER_POINTER (DECL_NAME (class_decl)),
	     t, lang_printable_name (method, 2),
	     (CLASS_INTERFACE (TYPE_NAME (DECL_CONTEXT (method))) ?
	      "interface" : "class"),
	     IDENTIFIER_POINTER (ccn),
	     (CLASS_INTERFACE (class_decl) ? "interface" : "class"),
	     IDENTIFIER_POINTER (DECL_NAME (class_decl)));
	  ok = 0;
	  free (t);
	}
    }

  if (ok && do_interface)
    {
      /* Check for implemented interfaces. */
      int i;
      tree base_binfo;
      
      for (i = 1;
	   ok && BINFO_BASE_ITERATE (TYPE_BINFO (type), i, base_binfo);
	   i++)
	ok = check_abstract_method_definitions (1, class_decl,
						BINFO_TYPE (base_binfo));
    }

  return ok;
}

/* Check that CLASS_DECL somehow implements all inherited abstract
   methods.  */

static void
java_check_abstract_method_definitions (tree class_decl)
{
  tree class = TREE_TYPE (class_decl);
  tree super, base_binfo;
  int i;

  if (CLASS_ABSTRACT (class_decl))
    return;

  /* Check for inherited types */
  super = class;
  do {
    super = CLASSTYPE_SUPER (super);
    check_abstract_method_definitions (0, class_decl, super);
  } while (super != object_type_node);

  /* Check for implemented interfaces. */
  for (i = 1; BINFO_BASE_ITERATE (TYPE_BINFO (class), i, base_binfo); i++)
    check_abstract_method_definitions (1, class_decl, BINFO_TYPE (base_binfo));
}

/* Check all the types method DECL uses and return 1 if all of them
   are now complete, 0 otherwise. This is used to check whether its
   safe to build a method signature or not.  */

static int
check_method_types_complete (tree decl)
{
  tree type = TREE_TYPE (decl);
  tree args;

  if (!INCOMPLETE_TYPE_P (TREE_TYPE (type)))
    return 0;

  args = TYPE_ARG_TYPES (type);
  if (TREE_CODE (type) == METHOD_TYPE)
    args = TREE_CHAIN (args);
  for (; args != end_params_node; args = TREE_CHAIN (args))
    if (INCOMPLETE_TYPE_P (TREE_VALUE (args)))
      return 0;

  return 1;
}

/* Visible interface to check methods contained in CLASS_DECL */

void
java_check_methods (tree class_decl)
{
  if (CLASS_METHOD_CHECKED_P (TREE_TYPE (class_decl)))
    return;

  if (CLASS_INTERFACE (class_decl))
    java_check_abstract_methods (class_decl);
  else
    java_check_regular_methods (class_decl);

  CLASS_METHOD_CHECKED_P (TREE_TYPE (class_decl)) = 1;
}

/* Like not_accessible_p, but doesn't refer to the current class at
   all.  */
static bool
hack_is_accessible_p (tree member, tree from_where)
{
  int flags = get_access_flags_from_decl (member);

  if (from_where == DECL_CONTEXT (member)
      || (flags & ACC_PUBLIC))
    return true;

  if ((flags & ACC_PROTECTED))
    {
      if (inherits_from_p (from_where, DECL_CONTEXT (member)))
	return true;
    }

  if ((flags & ACC_PRIVATE))
    return false;

  /* Package private, or protected.  */
  return in_same_package (TYPE_NAME (from_where),
			  TYPE_NAME (DECL_CONTEXT (member)));
}

/* Check all the methods of CLASS_DECL. Methods are first completed
   then checked according to regular method existence rules.  If no
   constructor for CLASS_DECL were encountered, then build its
   declaration.  */
static void
java_check_regular_methods (tree class_decl)
{
  int saw_constructor = ANONYMOUS_CLASS_P (TREE_TYPE (class_decl));
  tree method;
  tree class = TREE_TYPE (class_decl);
  tree found = NULL_TREE;
  tree mthrows;

  /* It is not necessary to check methods defined in java.lang.Object */
  if (class == object_type_node)
    return;

  if (!TYPE_NVIRTUALS (class))
    TYPE_METHODS (class) = nreverse (TYPE_METHODS (class));

  /* Should take interfaces into account. FIXME */
  for (method = TYPE_METHODS (class); method; method = TREE_CHAIN (method))
    {
      tree sig;
      tree method_wfl = DECL_FUNCTION_WFL (method);
      int aflags;

      /* Check for redefinitions */
      if (check_method_redefinition (class, method))
	continue;

      /* We verify things thrown by the method.  They must inherit from
	 java.lang.Throwable.  */
      for (mthrows = DECL_FUNCTION_THROWS (method);
	   mthrows; mthrows = TREE_CHAIN (mthrows))
	{
	  if (!inherits_from_p (TREE_VALUE (mthrows), throwable_type_node))
	    parse_error_context
	      (TREE_PURPOSE (mthrows), "Class %qs in %<throws%> clause must be a subclass of class %<java.lang.Throwable%>",
	       IDENTIFIER_POINTER
	         (DECL_NAME (TYPE_NAME (TREE_VALUE (mthrows)))));
	}

      /* If we see one constructor a mark so we don't generate the
	 default one.  Also skip other verifications: constructors
	 can't be inherited hence hidden or overridden.  */
      if (DECL_CONSTRUCTOR_P (method))
	{
	  saw_constructor = 1;
	  continue;
	}

      sig = build_java_argument_signature (TREE_TYPE (method));
      found = lookup_argument_method_generic (class, DECL_NAME (method), sig,
					      SEARCH_SUPER | SEARCH_INTERFACE);

      /* Inner class can't declare static methods */
      if (METHOD_STATIC (method) && !TOPLEVEL_CLASS_DECL_P (class_decl))
	{
	  char *t = xstrdup (lang_printable_name (class, 0));
	  parse_error_context
	    (method_wfl, "Method %qs can't be static in inner class %qs. Only members of interfaces and top-level classes can be static",
	     lang_printable_name (method, 2), t);
	  free (t);
	}

      /* Nothing overrides or it's a private method. */
      if (!found)
	continue;
      if (METHOD_PRIVATE (found))
	{
	  found = NULL_TREE;
	  continue;
	}

      /* If `found' is declared in an interface, make sure the
	 modifier matches. */
      if (CLASS_INTERFACE (TYPE_NAME (DECL_CONTEXT (found)))
	  && clinit_identifier_node != DECL_NAME (found)
	  && !METHOD_PUBLIC (method))
	{
	  tree found_decl = TYPE_NAME (DECL_CONTEXT (found));
	  parse_error_context (method_wfl, "Class %qs must override %qs with a public method in order to implement interface %qs",
			       IDENTIFIER_POINTER (DECL_NAME (class_decl)),
			       lang_printable_name (found, 0),
			       IDENTIFIER_POINTER (DECL_NAME (found_decl)));
	}

      /* Can't override a method with the same name and different return
	 types. */
      if (TREE_TYPE (TREE_TYPE (found)) != TREE_TYPE (TREE_TYPE (method)))
	{
	  char *t = xstrdup
	    (lang_printable_name (TREE_TYPE (TREE_TYPE (found)), 2));
	  parse_error_context
	    (method_wfl,
	     "Method %qs was defined with return type %qs in class %qs",
	     lang_printable_name (found, 2), t,
	     IDENTIFIER_POINTER
	       (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found)))));
	  free (t);
	}

      aflags = get_access_flags_from_decl (found);

      /* Can't override final. Can't override static. */
      if (METHOD_FINAL (found) || METHOD_STATIC (found))
	{
	  /* Static *can* override static */
	  if (METHOD_STATIC (found) && METHOD_STATIC (method))
	    continue;
	  parse_error_context
	    (method_wfl,
	     "%s methods can't be overridden. Method %qs is %s in class %qs",
	     (METHOD_FINAL (found) ? "Final" : "Static"),
	     lang_printable_name (found, 2),
	     (METHOD_FINAL (found) ? "final" : "static"),
	     IDENTIFIER_POINTER
	       (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found)))));
	  continue;
	}

      /* Static method can't override instance method. */
      if (METHOD_STATIC (method))
	{
	  parse_error_context
	    (method_wfl,
	     "Instance methods can't be overridden by a static method. Method %qs is an instance method in class %qs",
	     lang_printable_name (found, 2),
	     IDENTIFIER_POINTER
	       (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found)))));
	  continue;
	}

      /* - Overriding/hiding public must be public
	 - Overriding/hiding protected must be protected or public
         - If the overridden or hidden method has default (package)
           access, then the overriding or hiding method must not be
           private; otherwise, a compile-time error occurs.  If
           `found' belongs to an interface, things have been already
           taken care of.  */
      if (!CLASS_INTERFACE (TYPE_NAME (DECL_CONTEXT (found)))
	  && ((METHOD_PUBLIC (found) && !METHOD_PUBLIC (method))
	      || (METHOD_PROTECTED (found)
		  && !(METHOD_PUBLIC (method) || METHOD_PROTECTED (method)))
	      || (!(aflags & (ACC_PUBLIC | ACC_PRIVATE | ACC_STATIC))
		  && METHOD_PRIVATE (method))))
	{
	  parse_error_context
	    (method_wfl,
	     "Methods can't be overridden to be more private. Method %qs is not %s in class %qs", lang_printable_name (method, 2),
	     (METHOD_PUBLIC (method) ? "public" :
	      (METHOD_PRIVATE (method) ? "private" : "protected")),
	     IDENTIFIER_POINTER (DECL_NAME
				 (TYPE_NAME (DECL_CONTEXT (found)))));
	  continue;
	}

      /* Check this method against all the other implementations it
	 overrides.  Here we only check the class hierarchy; the rest
	 of the checking is done later.  If this method is just a
	 Miranda method, we can skip the check.  */
      if (! METHOD_INVISIBLE (method))
	check_concrete_throws_clauses (class, method, DECL_NAME (method), sig);
    }

  /* The above throws clause check only looked at superclasses.  Now
     we must also make sure that all methods declared in interfaces
     have compatible throws clauses.  FIXME: there are more efficient
     ways to organize this checking; we should implement one.  */
  check_interface_throws_clauses (class, class);

  if (!TYPE_NVIRTUALS (class))
    TYPE_METHODS (class) = nreverse (TYPE_METHODS (class));

  /* Search for inherited abstract method not yet implemented in this
     class.  */
  java_check_abstract_method_definitions (class_decl);

  if (!saw_constructor)
    abort ();
}

/* Check to make sure that all the methods in all the interfaces
   implemented by CLASS_DECL are compatible with the concrete
   implementations available in CHECK_CLASS_DECL.  */
static void
check_interface_throws_clauses (tree check_class_decl, tree class_decl)
{
  for (; class_decl != NULL_TREE; class_decl = CLASSTYPE_SUPER (class_decl))
    {
      int i;

      if (! CLASS_LOADED_P (class_decl))
	{
	  if (CLASS_FROM_SOURCE_P (class_decl))
	    safe_layout_class (class_decl);
	  else
	    load_class (class_decl, 1);
	}

      for (i = BINFO_N_BASE_BINFOS (TYPE_BINFO (class_decl)) - 1; i > 0; --i)
	{
	  tree interface
	    = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (class_decl), i));
	  tree iface_method;

	  for (iface_method = TYPE_METHODS (interface);
	       iface_method != NULL_TREE;
	       iface_method = TREE_CHAIN (iface_method))
	    {
	      tree sig, method;

	      /* First look for a concrete method implemented or
		 inherited by this class.  No need to search
		 interfaces here, since we're already looking through
		 all of them.  */
	      sig = build_java_argument_signature (TREE_TYPE (iface_method));
	      method
		= lookup_argument_method_generic (check_class_decl,
						  DECL_NAME (iface_method),
						  sig, SEARCH_VISIBLE);
	      /* If we don't find an implementation, that is ok.  Any
		 potential errors from that are diagnosed elsewhere.
		 Also, multiple inheritance with conflicting throws
		 clauses is fine in the absence of a concrete
		 implementation.  */
	      if (method != NULL_TREE && !METHOD_ABSTRACT (method)
		  && !METHOD_INVISIBLE (iface_method))
		{
		  tree method_wfl = DECL_FUNCTION_WFL (method);
		  check_throws_clauses (method, method_wfl, iface_method);
		}
	    }

	  /* Now check superinterfaces.  */
	  check_interface_throws_clauses (check_class_decl, interface);
	}
    }
}

/* Check throws clauses of a method against the clauses of all the
   methods it overrides.  We do this by searching up the class
   hierarchy, examining all matching accessible methods.  */
static void
check_concrete_throws_clauses (tree class, tree self_method,
			       tree name, tree signature)
{
  tree method = lookup_argument_method_generic (class, name, signature,
						SEARCH_SUPER | SEARCH_VISIBLE);
  while (method != NULL_TREE)
    {
      if (! METHOD_INVISIBLE (method) && hack_is_accessible_p (method, class))
	check_throws_clauses (self_method, DECL_FUNCTION_WFL (self_method),
			      method);

      method = lookup_argument_method_generic (DECL_CONTEXT (method),
					       name, signature,
					       SEARCH_SUPER | SEARCH_VISIBLE);
    }
}

/* Generate an error if the `throws' clause of METHOD (if any) is
   incompatible with the `throws' clause of FOUND (if any).  */
static void
check_throws_clauses (tree method, tree method_wfl, tree found)
{
  tree mthrows;

  for (mthrows = DECL_FUNCTION_THROWS (method);
       mthrows; mthrows = TREE_CHAIN (mthrows))
    {
      tree fthrows;

      /* We don't verify unchecked expressions */
      if (IS_UNCHECKED_EXCEPTION_P (TREE_VALUE (mthrows)))
	continue;
      /* Checked expression must be compatible */
      for (fthrows = DECL_FUNCTION_THROWS (found);
	   fthrows; fthrows = TREE_CHAIN (fthrows))
	{
	  if (inherits_from_p (TREE_VALUE (mthrows), TREE_VALUE (fthrows)))
	    break;
	}
      if (!fthrows)
	{
	  parse_error_context
	    (method_wfl, "Invalid checked exception class %qs in %<throws%> clause.  The exception must be a subclass of an exception thrown by %qs from class %qs",
	     IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (TREE_VALUE (mthrows)))),
	     lang_printable_name (found, 2),
	     IDENTIFIER_POINTER
	     (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found)))));
	}
    }
}

/* Check abstract method of interface INTERFACE */
static void
java_check_abstract_methods (tree interface_decl)
{
  int i;
  tree method, found;
  tree interface = TREE_TYPE (interface_decl);
  tree base_binfo;

  for (method = TYPE_METHODS (interface); method; method = TREE_CHAIN (method))
    {
      /* 2- Check for double definition inside the defining interface */
      if (check_method_redefinition (interface, method))
	continue;

      /* 3- Overriding is OK as far as we preserve the return type.  */
      found = lookup_java_interface_method2 (interface, method);
      if (found)
	{
	  char *t;
	  t = xstrdup (lang_printable_name (TREE_TYPE (TREE_TYPE (found)), 2));
	  parse_error_context
	    (DECL_FUNCTION_WFL (found),
	     "Method %qs was defined with return type %qs in class %qs",
	     lang_printable_name (found, 2), t,
	     IDENTIFIER_POINTER
	       (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found)))));
	  free (t);
	  continue;
	}
    }

  /* 4- Inherited methods can't differ by their returned types */
  for (i = 0; BINFO_BASE_ITERATE (TYPE_BINFO (interface), i, base_binfo); i++)
    {
      tree sub_interface_method, sub_interface;

      sub_interface = BINFO_TYPE (base_binfo);
      for (sub_interface_method = TYPE_METHODS (sub_interface);
	   sub_interface_method;
	   sub_interface_method = TREE_CHAIN (sub_interface_method))
	{
	  found = lookup_java_interface_method2 (interface,
						 sub_interface_method);
	  if (found && (found != sub_interface_method))
	    {
	      parse_error_context
		(lookup_cl (sub_interface_method),
		 "Interface %qs inherits method %qs from interface %qs. This method is redefined with a different return type in interface %qs",
		 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (interface))),
		 lang_printable_name (found, 2),
		 IDENTIFIER_POINTER
		   (DECL_NAME (TYPE_NAME
			       (DECL_CONTEXT (sub_interface_method)))),
		 IDENTIFIER_POINTER
	           (DECL_NAME (TYPE_NAME (DECL_CONTEXT (found)))));
	    }
	}
    }
}

/* Lookup methods in interfaces using their name and partial
   signature. Return a matching method only if their types differ.  */

static tree
lookup_java_interface_method2 (tree class, tree method_decl)
{
  int i;
  tree base_binfo;
  tree to_return;

  for (i = 0; BINFO_BASE_ITERATE (TYPE_BINFO (class), i, base_binfo); i++)
    {
      if ((BINFO_TYPE (base_binfo) != object_type_node)
	  && (to_return =
	      lookup_java_method2 (BINFO_TYPE (base_binfo), method_decl, 1)))
	return to_return;
    }
  for (i = 0; BINFO_BASE_ITERATE (TYPE_BINFO (class), i, base_binfo); i++)
    {
      to_return = lookup_java_interface_method2
	(BINFO_TYPE (base_binfo), method_decl);
      if (to_return)
	return to_return;
    }

  return NULL_TREE;
}

/* Lookup method using their name and partial signature. Return a
   matching method only if their types differ.  */

static tree
lookup_java_method2 (tree clas, tree method_decl, int do_interface)
{
  tree method, method_signature, method_name, method_type, name;

  method_signature = build_java_argument_signature (TREE_TYPE (method_decl));
  name = DECL_NAME (method_decl);
  method_name = (TREE_CODE (name) == EXPR_WITH_FILE_LOCATION ?
		 EXPR_WFL_NODE (name) : name);
  method_type = TREE_TYPE (TREE_TYPE (method_decl));

  while (clas != NULL_TREE)
    {
      for (method = TYPE_METHODS (clas);
	   method != NULL_TREE;  method = TREE_CHAIN (method))
	{
	  tree method_sig = build_java_argument_signature (TREE_TYPE (method));
	  tree name = DECL_NAME (method);
	  if ((TREE_CODE (name) == EXPR_WITH_FILE_LOCATION ?
	       EXPR_WFL_NODE (name) : name) == method_name
	      && method_sig == method_signature
	      && TREE_TYPE (TREE_TYPE (method)) != method_type)
	    return method;
	}
      clas = (do_interface ? NULL_TREE : CLASSTYPE_SUPER (clas));
    }
  return NULL_TREE;
}

/* Return the line that matches DECL line number, and try its best to
   position the column number. Used during error reports.
   FUTURE/FIXME: return source_location instead of node. */

static GTY(()) tree cl_v;
static tree
lookup_cl (tree decl)
{
#ifndef USE_MAPPED_LOCATION
  char *line, *found;
#endif

  if (!decl)
    return NULL_TREE;

  if (cl_v == NULL_TREE)
    {
      cl_v = build_unknown_wfl (NULL_TREE);
    }

#ifdef USE_MAPPED_LOCATION
  SET_EXPR_LOCATION (cl_v, DECL_SOURCE_LOCATION (decl));
#else
  EXPR_WFL_FILENAME_NODE (cl_v) = get_identifier (DECL_SOURCE_FILE (decl));
  EXPR_WFL_SET_LINECOL (cl_v, DECL_SOURCE_LINE (decl), -1);

  line = java_get_line_col (EXPR_WFL_FILENAME (cl_v),
			    EXPR_WFL_LINENO (cl_v), EXPR_WFL_COLNO (cl_v));

  found = strstr ((const char *)line,
		  (const char *)IDENTIFIER_POINTER (DECL_NAME (decl)));
  if (found)
    EXPR_WFL_SET_LINECOL (cl_v, EXPR_WFL_LINENO (cl_v), found - line);
#endif

  return cl_v;
}

/* Look for a simple name in the single-type import list */

static tree
find_name_in_single_imports (tree name)
{
  tree node;

  for (node = ctxp->import_list; node; node = TREE_CHAIN (node))
    if (TREE_VALUE (node) == name)
      return (EXPR_WFL_NODE (TREE_PURPOSE (node)));

  return NULL_TREE;
}

/* Process all single-type import. */

static int
process_imports (void)
{
  tree import;
  int error_found;

  for (import = ctxp->import_list; import; import = TREE_CHAIN (import))
    {
      tree to_be_found = EXPR_WFL_NODE (TREE_PURPOSE (import));
      char *original_name;

      /* Don't load twice something already defined. */
      if (IDENTIFIER_CLASS_VALUE (to_be_found))
	continue;

      original_name = xmemdup (IDENTIFIER_POINTER (to_be_found),
			       IDENTIFIER_LENGTH (to_be_found),
			       IDENTIFIER_LENGTH (to_be_found) + 1);

      while (1)
	{
	  tree left;

	  QUALIFIED_P (to_be_found) = 1;
	  load_class (to_be_found, 0);
	  error_found =
	    check_pkg_class_access (to_be_found, TREE_PURPOSE (import), true, NULL_TREE);

	  /* We found it, we can bail out */
	  if (IDENTIFIER_CLASS_VALUE (to_be_found))
	    {
	      check_deprecation (TREE_PURPOSE (import),
				 IDENTIFIER_CLASS_VALUE (to_be_found));
	      break;
	    }

	  /* We haven't found it. Maybe we're trying to access an
	     inner class.  The only way for us to know is to try again
	     after having dropped a qualifier. If we can't break it further,
	     we have an error. */
	  if (split_qualified_name (&left, NULL, to_be_found))
	    break;

	  to_be_found = left;
	}
      if (!IDENTIFIER_CLASS_VALUE (to_be_found))
	{
	  parse_error_context (TREE_PURPOSE (import),
			       "Class or interface %qs not found in import",
			       original_name);
	  error_found = 1;
	}

      free (original_name);
      if (error_found)
	return 1;
    }
  return 0;
}

/* Possibly find and mark a class imported by a single-type import
   statement.  */

static void
find_in_imports (tree enclosing_type, tree class_type)
{
  tree import;
  if (enclosing_type && TYPE_IMPORT_LIST (enclosing_type))
    import = TYPE_IMPORT_LIST (enclosing_type);
  else
    import = ctxp->import_list;

  while (import)
    {
      if (TREE_VALUE (import) == TYPE_NAME (class_type))
	{
	  TYPE_NAME (class_type) = EXPR_WFL_NODE (TREE_PURPOSE (import));
	  QUALIFIED_P (TYPE_NAME (class_type)) = 1;
	  return;
	}
      import = TREE_CHAIN (import);
    }
}

static int
note_possible_classname (const char *name, int len)
{
  tree node;
  if (len > 5 && strncmp (&name [len-5], ".java", 5) == 0)
    len = len - 5;
  else if (len > 6 && strncmp (&name [len-6], ".class", 6) == 0)
    len = len - 6;
  else
    return 0;
  node = ident_subst (name, len, "", '/', '.', "");
  IS_A_CLASSFILE_NAME (node) = 1; /* Or soon to be */
  QUALIFIED_P (node) = strchr (name, '/') ? 1 : 0;
  return 1;
}

/* Read a import directory, gathering potential match for further type
   references. Indifferently reads a filesystem or a ZIP archive
   directory.  */

static void
read_import_dir (tree wfl)
{
  tree package_id = EXPR_WFL_NODE (wfl);
  const char *package_name = IDENTIFIER_POINTER (package_id);
  int package_length = IDENTIFIER_LENGTH (package_id);
  DIR *dirp = NULL;
  JCF *saved_jcf = current_jcf;

  int found = 0;
  int k;
  void *entry;
  struct buffer filename[1];

  if (IS_AN_IMPORT_ON_DEMAND_P (package_id))
    return;
  IS_AN_IMPORT_ON_DEMAND_P (package_id) = 1;

  BUFFER_INIT (filename);
  buffer_grow (filename, package_length + 100);

  for (entry = jcf_path_start (); entry != NULL; entry = jcf_path_next (entry))
    {
      const char *entry_name = jcf_path_name (entry);
      int entry_length = strlen (entry_name);
      if (jcf_path_is_zipfile (entry))
	{
	  ZipFile *zipf;
	  buffer_grow (filename, entry_length);
	  memcpy (filename->data, entry_name, entry_length - 1);
	  filename->data[entry_length-1] = '\0';
	  zipf = opendir_in_zip ((const char *) filename->data, jcf_path_is_system (entry));
	  if (zipf == NULL)
	    error ("malformed .zip archive in CLASSPATH: %s", entry_name);
	  else
	    {
	      ZipDirectory *zipd = (ZipDirectory *) zipf->central_directory;
	      BUFFER_RESET (filename);
	      for (k = 0; k < package_length; k++)
		{
		  char ch = package_name[k];
		  *filename->ptr++ = ch == '.' ? '/' : ch;
		}
	      *filename->ptr++ = '/';

	      for (k = 0; k < zipf->count;  k++, zipd = ZIPDIR_NEXT (zipd))
		{
		  const char *current_entry = ZIPDIR_FILENAME (zipd);
		  int current_entry_len = zipd->filename_length;

		  if (current_entry_len >= BUFFER_LENGTH (filename)
		      && strncmp ((const char *) filename->data, current_entry,
				  BUFFER_LENGTH (filename)) != 0)
		    continue;
		  found |= note_possible_classname (current_entry,
						    current_entry_len);
		}
	    }
	}
      else
	{
	  BUFFER_RESET (filename);
	  buffer_grow (filename, entry_length + package_length + 4);
	  strcpy ((char *) filename->data, entry_name);
	  filename->ptr = filename->data + entry_length;
	  for (k = 0; k < package_length; k++)
	    {
	      char ch = package_name[k];
	      *filename->ptr++ = ch == '.' ? '/' : ch;
	    }
	  *filename->ptr = '\0';

	  dirp = opendir ((const char *) filename->data);
	  if (dirp == NULL)
	    continue;
	  *filename->ptr++ = '/';
	  for (;;)
	    {
	      int len;
	      const char *d_name;
	      struct dirent *direntp = readdir (dirp);
	      if (!direntp)
		break;
	      d_name = direntp->d_name;
	      len = strlen (direntp->d_name);
	      buffer_grow (filename, len+1);
	      strcpy ((char *) filename->ptr, d_name);
	      found |= note_possible_classname ((const char *) filename->data + entry_length,
						package_length+len+1);
	    }
	  if (dirp)
	    closedir (dirp);
	}
    }

  free (filename->data);

  /* Here we should have a unified way of retrieving an entry, to be
     indexed. */
  if (!found)
    {
      static int first = 1;
      if (first)
	{
	  error ("Can't find default package %qs. Check the CLASSPATH environment variable and the access to the archives", package_name);
	  java_error_count++;
	  first = 0;
	}
      else
	parse_error_context (wfl, "Package %qs not found in import",
			     package_name);
      current_jcf = saved_jcf;
      return;
    }
  current_jcf = saved_jcf;
}

/* Possibly find a type in the import on demands specified
   types. Returns 1 if an error occurred, 0 otherwise. Run through the
   entire list, to detected potential double definitions.  */

static int
find_in_imports_on_demand (tree enclosing_type, tree class_type)
{
  tree class_type_name = TYPE_NAME (class_type);
  tree cl = NULL_TREE;
  int seen_once = -1;	/* -1 when not set, 1 if seen once, >1 otherwise. */
  int to_return = -1;	/* -1 when not set, 0 or 1 otherwise */
  tree node;
  tree import;

  if (enclosing_type && TYPE_IMPORT_DEMAND_LIST (enclosing_type))
    import = TYPE_IMPORT_DEMAND_LIST (enclosing_type);
  else
    import = ctxp->import_demand_list;

  for (; import; import = TREE_CHAIN (import))
    {
      location_t saved_location = input_location;
      int access_check;
      const char *id_name;
      tree decl, type_name_copy;

      obstack_grow (&temporary_obstack,
		    IDENTIFIER_POINTER (EXPR_WFL_NODE (TREE_PURPOSE (import))),
		    IDENTIFIER_LENGTH (EXPR_WFL_NODE (TREE_PURPOSE (import))));
      obstack_1grow (&temporary_obstack, '.');
      obstack_grow0 (&temporary_obstack,
		     IDENTIFIER_POINTER (class_type_name),
		     IDENTIFIER_LENGTH (class_type_name));
      id_name = obstack_finish (&temporary_obstack);

      if (! (node = maybe_get_identifier (id_name)))
	continue;

      /* Setup input_line so that it refers to the line of the import (in
	 case we parse a class file and encounter errors */
#ifdef USE_MAPPED_LOCATION
      input_location = EXPR_LOCATION (TREE_PURPOSE (import));
#else
      input_line = EXPR_WFL_LINENO (TREE_PURPOSE (import));
#endif

      type_name_copy = TYPE_NAME (class_type);
      TYPE_NAME (class_type) = node;
      QUALIFIED_P (node) = 1;
      decl = IDENTIFIER_CLASS_VALUE (node);
      access_check = -1;
      /* If there is no DECL set for the class or if the class isn't
	 loaded and not seen in source yet, then load */
      if (!decl || ! CLASS_LOADED_P (TREE_TYPE (decl)))
	{
	  load_class (node, 0);
	  decl = IDENTIFIER_CLASS_VALUE (node);
	}
      if (decl && ! INNER_CLASS_P (TREE_TYPE (decl)))
	access_check = check_pkg_class_access (node, TREE_PURPOSE (import),
					       false, NULL_TREE);
      else
	/* 6.6.1: Inner classes are subject to member access rules. */
	access_check = 0;

      input_location = saved_location;

      /* If the loaded class is not accessible or couldn't be loaded,
	 we restore the original TYPE_NAME and process the next
	 import. */
      if (access_check || !decl)
	{
	  TYPE_NAME (class_type) = type_name_copy;
	  continue;
	}

      /* If the loaded class is accessible, we keep a tab on it to
	 detect and report multiple inclusions. */
      if (IS_A_CLASSFILE_NAME (node))
	{
	  if (seen_once < 0)
	    {
	      cl = TREE_PURPOSE (import);
	      seen_once = 1;
	    }
	  else if (seen_once >= 0)
	    {
	      tree location = (cl ? cl : TREE_PURPOSE (import));
	      tree package = (cl ? EXPR_WFL_NODE (cl) :
			      EXPR_WFL_NODE (TREE_PURPOSE (import)));
	      seen_once++;
	      parse_error_context
		(location,
		 "Type %qs also potentially defined in package %qs",
		 IDENTIFIER_POINTER (TYPE_NAME (class_type)),
		 IDENTIFIER_POINTER (package));
	    }
	}
      to_return = access_check;
    }

  if (seen_once == 1)
    return to_return;
  else
    return (seen_once < 0 ? 0 : seen_once); /* It's ok not to have found */
}

static tree
resolve_package (tree pkg, tree *next, tree *type_name)
{
  tree current;
  tree decl = NULL_TREE;
  *type_name = NULL_TREE;

  /* The trick is to determine when the package name stops and were
     the name of something contained in the package starts. Then we
     return a fully qualified name of what we want to get. */

  *next = EXPR_WFL_QUALIFICATION (pkg);

  /* Try to progressively construct a type name */
  if (TREE_CODE (pkg) == EXPR_WITH_FILE_LOCATION)
    for (current = EXPR_WFL_QUALIFICATION (pkg);
	 current; current = TREE_CHAIN (current))
      {
	/* If we don't have what we're expecting, exit now. TYPE_NAME
	   will be null and the error caught later. */
	if (TREE_CODE (QUAL_WFL (current)) != EXPR_WITH_FILE_LOCATION)
	  break;
	*type_name =
	  merge_qualified_name (*type_name, EXPR_WFL_NODE (QUAL_WFL (current)));
	if ((decl = resolve_no_layout (*type_name, NULL_TREE)))
	  {
	    /* resolve_package should be used in a loop, hence we
	       point at this one to naturally process the next one at
	       the next iteration. */
	    *next = current;
	    break;
	  }
      }
  return decl;
}

/* Check accessibility of inner class DECL, from the context ENCLOSING_DECL,
   according to member access rules.  */

static bool
inner_class_accessible (tree decl, tree enclosing_decl)
{
  tree enclosing_decl_type;

  enclosing_decl_type = TREE_TYPE (enclosing_decl);

  if (CLASS_PRIVATE (decl))
    {
      /* Access is permitted only within the body of the top-level
         class in which DECL is declared. */
      tree top_level = decl;
      while (DECL_CONTEXT (top_level))
        top_level = DECL_CONTEXT (top_level);
      while (DECL_CONTEXT (enclosing_decl))
        enclosing_decl = DECL_CONTEXT (enclosing_decl);
      if (top_level == enclosing_decl)
        return true;
    }
  else if (CLASS_PROTECTED (decl))
    {
      tree decl_context;
      /* Access is permitted from within the same package... */
      if (in_same_package (decl, enclosing_decl))
        return true;

      /* ... or from within the body of a subtype of the context in which
         DECL is declared. */
      decl_context = DECL_CONTEXT (decl);
      while (enclosing_decl)
        {
	  if (CLASS_INTERFACE (decl))
	    {
	      if (interface_of_p (TREE_TYPE (decl_context),
				  enclosing_decl_type))
		return true;
	    }
	  else
	    {
	      /* Eww. The order of the arguments is different!! */
	      if (inherits_from_p (enclosing_decl_type,
				   TREE_TYPE (decl_context)))
		return true;
	    }
	  enclosing_decl = DECL_CONTEXT (enclosing_decl);
	}
    }
  else if (! CLASS_PUBLIC (decl))
    {
      /* Access is permitted only from within the same package as DECL. */
      if (in_same_package (decl, enclosing_decl))
        return true;
    }
  else
    /* Class is public. */
    return true;

  return false;
}

/* Check accessibility of inner classes according to member access rules.
   DECL is the inner class, ENCLOSING_DECL is the class from which the
   access is being attempted. */

static void
check_inner_class_access (tree decl, tree enclosing_decl, tree cl)
{
  const char *access;

  /* We don't issue an error message when CL is null. CL can be null
     as a result of processing a JDEP crafted by source_start_java_method
     for the purpose of patching its parm decl. But the error would
     have been already trapped when fixing the method's signature.
     DECL can also be NULL in case of earlier errors. */
  if (!decl || !cl)
    return;

  if (inner_class_accessible (decl, enclosing_decl))
    return;

  if (CLASS_PRIVATE (decl))
      access = "private";
  else if (CLASS_PROTECTED (decl))
      access = "protected";
  else
      access = "non-public";

  parse_error_context (cl, "Nested %s %s is %s; cannot be accessed from here",
		       (CLASS_INTERFACE (decl) ? "interface" : "class"),
		       lang_printable_name (decl, 2), access);
}

/* Accessibility check for top-level classes. If CLASS_NAME is in a
   foreign package, it must be PUBLIC. Return 0 if no access
   violations were found, 1 otherwise. If VERBOSE is true and an error
   was found, it is reported and accounted for.  If CL is NULL then 
   look it up with THIS_DECL.  */

static int
check_pkg_class_access (tree class_name, tree cl, bool verbose, tree this_decl)
{
  tree type;

  if (!IDENTIFIER_CLASS_VALUE (class_name))
    return 0;

  if (!(type = TREE_TYPE (IDENTIFIER_CLASS_VALUE (class_name))))
    return 0;

  if (!CLASS_PUBLIC (TYPE_NAME (type)))
    {
      /* Access to a private class within the same package is
         allowed. */
      tree l, r;
      split_qualified_name (&l, &r, class_name);
      if (!QUALIFIED_P (class_name) && !ctxp->package)
	/* Both in the empty package. */
        return 0;
      if (l == ctxp->package)
	/* Both in the same package. */
	return 0;

      if (verbose)
	parse_error_context
	  (cl == NULL ? lookup_cl (this_decl): cl,
           "Can't access %s %qs. Only public classes and interfaces in other packages can be accessed",
	   (CLASS_INTERFACE (TYPE_NAME (type)) ? "interface" : "class"),
	   IDENTIFIER_POINTER (class_name));
      return 1;
    }
  return 0;
}

/* Local variable declaration. */

static void
declare_local_variables (int modifier, tree type, tree vlist)
{
  tree decl, current, saved_type;
  tree type_wfl = NULL_TREE;
  int must_chain = 0;
  int final_p = 0;

  /* Push a new block if statements were seen between the last time we
     pushed a block and now. Keep a count of blocks to close */
  if (BLOCK_EXPR_BODY (GET_CURRENT_BLOCK (current_function_decl)))
    {
      tree b = enter_block ();
      BLOCK_IS_IMPLICIT (b) = 1;
    }

  if (modifier)
    {
      size_t i;
      for (i = 0; i < ARRAY_SIZE (ctxp->modifier_ctx); i++)
	if (1 << i & modifier)
	  break;
      if (modifier == ACC_FINAL)
	final_p = 1;
      else
	{
	  parse_error_context
	    (ctxp->modifier_ctx [i],
	     "Only %<final%> is allowed as a local variables modifier");
	  return;
	}
    }

  /* Obtain an incomplete type if TYPE is not complete. TYPE_WFL will
     hold the TYPE value if a new incomplete has to be created (as
     opposed to being found already existing and reused). */
  SET_TYPE_FOR_RESOLUTION (type, type_wfl, must_chain);

  /* If TYPE is fully resolved and we don't have a reference, make one */
  PROMOTE_RECORD_IF_COMPLETE (type, must_chain);

  /* Go through all the declared variables */
  for (current = vlist, saved_type = type; current;
       current = TREE_CHAIN (current), type = saved_type)
    {
      tree other, real_type;
      tree wfl  = TREE_PURPOSE (current);
      tree name = EXPR_WFL_NODE (wfl);
      tree init = TREE_VALUE (current);

      /* Process NAME, as it may specify extra dimension(s) for it */
      type = build_array_from_name (type, type_wfl, name, &name);

      /* Variable redefinition check */
      if ((other = lookup_name_in_blocks (name)))
	{
	  variable_redefinition_error (wfl, name, TREE_TYPE (other),
				       DECL_SOURCE_LINE (other));
	  continue;
	}

      /* Type adjustment. We may have just readjusted TYPE because
	 the variable specified more dimensions. Make sure we have
	 a reference if we can and don't have one already. */
      PROMOTE_RECORD_IF_COMPLETE (type, must_chain);

      real_type = GET_REAL_TYPE (type);
      /* Never layout this decl. This will be done when its scope
	 will be entered */
      decl = build_decl (VAR_DECL, name, real_type);
      MAYBE_CREATE_VAR_LANG_DECL_SPECIFIC (decl);
      DECL_FINAL (decl) = final_p;
      BLOCK_CHAIN_DECL (decl);

      /* Don't try to use an INIT statement when an error was found */
      if (init && java_error_count)
	init = NULL_TREE;

      /* Remember it if this is an initialized-upon-declaration final
         variable.  */
      if (init && final_p)
        {
          DECL_LOCAL_FINAL_IUD (decl) = 1;
        }

      /* Add the initialization function to the current function's code */
      if (init)
	{
	  /* Name might have been readjusted */
	  EXPR_WFL_NODE (TREE_OPERAND (init, 0)) = name;
	  MODIFY_EXPR_FROM_INITIALIZATION_P (init) = 1;
	  java_method_add_stmt (current_function_decl,
				build_debugable_stmt (EXPR_WFL_LINECOL (init),
						      init));
	}

      /* Setup dependency the type of the decl */
      if (must_chain)
	{
	  jdep *dep;
	  register_incomplete_type (JDEP_VARIABLE, type_wfl, decl, type);
	  dep = CLASSD_LAST (ctxp->classd_list);
	  JDEP_GET_PATCH (dep) = &TREE_TYPE (decl);
	}
    }
  SOURCE_FRONTEND_DEBUG (("Defined locals"));
}

/* Called during parsing. Build decls from argument list.  */

static void
source_start_java_method (tree fndecl)
{
  tree tem;
  tree parm_decl;
  int i;

  if (!fndecl)
    return;

  current_function_decl = fndecl;

  /* New scope for the function */
  enter_block ();
  for (tem = TYPE_ARG_TYPES (TREE_TYPE (fndecl)), i = 0;
       tem != end_params_node; tem = TREE_CHAIN (tem), i++)
    {
      tree type = TREE_VALUE (tem);
      tree name = TREE_PURPOSE (tem);

      /* If type is incomplete. Create an incomplete decl and ask for
	 the decl to be patched later */
      if (INCOMPLETE_TYPE_P (type))
	{
	  jdep *jdep;
	  tree real_type = GET_REAL_TYPE (type);
	  parm_decl = build_decl (PARM_DECL, name, real_type);
	  type = obtain_incomplete_type (type);
	  register_incomplete_type (JDEP_PARM, NULL_TREE, NULL_TREE, type);
	  jdep = CLASSD_LAST (ctxp->classd_list);
	  JDEP_MISC (jdep) = name;
	  JDEP_GET_PATCH (jdep) = &TREE_TYPE (parm_decl);
	}
      else
	parm_decl = build_decl (PARM_DECL, name, type);

      /* Remember if a local variable was declared final (via its
         TREE_LIST of type/name.) Set DECL_FINAL accordingly. */
      if (ARG_FINAL_P (tem))
	{
	  MAYBE_CREATE_VAR_LANG_DECL_SPECIFIC (parm_decl);
	  DECL_FINAL (parm_decl) = 1;
	}

      if (name == this_identifier_node)
	DECL_ARTIFICIAL (parm_decl) = 1;

      BLOCK_CHAIN_DECL (parm_decl);
    }
  tem = BLOCK_EXPR_DECLS (DECL_FUNCTION_BODY (current_function_decl));
  BLOCK_EXPR_DECLS (DECL_FUNCTION_BODY (current_function_decl)) =
    nreverse (tem);
  DECL_ARG_SLOT_COUNT (current_function_decl) = i;
  DECL_MAX_LOCALS (current_function_decl) = i;
}

/* Called during parsing. Creates an artificial method declaration.  */

static tree
create_artificial_method (tree class, int flags, tree type,
			  tree name, tree args)
{
  tree mdecl;
  location_t save_location = input_location;

  input_location = DECL_SOURCE_LOCATION (TYPE_NAME (class));
  mdecl = make_node (FUNCTION_TYPE);
  TREE_TYPE (mdecl) = type;
  TYPE_ARG_TYPES (mdecl) = args;
  /* We used to compute the signature of MDECL here and then use
     add_method(), but that failed because our caller might modify
     the type of the returned method, which trashes the cache in
     get_type_from_signature().  */
  mdecl = add_method_1 (class, flags, name, mdecl);
  input_location = save_location;
  DECL_ARTIFICIAL (mdecl) = 1;
  return mdecl;
}

/* Starts the body if an artificial method.  */

static void
start_artificial_method_body (tree mdecl)
{
#ifdef USE_MAPPED_LOCATION
  DECL_SOURCE_LOCATION (mdecl) = ctxp->file_start_location;
  DECL_FUNCTION_LAST_LINE (mdecl) = ctxp->file_start_location;
#else
  DECL_SOURCE_LINE (mdecl) = 1;
  DECL_FUNCTION_LAST_LINE (mdecl) = 1;
#endif
  source_start_java_method (mdecl);
  enter_block ();
}

static void
end_artificial_method_body (tree mdecl)
{
  /* exit_block modifies DECL_FUNCTION_BODY (current_function_decl).
     It has to be evaluated first. (if mdecl is current_function_decl,
     we have an undefined behavior if no temporary variable is used.) */
  tree b = exit_block ();
  BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (mdecl)) = b;
  exit_block ();
}

/* Dump a tree of some kind.  This is a convenience wrapper for the
   dump_* functions in tree-dump.c.  */
static void
dump_java_tree (enum tree_dump_index phase, tree t)
{
  FILE *stream;
  int flags;

  stream = dump_begin (phase, &flags);
  flags |= TDF_SLIM;
  if (stream)
    {
      dump_node (t, flags, stream);
      dump_end (phase, stream);
    }
}

/* Terminate a function and expand its body.  */

static void
source_end_java_method (void)
{
  tree fndecl = current_function_decl;

  if (!fndecl)
    return;

  java_parser_context_save_global ();
#ifdef USE_MAPPED_LOCATION
  input_location = ctxp->last_ccb_indent1;
#else
  input_line = ctxp->last_ccb_indent1;
#endif

  /* Turn function bodies with only a NOP expr null, so they don't get
     generated at all and we won't get warnings when using the -W
     -Wall flags. */
  if (IS_EMPTY_STMT (BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (fndecl))))
    BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (fndecl)) = NULL_TREE;

  if (BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (fndecl))
      && ! flag_emit_class_files)
    finish_method (fndecl);

  current_function_decl = NULL_TREE;
  java_parser_context_restore_global ();
  current_function_decl = NULL_TREE;
}

/* Record EXPR in the current function block. Complements compound
   expression second operand if necessary.  */

tree
java_method_add_stmt (tree fndecl, tree expr)
{
  if (!GET_CURRENT_BLOCK (fndecl))
    return NULL_TREE;
  return add_stmt_to_block (GET_CURRENT_BLOCK (fndecl), NULL_TREE, expr);
}

static tree
add_stmt_to_block (tree b, tree type, tree stmt)
{
  tree body = BLOCK_EXPR_BODY (b), c;

  if (java_error_count)
    return body;

  if ((c = add_stmt_to_compound (body, type, stmt)) == body)
    return body;

  BLOCK_EXPR_BODY (b) = c;
  TREE_SIDE_EFFECTS (c) = 1;
  return c;
}

/* Lays out the methods for the classes seen so far.  */

void
java_layout_seen_class_methods (void)
{
  tree previous_list = all_class_list;
  tree end = NULL_TREE;
  tree current;

  while (1)
    {
      for (current = previous_list;
	   current != end; current = TREE_CHAIN (current))
        {
	  tree decl = TREE_VALUE (current);
          tree cls = TREE_TYPE (decl);

	  input_location = DECL_SOURCE_LOCATION (decl);

          if (! CLASS_LOADED_P (cls))
            load_class (cls, 0);

          layout_class_methods (cls);
        }

      /* Note that new classes might have been added while laying out
         methods, changing the value of all_class_list.  */

      if (previous_list != all_class_list)
	{
	  end = previous_list;
	  previous_list = all_class_list;
	}
      else
	break;
    }
}

static GTY(()) tree stop_reordering;
void
java_reorder_fields (void)
{
  tree current;

  for (current = gclass_list; current; current = TREE_CHAIN (current))
    {
      output_class = current_class = TREE_TYPE (TREE_VALUE (current));

      if (current_class == stop_reordering)
	break;

      /* Reverse the fields, but leave the dummy field in front.
	 Fields are already ordered for Object and Class */
      if (TYPE_FIELDS (current_class) && current_class != object_type_node
	  && current_class != class_type_node)
      {
	/* If the dummy field is there, reverse the right fields and
	   just layout the type for proper fields offset */
	if (!DECL_NAME (TYPE_FIELDS (current_class)))
	  {
	    tree fields = TYPE_FIELDS (current_class);
	    /* This works around a problem where on some platforms,
	       the field might be given its size incorrectly.  */
	    DECL_SIZE (fields) = NULL_TREE;
	    DECL_SIZE_UNIT (fields) = NULL_TREE;
	    TREE_CHAIN (fields) = nreverse (TREE_CHAIN (fields));
	    TYPE_SIZE (current_class) = NULL_TREE;
	  }
	/* We don't have a dummy field, we need to layout the class,
           after having reversed the fields */
	else
	  {
	    TYPE_FIELDS (current_class) =
	      nreverse (TYPE_FIELDS (current_class));
	    TYPE_SIZE (current_class) = NULL_TREE;
	  }
      }
    }
  /* There are cases were gclass_list will be empty. */
  if (gclass_list)
    stop_reordering = TREE_TYPE (TREE_VALUE (gclass_list));
}

/* Layout the methods of all classes loaded in one way or another.
   Check methods of source parsed classes. Then reorder the
   fields and layout the classes or the type of all source parsed
   classes */

void
java_layout_classes (void)
{
  tree current;
  int save_error_count = java_error_count;

  /* Layout the methods of all classes seen so far */
  java_layout_seen_class_methods ();
  java_parse_abort_on_error ();
  all_class_list = NULL_TREE;

  /* Then check the methods of all parsed classes */
  for (current = gclass_list; current; current = TREE_CHAIN (current))
    if (CLASS_FROM_SOURCE_P (TREE_TYPE (TREE_VALUE (current))))
      java_check_methods (TREE_VALUE (current));
  java_parse_abort_on_error ();

  for (current = gclass_list; current; current = TREE_CHAIN (current))
    {
      output_class = current_class = TREE_TYPE (TREE_VALUE (current));
      layout_class (current_class);

      /* Error reported by the caller */
      if (java_error_count)
	return;
    }

  /* We might have reloaded classes durign the process of laying out
     classes for code generation. We must layout the methods of those
     late additions, as constructor checks might use them */
  java_layout_seen_class_methods ();
  java_parse_abort_on_error ();
}

/* Expand methods in the current set of classes remembered for
   generation.  */

static void
java_complete_expand_classes (void)
{
  tree current;

  for (current = ctxp->class_list; current; current = TREE_CHAIN (current))
    if (!INNER_CLASS_DECL_P (current))
      java_complete_expand_class (current);
}

/* Expand the methods found in OUTER, starting first by OUTER's inner
   classes, if any.  */

static void
java_complete_expand_class (tree outer)
{
  tree inner_list;

  /* We need to go after all inner classes and start expanding them,
     starting with most nested ones. We have to do that because nested
     classes might add functions to outer classes */

  for (inner_list = DECL_INNER_CLASS_LIST (outer);
       inner_list; inner_list = TREE_CHAIN (inner_list))
    java_complete_expand_class (TREE_PURPOSE (inner_list));

  java_complete_expand_methods (outer);
}

/* Expand methods registered in CLASS_DECL. The general idea is that
   we expand regular methods first. This allows us get an estimate on
   how outer context local alias fields are really used so we can add
   to the constructor just enough code to initialize them properly (it
   also lets us generate finit$ correctly.) Then we expand the
   constructors and then <clinit>.  */

static void
java_complete_expand_methods (tree class_decl)
{
  tree clinit, decl, first_decl;

  output_class = current_class = TREE_TYPE (class_decl);

  /* Pre-expand <clinit> to figure whether we really need it or
     not. If we do need it, we pre-expand the static fields so they're
     ready to be used somewhere else. <clinit> will be fully expanded
     after we processed the constructors. */
  first_decl = TYPE_METHODS (current_class);
  clinit = maybe_generate_pre_expand_clinit (current_class);

  /* Then generate finit$ (if we need to) because constructors will
   try to use it.*/
  if (TYPE_FINIT_STMT_LIST (current_class))
    java_complete_expand_method (generate_finit (current_class));

  /* Then generate instinit$ (if we need to) because constructors will
     try to use it. */
  if (TYPE_II_STMT_LIST (current_class))
    java_complete_expand_method (generate_instinit (current_class));

  /* Now do the constructors */
  for (decl = first_decl ; !java_error_count && decl; decl = TREE_CHAIN (decl))
    {
      if (!DECL_CONSTRUCTOR_P (decl))
	continue;
      java_complete_expand_method (decl);
    }

  /* First, do the ordinary methods. */
  for (decl = first_decl; decl; decl = TREE_CHAIN (decl))
    {
      /* Ctors aren't part of this batch. */
      if (DECL_CONSTRUCTOR_P (decl) || DECL_CLINIT_P (decl))
	continue;

      /* Skip abstract or native methods -- but do handle native
 	 methods when generating JNI stubs.  */
      if (METHOD_ABSTRACT (decl) || (! flag_jni && METHOD_NATIVE (decl)))
	{
	  DECL_FUNCTION_BODY (decl) = NULL_TREE;
	  continue;
	}

      if (METHOD_NATIVE (decl))
 	{
 	  tree body;
	  current_function_decl = decl;
	  body = build_jni_stub (decl);
 	  BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (decl)) = body;
 	}

      java_complete_expand_method (decl);
    }

  /* If there is indeed a <clinit>, fully expand it now */
  if (clinit)
    {
      /* Prevent the use of `this' inside <clinit> */
      ctxp->explicit_constructor_p = 1;
      java_complete_expand_method (clinit);
      ctxp->explicit_constructor_p = 0;
    }

  /* We might have generated a class$ that we now want to expand */
  if (TYPE_DOT_CLASS (current_class))
    java_complete_expand_method (TYPE_DOT_CLASS (current_class));

  /* Now verify constructor circularity (stop after the first one we
     prove wrong.) */
  if (!CLASS_INTERFACE (class_decl))
    for (decl = TYPE_METHODS (current_class); decl; decl = TREE_CHAIN (decl))
      if (DECL_CONSTRUCTOR_P (decl)
	  && verify_constructor_circularity (decl, decl))
	break;
}

/* Attempt to create <clinit>. Pre-expand static fields so they can be
   safely used in some other methods/constructors.  */

static tree
maybe_generate_pre_expand_clinit (tree class_type)
{
  tree current, mdecl;

  if (!TYPE_CLINIT_STMT_LIST (class_type))
    return NULL_TREE;

  /* Go through all static fields and pre expand them */
  for (current = TYPE_FIELDS (class_type); current;
       current = TREE_CHAIN (current))
    if (FIELD_STATIC (current))
      build_field_ref (NULL_TREE, class_type, DECL_NAME (current));

  /* Then build the <clinit> method */
  mdecl = create_artificial_method (class_type, ACC_STATIC, void_type_node,
				    clinit_identifier_node, end_params_node);
  layout_class_method (class_type, CLASSTYPE_SUPER (class_type),
		       mdecl, NULL_TREE);
  start_artificial_method_body (mdecl);

  /* We process the list of assignment we produced as the result of
     the declaration of initialized static field and add them as
     statement to the <clinit> method. */
  for (current = TYPE_CLINIT_STMT_LIST (class_type); current;
       current = TREE_CHAIN (current))
    {
      tree stmt = current;
      /* We build the assignment expression that will initialize the
	 field to its value. There are strict rules on static
	 initializers (8.5). FIXME */
      if (TREE_CODE (stmt) != BLOCK && !IS_EMPTY_STMT (stmt))
	stmt = build_debugable_stmt (EXPR_WFL_LINECOL (stmt), stmt);
      java_method_add_stmt (mdecl, stmt);
    }

  end_artificial_method_body (mdecl);

  /* Now we want to place <clinit> as the last method (because we need
     it at least for interface so that it doesn't interfere with the
     dispatch table based lookup. */
  if (TREE_CHAIN (TYPE_METHODS (class_type)))
    {
      current = TREE_CHAIN (TYPE_METHODS (class_type));
      TYPE_METHODS (class_type) = current;

      while (TREE_CHAIN (current))
	current = TREE_CHAIN (current);

      TREE_CHAIN (current) = mdecl;
      TREE_CHAIN (mdecl) = NULL_TREE;
    }

  return mdecl;
}

/* Analyzes a method body and look for something that isn't a
   MODIFY_EXPR with a constant value.  Return true if <clinit> is
   needed, false otherwise.  */

static int
analyze_clinit_body (tree this_class, tree bbody)
{
  while (bbody)
    switch (TREE_CODE (bbody))
      {
      case BLOCK:
	bbody = BLOCK_EXPR_BODY (bbody);
	break;

      case EXPR_WITH_FILE_LOCATION:
	bbody = EXPR_WFL_NODE (bbody);
	break;

      case COMPOUND_EXPR:
	if (analyze_clinit_body (this_class, TREE_OPERAND (bbody, 0)))
	  return 1;
	bbody = TREE_OPERAND (bbody, 1);
	break;

      case MODIFY_EXPR:
	/* If we're generating to class file and we're dealing with an
	   array initialization, we return 1 to keep <clinit> */
	if (TREE_CODE (TREE_OPERAND (bbody, 1)) == NEW_ARRAY_INIT
	    && flag_emit_class_files)
	  return 1;

	/* There are a few cases where we're required to keep
	   <clinit>:
	   - If this is an assignment whose operand is not constant,
	   - If this is an assignment to a non-initialized field,
	   - If this field is not a member of the current class.
	*/
	return (! TREE_CONSTANT (TREE_OPERAND (bbody, 1))
		|| ! DECL_INITIAL (TREE_OPERAND (bbody, 0))
		|| DECL_CONTEXT (TREE_OPERAND (bbody, 0)) != this_class);

      case NOP_EXPR:
	/* We might see an empty statement here, which is
	   ignorable.  */
	return ! IS_EMPTY_STMT (bbody);

      default:
	return 1;
      }
  return 0;
}


/* See whether we could get rid of <clinit>. Criteria are: all static
   final fields have constant initial values and the body of <clinit>
   is empty. Return 1 if <clinit> was discarded, 0 otherwise. */

static int
maybe_yank_clinit (tree mdecl)
{
  tree type, current;
  tree fbody, bbody;

  if (!DECL_CLINIT_P (mdecl))
    return 0;

  /* If the body isn't empty, then we keep <clinit>. Note that if
     we're emitting classfiles, this isn't enough not to rule it
     out. */
  fbody = DECL_FUNCTION_BODY (mdecl);
  bbody = BLOCK_EXPR_BODY (fbody);
  if (bbody && bbody != error_mark_node)
    bbody = BLOCK_EXPR_BODY (bbody);
  else
    return 0;
  if (bbody && ! flag_emit_class_files && !IS_EMPTY_STMT (bbody))
    return 0;

  type = DECL_CONTEXT (mdecl);
  current = TYPE_FIELDS (type);

  for (current = (current ? TREE_CHAIN (current) : current);
       current; current = TREE_CHAIN (current))
    {
      tree f_init;

      /* We're not interested in non-static fields.  */
      if (!FIELD_STATIC (current))
	continue;

      /* Nor in fields without initializers. */
      f_init = DECL_INITIAL (current);
      if (f_init == NULL_TREE)
	continue;

      /* Anything that isn't String or a basic type is ruled out -- or
	 if we know how to deal with it (when doing things natively) we
	 should generated an empty <clinit> so that SUID are computed
	 correctly. */
      if (! JSTRING_TYPE_P (TREE_TYPE (current))
	  && ! JNUMERIC_TYPE_P (TREE_TYPE (current)))
	return 0;

      if (! FIELD_FINAL (current) || ! TREE_CONSTANT (f_init))
	return 0;
    }

  /* Now we analyze the method body and look for something that
     isn't a MODIFY_EXPR */
  if (bbody && !IS_EMPTY_STMT (bbody) && analyze_clinit_body (type, bbody))
    return 0;

  /* Get rid of <clinit> in the class' list of methods */
  if (TYPE_METHODS (type) == mdecl)
    TYPE_METHODS (type) = TREE_CHAIN (mdecl);
  else
    for (current = TYPE_METHODS (type); current;
	 current = TREE_CHAIN (current))
      if (TREE_CHAIN (current) == mdecl)
	{
	  TREE_CHAIN (current) = TREE_CHAIN (mdecl);
	  break;
	}

  return 1;
}

/* Install the argument from MDECL. Suitable to completion and
   expansion of mdecl's body.  */

void
start_complete_expand_method (tree mdecl)
{
  tree tem;

  pushlevel (1);		/* Prepare for a parameter push */
  tem = BLOCK_EXPR_DECLS (DECL_FUNCTION_BODY (current_function_decl));
  DECL_ARGUMENTS (mdecl) = tem;

  for (; tem; tem = TREE_CHAIN (tem))
    {
      /* TREE_CHAIN (tem) will change after pushdecl. */
      tree next = TREE_CHAIN (tem);
      tree type = TREE_TYPE (tem);
      if (targetm.calls.promote_prototypes (type)
	  && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
	  && INTEGRAL_TYPE_P (type))
	type = integer_type_node;
      DECL_ARG_TYPE (tem) = type;
      layout_decl (tem, 0);
      pushdecl (tem);
      /* Re-install the next so that the list is kept and the loop
	 advances. */
      TREE_CHAIN (tem) = next;
    }
  pushdecl_force_head (DECL_ARGUMENTS (mdecl));
  input_location = DECL_SOURCE_LOCATION (mdecl);
  build_result_decl (mdecl);
}


/* Complete and expand a method.  */

static void
java_complete_expand_method (tree mdecl)
{
  tree fbody, block_body, exception_copy;

  current_function_decl = mdecl;
  /* Fix constructors before expanding them */
  if (DECL_CONSTRUCTOR_P (mdecl))
    fix_constructors (mdecl);

  /* Expand functions that have a body */
  if (!DECL_FUNCTION_BODY (mdecl))
    return;

  fbody = DECL_FUNCTION_BODY (mdecl);
  block_body = BLOCK_EXPR_BODY (fbody);
  exception_copy = NULL_TREE;

  current_function_decl = mdecl;

  if (! quiet_flag)
    fprintf (stderr, " [%s.",
	     lang_printable_name (DECL_CONTEXT (mdecl), 0));
  announce_function (mdecl);
  if (! quiet_flag)
    fprintf (stderr, "]");

  /* Prepare the function for tree completion */
  start_complete_expand_method (mdecl);

  /* Install the current this */
  current_this = (!METHOD_STATIC (mdecl) ?
		  BLOCK_EXPR_DECLS (DECL_FUNCTION_BODY (mdecl)) : NULL_TREE);

  /* Install exceptions thrown with `throws' */
  PUSH_EXCEPTIONS (DECL_FUNCTION_THROWS (mdecl));

  if (block_body != NULL_TREE)
    {
      block_body = java_complete_tree (block_body);

      /* Before we check initialization, attached all class initialization
	 variable to the block_body */
      htab_traverse (DECL_FUNCTION_INIT_TEST_TABLE (mdecl),
		     attach_init_test_initialization_flags, block_body);

      if (! METHOD_NATIVE (mdecl))
	{
	  check_for_initialization (block_body, mdecl);

	  /* Go through all the flags marking the initialization of
	     static variables and see whether they're definitively
	     assigned, in which case the type is remembered as
	     definitively initialized in MDECL. */
	  if (STATIC_CLASS_INIT_OPT_P ())
	    {
	      /* Always register the context as properly initialized in
		 MDECL. This used with caution helps removing extra
		 initialization of self. */
	      if (METHOD_STATIC (mdecl))
		{
		  *(htab_find_slot
		    (DECL_FUNCTION_INITIALIZED_CLASS_TABLE (mdecl),
		     DECL_CONTEXT (mdecl), INSERT)) = DECL_CONTEXT (mdecl);
		}
	    }
	}
      ctxp->explicit_constructor_p = 0;
    }

  BLOCK_EXPR_BODY (fbody) = block_body;

  /* If we saw a return but couldn't evaluate it properly, we'll have
     an error_mark_node here. */
  if (block_body != error_mark_node
      && (block_body == NULL_TREE || CAN_COMPLETE_NORMALLY (block_body))
      && TREE_CODE (TREE_TYPE (TREE_TYPE (mdecl))) != VOID_TYPE)
    missing_return_error (current_function_decl);

  /* See if we can get rid of <clinit> if MDECL happens to be <clinit> */
  maybe_yank_clinit (mdecl);

  /* Pop the current level, with special measures if we found errors. */
  if (java_error_count)
    pushdecl_force_head (DECL_ARGUMENTS (mdecl));
  poplevel (1, 0, 1);

  /* Pop the exceptions and sanity check */
  POP_EXCEPTIONS();
  if (currently_caught_type_list)
    abort ();
}

/* For with each class for which there's code to generate. */

static void
java_expand_method_bodies (tree class)
{
  tree decl;
  for (decl = TYPE_METHODS (class); decl; decl = TREE_CHAIN (decl))
    {
      tree block;

      if (! DECL_FUNCTION_BODY (decl))
	continue;

      current_function_decl = decl;

      block = BLOCK_EXPR_BODY (DECL_FUNCTION_BODY (decl));

      /* Save the function body for gimplify and inlining.  */
      DECL_SAVED_TREE (decl) = block;

      /* It's time to assign the variable flagging static class
	 initialization based on which classes invoked static methods
	 are definitely initializing. This should be flagged. */
      if (STATIC_CLASS_INIT_OPT_P ())
	{
	  tree list = DECL_FUNCTION_STATIC_METHOD_INVOCATION_COMPOUND (decl);
	  for (; list != NULL_TREE;  list = TREE_CHAIN (list))
	    {
	      /* Executed for each statement calling a static function.
		 LIST is a TREE_LIST whose PURPOSE is the called function
		 and VALUE is a compound whose second operand can be patched
		 with static class initialization flag assignments.  */

	      tree called_method = TREE_PURPOSE (list);
	      tree compound = TREE_VALUE (list);
	      tree assignment_compound_list
		= build_tree_list (called_method, NULL);

	      /* For each class definitely initialized in
		 CALLED_METHOD, fill ASSIGNMENT_COMPOUND with
		 assignment to the class initialization flag. */
	      htab_traverse (DECL_FUNCTION_INITIALIZED_CLASS_TABLE (called_method),
			     emit_test_initialization,
			     assignment_compound_list);

	      if (TREE_VALUE (assignment_compound_list))
		TREE_OPERAND (compound, 1)
		  = TREE_VALUE (assignment_compound_list);
	    }
	}

      /* Expand the function body.  */
      source_end_java_method ();
    }
}



/* This section of the code deals with accessing enclosing context
   fields either directly by using the relevant access to this$<n> or
   by invoking an access method crafted for that purpose.  */

/* Build the necessary access across nested class boundaries.
   This routine could be optimized to cache previous result
   (decl, current_class and returned access).  When an access method
   needs to be generated, it always takes the form of a read.  It might
   be later turned into a write by calling nested_field_access_fix.  */

static tree
build_nested_field_access (tree id, tree decl)
{
  tree access = NULL_TREE;
  tree ctx = NULL_TREE;
  tree decl_ctx = DECL_CONTEXT (decl);
  bool is_static = FIELD_STATIC (decl);

  if (DECL_CONTEXT (TYPE_NAME (current_class)))
    ctx = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (current_class)));

  /* For non-static fields, if the immediate enclosing context of the
     current class is the field decl's class or inherits from it,
     build the access as `this$<n>.<field>'.  Note that we will break
     the `private' barrier if we're not emitting bytecodes.  */
  if (!is_static
      && ctx
      && (ctx == decl_ctx || inherits_from_p (ctx, decl_ctx))
      && (!FIELD_PRIVATE (decl) || !flag_emit_class_files))
    {
      tree thisn = build_current_thisn (current_class);
      access = make_qualified_primary (build_wfl_node (thisn),
				       id, EXPR_WFL_LINECOL (id));
    }
  /* Otherwise, generate and use accessor methods for the field as
     needed.  */
  else
    {
      int lc = EXPR_WFL_LINECOL (id);

      /* Now we chain the required number of calls to the access$0 to
	 get a hold to the enclosing instance we need for a non-static
         field, and then we build the field access. */
      if (!is_static)
        access = build_access_to_thisn (current_class, decl_ctx, lc);

      /* If the field is private and we're generating bytecode, then
         we generate an access method.  */
      if (FIELD_PRIVATE (decl) && flag_emit_class_files)
	{
	  tree name = build_nested_field_access_methods (decl);
	  access = build_nested_field_access_expr (lc, decl_ctx,
						   name, access, NULL_TREE);
	}
      /* Otherwise we use `access$(this$<j>). ... access$(this$<i>).<field>'
         for non-static fields.
	 Once again we break the `private' access rule from a foreign
	 class.  */
      else if (is_static)
        {
          tree class_name = DECL_NAME (TYPE_NAME (decl_ctx));
          access
            = make_qualified_primary (build_wfl_node (class_name), id, lc);
        }
      else
        access = make_qualified_primary (access, id, lc);
    }

  return resolve_expression_name (access, NULL);
}

/* Return a nonzero value if DECL describes a member access across nested
   class boundaries.  That is, DECL is in a class that either encloses,
   is enclosed by or shares a common enclosing class with the class
   TYPE.  */

static int
nested_member_access_p (tree type, tree decl)
{
  bool is_static = false;
  tree decl_type = DECL_CONTEXT (decl);
  tree type_root, decl_type_root;

  if (decl_type == type
      || (TREE_CODE (decl) != FIELD_DECL
          && TREE_CODE (decl) != VAR_DECL
          && TREE_CODE (decl) != FUNCTION_DECL))
    return 0;
  
  if (!INNER_CLASS_TYPE_P (type)
      && !(TREE_CODE (decl_type) == RECORD_TYPE
           && INNER_CLASS_TYPE_P (decl_type)))
    return 0;

  is_static = (TREE_CODE (decl) == FUNCTION_DECL)
              ? METHOD_STATIC (decl)
              : FIELD_STATIC (decl);

  /* If TYPE extends the declaration context of the non-static
     member we're trying to access, then this isn't a nested member
     access we need to worry about.  */
  if (!is_static && inherits_from_p (type, decl_type))
    return 0;

  for (type_root = type;
       DECL_CONTEXT (TYPE_NAME (type_root));
       type_root = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (type_root))))
    {
      if (type_root == decl_type)
        return 1;
    }

  if (TREE_CODE (decl_type) == RECORD_TYPE
      && INNER_CLASS_TYPE_P (decl_type))
    {
      for (decl_type_root = decl_type;
           DECL_CONTEXT (TYPE_NAME (decl_type_root));
           decl_type_root
             = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (decl_type_root))))
        {
          if (decl_type_root == type)
            return 1;
        }
    }
  else
    decl_type_root = decl_type;
    
  if (type_root == decl_type_root)
    return 1;

  /* Before we give up, see whether it is a non-static field
     inherited from the enclosing context we are considering.  */
  if (!DECL_CONTEXT (TYPE_NAME (type_root))
      && !is_static
      && inherits_from_p (type_root, decl_type))
    return 1;

  return 0;
}

/* Return a nonzero value if NODE represents a cross-nested-class 
   access that has already been expanded.  As a side effect, it returns
   the name of the field being accessed and the argument passed to the
   access function, suitable for a regeneration of the access method
   call if necessary.  */

static int
nested_field_expanded_access_p (tree node, tree *name, tree *arg_type,
			        tree *arg)
{
  int identified = 0;

  if (TREE_CODE (node) != CALL_EXPR)
    return 0;

  /* Well, GCJ generates slightly different tree nodes when compiling
     to native or bytecodes.  It's the case for function calls.  */

  if (flag_emit_class_files
      && TREE_CODE (node) == CALL_EXPR
      && NESTED_FIELD_ACCESS_IDENTIFIER_P (DECL_NAME (TREE_OPERAND (node, 0))))
    identified = 1;
  else if (!flag_emit_class_files)
    {
      node = TREE_OPERAND (node, 0);

      if (node && TREE_OPERAND (node, 0)
	  && TREE_CODE (TREE_OPERAND (node, 0)) == ADDR_EXPR)
	{
	  node = TREE_OPERAND (node, 0);
	  if (TREE_OPERAND (node, 0)
	      && TREE_CODE (TREE_OPERAND (node, 0)) == FUNCTION_DECL
	      && (NESTED_FIELD_ACCESS_IDENTIFIER_P
		  (DECL_NAME (TREE_OPERAND (node, 0)))))
	    identified = 1;
	}
    }

  if (identified && name && arg_type && arg)
    {
      tree argument = TREE_OPERAND (node, 1);
      *name = DECL_NAME (TREE_OPERAND (node, 0));

      /* The accessors for static fields do not take in a this$<n> argument,
         so we take the class name from the accessor's context instead.  */
      if (argument)
        {
          *arg_type = TREE_TYPE (TREE_TYPE (TREE_VALUE (argument)));
          *arg = TREE_VALUE (argument);
        }
      else
        {
          *arg_type = DECL_CONTEXT (TREE_OPERAND (node, 0));
          *arg = NULL_TREE;
        }
    }
  return identified;
}

/* Detect in NODE cross-nested-class field read access and
   transform it into a write with RHS as an argument.  This function
   is called from the java_complete_lhs when an assignment to a LHS can
   be identified.  */

static tree
nested_field_access_fix (tree wfl, tree node, tree rhs)
{
  tree name, arg_type, arg;

  if (nested_field_expanded_access_p (node, &name, &arg_type, &arg))
    {
      node = build_nested_field_access_expr (EXPR_WFL_LINECOL (wfl),
					     arg_type, name, arg, rhs);
      return java_complete_tree (node);
    }
  return NULL_TREE;
}

/* Construct the expression that calls an access method:
     <type>.access$<n>(<arg1> [, <arg2>]);

   ARG2 can be NULL and will be omitted in that case. It will denote a
   read access.  */

static tree
build_nested_field_access_expr (int lc, tree type, tree access_method_name,
			        tree arg1, tree arg2)
{
  tree args, cn, access;

  if (arg1)
    args = build_tree_list (NULL_TREE, arg1);
  else
    args = NULL_TREE;

  if (arg2)
    {
      if (args)
        args = tree_cons (NULL_TREE, arg2, args);
      else
        args = build_tree_list (NULL_TREE, arg2);
    }

  access
    = build_method_invocation (build_wfl_node (access_method_name), args);
  cn = build_wfl_node (DECL_NAME (TYPE_NAME (type)));

  return make_qualified_primary (cn, access, lc);
}

/* Build the name of a synthetic accessor used to access class members
   across nested class boundaries.  */

static tree
build_new_access_id (void)
{
  static int access_n_counter = 1;
  char buffer [128];

  sprintf (buffer, "access$%d", access_n_counter++);
  return get_identifier (buffer);
}

/* Create the static access functions for the cross-nested-class field DECL.
   We define a read:
     TREE_TYPE (<field>) access$<n> (DECL_CONTEXT (<field>) inst$) {
       return inst$.field;
     }
   and a write access:
     TREE_TYPE (<field>) access$<n> (DECL_CONTEXT (<field>) inst$,
                                     TREE_TYPE (<field>) value$) {
       return inst$.field = value$;
     }
   For static fields, these methods are generated without the instance
   parameter.
   We should have a usage flag on the DECL so we can lazily turn the ones
   we're using for code generation.  FIXME.
*/

static tree
build_nested_field_access_methods (tree decl)
{
  tree id, args, stmt, mdecl, class_name = NULL_TREE;
  bool is_static = FIELD_STATIC (decl);

  if (FIELD_NESTED_ACCESS_P (decl))
    return FIELD_NESTED_ACCESS (decl);

  MAYBE_CREATE_VAR_LANG_DECL_SPECIFIC (decl);

  /* Create the identifier and a function named after it.  */
  id = build_new_access_id ();

  /* The identifier is marked as bearing the name of a generated write
     access function for outer field accessed from inner classes.  */
  NESTED_FIELD_ACCESS_IDENTIFIER_P (id) = 1;

  /* Create the read access.  */
  if (!is_static)
    {
      args = build_tree_list (inst_id,
                              build_pointer_type (DECL_CONTEXT (decl)));
      TREE_CHAIN (args) = end_params_node;
      stmt = make_qualified_primary (build_wfl_node (inst_id),
				     build_wfl_node (DECL_NAME (decl)), 0);
    }
  else
    {
      args = end_params_node;
      class_name = DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl)));
      stmt = make_qualified_primary (build_wfl_node (class_name),
                                     build_wfl_node (DECL_NAME (decl)), 0);
    }
  stmt = build_return (0, stmt);
  mdecl = build_nested_field_access_method (DECL_CONTEXT (decl),
					    TREE_TYPE (decl), id, args, stmt);
  DECL_FUNCTION_ACCESS_DECL (mdecl) = decl;

  /* Create the write access method.  No write access for final variable */
  if (!FIELD_FINAL (decl))
    {
      if (!is_static)
        {
          args = build_tree_list (inst_id,
			          build_pointer_type (DECL_CONTEXT (decl)));
          TREE_CHAIN (args) = build_tree_list (wpv_id, TREE_TYPE (decl));
          TREE_CHAIN (TREE_CHAIN (args)) = end_params_node;
          stmt = make_qualified_primary (build_wfl_node (inst_id),
				         build_wfl_node (DECL_NAME (decl)),
                                         0);
        }
      else
        {
          args = build_tree_list (wpv_id, TREE_TYPE (decl));
          TREE_CHAIN (args) = end_params_node;
          stmt = make_qualified_primary (build_wfl_node (class_name),
                                         build_wfl_node (DECL_NAME (decl)),
                                         0);
        }
      stmt = build_return (0, build_assignment (ASSIGN_TK, 0, stmt,
						build_wfl_node (wpv_id)));
      mdecl = build_nested_field_access_method (DECL_CONTEXT (decl),
					        TREE_TYPE (decl), id,
					        args, stmt);
    }
  DECL_FUNCTION_ACCESS_DECL (mdecl) = decl;

  /* Return the access name */
  return FIELD_NESTED_ACCESS (decl) = id;
}

/* Build a field access method NAME.  */

static tree
build_nested_field_access_method (tree class, tree type, tree name,
				  tree args, tree body)
{
  tree saved_current_function_decl, mdecl;

  /* Create the method */
  mdecl = create_artificial_method (class, ACC_STATIC, type, name, args);
  fix_method_argument_names (args, mdecl);
  layout_class_method (class, NULL_TREE, mdecl, NULL_TREE);

  /* Attach the method body. */
  saved_current_function_decl = current_function_decl;
  start_artificial_method_body (mdecl);
  java_method_add_stmt (mdecl, body);
  end_artificial_method_body (mdecl);
  current_function_decl = saved_current_function_decl;

  return mdecl;
}


/* This section deals with building access function necessary for
   certain kinds of method invocation across nested class boundaries.  */

static tree
build_nested_method_access_method (tree decl)
{
  tree saved_current_function_decl, mdecl;
  tree args = NULL_TREE, call_args = NULL_TREE;
  tree carg, id, body, class;
  char buffer [80];
  int parm_id_count = 0;

  /* Test this abort with an access to a private field */
  if (!strcmp (IDENTIFIER_POINTER (DECL_NAME (decl)), "access$"))
    abort ();

  /* Check the cache first */
  if (DECL_FUNCTION_INNER_ACCESS (decl))
    return DECL_FUNCTION_INNER_ACCESS (decl);

  class = DECL_CONTEXT (decl);

  /* Obtain an access identifier and mark it */
  id = build_new_access_id ();
  NESTED_FIELD_ACCESS_IDENTIFIER_P (id) = 1;

  carg = TYPE_ARG_TYPES (TREE_TYPE (decl));
  /* Create the arguments, as much as the original */
  for (; carg && carg != end_params_node;
       carg = TREE_CHAIN (carg))
    {
      sprintf (buffer, "write_parm_value$%d", parm_id_count++);
      args = chainon (args, build_tree_list (get_identifier (buffer),
					     TREE_VALUE (carg)));
    }
  args = chainon (args, end_params_node);

  /* Create the method */
  mdecl = create_artificial_method (class, ACC_STATIC,
				    TREE_TYPE (TREE_TYPE (decl)), id, args);
  layout_class_method (class, NULL_TREE, mdecl, NULL_TREE);
  /* There is a potential bug here. We should be able to use
     fix_method_argument_names, but then arg names get mixed up and
     eventually a constructor will have its this$0 altered and the
     outer context won't be assignment properly. The testcase is
     stub.java FIXME */
  TYPE_ARG_TYPES (TREE_TYPE (mdecl)) = args;

  /* Attach the method body. */
  saved_current_function_decl = current_function_decl;
  start_artificial_method_body (mdecl);

  /* The actual method invocation uses the same args. When invoking a
     static methods that way, we don't want to skip the first argument.  */
  carg = args;
  if (!METHOD_STATIC (decl))
    carg = TREE_CHAIN (carg);
  for (; carg && carg != end_params_node; carg = TREE_CHAIN (carg))
    call_args = tree_cons (NULL_TREE, build_wfl_node (TREE_PURPOSE (carg)),
			   call_args);

  body = build_method_invocation (build_wfl_node (DECL_NAME (decl)),
				  call_args);
  if (!METHOD_STATIC (decl))
    body = make_qualified_primary (build_wfl_node (TREE_PURPOSE (args)),
				   body, 0);
  if (TREE_TYPE (TREE_TYPE (decl)) != void_type_node)
    body = build_return (0, body);
  java_method_add_stmt (mdecl,body);
  end_artificial_method_body (mdecl);
  current_function_decl = saved_current_function_decl;

  /* Back tag the access function so it know what it accesses.  */
  DECL_FUNCTION_ACCESS_DECL (decl) = mdecl;

  /* Tag the current method so it knows it has an access generated.  */
  return DECL_FUNCTION_INNER_ACCESS (decl) = mdecl;
}


/* This section of the code deals with building expressions to access
   the enclosing instance of an inner class. The enclosing instance is
   kept in a generated field called this$<n>, with <n> being the
   inner class nesting level (starting from 0.)  */

/* Build an access to a given this$<n>, always chaining access call to
   others. Access methods to this$<n> are build on the fly if
   necessary. This CAN'T be used to solely access this$<n-1> from
   this$<n> (which alway yield to special cases and optimization, see
   for example build_nested_field_access).  */

static tree
build_access_to_thisn (tree from, tree to, int lc)
{
  tree access = NULL_TREE;

  while (from != to && PURE_INNER_CLASS_TYPE_P (from))
    {
      if (!access)
        {
          access = build_current_thisn (from);
          access = build_wfl_node (access);
        }
      else
	{
	  tree access0_wfl, cn;

	  maybe_build_thisn_access_method (from);
	  access0_wfl = build_wfl_node (access0_identifier_node);
	  cn = build_wfl_node (DECL_NAME (TYPE_NAME (from)));
	  EXPR_WFL_LINECOL (access0_wfl) = lc;
	  access = build_tree_list (NULL_TREE, access);
	  access = build_method_invocation (access0_wfl, access);
	  access = make_qualified_primary (cn, access, lc);
	}

      /* If FROM isn't an inner class, that's fine, we've done enough.
         What we're looking for can be accessed from there.  */
      from = DECL_CONTEXT (TYPE_NAME (from));
      if (!from)
	break;
      from = TREE_TYPE (from);
    }
  return access;
}

/* Build an access function to the this$<n> local to TYPE. NULL_TREE
   is returned if nothing needs to be generated. Otherwise, the method
   generated and a method decl is returned.

   NOTE: These generated methods should be declared in a class file
   attribute so that they can't be referred to directly.  */

static tree
maybe_build_thisn_access_method (tree type)
{
  tree mdecl, args, stmt, rtype;
  tree saved_current_function_decl;

  /* If TYPE is a top-level class, no access method is required.
     If there already is such an access method, bail out. */
  if (CLASS_ACCESS0_GENERATED_P (type) || !PURE_INNER_CLASS_TYPE_P (type))
    return NULL_TREE;

  /* We generate the method. The method looks like:
     static <outer_of_type> access$0 (<type> inst$) { return inst$.this$<n>; }
  */
  args = build_tree_list (inst_id, build_pointer_type (type));
  TREE_CHAIN (args) = end_params_node;
  rtype = build_pointer_type (TREE_TYPE (DECL_CONTEXT (TYPE_NAME (type))));
  mdecl = create_artificial_method (type, ACC_STATIC, rtype,
				    access0_identifier_node, args);
  fix_method_argument_names (args, mdecl);
  layout_class_method (type, NULL_TREE, mdecl, NULL_TREE);
  stmt = build_current_thisn (type);
  stmt = make_qualified_primary (build_wfl_node (inst_id),
				 build_wfl_node (stmt), 0);
  stmt = build_return (0, stmt);

  saved_current_function_decl = current_function_decl;
  start_artificial_method_body (mdecl);
  java_method_add_stmt (mdecl, stmt);
  end_artificial_method_body (mdecl);
  current_function_decl = saved_current_function_decl;

  CLASS_ACCESS0_GENERATED_P (type) = 1;

  return mdecl;
}

/* Craft an correctly numbered `this$<n>'string. this$0 is used for
   the first level of innerclassing. this$1 for the next one, etc...
   This function can be invoked with TYPE to NULL, available and then
   has to count the parser context.  */

static GTY(()) tree saved_thisn;
static GTY(()) tree saved_type;

static tree
build_current_thisn (tree type)
{
  static int saved_i = -1;
  static int saved_type_i = 0;
  tree decl;
  char buffer [24];
  int i = 0;

  if (type)
    {
      if (type == saved_type)
	i = saved_type_i;
      else
	{
	  for (i = -1, decl = DECL_CONTEXT (TYPE_NAME (type));
	       decl; decl = DECL_CONTEXT (decl), i++)
	    ;

	  saved_type = type;
	  saved_type_i = i;
	}
    }
  else
    i = list_length (GET_CPC_LIST ())-2;

  if (i == saved_i)
    return saved_thisn;

  sprintf (buffer, "this$%d", i);
  saved_i = i;
  saved_thisn = get_identifier (buffer);
  return saved_thisn;
}

/* Return the assignment to the hidden enclosing context `this$<n>'
   by the second incoming parameter to the innerclass constructor. The
   form used is `this.this$<n> = this$<n>;'.  */

static tree
build_thisn_assign (void)
{
  if (current_class && PURE_INNER_CLASS_TYPE_P (current_class))
    {
      tree thisn = build_current_thisn (current_class);
      tree lhs = make_qualified_primary (build_wfl_node (this_identifier_node),
					 build_wfl_node (thisn), 0);
      tree rhs = build_wfl_node (thisn);
#ifdef USE_MAPPED_LOCATION
      SET_EXPR_LOCATION (lhs, input_location);
#else
      EXPR_WFL_SET_LINECOL (lhs, input_line, 0);
#endif
      return build_assignment (ASSIGN_TK, EXPR_WFL_LINECOL (lhs), lhs, rhs);
    }
  return NULL_TREE;
}


/* Building the synthetic `class$' used to implement the `.class' 1.1
   extension for non primitive types. This method looks like:

    static Class class$(String type) throws NoClassDefFoundError
    {
      try {return (java.lang.Class.forName (String));}
      catch (ClassNotFoundException e) {
        throw new NoClassDefFoundError(e.getMessage());}
    } */

static GTY(()) tree get_message_wfl;
static GTY(()) tree type_parm_wfl;

static tree
build_dot_class_method (tree class)
{
#define BWF(S) build_wfl_node (get_identifier ((S)))
#ifdef USE_MAPPED_LOCATION
#define MQN(X,Y) make_qualified_name ((X), (Y), UNKNOWN_LOCATION)
#else
#define MQN(X,Y) make_qualified_name ((X), (Y), 0)
#endif
  tree args, tmp, saved_current_function_decl, mdecl, qual_name;
  tree stmt, throw_stmt;

  if (!get_message_wfl)
    {
      get_message_wfl = build_wfl_node (get_identifier ("getMessage"));
      type_parm_wfl = build_wfl_node (get_identifier ("type$"));
    }

  /* Build the arguments */
  args = build_tree_list (get_identifier ("type$"),
			  build_pointer_type (string_type_node));
  TREE_CHAIN (args) = end_params_node;

  /* Build the qualified name java.lang.Class.forName */
  tmp = MQN (MQN (MQN (BWF ("java"),
		       BWF ("lang")), BWF ("Class")), BWF ("forName"));

  /* Create the "class$" function */
  mdecl = create_artificial_method (class, ACC_STATIC,
				    build_pointer_type (class_type_node),
				    classdollar_identifier_node, args);
  qual_name = MQN (MQN (BWF ("java"), BWF ("lang")),
		   BWF ("NoClassDefFoundError"));
  DECL_FUNCTION_THROWS (mdecl) = build_tree_list (NULL_TREE, qual_name);
  register_incomplete_type (JDEP_EXCEPTION, qual_name, NULL_TREE, NULL_TREE);
  JDEP_GET_PATCH (CLASSD_LAST (ctxp->classd_list)) =
    &TREE_VALUE (DECL_FUNCTION_THROWS (mdecl));

  /* We start by building the try block. We need to build:
       return (java.lang.Class.forName (type)); */
  stmt = build_method_invocation (tmp,
				  build_tree_list (NULL_TREE, type_parm_wfl));
  stmt = build_return (0, stmt);

  /* Now onto the catch block. We start by building the expression
     throwing a new exception: throw new NoClassDefFoundError (_.getMessage) */
#ifdef USE_MAPPED_LOCATION
  throw_stmt = make_qualified_name (build_wfl_node (wpv_id),
				    get_message_wfl, UNKNOWN_LOCATION);
#else
  throw_stmt = make_qualified_name (build_wfl_node (wpv_id),
				    get_message_wfl, 0);
#endif
  throw_stmt = build_method_invocation (throw_stmt, NULL_TREE);

  /* Build new NoClassDefFoundError (_.getMessage) */
  throw_stmt = build_new_invocation
    (build_wfl_node (get_identifier ("NoClassDefFoundError")),
     build_tree_list (build_pointer_type (string_type_node), throw_stmt));

  /* Build the throw, (it's too early to use BUILD_THROW) */
  throw_stmt = build1 (THROW_EXPR, NULL_TREE, throw_stmt);

  /* Encapsulate STMT in a try block. The catch clause executes THROW_STMT */
  qual_name = MQN (MQN (BWF ("java"), BWF ("lang")),
		   BWF ("ClassNotFoundException"));
  stmt = encapsulate_with_try_catch (0, qual_name, stmt, throw_stmt);

  fix_method_argument_names (args, mdecl);
  layout_class_method (class, NULL_TREE, mdecl, NULL_TREE);
  saved_current_function_decl = current_function_decl;
  start_artificial_method_body (mdecl);
  java_method_add_stmt (mdecl, stmt);
  end_artificial_method_body (mdecl);
  current_function_decl = saved_current_function_decl;
  TYPE_DOT_CLASS (class) = mdecl;

  return mdecl;
}

static tree
build_dot_class_method_invocation (tree this_class, tree type)
{
  tree dot_class_method = TYPE_DOT_CLASS (this_class);
  tree sig_id, s, t;

  if (TYPE_ARRAY_P (type))
    sig_id = build_java_signature (type);
  else
    sig_id = DECL_NAME (TYPE_NAME (type));

  /* Ensure that the proper name separator is used */
  sig_id = unmangle_classname (IDENTIFIER_POINTER (sig_id),
			       IDENTIFIER_LENGTH (sig_id));

  s = build_string (IDENTIFIER_LENGTH (sig_id),
		    IDENTIFIER_POINTER (sig_id));
  t = build_method_invocation (build_wfl_node (DECL_NAME (dot_class_method)),
			       build_tree_list (NULL_TREE, s));
  if (DECL_CONTEXT (dot_class_method) != this_class)
    {
      tree class_name = DECL_NAME (TYPE_NAME (DECL_CONTEXT (dot_class_method)));
      t = make_qualified_primary (build_wfl_node (class_name), t, 0);
    }
  return t;
}

/* This section of the code deals with constructor.  */

/* Craft a body for default constructor. Patch existing constructor
   bodies with call to super() and field initialization statements if
   necessary.  */

static void
fix_constructors (tree mdecl)
{
  tree iii;			/* Instance Initializer Invocation */
  tree *bodyp = &DECL_FUNCTION_BODY (mdecl);
  tree thisn_assign, compound = NULL_TREE;
  tree class_type = DECL_CONTEXT (mdecl);

  if (DECL_FIXED_CONSTRUCTOR_P (mdecl))
    return;
  DECL_FIXED_CONSTRUCTOR_P (mdecl) = 1;

  if (!*bodyp)
    {
      /* It is an error for the compiler to generate a default
	 constructor if the superclass doesn't have a constructor that
	 takes no argument, or the same args for an anonymous class */
      tree sdecl = get_constructor_super (mdecl);
      if (sdecl == NULL_TREE)
	{
	  tree sclass_decl = TYPE_NAME (CLASSTYPE_SUPER (class_type));
	  tree save = DECL_NAME (mdecl);
	  const char *n = IDENTIFIER_POINTER (DECL_NAME (sclass_decl));
	  DECL_NAME (mdecl) = DECL_NAME (sclass_decl);
	  parse_error_context
	    (lookup_cl (TYPE_NAME (class_type)),
	     "No constructor matching %qs found in class %qs",
	     lang_printable_name (mdecl, 2), n);
	  DECL_NAME (mdecl) = save;
	}

      if (ANONYMOUS_CLASS_P (class_type))
	{
	  /* Copy throws clause from the super constructor.  */
	  tree throws = DECL_FUNCTION_THROWS (sdecl);
	  DECL_FUNCTION_THROWS (mdecl) = copy_list (throws);
	}

      /* The constructor body must be crafted by hand. It's the
	 constructor we defined when we realize we didn't have the
	 CLASSNAME() constructor */
      start_artificial_method_body (mdecl);

      /* Insert an assignment to the this$<n> hidden field, if
         necessary */
      if ((thisn_assign = build_thisn_assign ()))
	java_method_add_stmt (mdecl, thisn_assign);

      /* We don't generate a super constructor invocation if we're
	 compiling java.lang.Object. build_super_invocation takes care
	 of that. */
      java_method_add_stmt (mdecl, build_super_invocation (mdecl));

      /* FIXME */
      if ((iii = build_instinit_invocation (class_type)))
	java_method_add_stmt (mdecl, iii);

      end_artificial_method_body (mdecl);
    }
  /* Search for an explicit constructor invocation */
  else
    {
      int found = 0;
      int invokes_this = 0;
      tree main_block = BLOCK_EXPR_BODY (*bodyp);

      while (*bodyp)
	{
	  tree body = *bodyp;
	  switch (TREE_CODE (body))
	    {
	    case CALL_EXPR:
	      found = CALL_EXPLICIT_CONSTRUCTOR_P (body);
	      if (CALL_THIS_CONSTRUCTOR_P (body))
		invokes_this = 1;
	      break;
	    case COMPOUND_EXPR:
	    case EXPR_WITH_FILE_LOCATION:
	      bodyp = &TREE_OPERAND (body, 0);
	      continue;
	    case BLOCK:
	      bodyp = &BLOCK_EXPR_BODY (body);
	      continue;
	    default:
	      break;
	    }
	  break;
	}

      /* Generate the assignment to this$<n>, if necessary */
      if ((thisn_assign = build_thisn_assign ()))
        compound = add_stmt_to_compound (compound, NULL_TREE, thisn_assign);

      /* The constructor is missing an invocation of super() */
      if (!found)
	compound = add_stmt_to_compound (compound, NULL_TREE,
                                         build_super_invocation (mdecl));
      /* Explicit super() invocation should take place before the
         instance initializer blocks. */
      else
	{
	  compound = add_stmt_to_compound (compound, NULL_TREE, *bodyp);
	  *bodyp = build_java_empty_stmt ();
	}

      DECL_INIT_CALLS_THIS (mdecl) = invokes_this;

      /* Insert the instance initializer block right after. */
      if (!invokes_this && (iii = build_instinit_invocation (class_type)))
	compound = add_stmt_to_compound (compound, NULL_TREE, iii);

      /* Fix the constructor main block if we're adding extra stmts */
      if (compound)
	{
	  compound = add_stmt_to_compound (compound, NULL_TREE,
					   BLOCK_EXPR_BODY (main_block));
	  BLOCK_EXPR_BODY (main_block) = compound;
	}
    }
}

/* Browse constructors in the super class, searching for a constructor
   that doesn't take any argument. Return the constructor if one is found, 
   NULL_TREE otherwise.  If the current class is an anonymous inner class, 
   look for something that has the same signature. */
static tree
get_constructor_super (tree mdecl)
{
  tree class = CLASSTYPE_SUPER (current_class);
  int super_inner = PURE_INNER_CLASS_TYPE_P (class);
  tree sdecl;

  if (!class)
    return NULL_TREE;

  if (ANONYMOUS_CLASS_P (current_class))
    {
      tree mdecl_arg_type;
      SKIP_THIS_AND_ARTIFICIAL_PARMS (mdecl_arg_type, mdecl);
      for (sdecl = TYPE_METHODS (class); sdecl; sdecl = TREE_CHAIN (sdecl))
	if (DECL_CONSTRUCTOR_P (sdecl))
	  {
	    tree m_arg_type;
	    tree arg_type = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (sdecl)));
	    if (super_inner)
	      arg_type = TREE_CHAIN (arg_type);
	    for (m_arg_type = mdecl_arg_type;
		 (arg_type != end_params_node
		  && m_arg_type != end_params_node);
		 arg_type = TREE_CHAIN (arg_type),
		   m_arg_type = TREE_CHAIN (m_arg_type))
	      if (!valid_method_invocation_conversion_p
		     (TREE_VALUE (arg_type),
		      TREE_VALUE (m_arg_type)))
		break;

	    if (arg_type == end_params_node && m_arg_type == end_params_node)
	      return sdecl;
	  }
    }
  else
    {
      for (sdecl = TYPE_METHODS (class); sdecl; sdecl = TREE_CHAIN (sdecl))
	{
	  tree arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (sdecl)));
	  if (super_inner)
	    arg = TREE_CHAIN (arg);
	  if (DECL_CONSTRUCTOR_P (sdecl) && arg == end_params_node)
	    return sdecl;
	}
    }
  return NULL_TREE;
}

/* Generate code for all context remembered for code generation.  */

static GTY(()) tree reversed_class_list;
void
java_expand_classes (void)
{
  int save_error_count = 0;
  static struct parser_ctxt *cur_ctxp = NULL;
  location_t save_location;

  java_parse_abort_on_error ();
  if (!(ctxp = ctxp_for_generation))
    return;
  java_layout_classes ();
  java_parse_abort_on_error ();
  save_location = input_location;

  for (cur_ctxp = ctxp_for_generation; cur_ctxp; cur_ctxp = cur_ctxp->next)
    {
      tree current;
      for (current = cur_ctxp->class_list; 
	   current; 
	   current = TREE_CHAIN (current))
	gen_indirect_dispatch_tables (TREE_TYPE (current));
    }
  
  for (cur_ctxp = ctxp_for_generation; cur_ctxp; cur_ctxp = cur_ctxp->next)
    {
      ctxp = cur_ctxp;
      input_location = ctxp->file_start_location;
      lang_init_source (2);	       /* Error msgs have method prototypes */
      java_complete_expand_classes (); /* Complete and expand classes */
      java_parse_abort_on_error ();
    }
  input_location = save_location;

  /* Find anonymous classes and expand their constructor. This extra pass is
     necessary because the constructor itself is only generated when the
     method in which it is defined is expanded. */
  for (cur_ctxp = ctxp_for_generation; cur_ctxp; cur_ctxp = cur_ctxp->next)
    {
      tree current;
      ctxp = cur_ctxp;
      for (current = ctxp->class_list; current; current = TREE_CHAIN (current))
	{
	  output_class = current_class = TREE_TYPE (current);
	  if (ANONYMOUS_CLASS_P (current_class))
	    {
	      tree d;
	      for (d = TYPE_METHODS (current_class); d; d = TREE_CHAIN (d))
		{
		  if (DECL_CONSTRUCTOR_P (d))
		    {
		      java_complete_expand_method (d);
		      break;	/* There is only one constructor. */
		    }
		}
	    }
	}
    }

  /* Expanding the constructors of anonymous classes generates access
     methods.  Scan all the methods looking for null DECL_RESULTs --
     this will be the case if a method hasn't been expanded.  */
  for (cur_ctxp = ctxp_for_generation; cur_ctxp; cur_ctxp = cur_ctxp->next)
    {
      tree current;
      ctxp = cur_ctxp;
      for (current = ctxp->class_list; current; current = TREE_CHAIN (current))
	{
	  tree d;
	  output_class = current_class = TREE_TYPE (current);
	  for (d = TYPE_METHODS (current_class); d; d = TREE_CHAIN (d))
	    {
	      if (DECL_RESULT (d) == NULL_TREE)
		java_complete_expand_method (d);
	    }
	}
    }

  /* ???  Instead of all this we could iterate around the list of
     classes until there were no more un-expanded methods.  It would
     take a little longer -- one pass over the whole list of methods
     -- but it would be simpler.  Like this:  */
#if 0
    {
      int something_changed;
    
      do
	{
	  something_changed = 0;
	  for (cur_ctxp = ctxp_for_generation; cur_ctxp; cur_ctxp = cur_ctxp->next)
	    {
	      tree current;
	      ctxp = cur_ctxp;
	      for (current = ctxp->class_list; current; current = TREE_CHAIN (current))
		{
		  tree d;
		  output_class = current_class = TREE_TYPE (current);
		  for (d = TYPE_METHODS (current_class); d; d = TREE_CHAIN (d))
		    {
		      if (DECL_RESULT (d) == NULL_TREE)
			{
			  something_changed = 1;
			  java_complete_expand_method (d);
			}
		    }
		}
	    }
	}
      while (something_changed);
    }
#endif

  /* If we've found error at that stage, don't try to generate
     anything, unless we're checking the syntax only
     (but not using -fsyntax-only for the purpose of generating
     bytecode).  */
  if (java_error_count
      && (!flag_syntax_only && !flag_emit_class_files))
    return;

  /* Now things are stable, go for generation of the class data. */

  /* We pessimistically marked all methods and fields external until
     we knew what set of classes we were planning to compile.  Now mark
     those that will be generated locally as not external.  */
  for (cur_ctxp = ctxp_for_generation; cur_ctxp; cur_ctxp = cur_ctxp->next)
    {
      tree current;
      ctxp = cur_ctxp;
      for (current = ctxp->class_list; current; current = TREE_CHAIN (current))
	java_mark_class_local (TREE_TYPE (current));
    }

  /* Compile the classes.  */
  for (cur_ctxp = ctxp_for_generation; cur_ctxp; cur_ctxp = cur_ctxp->next)
    {
      tree current;
      reversed_class_list = NULL;

      ctxp = cur_ctxp;

      /* We write out the classes in reverse order.  This ensures that
	 inner classes are written before their containing classes,
	 which is important for parallel builds.  Otherwise, the
	 class file for the outer class may be found, but the class
	 file for the inner class may not be present.  In that
	 situation, the compiler cannot fall back to the original
	 source, having already read the outer class, so we must
	 prevent that situation.  */
      for (current = ctxp->class_list;
	   current;
	   current = TREE_CHAIN (current))
	reversed_class_list
	  = tree_cons (NULL_TREE, current, reversed_class_list);

      for (current = reversed_class_list;
	   current;
	   current = TREE_CHAIN (current))
	{
	  output_class = current_class = TREE_TYPE (TREE_VALUE (current));
	  if (flag_emit_class_files)
	    write_classfile (current_class);
	  else if (! flag_syntax_only)
	    java_expand_method_bodies (current_class);
	}
    }
}

void
java_finish_classes (void)
{
  static struct parser_ctxt *cur_ctxp = NULL;
  for (cur_ctxp = ctxp_for_generation; cur_ctxp; cur_ctxp = cur_ctxp->next)
    {
      tree current;
      ctxp = cur_ctxp;
      for (current = ctxp->class_list; current; current = TREE_CHAIN (current))
	{
	  output_class = current_class = TREE_TYPE (current);
	  finish_class ();
	}
    }
}

/* Wrap non WFL PRIMARY around a WFL and set EXPR_WFL_QUALIFICATION to
   a tree list node containing RIGHT. Fore coming RIGHTs will be
   chained to this hook. LOCATION contains the location of the
   separating `.' operator.  */

static tree
make_qualified_primary (tree primary, tree right, int location)
{
  tree wfl;

  if (TREE_CODE (primary) != EXPR_WITH_FILE_LOCATION)
    wfl = build_wfl_wrap (primary, location);
  else
    {
      wfl = primary;
      /* If wfl wasn't qualified, we build a first anchor */
      if (!EXPR_WFL_QUALIFICATION (wfl))
	EXPR_WFL_QUALIFICATION (wfl) = build_tree_list (wfl, NULL_TREE);
    }

  /* And chain them */
  EXPR_WFL_LINECOL (right) = location;
  chainon (EXPR_WFL_QUALIFICATION (wfl), build_tree_list (right, NULL_TREE));
  PRIMARY_P (wfl) =  1;
  return wfl;
}

/* Simple merge of two name separated by a `.' */

static tree
merge_qualified_name (tree left, tree right)
{
  tree node;
  if (!left && !right)
    return NULL_TREE;

  if (!left)
    return right;

  if (!right)
    return left;

  obstack_grow (&temporary_obstack, IDENTIFIER_POINTER (left),
		IDENTIFIER_LENGTH (left));
  obstack_1grow (&temporary_obstack, '.');
  obstack_grow0 (&temporary_obstack, IDENTIFIER_POINTER (right),
		 IDENTIFIER_LENGTH (right));
  node =  get_identifier (obstack_base (&temporary_obstack));
  obstack_free (&temporary_obstack, obstack_base (&temporary_obstack));
  QUALIFIED_P (node) = 1;
  return node;
}

/* Merge the two parts of a qualified name into LEFT.  Set the
   location information of the resulting node to LOCATION, usually
   inherited from the location information of the `.' operator. */

static tree
make_qualified_name (tree left, tree right,
#ifdef USE_MAPPED_LOCATION
		     source_location location
#else
		     int location
#endif
		     )
{
#ifdef USE_COMPONENT_REF
  tree node = build3 (COMPONENT_REF, NULL_TREE, left, right, NULL_TREE);
  SET_EXPR_LOCATION (node, location);
  return node;
#else
  tree left_id = EXPR_WFL_NODE (left);
  tree right_id = EXPR_WFL_NODE (right);
  tree wfl, merge;

  merge = merge_qualified_name (left_id, right_id);

  /* Left wasn't qualified and is now qualified */
#ifdef USE_MAPPED_LOCATION
  if (!QUALIFIED_P (left_id))
    {
      tree wfl = build_expr_wfl (left_id, EXPR_LOCATION (left));
      EXPR_WFL_QUALIFICATION (left) = build_tree_list (wfl, NULL_TREE);
    }

  wfl = build_expr_wfl (right_id, location);
#else
  if (!QUALIFIED_P (left_id))
    {
      tree wfl = build_expr_wfl (left_id, ctxp->filename, 0, 0);
      EXPR_WFL_LINECOL (wfl) = EXPR_WFL_LINECOL (left);
      EXPR_WFL_QUALIFICATION (left) = build_tree_list (wfl, NULL_TREE);
    }

  wfl = build_expr_wfl (right_id, ctxp->filename, 0, 0);
  EXPR_WFL_LINECOL (wfl) = location;
#endif
  chainon (EXPR_WFL_QUALIFICATION (left), build_tree_list (wfl, NULL_TREE));
  EXPR_WFL_NODE (left) = merge;
  return left;
#endif
}

/* Extract the last identifier component of the qualified in WFL. The
   last identifier is removed from the linked list */

static tree
cut_identifier_in_qualified (tree wfl)
{
  tree q;
  tree previous = NULL_TREE;
  for (q = EXPR_WFL_QUALIFICATION (wfl); ; previous = q, q = TREE_CHAIN (q))
    if (!TREE_CHAIN (q))
      {
	if (!previous)
	  /* Operating on a non qualified qualified WFL.  */
	  abort ();

	TREE_CHAIN (previous) = NULL_TREE;
	return TREE_PURPOSE (q);
      }
}

/* Resolve the expression name NAME. Return its decl.  */

static tree
resolve_expression_name (tree id, tree *orig)
{
  tree name = EXPR_WFL_NODE (id);
  tree decl;

  /* 6.5.5.1: Simple expression names */
  if (!PRIMARY_P (id) && !QUALIFIED_P (name))
    {
      /* 15.13.1: NAME can appear within the scope of a local variable
         declaration */
      if ((decl = IDENTIFIER_LOCAL_VALUE (name)))
        return decl;

      /* 15.13.1: NAME can appear within a class declaration */
      else
        {
	  decl = lookup_field_wrapper (current_class, name);
	  if (decl)
	    {
	      tree access = NULL_TREE;
	      int fs = FIELD_STATIC (decl);

	      /* If we're accessing an outer scope local alias, make
		 sure we change the name of the field we're going to
		 build access to. */
	      if (FIELD_LOCAL_ALIAS_USED (decl))
		name = DECL_NAME (decl);

	      check_deprecation (id, decl);

	      /* Instance variable (8.3.1.1) can't appear within
		 static method, static initializer or initializer for
		 a static variable. */
	      if (!fs && METHOD_STATIC (current_function_decl))
	        {
		  static_ref_err (id, name, current_class);
		  return error_mark_node;
		}
	      /* Instance variables can't appear as an argument of
		 an explicit constructor invocation */
	      if (!fs && ctxp->explicit_constructor_p
		  && !enclosing_context_p (DECL_CONTEXT (decl), current_class))
		{
		  parse_error_context
		    (id, "Can't reference %qs before the superclass constructor has been called", IDENTIFIER_POINTER (name));
		  return error_mark_node;
		}

	      /* If we're processing an inner class and we're trying
		 to access a field belonging to an outer class, build
		 the access to the field.
		 As usual, we have to treat initialized static final
		 variables as a special case.  */
              if (nested_member_access_p (current_class, decl)
                  && ! (JDECL_P (decl) && CLASS_FINAL_VARIABLE_P (decl)
                        && DECL_INITIAL (decl) != NULL_TREE
			&& (JSTRING_TYPE_P (TREE_TYPE (decl))
			    || JNUMERIC_TYPE_P (TREE_TYPE (decl)))
			&& TREE_CONSTANT (DECL_INITIAL (decl))))
		{
		  if (!fs && CLASS_STATIC (TYPE_NAME (current_class)))
		    {
		      static_ref_err (id, DECL_NAME (decl), current_class);
		      return error_mark_node;
		    }
		  access = build_nested_field_access (id, decl);
		  if (orig)
		    *orig = access;
		  return access;
		}

	      /* Otherwise build what it takes to access the field */
	      access = build_field_ref ((fs ? NULL_TREE : current_this),
					DECL_CONTEXT (decl), name);
	      if (fs)
		access = maybe_build_class_init_for_field (decl, access);
	      /* We may be asked to save the real field access node */
	      if (orig)
		*orig = access;
	      /* Last check: can we access the field? */
	      if (not_accessible_p (current_class, decl, NULL_TREE, 0))
		{
		  not_accessible_field_error (id, decl);
		  return error_mark_node;
		}
	      /* And we return what we got */
	      return access;
	    }
	  /* Fall down to error report on undefined variable */
	}
    }
  /* 6.5.5.2 Qualified Expression Names */
  else
    {
      if (orig)
	*orig = NULL_TREE;
      qualify_ambiguous_name (id);
      /* 15.10.1 Field Access Using a Primary and/or Expression Name */
      /* 15.10.2: Accessing Superclass Members using super */
      return resolve_field_access (id, orig, NULL);
    }

  /* We've got an error here */
  if (INNER_CLASS_TYPE_P (current_class))
    parse_error_context (id,
			 "Local variable %qs can't be accessed from within the inner class %qs unless it is declared final",
			 IDENTIFIER_POINTER (name),
			 IDENTIFIER_POINTER (DECL_NAME
					     (TYPE_NAME (current_class))));
  else
    parse_error_context (id, "Undefined variable %qs",
			 IDENTIFIER_POINTER (name));

  return error_mark_node;
}

static void
static_ref_err (tree wfl, tree field_id, tree class_type)
{
  parse_error_context
    (wfl,
     "Can't make a static reference to nonstatic variable %qs in class %qs",
     IDENTIFIER_POINTER (field_id),
     IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (class_type))));
}

/* 15.10.1 Field Access Using a Primary and/or Expression Name.
   We return something suitable to generate the field access. We also
   return the field decl in FIELD_DECL and its type in FIELD_TYPE.  If
   recipient's address can be null. */

static tree
resolve_field_access (tree qual_wfl, tree *field_decl, tree *field_type)
{
  int is_static = 0;
  tree field_ref;
  tree decl = NULL_TREE, where_found, type_found;

  if (resolve_qualified_expression_name (qual_wfl, &decl,
					 &where_found, &type_found))
    return error_mark_node;

  /* Resolve the LENGTH field of an array here */
  if (DECL_P (decl) && DECL_NAME (decl) == length_identifier_node
      && type_found && TYPE_ARRAY_P (type_found)
      && ! flag_emit_class_files)
    {
      tree length = build_java_array_length_access (where_found);
      field_ref = length;

      /* In case we're dealing with a static array, we need to
	 initialize its class before the array length can be fetched.  */
      if (TREE_CODE (where_found) == VAR_DECL && FIELD_STATIC (where_found))
	{
	  build_static_field_ref (where_found);
	  field_ref = build_class_init (DECL_CONTEXT (where_found), field_ref);
	}
    }
  /* We might have been trying to resolve field.method(). In which
     case, the resolution is over and decl is the answer */
  else if (JDECL_P (decl) && IDENTIFIER_LOCAL_VALUE (DECL_NAME (decl)) == decl)
    field_ref = decl;
  else if (JDECL_P (decl))
    {
      if (!type_found)
	type_found = DECL_CONTEXT (decl);
      is_static = FIELD_STATIC (decl);
      field_ref = build_field_ref ((is_static ?
				    NULL_TREE : where_found),
				   type_found, DECL_NAME (decl));
      if (field_ref == error_mark_node)
	return error_mark_node;
      if (is_static)
	field_ref = maybe_build_class_init_for_field (decl, field_ref);

      /* If we're looking at a static field, we may need to generate a
	 class initialization for it.  This can happen when the access
	 looks like `field.ref', where `field' is a static field in an
	 interface we implement.  */
      if (!flag_emit_class_files
	  && TREE_CODE (where_found) == VAR_DECL
	  && FIELD_STATIC (where_found))
	{
	  build_static_field_ref (where_found);
	  field_ref = build_class_init (DECL_CONTEXT (where_found), field_ref);
	}
    }
  else
    field_ref = decl;

  if (field_decl)
    *field_decl = decl;
  if (field_type)
    *field_type = (QUAL_DECL_TYPE (decl) ?
		   QUAL_DECL_TYPE (decl) : TREE_TYPE (decl));
  return field_ref;
}

/* If NODE is an access to a static field, strip out the class
   initialization part and return the field decl, otherwise, return
   NODE. */

tree
extract_field_decl (tree node)
{
  if (TREE_CODE (node) == COMPOUND_EXPR)
    {
      tree op1 = TREE_OPERAND (node, 1);
      if (TREE_CODE (op1) == COMPOUND_EXPR)
	 {
	   tree call = TREE_OPERAND (op1, 0);
	   if (TREE_CODE (call) == CALL_EXPR
	       && TREE_CODE (TREE_OPERAND (call, 0)) == ADDR_EXPR
	       && (TREE_OPERAND (TREE_OPERAND (call, 0), 0)
		   == soft_initclass_node))
	     return TREE_OPERAND (op1, 1);
	 }
      else if (JDECL_P (op1))
	return op1;
    }
  return node;
}

/* 6.5.5.2: Qualified Expression Names */

static int
resolve_qualified_expression_name (tree wfl, tree *found_decl,
				   tree *where_found, tree *type_found)
{
  int from_type = 0;		/* Field search initiated from a type */
  int from_super = 0, from_cast = 0, from_qualified_this = 0;
  int previous_call_static = 0;
  int is_static;
  tree decl = NULL_TREE, type = NULL_TREE, q;
  /* For certain for of inner class instantiation */
  tree saved_current, saved_this;
#define RESTORE_THIS_AND_CURRENT_CLASS 				\
  { current_class = saved_current; current_this = saved_this;}

  *type_found = *where_found = NULL_TREE;

  for (q = EXPR_WFL_QUALIFICATION (wfl); q; q = TREE_CHAIN (q))
    {
      tree qual_wfl = QUAL_WFL (q);
      tree ret_decl;		/* for EH checking */
#ifdef USE_MAPPED_LOCATION
      source_location location;  /* for EH checking */
#else
      int location;		/* for EH checking */
#endif

      /* 15.10.1 Field Access Using a Primary */
      switch (TREE_CODE (qual_wfl))
	{
	case CALL_EXPR:
	case NEW_CLASS_EXPR:
	  /* If the access to the function call is a non static field,
	     build the code to access it. */
	  if (JDECL_P (decl) && !FIELD_STATIC (decl))
	    {
	      decl = maybe_access_field (decl, *where_found,
					 DECL_CONTEXT (decl));
	      if (decl == error_mark_node)
		return 1;
	    }

	  /* And code for the function call */
	  if (complete_function_arguments (qual_wfl))
	    return 1;

	  /* We might have to setup a new current class and a new this
	     for the search of an inner class, relative to the type of
	     a expression resolved as `decl'. The current values are
	     saved and restored shortly after */
	  saved_current = current_class;
	  saved_this = current_this;
	  if (decl
	      && (TREE_CODE (qual_wfl) == NEW_CLASS_EXPR
		  || from_qualified_this))
	    {
	      /* If we still have `from_qualified_this', we have the form
		 <T>.this.f() and we need to build <T>.this */
	      if (from_qualified_this)
		{
		  decl = build_access_to_thisn (current_class, type, 0);
		  decl = java_complete_tree (decl);
		  type = TREE_TYPE (TREE_TYPE (decl));
		}
	      current_class = type;
	      current_this = decl;
	      from_qualified_this = 0;
	    }

	  if (from_super && TREE_CODE (qual_wfl) == CALL_EXPR)
	    CALL_USING_SUPER (qual_wfl) = 1;
#ifdef USE_MAPPED_LOCATION
	  location = (TREE_CODE (qual_wfl) == CALL_EXPR
		      ? EXPR_LOCATION (TREE_OPERAND (qual_wfl, 0))
		      : UNKNOWN_LOCATION);
#else
	  location = (TREE_CODE (qual_wfl) == CALL_EXPR ?
		      EXPR_WFL_LINECOL (TREE_OPERAND (qual_wfl, 0)) : 0);
#endif
	  *where_found = patch_method_invocation (qual_wfl, decl, type,
						  from_super,
						  &is_static, &ret_decl);
	  from_super = 0;
	  if (*where_found == error_mark_node)
	    {
	      RESTORE_THIS_AND_CURRENT_CLASS;
	      return 1;
	    }
	  *type_found = type = QUAL_DECL_TYPE (*where_found);

	  *where_found = force_evaluation_order (*where_found);

	  /* If we're creating an inner class instance, check for that
	     an enclosing instance is in scope */
	  if (TREE_CODE (qual_wfl) == NEW_CLASS_EXPR
	      && INNER_ENCLOSING_SCOPE_CHECK (type))
	    {
	      parse_error_context
		(qual_wfl, "No enclosing instance for inner class %qs is in scope%s",
		 lang_printable_name (type, 0),
		 (!current_this ? "" :
		  "; an explicit one must be provided when creating this inner class"));
	      RESTORE_THIS_AND_CURRENT_CLASS;
	      return 1;
	    }

	  /* In case we had to change then to resolve a inner class
	     instantiation using a primary qualified by a `new' */
	  RESTORE_THIS_AND_CURRENT_CLASS;

#ifdef USE_MAPPED_LOCATION
	  if (location != UNKNOWN_LOCATION)
#else
	  if (location)
#endif
	    {
	      tree arguments = NULL_TREE;
	      if (TREE_CODE (qual_wfl) == CALL_EXPR
		  && TREE_OPERAND (qual_wfl, 1) != NULL_TREE)
		arguments = TREE_VALUE (TREE_OPERAND (qual_wfl, 1));
	      check_thrown_exceptions (location, ret_decl, arguments);
	    }

	  /* If the previous call was static and this one is too,
	     build a compound expression to hold the two (because in
	     that case, previous function calls aren't transported as
	     forcoming function's argument. */
	  if (previous_call_static && is_static)
	    {
	      /* We must set CAN_COMPLETE_NORMALLY for the first call
		 since it is done nowhere else.  */
	      CAN_COMPLETE_NORMALLY (decl) = 1;
	      decl = build2 (COMPOUND_EXPR, TREE_TYPE (*where_found),
			     decl, *where_found);
	      TREE_SIDE_EFFECTS (decl) = 1;
	    }
	  else
	    {
	      previous_call_static = is_static;
	      decl = *where_found;
	    }
	  from_type = 0;
	  continue;

	case NEW_ARRAY_EXPR:
	case NEW_ANONYMOUS_ARRAY_EXPR:
	  *where_found = decl = java_complete_tree (qual_wfl);
	  if (decl == error_mark_node)
	    return 1;
	  *type_found = type = QUAL_DECL_TYPE (decl);
	  continue;

	case CONVERT_EXPR:
	  *where_found = decl = java_complete_tree (qual_wfl);
	  if (decl == error_mark_node)
	    return 1;
	  *type_found = type = QUAL_DECL_TYPE (decl);
	  from_cast = 1;
	  continue;

	case CONDITIONAL_EXPR:
	case STRING_CST:
	case MODIFY_EXPR:
	  *where_found = decl = java_complete_tree (qual_wfl);
	  if (decl == error_mark_node)
	    return 1;
	  *type_found = type = QUAL_DECL_TYPE (decl);
	  continue;

	case ARRAY_REF:
	  /* If the access to the function call is a non static field,
	     build the code to access it. */
	  if (JDECL_P (decl) && !FIELD_STATIC (decl))
	    {
	      decl = maybe_access_field (decl, *where_found, type);
	      if (decl == error_mark_node)
		return 1;
	    }
	  /* And code for the array reference expression */
	  decl = java_complete_tree (qual_wfl);
	  if (decl == error_mark_node)
	    return 1;
	  type = QUAL_DECL_TYPE (decl);
	  continue;

	case PLUS_EXPR:
	  if ((decl = java_complete_tree (qual_wfl)) == error_mark_node)
	    return 1;
	  if ((type = patch_string (decl)))
	    decl = type;
	  *where_found = QUAL_RESOLUTION (q) = decl;
	  *type_found = type = TREE_TYPE (decl);
	  break;

	case CLASS_LITERAL:
	  if ((decl = java_complete_tree (qual_wfl)) == error_mark_node)
	    return 1;
	  *where_found = QUAL_RESOLUTION (q) = decl;
	  *type_found = type = TREE_TYPE (decl);
	  break;

	default:
	  /* Fix for -Wall Just go to the next statement. Don't
             continue */
	  break;
	}

      /* If we fall here, we weren't processing a (static) function call. */
      previous_call_static = 0;

      /* It can be the keyword THIS */
      if (TREE_CODE (qual_wfl) == EXPR_WITH_FILE_LOCATION
	  && EXPR_WFL_NODE (qual_wfl) == this_identifier_node)
	{
	  if (!current_this)
	    {
	      parse_error_context
		(wfl, "Keyword %<this%> used outside allowed context");
	      return 1;
	    }
	  if (ctxp->explicit_constructor_p
	      && type == current_class)
	    {
	      parse_error_context (wfl, "Can't reference %<this%> before the superclass constructor has been called");
	      return 1;
	    }
	  /* We have to generate code for intermediate access */
	  if (!from_type || TREE_TYPE (TREE_TYPE (current_this)) == type)
	    {
	      *where_found = decl = current_this;
	      *type_found = type = QUAL_DECL_TYPE (decl);
	    }
	  /* We're trying to access the this from somewhere else. Make sure
	     it's allowed before doing so. */
	  else
	    {
	      if (!enclosing_context_p (type, current_class))
		{
		  char *p  = xstrdup (lang_printable_name (type, 0));
		  parse_error_context (qual_wfl, "Can't use variable %<%s.this%>: type %qs isn't an outer type of type %qs",
				       p, p,
				       lang_printable_name (current_class, 0));
		  free (p);
		  return 1;
		}
	      from_qualified_this = 1;
	      /* If there's nothing else after that, we need to
                 produce something now, otherwise, the section of the
                 code that needs to produce <T>.this will generate
                 what is necessary. */
	      if (!TREE_CHAIN (q))
		{
		  decl = build_access_to_thisn (current_class, type, 0);
		  *where_found = decl = java_complete_tree (decl);
		  *type_found = type = TREE_TYPE (decl);
		}
	    }

	  from_type = 0;
	  continue;
	}

      /* 15.10.2 Accessing Superclass Members using SUPER */
      if (TREE_CODE (qual_wfl) == EXPR_WITH_FILE_LOCATION
	  && EXPR_WFL_NODE (qual_wfl) == super_identifier_node)
	{
	  tree node;
	  /* Check on the restricted use of SUPER */
	  if (METHOD_STATIC (current_function_decl)
	      || current_class == object_type_node)
	    {
	      parse_error_context
		(wfl, "Keyword %<super%> used outside allowed context");
	      return 1;
	    }
	  /* Otherwise, treat SUPER as (SUPER_CLASS)THIS */
	  node = build_cast (EXPR_WFL_LINECOL (qual_wfl),
			     CLASSTYPE_SUPER (current_class),
			     build_this (EXPR_WFL_LINECOL (qual_wfl)));
	  *where_found = decl = java_complete_tree (node);
	  if (decl == error_mark_node)
	    return 1;
	  *type_found = type = QUAL_DECL_TYPE (decl);
	  from_super = from_type = 1;
	  continue;
	}

      /* 15.13.1: Can't search for field name in packages, so we
	 assume a variable/class name was meant. */
      if (RESOLVE_PACKAGE_NAME_P (qual_wfl))
	{
	  tree name;
	  if ((decl = resolve_package (wfl, &q, &name)))
	    {
	      tree list;
	      *where_found = decl;

	      check_pkg_class_access (DECL_NAME (decl), qual_wfl, true, NULL);

	      /* We want to be absolutely sure that the class is laid
                 out. We're going to search something inside it. */
	      *type_found = type = TREE_TYPE (decl);
	      layout_class (type);
	      from_type = 1;

	      /* Fix them all the way down, if any are left. */
	      if (q)
		{
		  list = TREE_CHAIN (q);
		  while (list)
		    {
		      RESOLVE_PACKAGE_NAME_P (QUAL_WFL (list)) = 0;
		      list = TREE_CHAIN (list);
		    }
		}
	    }
	  else
	    {
	      if (from_super || from_cast)
		parse_error_context
		  ((from_cast ? qual_wfl : wfl),
		   "No variable %qs defined in class %qs",
		   IDENTIFIER_POINTER (EXPR_WFL_NODE (qual_wfl)),
		   lang_printable_name (type, 0));
	      else
		parse_error_context
		  (qual_wfl, "Undefined variable or class name: %qs",
		   IDENTIFIER_POINTER (name));
	      return 1;
	    }
	}

      /* We have a type name. It's been already resolved when the
	 expression was qualified. */
      else if (RESOLVE_TYPE_NAME_P (qual_wfl) && QUAL_RESOLUTION (q))
	{
	  decl = QUAL_RESOLUTION (q);

	  /* Sneak preview. If next we see a `new', we're facing a
	     qualification which resulted in a type being selected
	     instead of a field.  Report the error.  */
	  if(TREE_CHAIN (q)
	     && TREE_CODE (TREE_PURPOSE (TREE_CHAIN (q))) == NEW_CLASS_EXPR)
	    {
	      parse_error_context (qual_wfl, "Undefined variable %qs",
				   IDENTIFIER_POINTER (EXPR_WFL_NODE (wfl)));
	      return 1;
	    }

	  check_pkg_class_access (DECL_NAME (decl), qual_wfl, true, NULL);
          
	  check_deprecation (qual_wfl, decl);

	  type = TREE_TYPE (decl);
	  from_type = 1;
	}
      /* We resolve an expression name */
      else
	{
	  tree field_decl = NULL_TREE;

	  /* If there exists an early resolution, use it. That occurs
	     only once and we know that there are more things to
	     come. Don't do that when processing something after SUPER
	     (we need more thing to be put in place below */
	  if (!from_super && QUAL_RESOLUTION (q))
	    {
	      decl = QUAL_RESOLUTION (q);
	      if (!type)
		{
		  if (TREE_CODE (decl) == FIELD_DECL
                      || TREE_CODE (decl) == VAR_DECL)
		    {
                      if (TREE_CODE (decl) == FIELD_DECL
                          && !FIELD_STATIC (decl))
                        {
               	          if (current_this)
                            *where_found = current_this;
                          else
                            {
                              static_ref_err (qual_wfl, DECL_NAME (decl),
                                              current_class);
                              return 1;
                            }
                        }
                      else
                        {
                          *where_found = TREE_TYPE (decl);
                          if (TREE_CODE (*where_found) == POINTER_TYPE)
                            *where_found = TREE_TYPE (*where_found);
                        }
                      if (nested_member_access_p (current_class, decl))
                        decl = build_nested_field_access (qual_wfl, decl);
		    }
		  else
		    {
		      *where_found = TREE_TYPE (decl);
		      if (TREE_CODE (*where_found) == POINTER_TYPE)
			*where_found = TREE_TYPE (*where_found);
		    }
		}
	    }

	  /* Report and error if we're using a numerical literal as a
             qualifier. It can only be an INTEGER_CST. */
	  else if (TREE_CODE (qual_wfl) == INTEGER_CST)
	    {
	      parse_error_context
		(wfl, "Can't use type %qs as a qualifier",
		 lang_printable_name (TREE_TYPE (qual_wfl), 0));
	      return 1;
	    }

	  /* We have to search for a field, knowing the type of its
             container. The flag FROM_TYPE indicates that we resolved
             the last member of the expression as a type name, which
             means that for the resolution of this field, we'll look
             for other errors than if it was resolved as a member of
             an other field. */
	  else
	    {
	      int is_static;
	      tree field_decl_type; /* For layout */

	      if (!from_type && !JREFERENCE_TYPE_P (type))
		{
		  parse_error_context
		    (qual_wfl, "Attempt to reference field %qs in %<%s %s%>",
		     IDENTIFIER_POINTER (EXPR_WFL_NODE (qual_wfl)),
		     lang_printable_name (type, 0),
		     IDENTIFIER_POINTER (DECL_NAME (decl)));
		  return 1;
		}

	      field_decl = lookup_field_wrapper (type,
						 EXPR_WFL_NODE (qual_wfl));

	      /* Maybe what we're trying to access to is an inner
		 class, only if decl is a TYPE_DECL. */
	      if (!field_decl && TREE_CODE (decl) == TYPE_DECL)
		{
		  tree ptr, inner_decl;

		  BUILD_PTR_FROM_NAME (ptr, EXPR_WFL_NODE (qual_wfl));
		  inner_decl = resolve_class (decl, ptr, NULL_TREE, qual_wfl);
		  if (inner_decl)
		    {
		      check_inner_class_access (inner_decl, decl, qual_wfl);
		      type = TREE_TYPE (inner_decl);
		      decl = inner_decl;
		      from_type = 1;
		      continue;
		    }
		}

	      if (field_decl == NULL_TREE)
		{
		  parse_error_context
		    (qual_wfl, "No variable %qs defined in type %qs",
		     IDENTIFIER_POINTER (EXPR_WFL_NODE (qual_wfl)),
		     GET_TYPE_NAME (type));
		  return 1;
		}
	      if (field_decl == error_mark_node)
		return 1;

	      /* Layout the type of field_decl, since we may need
                 it. Don't do primitive types or loaded classes. The
                 situation of non primitive arrays may not handled
                 properly here. FIXME */
	      if (TREE_CODE (TREE_TYPE (field_decl)) == POINTER_TYPE)
		field_decl_type = TREE_TYPE (TREE_TYPE (field_decl));
	      else
		field_decl_type = TREE_TYPE (field_decl);
	      if (!JPRIMITIVE_TYPE_P (field_decl_type)
		  && !CLASS_LOADED_P (field_decl_type)
		  && !TYPE_ARRAY_P (field_decl_type))
		resolve_and_layout (field_decl_type, NULL_TREE);

	      /* Check on accessibility here */
	      if (not_accessible_p (current_class, field_decl,
				    *type_found, from_super))
 		return not_accessible_field_error (qual_wfl,field_decl);    
	      check_deprecation (qual_wfl, field_decl);

	      /* There are things to check when fields are accessed
	         from type. There are no restrictions on a static
	         declaration of the field when it is accessed from an
	         interface */
	      is_static = FIELD_STATIC (field_decl);
	      if (!from_super && from_type
		  && !TYPE_INTERFACE_P (type)
		  && !is_static
		  && (current_function_decl
		      && METHOD_STATIC (current_function_decl)))
		{
		  static_ref_err (qual_wfl, EXPR_WFL_NODE (qual_wfl), type);
		  return 1;
		}
	      from_cast = from_super = 0;

	      /* If it's an access from a type but isn't static, we
		 make it relative to `this'. */
	      if (!is_static && from_type)
		decl = current_this;

	      /* If we need to generate something to get a proper
		 handle on what this field is accessed from, do it
		 now. */
	      if (!is_static)
		{
		  decl = maybe_access_field (decl, *where_found, *type_found);
		  if (decl == error_mark_node)
		    return 1;
		}

              /* We want to keep the location where we found it, and the
                 type we found.  */
	      *where_found = decl;
	      *type_found = type;

	      /* Generate the correct expression for field access from
		 qualified this */
	      if (from_qualified_this)
		{
		  field_decl
                    = build_nested_field_access (qual_wfl, field_decl);
		  from_qualified_this = 0;
		}

              /* If needed, generate accessors for static field access.  */
              if (is_static
                  && FIELD_PRIVATE (field_decl)
                  && flag_emit_class_files
                  && nested_member_access_p (current_class, field_decl))
                field_decl = build_nested_field_access (qual_wfl, field_decl);

	      /* This is the decl found and eventually the next one to
		 search from */
	      decl = field_decl;
	    }
	  from_type = 0;
	  type = QUAL_DECL_TYPE (decl);

	  /* Sneak preview. If decl is qualified by a `new', report
             the error here to be accurate on the peculiar construct */
	  if (TREE_CHAIN (q)
	      && TREE_CODE (TREE_PURPOSE (TREE_CHAIN (q))) == NEW_CLASS_EXPR
	      && !JREFERENCE_TYPE_P (type))
	    {
	      parse_error_context (qual_wfl, "Attempt to reference field %<new%> in a %qs",
				   lang_printable_name (type, 0));
	      return 1;
	    }
	}
      /* `q' might have changed due to a after package resolution
         re-qualification */
      if (!q)
	break;
    }
  *found_decl = decl;
  return 0;
}

/* 6.6 Qualified name and access control. Returns 1 if MEMBER (a decl)
   can't be accessed from REFERENCE (a record type). If MEMBER
   features a protected access, we then use WHERE which, if non null,
   holds the type of MEMBER's access that is checked against
   6.6.2.1. This function should be used when decl is a field or a
   method.  */

static int
not_accessible_p (tree reference, tree member, tree where, int from_super)
{
  int access_flag = get_access_flags_from_decl (member);
  bool is_static = false;
 
  if (TREE_CODE (member) == FIELD_DECL ||
      TREE_CODE (member) == VAR_DECL)
    is_static = FIELD_STATIC (member);
  else
    is_static = METHOD_STATIC (member);

  /* Access always granted for members declared public */
  if (access_flag & ACC_PUBLIC)
    return 0;

  /* Check access on protected members */
  if (access_flag & ACC_PROTECTED)
    {
      /* Access granted if it occurs from within the package
         containing the class in which the protected member is
         declared */
      if (class_in_current_package (DECL_CONTEXT (member)))
	return 0;

      /* If accessed with the form `super.member', then access is granted */
      if (from_super)
	return 0;

      /* If WHERE is active, access was made through a qualifier. For 
         non-static members, access is granted if the type of the qualifier 
	 is or is a sublass of the type the access is made from (6.6.2.1.)  */
      if (where && !is_static)
        {
	  while (reference)
            {
	      if (inherits_from_p (where, reference))
	        return 0;
	      if (INNER_CLASS_TYPE_P (reference))
		reference = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (reference)));
	      else
	        break;
	    }
	  return 1;
	}

      /* Otherwise, access is granted if occurring from within the class
         where member is declared, or a subclass of it.  */
      while (reference)
        {
          if (inherits_from_p (reference, DECL_CONTEXT (member)))
            return 0;
	  if (INNER_CLASS_TYPE_P (reference))
            reference = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (reference)));
	  else
	    break;
        }
      return 1;
    }

  /* Check access on private members. Access is granted only if it
     occurs from within the class in which it is declared -- that does
     it for innerclasses too. */
  if (access_flag & ACC_PRIVATE)
    {
      if (reference == DECL_CONTEXT (member) ||
          common_enclosing_context_p (DECL_CONTEXT (member), reference))
	return 0;
      return 1;
    }

  /* Default access is permitted only when occurring from within the
     package in which the context (MEMBER) is declared.  */
  return !class_in_current_package (DECL_CONTEXT (member));
}

/* Test deprecated decl access.  */
static void
check_deprecation (tree wfl, tree decl)
{
  const char *file;
  tree elt;

  if (! warn_deprecated)
    return;

  /* We want to look at the element type of arrays here, so we strip
     all surrounding array types.  */
  if (TYPE_ARRAY_P (TREE_TYPE (decl)))
    {
      elt = TREE_TYPE (decl);
      while (TYPE_ARRAY_P (elt))
	elt = TYPE_ARRAY_ELEMENT (elt);
      /* We'll end up with a pointer type, so we use TREE_TYPE to go
	 to the record.  */
      decl = TYPE_NAME (TREE_TYPE (elt));
    }
  file = DECL_SOURCE_FILE (decl);

  /* Complain if the field is deprecated and the file it was defined
     in isn't compiled at the same time the file which contains its
     use is */
  if (DECL_DEPRECATED (decl)
      && !IS_A_COMMAND_LINE_FILENAME_P (get_identifier (file)))
    {
      const char *the;
      switch (TREE_CODE (decl))
	{
	case FUNCTION_DECL:
	  the = "method";
	  break;
	case FIELD_DECL:
	case VAR_DECL:
	  the = "field";
	  break;
	case TYPE_DECL:
	  parse_warning_context (wfl, "The class %qs has been deprecated",
				 IDENTIFIER_POINTER (DECL_NAME (decl)));
	  return;
	default:
	  abort ();
	}
      /* Don't issue a message if the context as been deprecated as a
         whole. */
      if (! CLASS_DEPRECATED (TYPE_NAME (DECL_CONTEXT (decl))))
	parse_warning_context
	  (wfl, "The %s %qs in class %qs has been deprecated",
	   the, lang_printable_name (decl, 0),
	   IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl)))));
    }
}

/* Returns 1 if class was declared in the current package, 0 otherwise */

static int
class_in_current_package (tree class)
{
  if (TYPE_PACKAGE (current_class) == TYPE_PACKAGE (class))
    return 1;
  return 0;
}

/* This function may generate code to access DECL from WHERE. This is
   done only if certain conditions meet.  */

static tree
maybe_access_field (tree decl, tree where, tree type)
{
  if (TREE_CODE (decl) == FIELD_DECL && decl != current_this
      && !FIELD_STATIC (decl))
    decl = build_field_ref (where ? where : current_this,
			    (type ? type : DECL_CONTEXT (decl)),
			    DECL_NAME (decl));
  return decl;
}

/* Build a method invocation, by patching PATCH. If non NULL
   and according to the situation, PRIMARY and WHERE may be
   used. IS_STATIC is set to 1 if the invoked function is static. */

static tree
patch_method_invocation (tree patch, tree primary, tree where, int from_super,
			 int *is_static, tree *ret_decl)
{
  tree wfl = TREE_OPERAND (patch, 0);
  tree args = TREE_OPERAND (patch, 1);
  tree name = EXPR_WFL_NODE (wfl);
  tree list;
  int is_static_flag = 0;
  int is_super_init = 0;
  tree this_arg = NULL_TREE;
  int is_array_clone_call = 0;

  /* Should be overridden if everything goes well. Otherwise, if
     something fails, it should keep this value. It stop the
     evaluation of a bogus assignment. See java_complete_tree,
     MODIFY_EXPR: for the reasons why we sometimes want to keep on
     evaluating an assignment */
  TREE_TYPE (patch) = error_mark_node;

  /* Since lookup functions are messing with line numbers, save the
     context now.  */
  java_parser_context_save_global ();

  /* 15.11.1: Compile-Time Step 1: Determine Class or Interface to Search */

  /* Resolution of qualified name, excluding constructors */
  if (QUALIFIED_P (name) && !CALL_CONSTRUCTOR_P (patch))
    {
      tree identifier, identifier_wfl, type, resolved;
      /* Extract the last IDENTIFIER of the qualified
	 expression. This is a wfl and we will use it's location
	 data during error report. */
      identifier_wfl = cut_identifier_in_qualified (wfl);
      identifier = EXPR_WFL_NODE (identifier_wfl);

      /* Given the context, IDENTIFIER is syntactically qualified
	 as a MethodName. We need to qualify what's before */
      qualify_ambiguous_name (wfl);
      resolved = resolve_field_access (wfl, NULL, NULL);

      if (TREE_CODE (resolved) == VAR_DECL && FIELD_STATIC (resolved)
         && FIELD_FINAL (resolved)
         && !inherits_from_p (DECL_CONTEXT (resolved), current_class)
         && !flag_emit_class_files)
       resolved = build_class_init (DECL_CONTEXT (resolved), resolved);

      if (resolved == error_mark_node)
	PATCH_METHOD_RETURN_ERROR ();

      type = GET_SKIP_TYPE (resolved);
      resolve_and_layout (type, NULL_TREE);

      if (JPRIMITIVE_TYPE_P (type))
        {
	  parse_error_context
	    (identifier_wfl,
	     "Can't invoke a method on primitive type %qs",
	     IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))));
	  PATCH_METHOD_RETURN_ERROR ();
	}

      list = lookup_method_invoke (0, identifier_wfl, type, identifier, args);
      args = nreverse (args);

      /* We're resolving a call from a type */
      if (TREE_CODE (resolved) == TYPE_DECL)
	{
	  if (CLASS_INTERFACE (resolved))
	    {
	      parse_error_context
		(identifier_wfl,
		"Can't make static reference to method %qs in interface %qs",
		 IDENTIFIER_POINTER (identifier),
		 IDENTIFIER_POINTER (name));
	      PATCH_METHOD_RETURN_ERROR ();
	    }
	  if (list)
	    {
              if (METHOD_STATIC (list))
                maybe_use_access_method (0, &list, NULL);
              else
                {
                  char *fct_name = xstrdup (lang_printable_name (list, 2));
                  parse_error_context
                    (identifier_wfl,
                     "Can't make static reference to method %<%s %s%> in class %qs",
                     lang_printable_name (TREE_TYPE (TREE_TYPE (list)), 0),
                     fct_name,
                     IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))));
                  free (fct_name);
                  PATCH_METHOD_RETURN_ERROR ();
                }
	    }
	}
      else
	this_arg = primary = resolved;

      if (TYPE_ARRAY_P (type) && identifier == get_identifier ("clone"))
        is_array_clone_call = 1;

      /* IDENTIFIER_WFL will be used to report any problem further */
      wfl = identifier_wfl;
    }
  /* Resolution of simple names, names generated after a primary: or
     constructors */
  else
    {
      tree class_to_search = NULL_TREE;
      int lc;			/* Looking for Constructor */

      /* We search constructor in their target class */
      if (CALL_CONSTRUCTOR_P (patch))
	{
	  if (TREE_CODE (patch) == NEW_CLASS_EXPR)
	    class_to_search = EXPR_WFL_NODE (wfl);
	  else if (EXPR_WFL_NODE (TREE_OPERAND (patch, 0)) ==
		   this_identifier_node)
	    class_to_search = NULL_TREE;
	  else if (EXPR_WFL_NODE (TREE_OPERAND (patch, 0)) ==
		   super_identifier_node)
	    {
	      is_super_init = 1;
	      if (CLASSTYPE_SUPER (current_class))
		class_to_search =
		  DECL_NAME (TYPE_NAME (CLASSTYPE_SUPER (current_class)));
	      else
		{
		  parse_error_context (wfl, "Can't invoke super constructor on java.lang.Object");
		  PATCH_METHOD_RETURN_ERROR ();
		}
	    }

	  /* Class to search is NULL if we're searching the current one */
	  if (class_to_search)
	    {
	      class_to_search = resolve_and_layout (class_to_search, wfl);

	      if (!class_to_search)
		{
		  parse_error_context
		    (wfl, "Class %qs not found in type declaration",
		     IDENTIFIER_POINTER (EXPR_WFL_NODE (wfl)));
		  PATCH_METHOD_RETURN_ERROR ();
		}

	      /* Can't instantiate an abstract class, but we can
	         invoke it's constructor. It's use within the `new'
	         context is denied here. */
	      if (CLASS_ABSTRACT (class_to_search)
		  && TREE_CODE (patch) == NEW_CLASS_EXPR)
		{
		  parse_error_context
		    (wfl, "Class %qs is an abstract class. It can't be instantiated",
		     IDENTIFIER_POINTER (EXPR_WFL_NODE (wfl)));
		  PATCH_METHOD_RETURN_ERROR ();
		}

	      class_to_search = TREE_TYPE (class_to_search);
	    }
	  else
	    class_to_search = current_class;
	  lc = 1;
	}
      /* This is a regular search in the local class, unless an
         alternate class is specified. */
      else
	{
	  if (where != NULL_TREE)
	    class_to_search = where;
	  else if (QUALIFIED_P (name))
	    class_to_search = current_class;
	  else
	    {
	      class_to_search = current_class;

	      for (;;)
		{
		  if (has_method (class_to_search, name))
		    break;
		  if (! INNER_CLASS_TYPE_P (class_to_search))
		    {
		      parse_error_context (wfl,
					   "No method named %qs in scope",
					   IDENTIFIER_POINTER (name));
		      PATCH_METHOD_RETURN_ERROR ();
		    }
		  class_to_search
		    = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (class_to_search)));
		}
	    }
	  lc = 0;
	}

      /* NAME is a simple identifier or comes from a primary. Search
	 in the class whose declaration contain the method being
	 invoked. */
      resolve_and_layout (class_to_search, NULL_TREE);

      list = lookup_method_invoke (lc, wfl, class_to_search, name, args);
      /* Don't continue if no method were found, as the next statement
         can't be executed then. */
      if (!list)
	PATCH_METHOD_RETURN_ERROR ();

      if (TYPE_ARRAY_P (class_to_search)
          && DECL_NAME (list) == get_identifier ("clone"))
        is_array_clone_call = 1;

      /* Check for static reference of non static methods.  */
      if (check_for_static_method_reference (wfl, patch, list,
					     class_to_search, primary))
	PATCH_METHOD_RETURN_ERROR ();

      /* Check for inner classes creation from illegal contexts */
      if (lc && (INNER_CLASS_TYPE_P (class_to_search)
		 && !CLASS_STATIC (TYPE_NAME (class_to_search)))
	  && INNER_ENCLOSING_SCOPE_CHECK (class_to_search)
	  && !DECL_INIT_P (current_function_decl))
	{
	  parse_error_context
	    (wfl, "No enclosing instance for inner class %qs is in scope%s",
	     lang_printable_name (class_to_search, 0),
	     (!current_this ? "" :
	      "; an explicit one must be provided when creating this inner class"));
	  PATCH_METHOD_RETURN_ERROR ();
	}

      /* Non static methods are called with the current object extra
	 argument.  If PATCH is a `new TYPE()', the argument is the value
	 returned by the object allocator.  If method is resolved as a
	 primary, use the primary otherwise use the current THIS. */
      args = nreverse (args);
      if (TREE_CODE (patch) != NEW_CLASS_EXPR)
	{
	  this_arg = primary ? primary : current_this;

	  /* If we're using an access method, things are different.
	     There are two family of cases:

	     1) We're not generating bytecodes:

	     - LIST is non-static.  Its invocation is transformed from
	       x(a1,...,an) into this$<n>.x(a1,....an).
	     - LIST is static.  Its invocation is transformed from
	       x(a1,...,an) into TYPE_OF(this$<n>).x(a1,....an)

	     2) We're generating bytecodes:

	     - LIST is non-static.  Its invocation is transformed from
	       x(a1,....,an) into access$<n>(this$<n>,a1,...,an).
	     - LIST is static.  Its invocation is transformed from
	       x(a1,....,an) into TYPE_OF(this$<n>).x(a1,....an).

	     Of course, this$<n> can be arbitrarily complex, ranging from
	     this$0 (the immediate outer context) to
	     access$0(access$0(...(this$0))).

	     maybe_use_access_method returns a nonzero value if the
	     this_arg has to be moved into the (then generated) stub
	     argument list.  In the meantime, the selected function
	     might have been replaced by a generated stub.  */
          if (METHOD_STATIC (list))
            maybe_use_access_method (0, &list, NULL);
	  else if (!primary &&
	           maybe_use_access_method (is_super_init, &list, &this_arg))
	    {
	      args = tree_cons (NULL_TREE, this_arg, args);
	      this_arg = NULL_TREE; /* So it doesn't get chained twice */
	    }
	}
    }

  /* Merge point of all resolution schemes. If we have nothing, this
     is an error, already signaled */
  if (!list)
    PATCH_METHOD_RETURN_ERROR ();

  /* Check accessibility, position the is_static flag, build and
     return the call */
  if (not_accessible_p (DECL_CONTEXT (current_function_decl), list,
			(primary ? TREE_TYPE (TREE_TYPE (primary)) :
			 NULL_TREE), from_super)
      /* Calls to clone() on array types are permitted as a special-case. */
      && !is_array_clone_call)
    {
      const char *const fct_name = IDENTIFIER_POINTER (DECL_NAME (list));
      const char *const access =
	accessibility_string (get_access_flags_from_decl (list));
      const char *const klass =
	IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (list))));
      const char *const refklass =
	IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (current_class)));
      const char *const what = (DECL_CONSTRUCTOR_P (list)
				? "constructor" : "method");
      parse_error_context (wfl,
			   "Can't access %s %s %<%s.%s%> from %qs",
			   access, what, klass, fct_name, refklass);
      PATCH_METHOD_RETURN_ERROR ();
    }

  /* Deprecation check: check whether the method being invoked or the
     instance-being-created's type are deprecated.  */
  if (TREE_CODE (patch) == NEW_CLASS_EXPR)
    check_deprecation (wfl, TYPE_NAME (DECL_CONTEXT (list)));
  check_deprecation (wfl, list);

  /* If invoking a innerclass constructor, there are hidden parameters
     to pass */
  if (TREE_CODE (patch) == NEW_CLASS_EXPR
      && PURE_INNER_CLASS_TYPE_P (DECL_CONTEXT (list)))
    {
      /* And make sure we add the accessed local variables to be saved
	 in field aliases. */
      args = build_alias_initializer_parameter_list
	(AIPL_FUNCTION_CTOR_INVOCATION, DECL_CONTEXT (list), args, NULL);

      /* Secretly pass the current_this/primary as a second argument */
      if (primary || current_this)
	{
	  tree extra_arg;
	  tree this_type = (current_this ?
			    TREE_TYPE (TREE_TYPE (current_this)) : NULL_TREE);
	  /* Method's (list) enclosing context */
	  tree mec = DECL_CONTEXT (TYPE_NAME (DECL_CONTEXT (list)));
	  /* If we have a primary, use it. */
	  if (primary)
	    extra_arg = primary;
	  /* The current `this' is an inner class but isn't a direct
	     enclosing context for the inner class we're trying to
	     create. Build an access to the proper enclosing context
	     and use it. */
	  else if (current_this && PURE_INNER_CLASS_TYPE_P (this_type)
		   && this_type != TREE_TYPE (mec))
	    {

	      extra_arg = build_access_to_thisn (current_class,
						 TREE_TYPE (mec), 0);
	      extra_arg = java_complete_tree (extra_arg);
	    }
	  /* Otherwise, just use the current `this' as an enclosing
             context. */
	  else
	    extra_arg = current_this;
	  args = tree_cons (NULL_TREE, extra_arg, args);
	}
      else
	args = tree_cons (NULL_TREE, integer_zero_node, args);
    }

  /* This handles the situation where a constructor invocation needs
     to have an enclosing context passed as a second parameter (the
     constructor is one of an inner class). */
  if ((is_super_init ||
       (TREE_CODE (patch) == CALL_EXPR && name == this_identifier_node))
      && PURE_INNER_CLASS_TYPE_P (DECL_CONTEXT (list)))
    {
      tree dest = TYPE_NAME (DECL_CONTEXT (list));
      tree extra_arg =
	build_access_to_thisn (current_class, DECL_CONTEXT (dest), 0);
      extra_arg = java_complete_tree (extra_arg);
      args = tree_cons (NULL_TREE, extra_arg, args);
    }

  is_static_flag = METHOD_STATIC (list);
  if (! is_static_flag && this_arg != NULL_TREE)
    args = tree_cons (NULL_TREE, this_arg, args);

  /* In the context of an explicit constructor invocation, we can't
     invoke any method relying on `this'. Exceptions are: we're
     invoking a static function, primary exists and is not the current
     this, we're creating a new object. */
  if (ctxp->explicit_constructor_p
      && !is_static_flag
      && (!primary || primary == current_this)
      && (TREE_CODE (patch) != NEW_CLASS_EXPR))
    {
      parse_error_context (wfl, "Can't reference %<this%> before the superclass constructor has been called");
      PATCH_METHOD_RETURN_ERROR ();
    }
  java_parser_context_restore_global ();
  if (is_static)
    *is_static = is_static_flag;
  /* Sometimes, we want the decl of the selected method. Such as for
     EH checking */
  if (ret_decl)
    *ret_decl = list;
  patch = patch_invoke (patch, list, args);

  /* Now is a good time to insert the call to finit$ */
  if (is_super_init && CLASS_HAS_FINIT_P (current_class))
    {
      tree finit_parms, finit_call;

      /* Prepare to pass hidden parameters to finit$, if any. */
      finit_parms = build_alias_initializer_parameter_list
	(AIPL_FUNCTION_FINIT_INVOCATION, current_class, NULL_TREE, NULL);

      finit_call =
	build_method_invocation (build_wfl_node (finit_identifier_node),
				 finit_parms);

      /* Generate the code used to initialize fields declared with an
	 initialization statement and build a compound statement along
	 with the super constructor invocation. */
      CAN_COMPLETE_NORMALLY (patch) = 1;
      patch = build2 (COMPOUND_EXPR, void_type_node, patch,
		      java_complete_tree (finit_call));
    }
  return patch;
}

/* Check that we're not trying to do a static reference to a method in
   non static method. Return 1 if it's the case, 0 otherwise. */

static int
check_for_static_method_reference (tree wfl, tree node, tree method,
				   tree where, tree primary)
{
  if (METHOD_STATIC (current_function_decl)
      && !METHOD_STATIC (method) && !primary && !CALL_CONSTRUCTOR_P (node))
    {
      char *fct_name = xstrdup (lang_printable_name (method, 0));
      parse_error_context
	(wfl, "Can't make static reference to method %<%s %s%> in class %qs",
	 lang_printable_name (TREE_TYPE (TREE_TYPE (method)), 0), fct_name,
	 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (where))));
      free (fct_name);
      return 1;
    }
  return 0;
}

/* Fix the invocation of *MDECL if necessary in the case of an
   invocation across a nested class.  *THIS_ARG might be modified
   appropriately and an alternative access to *MDECL might be
   returned.  */

static int
maybe_use_access_method (int is_super_init, tree *mdecl, tree *this_arg)
{
  tree ctx;
  tree md = *mdecl, ta = NULL_TREE;
  int to_return = 0;
  int non_static_context = !METHOD_STATIC (md);

  if (is_super_init
      || DECL_FINIT_P (md)
      || DECL_INSTINIT_P (md)
      || !nested_member_access_p (current_class, md))
    return 0;

  /* If we're calling a method found in an enclosing class, generate
     what it takes to retrieve the right `this'.  Don't do that if we're
     invoking a static method.  Note that if MD's type is unrelated to
     CURRENT_CLASS, then the current this can be used. */

  if (non_static_context 
      && !inherits_from_p (current_class, DECL_CONTEXT (md))
      && DECL_CONTEXT (TYPE_NAME (current_class)))
    {
      ta = *this_arg;
      ctx = TREE_TYPE (DECL_CONTEXT (TYPE_NAME (current_class)));
      if (inherits_from_p (ctx, DECL_CONTEXT (md)))
	{
	  ta = build_current_thisn (current_class);
	  ta = build_wfl_node (ta);
	}
      else
	{
	  tree type = ctx;
	  while (type)
	    {
	      maybe_build_thisn_access_method (type);
	      if (inherits_from_p (type, DECL_CONTEXT (md)))
		{
		  ta = build_access_to_thisn (ctx, type, 0);
		  break;
		}
	      type = (DECL_CONTEXT (TYPE_NAME (type)) ?
		      TREE_TYPE (DECL_CONTEXT (TYPE_NAME (type))) : NULL_TREE);
	    }
	}
      ta = java_complete_tree (ta);
    }

  /* We might have to use an access method to get to MD. We can
     break the method access rule as long as we're not generating
     bytecode.  */
  if (METHOD_PRIVATE (md) && flag_emit_class_files)
    {
      md = build_nested_method_access_method (md);
      to_return = 1;
    }

  *mdecl = md;
  if (this_arg)
    *this_arg = ta;

  /* Returning a nonzero value indicates we were doing a non static
     method invocation that is now a static invocation. It will have
     callee displace `this' to insert it in the regular argument
     list. */
  return (non_static_context && to_return);
}

/* Patch an invoke expression METHOD and ARGS, based on its invocation
   mode.  */

static tree
patch_invoke (tree patch, tree method, tree args)
{
  tree dtable, func;
  tree original_call, t, ta;
  tree check = NULL_TREE;

  /* Last step for args: convert build-in types. If we're dealing with
     a new TYPE() type call, the first argument to the constructor
     isn't found in the incoming argument list, but delivered by
     `new' */
  t = TYPE_ARG_TYPES (TREE_TYPE (method));
  if (TREE_CODE (patch) == NEW_CLASS_EXPR)
    t = TREE_CHAIN (t);
  for (ta = args; t != end_params_node && ta;
       t = TREE_CHAIN (t), ta = TREE_CHAIN (ta))
    if (JPRIMITIVE_TYPE_P (TREE_TYPE (TREE_VALUE (ta))) &&
	TREE_TYPE (TREE_VALUE (ta)) != TREE_VALUE (t))
      TREE_VALUE (ta) = convert (TREE_VALUE (t), TREE_VALUE (ta));

  /* Resolve unresolved returned type issues */
  t = TREE_TYPE (TREE_TYPE (method));
  if (TREE_CODE (t) == POINTER_TYPE && !CLASS_LOADED_P (TREE_TYPE (t)))
    resolve_and_layout (TREE_TYPE (t), NULL);

  if (flag_emit_class_files)
    func = method;
  else
    {
      switch (invocation_mode (method, CALL_USING_SUPER (patch)))
	{
	case INVOKE_VIRTUAL:
	  {
	    tree signature = build_java_signature (TREE_TYPE (method));
	    tree special;
	    maybe_rewrite_invocation (&method, &args, &signature, &special);

	    dtable = invoke_build_dtable (0, args);
	    func = build_invokevirtual (dtable, method, special);
	  }
	  break;

	case INVOKE_NONVIRTUAL:
	  /* If the object for the method call is null, we throw an
	     exception.  We don't do this if the object is the current
	     method's `this'.  In other cases we just rely on an
	     optimization pass to eliminate redundant checks.  */
	  if (TREE_VALUE (args) != current_this)
	    {
	      /* We use a save_expr here to make sure we only evaluate
		 the new `self' expression once.  */
	      tree save_arg = save_expr (TREE_VALUE (args));
	      TREE_VALUE (args) = save_arg;
	      check = java_check_reference (save_arg, 1);
	    }
	  /* Fall through.  */

	case INVOKE_SUPER:
	case INVOKE_STATIC:
	  {
	    tree signature = build_java_signature (TREE_TYPE (method));
	    tree special;
	    maybe_rewrite_invocation (&method, &args, &signature, &special);
	    func = build_known_method_ref (method, TREE_TYPE (method),
					   DECL_CONTEXT (method),
					   signature, args, special);
	  }
	  break;

	case INVOKE_INTERFACE:
	  dtable = invoke_build_dtable (1, args);
	  func = build_invokeinterface (dtable, method);
	  break;

	default:
	  abort ();
	}

      /* Ensure self_type is initialized, (invokestatic). FIXME */
      func = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (method)), func);
    }

  TREE_TYPE (patch) = TREE_TYPE (TREE_TYPE (method));
  TREE_OPERAND (patch, 0) = func;
  TREE_OPERAND (patch, 1) = args;
  patch = check_for_builtin (method, patch);
  original_call = patch;

  /* We're processing a `new TYPE ()' form. New is called and its
     returned value is the first argument to the constructor. We build
     a COMPOUND_EXPR and use saved expression so that the overall NEW
     expression value is a pointer to a newly created and initialized
     class. */
  if (TREE_CODE (original_call) == NEW_CLASS_EXPR)
    {
      tree class = DECL_CONTEXT (method);
      tree c1, saved_new, new;
      tree alloc_node;

      if (flag_emit_class_files)
	{
	  TREE_TYPE (patch) = build_pointer_type (class);
	  return patch;
	}
      if (!TYPE_SIZE (class))
	safe_layout_class (class);
      alloc_node =
	(class_has_finalize_method (class) ? alloc_object_node
		  			   : alloc_no_finalizer_node);
      new = build3 (CALL_EXPR, promote_type (class),
		    build_address_of (alloc_node),
		    build_tree_list (NULL_TREE, build_class_ref (class)),
		    NULL_TREE);
      saved_new = save_expr (new);
      c1 = build_tree_list (NULL_TREE, saved_new);
      TREE_CHAIN (c1) = TREE_OPERAND (original_call, 1);
      TREE_OPERAND (original_call, 1) = c1;
      TREE_SET_CODE (original_call, CALL_EXPR);
      patch = build2 (COMPOUND_EXPR, TREE_TYPE (new), patch, saved_new);
    }

  /* If CHECK is set, then we are building a check to see if the object
     is NULL.  */
  if (check != NULL_TREE)
    {
      /* We have to call force_evaluation_order now because creating a
 	 COMPOUND_EXPR wraps the arg list in a way that makes it
 	 unrecognizable by force_evaluation_order later.  Yuk.  */
      patch = build2 (COMPOUND_EXPR, TREE_TYPE (patch), check, 
		      force_evaluation_order (patch));
      TREE_SIDE_EFFECTS (patch) = 1;
    }

  /* In order to be able to modify PATCH later, we SAVE_EXPR it and
     put it as the first expression of a COMPOUND_EXPR. The second
     expression being an empty statement to be later patched if
     necessary. We remember a TREE_LIST (the PURPOSE is the method,
     the VALUE is the compound) in a hashtable and return a
     COMPOUND_EXPR built so that the result of the evaluation of the
     original PATCH node is returned. */
  if (STATIC_CLASS_INIT_OPT_P ()
      && current_function_decl && METHOD_STATIC (method))
    {
      tree list;
      tree fndecl = current_function_decl;
      /* We have to call force_evaluation_order now because creating a
	 COMPOUND_EXPR wraps the arg list in a way that makes it
	 unrecognizable by force_evaluation_order later.  Yuk.  */
      tree save = force_evaluation_order (patch);
      tree type = TREE_TYPE (patch);

      patch = build2 (COMPOUND_EXPR, type, save, build_java_empty_stmt ());
      list = tree_cons (method, patch,
			DECL_FUNCTION_STATIC_METHOD_INVOCATION_COMPOUND (fndecl));

      DECL_FUNCTION_STATIC_METHOD_INVOCATION_COMPOUND (fndecl) = list;

      patch = build2 (COMPOUND_EXPR, type, patch, save);
    }

  return patch;
}

static int
invocation_mode (tree method, int super)
{
  int access = get_access_flags_from_decl (method);

  if (super)
    return INVOKE_SUPER;

  if (access & ACC_STATIC)
    return INVOKE_STATIC;

  /* We have to look for a constructor before we handle nonvirtual
     calls; otherwise the constructor will look nonvirtual.  */
  if (DECL_CONSTRUCTOR_P (method))
    return INVOKE_STATIC;

  if (access & ACC_PRIVATE)
    return INVOKE_NONVIRTUAL;

  /* Binary compatibility: just because it's final today, that doesn't
     mean it'll be final tomorrow.  */
  if (! flag_indirect_dispatch  
      || DECL_CONTEXT (method) == object_type_node)
    {
      if (access & ACC_FINAL)
	return INVOKE_NONVIRTUAL;

      if (CLASS_FINAL (TYPE_NAME (DECL_CONTEXT (method))))
	return INVOKE_NONVIRTUAL;
    }

  if (CLASS_INTERFACE (TYPE_NAME (DECL_CONTEXT (method))))
    return INVOKE_INTERFACE;

  return INVOKE_VIRTUAL;
}

/* Retrieve a refined list of matching methods. It covers the step
   15.11.2 (Compile-Time Step 2) */

static tree
lookup_method_invoke (int lc, tree cl, tree class, tree name, tree arg_list)
{
  tree atl = end_params_node;		/* Arg Type List */
  tree method, signature, list, node;
  const char *candidates;		/* Used for error report */
  char *dup;

  /* Fix the arguments */
  for (node = arg_list; node; node = TREE_CHAIN (node))
    {
      tree current_arg = TREE_TYPE (TREE_VALUE (node));
      /* Non primitive type may have to be resolved */
      if (!JPRIMITIVE_TYPE_P (current_arg))
	resolve_and_layout (current_arg, NULL_TREE);
      /* And promoted */
      if (TREE_CODE (current_arg) == RECORD_TYPE)
        current_arg = promote_type (current_arg);
      /* If we're building an anonymous constructor call, and one of
	 the arguments has array type, cast it to a size-less array
	 type.  This prevents us from getting a strange gcj-specific
	 "sized array" signature in the constructor's signature.  */
      if (lc && ANONYMOUS_CLASS_P (class)
	  && TREE_CODE (current_arg) == POINTER_TYPE
	  && TYPE_ARRAY_P (TREE_TYPE (current_arg)))
	{
	  tree elt = TYPE_ARRAY_ELEMENT (TREE_TYPE (current_arg));
	  current_arg = build_pointer_type (build_java_array_type (elt, -1));
	}
      atl = tree_cons (NULL_TREE, current_arg, atl);
    }

  /* Presto. If we're dealing with an anonymous class and a
     constructor call, generate the right constructor now, since we
     know the arguments' types. */

  if (lc && ANONYMOUS_CLASS_P (class))
    {
      tree mdecl = craft_constructor (TYPE_NAME (class), atl);
      /* The anonymous class may have already been laid out, so make sure
         the new constructor is laid out here.  */
      layout_class_method (class, CLASSTYPE_SUPER (class), mdecl, NULL_TREE);
    }

  /* Find all candidates and then refine the list, searching for the
     most specific method. */
  list = find_applicable_accessible_methods_list (lc, class, name, atl);
  list = find_most_specific_methods_list (list, class);
  if (list && !TREE_CHAIN (list))
    return TREE_VALUE (list);

  /* Issue an error. List candidates if any. Candidates are listed
     only if accessible (non accessible methods may end-up here for
     the sake of a better error report). */
  candidates = NULL;
  if (list)
    {
      tree current;
      obstack_grow (&temporary_obstack, ". Candidates are:\n", 18);
      for (current = list; current; current = TREE_CHAIN (current))
	{
	  tree cm = TREE_VALUE (current);
	  char string [4096];
	  if (!cm || not_accessible_p (class, cm, NULL_TREE, 0))
	    continue;
	  sprintf
	    (string, "  '%s' in '%s'%s",
	     get_printable_method_name (cm),
	     IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (DECL_CONTEXT (cm)))),
	     (TREE_CHAIN (current) ? "\n" : ""));
	  obstack_grow (&temporary_obstack, string, strlen (string));
	}
      obstack_1grow (&temporary_obstack, '\0');
      candidates = obstack_finish (&temporary_obstack);
    }
  /* Issue the error message */
  method = make_node (FUNCTION_TYPE);
  TYPE_ARG_TYPES (method) = atl;
  signature = build_java_argument_signature (method);
  dup = xstrdup (lang_printable_name (class, 0));
  parse_error_context (cl, "Can't find %s %<%s(%s)%> in type %qs%s",
		       (lc ? "constructor" : "method"),
		       (lc ? dup : IDENTIFIER_POINTER (name)),
		       IDENTIFIER_POINTER (signature), dup,
		       (candidates ? candidates : ""));
  free (dup);
  return NULL_TREE;
}

/* 15.11.2.1: Find Methods that are Applicable and Accessible. LC is 1
   when we're looking for a constructor. */

static tree
find_applicable_accessible_methods_list (int lc, tree class, tree name,
					 tree arglist)
{
  static htab_t searched_classes;
  static int search_not_done = 0;
  tree list = NULL_TREE, all_list = NULL_TREE;
  tree base_binfo;
  int i;

  /* Check the hash table to determine if this class has been searched
     already. */
  if (searched_classes)
    {
      if (htab_find (searched_classes, class) != NULL)
	return NULL;
    }
  else
    {
      searched_classes = htab_create (10, htab_hash_pointer,
				      htab_eq_pointer, NULL);
    }

  search_not_done++;
  *htab_find_slot (searched_classes, class, INSERT) = class;

  if (!CLASS_LOADED_P (class))
    {
      load_class (class, 1);
      safe_layout_class (class);
    }

  /* Search interfaces */
  if (TREE_CODE (TYPE_NAME (class)) == TYPE_DECL
      && CLASS_INTERFACE (TYPE_NAME (class)))
    {
      search_applicable_methods_list (lc, TYPE_METHODS (class),
				      name, arglist, &list, &all_list);
      for (i = 1; BINFO_BASE_ITERATE (TYPE_BINFO (class), i, base_binfo); i++)
	{
	  tree t = BINFO_TYPE (base_binfo);
	  tree rlist;
	  
	  rlist = find_applicable_accessible_methods_list (lc,  t, name,
							   arglist);
	  list = chainon (rlist, list);
	}
    }
  /* Search classes */
  else
    {
      search_applicable_methods_list (lc, TYPE_METHODS (class),
				      name, arglist, &list, &all_list);

      /* When looking finit$, class$ or instinit$, we turn LC to 1 so
	 that we only search in class. Note that we should have found
	 something at this point. */
      if (ID_FINIT_P (name) || ID_CLASSDOLLAR_P (name) || ID_INSTINIT_P (name))
	{
	  lc = 1;
	  if (!list)
	    abort ();
	}

      /* We must search all interfaces of this class */
      if (!lc)
	{
	  for (i = 1;
	       BINFO_BASE_ITERATE (TYPE_BINFO (class), i, base_binfo); i++)
	    {
	      tree t = BINFO_TYPE (base_binfo);
	      if (t != object_type_node)
		{
		  tree rlist
		    = find_applicable_accessible_methods_list (lc, t,
							       name, arglist);
		  list = chainon (rlist, list);
		}
	    }
	}

      /* Search superclass */
      if (!lc && CLASSTYPE_SUPER (class) != NULL_TREE)
	{
          tree rlist;
          class = CLASSTYPE_SUPER (class);
          rlist = find_applicable_accessible_methods_list (lc, class,
                                                           name, arglist);
          list = chainon (rlist, list);
        }
    }

  search_not_done--;

  /* We're done. Reset the searched classes list and finally search
     java.lang.Object if it wasn't searched already. */
  if (!search_not_done)
    {
      if (!lc
	  && TYPE_METHODS (object_type_node)
	  && htab_find (searched_classes, object_type_node) == NULL)
	{
          search_applicable_methods_list (lc,
                                          TYPE_METHODS (object_type_node),
                                          name, arglist, &list, &all_list);
        }
      htab_delete (searched_classes);
      searched_classes = NULL;
    }

  /* Either return the list obtained or all selected (but
     inaccessible) methods for better error report. */
  return (!list ? all_list : list);
}

/* Effectively search for the appropriate method in method */

static void
search_applicable_methods_list (int lc, tree method, tree name, tree arglist,
				tree *list, tree *all_list)
{
  for (; method; method = TREE_CHAIN (method))
    {
      /* When dealing with constructor, stop here, otherwise search
         other classes */
      if (lc && !DECL_CONSTRUCTOR_P (method))
	continue;
      else if (!lc && (DECL_CONSTRUCTOR_P (method)
		       || (DECL_NAME (method) != name)))
	continue;

      if (argument_types_convertible (method, arglist))
	{
	  /* Retain accessible methods only */
	  if (!not_accessible_p (DECL_CONTEXT (current_function_decl),
				 method, NULL_TREE, 0))
	    *list = tree_cons (NULL_TREE, method, *list);
	  else
	    /* Also retain all selected method here */
	    *all_list = tree_cons (NULL_TREE, method, *list);
	}
    }
}

/* 15.11.2.2 Choose the Most Specific Method */

static tree
find_most_specific_methods_list (tree list, tree class)
{
  int max = 0;
  int abstract, candidates;
  tree current, new_list = NULL_TREE;
  for (current = list; current; current = TREE_CHAIN (current))
    {
      tree method;
      DECL_SPECIFIC_COUNT (TREE_VALUE (current)) = 0;

      for (method = list; method; method = TREE_CHAIN (method))
	{
	  tree method_v, current_v;
	  /* Don't test a method against itself */
	  if (method == current)
	    continue;

	  method_v = TREE_VALUE (method);
	  current_v = TREE_VALUE (current);

	  /* Compare arguments and location where methods where declared */
	  if (argument_types_convertible (method_v, current_v))
	    {
	      /* We have a rather odd special case here.  The front
		 end doesn't properly implement inheritance, so we
		 work around it here.  The idea is, if we are
		 comparing a method declared in a class to one
		 declared in an interface, and the invocation's
		 qualifying class is a class (and not an interface),
		 then we consider the method's class to be the
		 qualifying class of the invocation.  This lets us
		 fake the result of ordinary inheritance.  */
	      tree context_v = DECL_CONTEXT (current_v);
	      if (TYPE_INTERFACE_P (DECL_CONTEXT (method_v))
		  && ! TYPE_INTERFACE_P (context_v)
		  && ! TYPE_INTERFACE_P (class))
		context_v = class;

	      if (valid_method_invocation_conversion_p
		  (DECL_CONTEXT (method_v), context_v))
		{
		  int v = (DECL_SPECIFIC_COUNT (current_v) += 1);
		  max = (v > max ? v : max);
		}
	    }
	}
    }

  /* Review the list and select the maximally specific methods */
  for (current = list, abstract = -1, candidates = -1;
       current; current = TREE_CHAIN (current))
    if (DECL_SPECIFIC_COUNT (TREE_VALUE (current)) == max)
      {
	new_list = tree_cons (NULL_TREE, TREE_VALUE (current), new_list);
	abstract += (METHOD_ABSTRACT (TREE_VALUE (current)) ? 1 : 0);
	candidates++;
      }

  /* If we have several and they're all abstract, just pick the
     closest one. */
  if (candidates > 0 && candidates == abstract)
    {
      /* FIXME: merge the throws clauses.  There is no convenient way
	 to do this in gcj right now, since ideally we'd like to
	 introduce a new METHOD_DECL here, but that is really not
	 possible.  */
      new_list = nreverse (new_list);
      TREE_CHAIN (new_list) = NULL_TREE;
      return new_list;
    }

  /* We have several (we couldn't find a most specific), all but one
     are abstract, we pick the only non abstract one. */
  if (candidates > 0 && (candidates == abstract+1))
    {
      for (current = new_list; current; current = TREE_CHAIN (current))
	if (!METHOD_ABSTRACT (TREE_VALUE (current)))
	  {
	    TREE_CHAIN (current) = NULL_TREE;
	    new_list = current;
	  }
    }

  /* If we can't find one, lower expectations and try to gather multiple
     maximally specific methods */
  while (!new_list && max)
    {
      while (--max > 0)
	{
	  if (DECL_SPECIFIC_COUNT (TREE_VALUE (current)) == max)
	    new_list = tree_cons (NULL_TREE, TREE_VALUE (current), new_list);
	}
    }

  return new_list;
}

/* Make sure that the type of each M2_OR_ARGLIST arguments can be
   converted by method invocation conversion (5.3) to the type of the
   corresponding parameter of M1. Implementation expects M2_OR_ARGLIST
   to change less often than M1. */

static GTY(()) tree m2_arg_value;
static GTY(()) tree m2_arg_cache;

static int
argument_types_convertible (tree m1, tree m2_or_arglist)
{
  tree m1_arg, m2_arg;

  SKIP_THIS_AND_ARTIFICIAL_PARMS (m1_arg, m1)

  if (m2_arg_value == m2_or_arglist)
    m2_arg = m2_arg_cache;
  else
    {
      /* M2_OR_ARGLIST can be a function DECL or a raw list of
         argument types */
      if (m2_or_arglist && TREE_CODE (m2_or_arglist) == FUNCTION_DECL)
	{
	  m2_arg = TYPE_ARG_TYPES (TREE_TYPE (m2_or_arglist));
	  if (!METHOD_STATIC (m2_or_arglist))
	    m2_arg = TREE_CHAIN (m2_arg);
	}
      else
	m2_arg = m2_or_arglist;

      m2_arg_value = m2_or_arglist;
      m2_arg_cache = m2_arg;
    }

  while (m1_arg != end_params_node && m2_arg != end_params_node)
    {
      resolve_and_layout (TREE_VALUE (m1_arg), NULL_TREE);
      if (!valid_method_invocation_conversion_p (TREE_VALUE (m1_arg),
						 TREE_VALUE (m2_arg)))
	break;
      m1_arg = TREE_CHAIN (m1_arg);
      m2_arg = TREE_CHAIN (m2_arg);
    }
  return m1_arg == end_params_node && m2_arg == end_params_node;
}

/* Qualification routines */

/* Given a name x.y.z, look up x locally.  If it's found, save the
   decl.  If it's not found, mark the name as RESOLVE_PACKAGE_NAME_P,
   so that we later try and load the appropriate classes.  */
static void
qualify_ambiguous_name (tree id)
{
  tree name, decl;

  /* We inspect the first item of the qualification list.  As a sanity
     check, make sure that it is an identfier node.  */
  tree qual = EXPR_WFL_QUALIFICATION (id);
  tree qual_wfl = QUAL_WFL (qual);

  if (TREE_CODE (qual_wfl) != EXPR_WITH_FILE_LOCATION)
    return;

  name = EXPR_WFL_NODE (qual_wfl);

  /* If we don't have an identifier, or we have a 'this' or 'super',
     then field access processing is all we need : there is nothing
     for us to do.  */
  if (!name || TREE_CODE (name) != IDENTIFIER_NODE ||
      name == this_identifier_node ||
      name == super_identifier_node)
    return;

  /* If name appears within the scope of a local variable declaration
     or parameter declaration, or is a field within an enclosing
     class, then it is an expression name.  Save the decl and let
     resolve_field_access do it's work.  */
  if ((decl = IDENTIFIER_LOCAL_VALUE (name)) ||
      (decl = lookup_field_wrapper (current_class, name)))
    {
      QUAL_RESOLUTION (qual) = decl;
      return;
    }

  /* If name is a known class name (either declared or imported), mark
     us as a type name.  */
  if ((decl = resolve_and_layout (name, NULL_TREE)))
    {
      RESOLVE_TYPE_NAME_P (qual_wfl) = 1;
      QUAL_RESOLUTION (qual) = decl;
    }

  /* Check here that NAME isn't declared by more than one
     type-import-on-demand declaration of the compilation unit
     containing NAME. FIXME */

  /* We couldn't find a declaration for the name.  Assume for now that
     we have a qualified class name that needs to be loaded from an
     external class file.  */
  else
    RESOLVE_PACKAGE_NAME_P (qual_wfl) = 1;

  /* Propagate the qualification across other components of the
     qualified name */
  for (qual = TREE_CHAIN (qual); qual;
       qual_wfl = QUAL_WFL (qual), qual = TREE_CHAIN (qual))
    {
      if (RESOLVE_PACKAGE_NAME_P (qual_wfl))
	RESOLVE_PACKAGE_NAME_P (QUAL_WFL (qual)) = 1;
    }

  /* Store the global qualification for the ambiguous part of ID back
     into ID fields */
  if (RESOLVE_TYPE_NAME_P (qual_wfl))
    RESOLVE_TYPE_NAME_P (id) = 1;
  else if (RESOLVE_PACKAGE_NAME_P (qual_wfl))
    RESOLVE_PACKAGE_NAME_P (id) = 1;
}

/* Patch tree nodes in a function body. When a BLOCK is found, push
   local variable decls if present.
   Same as java_complete_lhs, but does resolve static finals to values. */

static tree
java_complete_tree (tree node)
{
  node = java_complete_lhs (node);
  if (JDECL_P (node) && CLASS_FINAL_VARIABLE_P (node)
      && DECL_INITIAL (node) != NULL_TREE)
    {
      tree value = fold_constant_for_init (node, node);
      if (value != NULL_TREE)
	return value;
    }
  return node;
}

static tree
java_stabilize_reference (tree node)
{
  if (TREE_CODE (node) == COMPOUND_EXPR)
    {
      tree op0 = TREE_OPERAND (node, 0);
      tree op1 = TREE_OPERAND (node, 1);
      TREE_OPERAND (node, 0) = save_expr (op0);
      TREE_OPERAND (node, 1) = java_stabilize_reference (op1);
      return node;
    }
  return stabilize_reference (node);
}

/* Patch tree nodes in a function body. When a BLOCK is found, push
   local variable decls if present.
   Same as java_complete_tree, but does not resolve static finals to values. */

static tree
java_complete_lhs (tree node)
{
  tree nn, cn, wfl_op1, wfl_op2, wfl_op3;
  int flag;

  /* CONVERT_EXPR always has its type set, even though it needs to be
     worked out. */
  if (TREE_TYPE (node) && TREE_CODE (node) != CONVERT_EXPR)
    return node;

  /* The switch block implements cases processing container nodes
     first.  Contained nodes are always written back. Leaves come
     next and return a value. */
  switch (TREE_CODE (node))
    {
    case BLOCK:

      /* 1- Block section.
	 Set the local values on decl names so we can identify them
	 faster when they're referenced. At that stage, identifiers
	 are legal so we don't check for declaration errors. */
      for (cn = BLOCK_EXPR_DECLS (node); cn; cn = TREE_CHAIN (cn))
	{
	  DECL_CONTEXT (cn) = current_function_decl;
	  IDENTIFIER_LOCAL_VALUE (DECL_NAME (cn)) = cn;
	}
      if (BLOCK_EXPR_BODY (node) == NULL_TREE)
	  CAN_COMPLETE_NORMALLY (node) = 1;
      else
	{
	  tree stmt = BLOCK_EXPR_BODY (node);
	  tree *ptr;
	  int error_seen = 0;
	  if (TREE_CODE (stmt) == COMPOUND_EXPR)
	    {
	      /* Re-order from (((A; B); C); ...; Z) to
		 (A; (B; (C ; (...; Z)))).
		 This makes it easier to scan the statements left-to-right
		 without using recursion (which might overflow the stack
		 if the block has many statements. */
	      for (;;)
		{
		  tree left = TREE_OPERAND (stmt, 0);
		  if (TREE_CODE (left) != COMPOUND_EXPR)
		    break;
		  TREE_OPERAND (stmt, 0) = TREE_OPERAND (left, 1);
		  TREE_OPERAND (left, 1) = stmt;
		  stmt = left;
		}
	      BLOCK_EXPR_BODY (node) = stmt;
	    }

	  /* Now do the actual complete, without deep recursion for
             long blocks. */
	  ptr = &BLOCK_EXPR_BODY (node);
	  while (TREE_CODE (*ptr) == COMPOUND_EXPR
		 && !IS_EMPTY_STMT (TREE_OPERAND (*ptr, 1)))
	    {
	      tree cur = java_complete_tree (TREE_OPERAND (*ptr, 0));
	      tree *next = &TREE_OPERAND (*ptr, 1);
	      TREE_OPERAND (*ptr, 0) = cur;
	      if (IS_EMPTY_STMT (cur))
		{
		  /* Optimization;  makes it easier to detect empty bodies.
		     Most useful for <clinit> with all-constant initializer. */
		  *ptr = *next;
		  continue;
		}
	      if (TREE_CODE (cur) == ERROR_MARK)
		error_seen++;
	      else if (! CAN_COMPLETE_NORMALLY (cur))
		{
		  wfl_op2 = *next;
		  for (;;)
		    {
		      if (TREE_CODE (wfl_op2) == BLOCK)
			wfl_op2 = BLOCK_EXPR_BODY (wfl_op2);
		      else if (TREE_CODE (wfl_op2) == COMPOUND_EXPR)
			wfl_op2 = TREE_OPERAND (wfl_op2, 0);
		      else
			break;
		    }
		  if (TREE_CODE (wfl_op2) != CASE_EXPR
		      && TREE_CODE (wfl_op2) != DEFAULT_EXPR)
		    unreachable_stmt_error (*ptr);
		}
	      if (TREE_TYPE (*ptr) == NULL_TREE)
		TREE_TYPE (*ptr) = void_type_node;
	      ptr = next;
	    }
	  *ptr = java_complete_tree (*ptr);

	  if (TREE_CODE (*ptr) == ERROR_MARK || error_seen > 0)
	    return error_mark_node;
	  CAN_COMPLETE_NORMALLY (node) = CAN_COMPLETE_NORMALLY (*ptr);
	}
      /* Turn local bindings to null */
      for (cn = BLOCK_EXPR_DECLS (node); cn; cn = TREE_CHAIN (cn))
	IDENTIFIER_LOCAL_VALUE (DECL_NAME (cn)) = NULL_TREE;

      TREE_TYPE (node) = void_type_node;
      break;

      /* 2- They are expressions but ultimately deal with statements */

    case THROW_EXPR:
      wfl_op1 = TREE_OPERAND (node, 0);
      COMPLETE_CHECK_OP_0 (node);
      /* 14.19 A throw statement cannot complete normally. */
      CAN_COMPLETE_NORMALLY (node) = 0;
      return patch_throw_statement (node, wfl_op1);

    case SYNCHRONIZED_EXPR:
      wfl_op1 = TREE_OPERAND (node, 0);
      return patch_synchronized_statement (node, wfl_op1);

    case TRY_EXPR:
      return patch_try_statement (node);

    case TRY_FINALLY_EXPR:
      COMPLETE_CHECK_OP_0 (node);
      COMPLETE_CHECK_OP_1 (node);
      if (IS_EMPTY_STMT (TREE_OPERAND (node, 0)))
	/* Reduce try/finally nodes with an empty try block.  */
	return TREE_OPERAND (node, 1);
      if (IS_EMPTY_STMT (TREE_OPERAND (node, 1)))
	/* Likewise for an empty finally block.  */
	return TREE_OPERAND (node, 0);
      CAN_COMPLETE_NORMALLY (node)
	= (CAN_COMPLETE_NORMALLY (TREE_OPERAND (node, 0))
	   && CAN_COMPLETE_NORMALLY (TREE_OPERAND (node, 1)));
      TREE_TYPE (node) = TREE_TYPE (TREE_OPERAND (node, 0));
      return node;

    case LABELED_BLOCK_EXPR:
      PUSH_LABELED_BLOCK (node);
      if (LABELED_BLOCK_BODY (node))
	COMPLETE_CHECK_OP_1 (node);
      TREE_TYPE (node) = void_type_node;
      POP_LABELED_BLOCK ();

      if (IS_EMPTY_STMT (LABELED_BLOCK_BODY (node)))
	{
	  LABELED_BLOCK_BODY (node) = NULL_TREE;
	  CAN_COMPLETE_NORMALLY (node) = 1;
	}
      else if (CAN_COMPLETE_NORMALLY (LABELED_BLOCK_BODY (node)))
	CAN_COMPLETE_NORMALLY (node) = 1;
      return node;

    case EXIT_BLOCK_EXPR:
      return patch_bc_statement (node);

    case CASE_EXPR:
      cn = java_complete_tree (TREE_OPERAND (node, 0));
      if (cn == error_mark_node)
	return cn;

      /* First, the case expression must be constant. Values of final
         fields are accepted. */
      nn = fold_constant_for_init (cn, NULL_TREE);
      if (nn != NULL_TREE)
	cn = nn;

      cn = fold (cn);
      if ((TREE_CODE (cn) == COMPOUND_EXPR
	   || TREE_CODE (cn) == COMPONENT_REF)
	  && JDECL_P (TREE_OPERAND (cn, 1))
	  && FIELD_FINAL (TREE_OPERAND (cn, 1))
	  && DECL_INITIAL (TREE_OPERAND (cn, 1)))
	{
	  cn = fold_constant_for_init (DECL_INITIAL (TREE_OPERAND (cn, 1)),
				       TREE_OPERAND (cn, 1));
	}
      /* Accept final locals too. */
      else if (TREE_CODE (cn) == VAR_DECL && DECL_FINAL (cn) 
	       && DECL_INITIAL (cn))
	cn = fold_constant_for_init (DECL_INITIAL (cn), cn);

      if (!TREE_CONSTANT (cn))
	{
	  EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node);
	  parse_error_context (node, "Constant expression required");
	  return error_mark_node;
	}

      nn = ctxp->current_loop;

      /* It must be assignable to the type of the switch expression. */
      if (!try_builtin_assignconv (NULL_TREE,
				   TREE_TYPE (TREE_OPERAND (nn, 0)), cn))
	{
	  EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node);
	  parse_error_context
	    (wfl_operator,
	     "Incompatible type for case. Can't convert %qs to %<int%>",
	     lang_printable_name (TREE_TYPE (cn), 0));
	  return error_mark_node;
	}

      cn = fold (convert (int_type_node, cn));
      TREE_CONSTANT_OVERFLOW (cn) = 0;
      CAN_COMPLETE_NORMALLY (cn) = 1;

      /* Save the label on a list so that we can later check for
	 duplicates.  */
      case_label_list = tree_cons (node, cn, case_label_list);

      /* Multiple instance of a case label bearing the same value is
	 checked later. The case expression is all right so far. */
      if (TREE_CODE (cn) == VAR_DECL)
	cn = DECL_INITIAL (cn);
      TREE_OPERAND (node, 0) = cn;
      TREE_TYPE (node) = void_type_node;
      CAN_COMPLETE_NORMALLY (node) = 1;
      TREE_SIDE_EFFECTS (node) = 1;
      break;

    case DEFAULT_EXPR:
      nn = ctxp->current_loop;
      /* Only one default label is allowed per switch statement */
      if (SWITCH_HAS_DEFAULT (nn))
	{
#ifdef USE_MAPPED_LOCATION
	  SET_EXPR_LOCATION (wfl_operator, EXPR_LOCATION (node));
#else
	  EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node);
#endif
	  parse_error_context (wfl_operator,
			       "Duplicate case label: %<default%>");
	  return error_mark_node;
	}
      else
	SWITCH_HAS_DEFAULT (nn) = 1;
      TREE_TYPE (node) = void_type_node;
      TREE_SIDE_EFFECTS (node) = 1;
      CAN_COMPLETE_NORMALLY (node) = 1;
      break;

    case SWITCH_EXPR:
    case LOOP_EXPR:
      PUSH_LOOP (node);
      /* Check whether the loop was enclosed in a labeled
         statement. If not, create one, insert the loop in it and
         return the node */
      nn = patch_loop_statement (node);

      /* Anyways, walk the body of the loop */
      if (TREE_CODE (node) == LOOP_EXPR)
	TREE_OPERAND (node, 0) = java_complete_tree (TREE_OPERAND (node, 0));
      /* Switch statement: walk the switch expression and the cases */
      else
	node = patch_switch_statement (node);

      if (node == error_mark_node || TREE_OPERAND (node, 0) == error_mark_node)
	nn = error_mark_node;
      else
	{
	  TREE_TYPE (nn) = TREE_TYPE (node) = void_type_node;
	  /* If we returned something different, that's because we
	     inserted a label. Pop the label too. */
	  if (nn != node)
	    {
	      if (CAN_COMPLETE_NORMALLY (node))
		CAN_COMPLETE_NORMALLY (nn) = 1;
	      POP_LABELED_BLOCK ();
	    }
	}
      POP_LOOP ();
      return nn;

    case EXIT_EXPR:
      TREE_OPERAND (node, 0) = java_complete_tree (TREE_OPERAND (node, 0));
      return patch_exit_expr (node);

    case COND_EXPR:
      /* Condition */
      TREE_OPERAND (node, 0) = java_complete_tree (TREE_OPERAND (node, 0));
      if (TREE_OPERAND (node, 0) == error_mark_node)
	return error_mark_node;
      /* then-else branches */
      TREE_OPERAND (node, 1) = java_complete_tree (TREE_OPERAND (node, 1));
      if (TREE_OPERAND (node, 1) == error_mark_node)
	return error_mark_node;
      {
	/* This is a special case due to build_assertion().  When
	   assertions are disabled we build a COND_EXPR in which
	   Operand 1 is the body of the assertion.  If that happens to
	   be a string concatenation we'll need to patch it here.  */
	tree patched = patch_string (TREE_OPERAND (node, 1));
	if (patched)
	  TREE_OPERAND (node, 1) = patched;
      }
     TREE_OPERAND (node, 2) = java_complete_tree (TREE_OPERAND (node, 2));
      if (TREE_OPERAND (node, 2) == error_mark_node)
	return error_mark_node;
      return patch_if_else_statement (node);
      break;

    case CONDITIONAL_EXPR:
      /* Condition */
      wfl_op1 = TREE_OPERAND (node, 0);
      COMPLETE_CHECK_OP_0 (node);
      wfl_op2 = TREE_OPERAND (node, 1);
      COMPLETE_CHECK_OP_1 (node);
      wfl_op3 = TREE_OPERAND (node, 2);
      COMPLETE_CHECK_OP_2 (node);
      return patch_conditional_expr (node, wfl_op1, wfl_op2);

      /* 3- Expression section */
    case COMPOUND_EXPR:
      wfl_op2 = TREE_OPERAND (node, 1);
      TREE_OPERAND (node, 0) = nn =
	java_complete_tree (TREE_OPERAND (node, 0));
      if (IS_EMPTY_STMT (wfl_op2))
	CAN_COMPLETE_NORMALLY (node) = CAN_COMPLETE_NORMALLY (nn);
      else
	{
	  if (! CAN_COMPLETE_NORMALLY (nn) && TREE_CODE (nn) != ERROR_MARK)
	    {
	      /* An unreachable condition in a do-while statement
		 is *not* (technically) an unreachable statement. */
	      nn = wfl_op2;
	      if (TREE_CODE (nn) == EXPR_WITH_FILE_LOCATION)
		nn = EXPR_WFL_NODE (nn);
	      /* NN can be NULL_TREE exactly when UPDATE is, in
		 finish_for_loop.  */
	      if (nn != NULL_TREE && TREE_CODE (nn) != EXIT_EXPR)
		{
		  SET_WFL_OPERATOR (wfl_operator, node, wfl_op2);
		  if (SUPPRESS_UNREACHABLE_ERROR (nn))
		    {
		      /* Perhaps this warning should have an
			 associated flag.  The code being compiled is
			 pedantically correct, but useless.  */
		      parse_warning_context (wfl_operator,
					     "Unreachable statement");
		    }
		  else
		    parse_error_context (wfl_operator,
					 "Unreachable statement");
		}
	    }
	  TREE_OPERAND (node, 1) = java_complete_tree (TREE_OPERAND (node, 1));
	  if (TREE_OPERAND (node, 1) == error_mark_node)
	    return error_mark_node;
	  /* Even though we might allow the case where the first
	     operand doesn't return normally, we still should compute
	     CAN_COMPLETE_NORMALLY correctly.  */
	  CAN_COMPLETE_NORMALLY (node)
	    = (CAN_COMPLETE_NORMALLY (TREE_OPERAND (node, 0))
	       && CAN_COMPLETE_NORMALLY (TREE_OPERAND (node, 1)));
	}
      TREE_TYPE (node) = TREE_TYPE (TREE_OPERAND (node, 1));
      break;

    case RETURN_EXPR:
      /* CAN_COMPLETE_NORMALLY (node) = 0; */
      return patch_return (node);

    case EXPR_WITH_FILE_LOCATION:
      if (!EXPR_WFL_NODE (node) /* Or a PRIMARY flag ? */
	  || TREE_CODE (EXPR_WFL_NODE (node)) == IDENTIFIER_NODE)
	{
	  node = resolve_expression_name (node, NULL);
	  if (node == error_mark_node)
	    return node;
	  CAN_COMPLETE_NORMALLY (node) = 1;
	}
      else
	{
	  tree body;
	  location_t save_location = input_location;
#ifdef USE_MAPPED_LOCATION
	  input_location = EXPR_LOCATION (node);
	  if (input_location == UNKNOWN_LOCATION)
	    input_location = save_location;
#else
	  input_line = EXPR_WFL_LINENO (node);
#endif
	  body = java_complete_tree (EXPR_WFL_NODE (node));
	  input_location = save_location;
	  EXPR_WFL_NODE (node) = body;
	  TREE_SIDE_EFFECTS (node) = TREE_SIDE_EFFECTS (body);
	  CAN_COMPLETE_NORMALLY (node) = CAN_COMPLETE_NORMALLY (body);
	  if (IS_EMPTY_STMT (body) || TREE_CONSTANT (body))
	    {
	      /* Makes it easier to constant fold, detect empty bodies. */
	      return body;
	    }
	  if (body == error_mark_node)
	    {
	      /* Its important for the evaluation of assignment that
		 this mark on the TREE_TYPE is propagated. */
	      TREE_TYPE (node) = error_mark_node;
	      return error_mark_node;
	    }
	  else
	    TREE_TYPE (node) = TREE_TYPE (EXPR_WFL_NODE (node));

	}
      break;

    case NEW_ARRAY_EXPR:
      /* Patch all the dimensions */
      flag = 0;
      for (cn = TREE_OPERAND (node, 1); cn; cn = TREE_CHAIN (cn))
	{
	  int location = EXPR_WFL_LINECOL (TREE_VALUE (cn));
	  tree dim = convert (int_type_node,
			      java_complete_tree (TREE_VALUE (cn)));
	  if (dim == error_mark_node)
	    {
	      flag = 1;
	      continue;
	    }
	  else
	    {
	      TREE_VALUE (cn) = dim;
	      /* Setup the location of the current dimension, for
		 later error report. */
#ifdef USE_MAPPED_LOCATION
	      TREE_PURPOSE (cn) = expr_add_location (NULL_TREE, location, 0);
#else
	      TREE_PURPOSE (cn) =
		build_expr_wfl (NULL_TREE, input_filename, 0, 0);
	      EXPR_WFL_LINECOL (TREE_PURPOSE (cn)) = location;
#endif
	    }
	}
      /* They complete the array creation expression, if no errors
         were found. */
      CAN_COMPLETE_NORMALLY (node) = 1;
      return (flag ? error_mark_node
	      : force_evaluation_order (patch_newarray (node)));

    case NEW_ANONYMOUS_ARRAY_EXPR:
      /* Create the array type if necessary. */
      if (ANONYMOUS_ARRAY_DIMS_SIG (node))
	{
	  tree type = ANONYMOUS_ARRAY_BASE_TYPE (node);
	  if (!(type = resolve_type_during_patch (type)))
	    return error_mark_node;
	  type = build_array_from_name (type, NULL_TREE,
					ANONYMOUS_ARRAY_DIMS_SIG (node), NULL);
	  ANONYMOUS_ARRAY_BASE_TYPE (node) = build_pointer_type (type);
	}
      node = patch_new_array_init (ANONYMOUS_ARRAY_BASE_TYPE (node),
				   ANONYMOUS_ARRAY_INITIALIZER (node));
      if (node == error_mark_node)
	return error_mark_node;
      CAN_COMPLETE_NORMALLY (node) = 1;
      return node;

    case NEW_CLASS_EXPR:
    case CALL_EXPR:
      /* Complete function's argument(s) first */
      if (complete_function_arguments (node))
	return error_mark_node;
      else
	{
	  tree decl, wfl = TREE_OPERAND (node, 0);
	  int in_this = CALL_THIS_CONSTRUCTOR_P (node);
	  int from_super = (EXPR_WFL_NODE (TREE_OPERAND (node, 0)) ==
                           super_identifier_node);
	  tree arguments;
#ifdef USE_MAPPED_LOCATION
	  source_location location = EXPR_LOCATION (node);
#else
	  int location = EXPR_WFL_LINECOL (node);
#endif

	  node = patch_method_invocation (node, NULL_TREE, NULL_TREE,
					  from_super, 0, &decl);
	  if (node == error_mark_node)
	    return error_mark_node;

	  if (TREE_CODE (node) == CALL_EXPR
	      && TREE_OPERAND (node, 1) != NULL_TREE)
	    arguments = TREE_VALUE (TREE_OPERAND (node, 1));
	  else
	    arguments = NULL_TREE;
	  check_thrown_exceptions (location, decl, arguments);
	  /* If we call this(...), register signature and positions */
	  if (in_this)
	    DECL_CONSTRUCTOR_CALLS (current_function_decl) =
	      tree_cons (wfl, decl,
			 DECL_CONSTRUCTOR_CALLS (current_function_decl));
	  CAN_COMPLETE_NORMALLY (node) = 1;
	  return force_evaluation_order (node);
	}

    case MODIFY_EXPR:
      /* Save potential wfls */
      wfl_op1 = TREE_OPERAND (node, 0);
      TREE_OPERAND (node, 0) = nn = java_complete_lhs (wfl_op1);

      if (MODIFY_EXPR_FROM_INITIALIZATION_P (node)
	  && TREE_CODE (nn) == VAR_DECL && TREE_STATIC (nn)
	  && DECL_INITIAL (nn) != NULL_TREE)
	{
	  tree value;

	  value = fold_constant_for_init (nn, nn);

	  /* When we have a primitype type, or a string and we're not
             emitting a class file, we actually don't want to generate
             anything for the assignment. */
	  if (value != NULL_TREE && 
	      (JPRIMITIVE_TYPE_P (TREE_TYPE (value)) || 
	       (TREE_TYPE (value) == string_ptr_type_node &&
		! flag_emit_class_files)))
	    {
	      /* Prepare node for patch_assignment */
	      TREE_OPERAND (node, 1) = value;
	      /* Call patch assignment to verify the assignment */
	      if (patch_assignment (node, wfl_op1) == error_mark_node)
		return error_mark_node;
	      /* Set DECL_INITIAL properly (a conversion might have
                 been decided by patch_assignment) and return the
                 empty statement. */
	      else
		{
		  tree patched = patch_string (TREE_OPERAND (node, 1));
		  if (patched)
		    DECL_INITIAL (nn) = patched;
		  else
		    DECL_INITIAL (nn) = TREE_OPERAND (node, 1);
		  DECL_FIELD_FINAL_IUD (nn) = 1;
		  return build_java_empty_stmt ();
		}
	    }
	  if (! flag_emit_class_files)
	    DECL_INITIAL (nn) = NULL_TREE;
	}
      wfl_op2 = TREE_OPERAND (node, 1);

      if (TREE_OPERAND (node, 0) == error_mark_node)
	return error_mark_node;

      flag = COMPOUND_ASSIGN_P (wfl_op2);
      if (flag)
	{
	  /* This might break when accessing outer field from inner
             class. TESTME, FIXME */
	  tree lvalue = java_stabilize_reference (TREE_OPERAND (node, 0));

	  /* Hand stabilize the lhs on both places */
	  TREE_OPERAND (node, 0) = lvalue;
	  TREE_OPERAND (TREE_OPERAND (node, 1), 0) =
	    (flag_emit_class_files ? lvalue : save_expr (lvalue));

	  /* 15.25.2.a: Left hand is not an array access. FIXME */
	  /* Now complete the RHS. We write it back later on. */
	  nn = java_complete_tree (TREE_OPERAND (node, 1));

	  if ((cn = patch_string (nn)))
	    nn = cn;

	  /* The last part of the rewrite for E1 op= E2 is to have
	     E1 = (T)(E1 op E2), with T being the type of E1. */
	  nn = java_complete_tree (build_cast (EXPR_WFL_LINECOL (wfl_op2),
					       TREE_TYPE (lvalue), nn));

	  /* If the assignment is compound and has reference type,
	     then ensure the LHS has type String and nothing else.  */
	  if (JREFERENCE_TYPE_P (TREE_TYPE (lvalue))
	      && ! JSTRING_TYPE_P (TREE_TYPE (lvalue)))
	    parse_error_context (wfl_op2,
				 "Incompatible type for %<+=%>. Can't convert %qs to %<java.lang.String%>",
				 lang_printable_name (TREE_TYPE (lvalue), 0));

	  /* 15.25.2.b: Left hand is an array access. FIXME */
	}

      /* If we're about to patch a NEW_ARRAY_INIT, we call a special
	 function to complete this RHS. Note that a NEW_ARRAY_INIT
	 might have been already fully expanded if created as a result
	 of processing an anonymous array initializer. We avoid doing
	 the operation twice by testing whether the node already bears
	 a type. */
      else if (TREE_CODE (wfl_op2) == NEW_ARRAY_INIT && !TREE_TYPE (wfl_op2))
	nn = patch_new_array_init (TREE_TYPE (TREE_OPERAND (node, 0)),
				   TREE_OPERAND (node, 1));
      /* Otherwise we simply complete the RHS */
      else
	nn = java_complete_tree (TREE_OPERAND (node, 1));

      if (nn == error_mark_node)
	return error_mark_node;

      /* Write back the RHS as we evaluated it. */
      TREE_OPERAND (node, 1) = nn;

      /* In case we're handling = with a String as a RHS, we need to
	 produce a String out of the RHS (it might still be a
	 STRING_CST or a StringBuffer at this stage */
      if ((nn = patch_string (TREE_OPERAND (node, 1))))
	TREE_OPERAND (node, 1) = nn;

      if ((nn = nested_field_access_fix (wfl_op1, TREE_OPERAND (node, 0),
					 TREE_OPERAND (node, 1))))
	{
	  /* We return error_mark_node if nested_field_access_fix
	     detects we write into a final. */
	  if (nn == error_mark_node)
	    return error_mark_node;
	  node = nn;
	}
      else
	{
	  node = patch_assignment (node, wfl_op1);
	  if (node == error_mark_node)
	    return error_mark_node;
	  /* Reorganize the tree if necessary. */
	  if (flag && (!JREFERENCE_TYPE_P (TREE_TYPE (node))
		       || JSTRING_P (TREE_TYPE (node))))
	    node = java_refold (node);
	}

      /* Seek to set DECL_INITIAL to a proper value, since it might have
	 undergone a conversion in patch_assignment. We do that only when
	 it's necessary to have DECL_INITIAL properly set. */
      nn = TREE_OPERAND (node, 0);
      if (TREE_CODE (nn) == VAR_DECL
	  && DECL_INITIAL (nn) && CONSTANT_VALUE_P (DECL_INITIAL (nn))
	  && FIELD_STATIC (nn) && FIELD_FINAL (nn)
	  && (JPRIMITIVE_TYPE_P (TREE_TYPE (nn))
	      || TREE_TYPE (nn) == string_ptr_type_node))
	DECL_INITIAL (nn) = TREE_OPERAND (node, 1);

      CAN_COMPLETE_NORMALLY (node) = 1;
      return node;

    case MULT_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case URSHIFT_EXPR:
    case BIT_AND_EXPR:
    case BIT_XOR_EXPR:
    case BIT_IOR_EXPR:
    case TRUNC_MOD_EXPR:
    case TRUNC_DIV_EXPR:
    case RDIV_EXPR:
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case GT_EXPR:
    case GE_EXPR:
    case LT_EXPR:
    case LE_EXPR:
      /* Operands 0 and 1 are WFL in certain cases only. patch_binop
	 knows how to handle those cases. */
      wfl_op1 = TREE_OPERAND (node, 0);
      wfl_op2 = TREE_OPERAND (node, 1);

      CAN_COMPLETE_NORMALLY (node) = 1;
      /* Don't complete string nodes if dealing with the PLUS operand. */
      if (TREE_CODE (node) != PLUS_EXPR || !JSTRING_P (wfl_op1))
        {
          nn = java_complete_tree (wfl_op1);
          if (nn == error_mark_node)
            return error_mark_node;

          TREE_OPERAND (node, 0) = nn;
        }
      if (TREE_CODE (node) != PLUS_EXPR || !JSTRING_P (wfl_op2))
        {
          nn = java_complete_tree (wfl_op2);
          if (nn == error_mark_node)
            return error_mark_node;

          TREE_OPERAND (node, 1) = nn;
        }
      return patch_binop (node, wfl_op1, wfl_op2, 0);

    case INSTANCEOF_EXPR:
      wfl_op1 = TREE_OPERAND (node, 0);
      COMPLETE_CHECK_OP_0 (node);
      return patch_binop (node, wfl_op1, TREE_OPERAND (node, 1), 0);

    case UNARY_PLUS_EXPR:
    case NEGATE_EXPR:
    case TRUTH_NOT_EXPR:
    case BIT_NOT_EXPR:
    case PREDECREMENT_EXPR:
    case PREINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case CONVERT_EXPR:
      /* There are cases were wfl_op1 is a WFL. patch_unaryop knows
	 how to handle those cases. */
      wfl_op1 = TREE_OPERAND (node, 0);
      CAN_COMPLETE_NORMALLY (node) = 1;
      if (TREE_CODE (node) == PREDECREMENT_EXPR
	  || TREE_CODE (node) == PREINCREMENT_EXPR
	  || TREE_CODE (node) == POSTDECREMENT_EXPR
	  || TREE_CODE (node) == POSTINCREMENT_EXPR)
	{ /* We don't want static finals to be resolved to their value
	     to avoid ICEing later. It solves PR8923. */
	  TREE_OPERAND (node, 0) = java_complete_lhs (wfl_op1);
	}
      else
	{
	  TREE_OPERAND (node, 0) = java_complete_tree (wfl_op1);
	}
      if (TREE_OPERAND (node, 0) == error_mark_node)
	return error_mark_node;
      node = patch_unaryop (node, wfl_op1);
      CAN_COMPLETE_NORMALLY (node) = 1;
      break;

    case ARRAY_REF:
      /* There are cases were wfl_op1 is a WFL. patch_array_ref knows
	 how to handle those cases. */
      wfl_op1 = TREE_OPERAND (node, 0);
      TREE_OPERAND (node, 0) = java_complete_tree (wfl_op1);
      if (TREE_OPERAND (node, 0) == error_mark_node)
	return error_mark_node;
      if (!flag_emit_class_files)
	TREE_OPERAND (node, 0) = save_expr (TREE_OPERAND (node, 0));
      /* The same applies to wfl_op2 */
      wfl_op2 = TREE_OPERAND (node, 1);
      TREE_OPERAND (node, 1) = java_complete_tree (wfl_op2);
      if (TREE_OPERAND (node, 1) == error_mark_node)
	return error_mark_node;
      if (!flag_emit_class_files)
	TREE_OPERAND (node, 1) = save_expr (TREE_OPERAND (node, 1));
      return patch_array_ref (node);

    case RECORD_TYPE:
      return node;;

    case COMPONENT_REF:
      /* The first step in the re-write of qualified name handling.  FIXME.
	 So far, this is only to support PRIMTYPE.class ->
	 PRIMCLASS.TYPE. */
      {
	tree prim_class = TREE_OPERAND (node, 0);
	tree name = TREE_OPERAND (node, 1);
	tree field;
	
	gcc_assert (TREE_CODE (prim_class) == NOP_EXPR);
	prim_class = java_complete_tree (TREE_TYPE (prim_class));
	gcc_assert (TREE_CODE (prim_class) == RECORD_TYPE);
	field = lookup_field_wrapper (prim_class, name);
	
	if (field == NULL_TREE)
	  {
	    error ("missing static field %qs", IDENTIFIER_POINTER (name));
	    return error_mark_node;
	  }
	if (! FIELD_STATIC (field))
	  {
	    error ("not a static field %qs", IDENTIFIER_POINTER (name));
	    return error_mark_node;
	  }
	return field;
      }
      break;

    case THIS_EXPR:
      /* Can't use THIS in a static environment */
      if (!current_this)
	{
	  EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node);
	  parse_error_context (wfl_operator,
			       "Keyword %<this%> used outside allowed context");
	  TREE_TYPE (node) = error_mark_node;
	  return error_mark_node;
	}
      if (ctxp->explicit_constructor_p)
	{
	  EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node);
	  parse_error_context
	    (wfl_operator, "Can't reference %<this%> or %<super%> before the superclass constructor has been called");
	  TREE_TYPE (node) = error_mark_node;
	  return error_mark_node;
	}
      return current_this;

    case CLASS_LITERAL:
      CAN_COMPLETE_NORMALLY (node) = 1;
      node = patch_incomplete_class_ref (node);
      if (node == error_mark_node)
	return error_mark_node;
      break;

    default:
      CAN_COMPLETE_NORMALLY (node) = 1;
      /* Ok: may be we have a STRING_CST or a crafted `StringBuffer'
	 and it's time to turn it into the appropriate String object */
      if ((nn = patch_string (node)))
	node = nn;
      else
	internal_error ("No case for %s", tree_code_name [TREE_CODE (node)]);
    }
  return node;
}

/* Complete function call's argument. Return a nonzero value is an
   error was found.  */

static int
complete_function_arguments (tree node)
{
  int flag = 0;
  tree cn;

  ctxp->explicit_constructor_p += (CALL_EXPLICIT_CONSTRUCTOR_P (node) ? 1 : 0);
  for (cn = TREE_OPERAND (node, 1); cn; cn = TREE_CHAIN (cn))
    {
      tree wfl = TREE_VALUE (cn), parm, temp;
      parm = java_complete_tree (wfl);

      if (parm == error_mark_node)
	{
	  flag = 1;
	  continue;
	}
      /* If we have a string literal that we haven't transformed yet or a
	 crafted string buffer, as a result of the use of the String
	 `+' operator. Build `parm.toString()' and expand it. */
      if ((temp = patch_string (parm)))
	parm = temp;

      TREE_VALUE (cn) = parm;
    }
  ctxp->explicit_constructor_p -= (CALL_EXPLICIT_CONSTRUCTOR_P (node) ? 1 : 0);
  return flag;
}

/* Sometimes (for loops and variable initialized during their
   declaration), we want to wrap a statement around a WFL and turn it
   debugable.  */

static tree
build_debugable_stmt (int location, tree stmt)
{
  if (TREE_CODE (stmt) != EXPR_WITH_FILE_LOCATION)
    {
#ifdef USE_MAPPED_LOCATION
      stmt = expr_add_location (stmt, location, 1);
#else
      stmt = build_expr_wfl (stmt, input_filename, 0, 0);
      EXPR_WFL_LINECOL (stmt) = location;
      JAVA_MAYBE_GENERATE_DEBUG_INFO (stmt);
#endif
    }
  return stmt;
}

static tree
build_expr_block (tree body, tree decls)
{
  tree node = make_node (BLOCK);
  BLOCK_EXPR_DECLS (node) = decls;
  BLOCK_EXPR_BODY (node) = body;
  if (body)
    TREE_TYPE (node) = TREE_TYPE (body);
  TREE_SIDE_EFFECTS (node) = 1;
  return node;
}

/* Create a new function block and link it appropriately to current
   function block chain */

static tree
enter_block (void)
{
  tree b = build_expr_block (NULL_TREE, NULL_TREE);

  /* Link block B supercontext to the previous block. The current
     function DECL is used as supercontext when enter_a_block is called
     for the first time for a given function. The current function body
     (DECL_FUNCTION_BODY) is set to be block B.  */

  tree fndecl = current_function_decl;

  if (!fndecl) {
    BLOCK_SUPERCONTEXT (b) = current_static_block;
    current_static_block = b;
  }

  else if (!DECL_FUNCTION_BODY (fndecl))
    {
      BLOCK_SUPERCONTEXT (b) = fndecl;
      DECL_FUNCTION_BODY (fndecl) = b;
    }
  else
    {
      BLOCK_SUPERCONTEXT (b) = DECL_FUNCTION_BODY (fndecl);
      DECL_FUNCTION_BODY (fndecl) = b;
    }
  return b;
}

/* Exit a block by changing the current function body
   (DECL_FUNCTION_BODY) to the current block super context, only if
   the block being exited isn't the method's top level one.  */

static tree
exit_block (void)
{
  tree b;
  if (current_function_decl)
    {
      b = DECL_FUNCTION_BODY (current_function_decl);
      if (BLOCK_SUPERCONTEXT (b) != current_function_decl)
	DECL_FUNCTION_BODY (current_function_decl) = BLOCK_SUPERCONTEXT (b);
    }
  else
    {
      b = current_static_block;

      if (BLOCK_SUPERCONTEXT (b))
	current_static_block = BLOCK_SUPERCONTEXT (b);
    }
  return b;
}

/* Lookup for NAME in the nested function's blocks, all the way up to
   the current toplevel one. It complies with Java's local variable
   scoping rules.  */

static tree
lookup_name_in_blocks (tree name)
{
  tree b = GET_CURRENT_BLOCK (current_function_decl);

  while (b != current_function_decl)
    {
      tree current;

      /* Paranoid sanity check. To be removed */
      if (TREE_CODE (b) != BLOCK)
	abort ();

      for (current = BLOCK_EXPR_DECLS (b); current;
	   current = TREE_CHAIN (current))
	if (DECL_NAME (current) == name)
	  return current;
      b = BLOCK_SUPERCONTEXT (b);
    }
  return NULL_TREE;
}

static void
maybe_absorb_scoping_blocks (void)
{
  while (BLOCK_IS_IMPLICIT (GET_CURRENT_BLOCK (current_function_decl)))
    {
      tree b = exit_block ();
      java_method_add_stmt (current_function_decl, b);
      SOURCE_FRONTEND_DEBUG (("Absorbing scoping block at line %d", input_line));
    }
}


/* This section of the source is reserved to build_* functions that
   are building incomplete tree nodes and the patch_* functions that
   are completing them.  */

/* Wrap a non WFL node around a WFL.  */

static tree
build_wfl_wrap (tree node, int location)
{
  tree wfl, node_to_insert = node;

  /* We want to process THIS . xxx symbolically, to keep it consistent
     with the way we're processing SUPER. A THIS from a primary as a
     different form than a SUPER. Turn THIS into something symbolic */
  if (TREE_CODE (node) == THIS_EXPR)
    node_to_insert = wfl = build_wfl_node (this_identifier_node);
  else
#ifdef USE_MAPPED_LOCATION
    wfl = build_unknown_wfl (NULL_TREE);

  SET_EXPR_LOCATION (wfl, location);
#else
    wfl = build_expr_wfl (NULL_TREE, ctxp->filename, 0, 0);

  EXPR_WFL_LINECOL (wfl) = location;
#endif
  EXPR_WFL_QUALIFICATION (wfl) = build_tree_list (node_to_insert, NULL_TREE);
  return wfl;
}

/* Build a super() constructor invocation. Returns an empty statement if
   we're currently dealing with the class java.lang.Object. */

static tree
build_super_invocation (tree mdecl)
{
  if (DECL_CONTEXT (mdecl) == object_type_node)
    return build_java_empty_stmt ();
  else
    {
      tree super_wfl = build_wfl_node (super_identifier_node);
      tree a = NULL_TREE, t;

      /* This is called after parsing is done, so the parser context
         won't be accurate. Set location info from current_class decl. */
      tree class_wfl = lookup_cl (TYPE_NAME (current_class));
      EXPR_WFL_LINECOL (super_wfl) = EXPR_WFL_LINECOL (class_wfl);

      /* If we're dealing with an anonymous class, pass the arguments
         of the crafted constructor along. */
      if (ANONYMOUS_CLASS_P (DECL_CONTEXT (mdecl)))
	{
	  SKIP_THIS_AND_ARTIFICIAL_PARMS (t, mdecl);
	  for (; t != end_params_node; t = TREE_CHAIN (t))
	    a = tree_cons (NULL_TREE, build_wfl_node (TREE_PURPOSE (t)), a);
	}
      return build_method_invocation (super_wfl, a);
    }
}

/* Build a SUPER/THIS qualified method invocation.  */

static tree
build_this_super_qualified_invocation (int use_this, tree name, tree args,
				       int lloc, int rloc)
{
  tree invok;
  tree wfl =
    build_wfl_node (use_this ? this_identifier_node : super_identifier_node);
  EXPR_WFL_LINECOL (wfl) = lloc;
  invok = build_method_invocation (name, args);
  return make_qualified_primary (wfl, invok, rloc);
}

/* Build an incomplete CALL_EXPR node. */

static tree
build_method_invocation (tree name, tree args)
{
  tree call = build3 (CALL_EXPR, NULL_TREE, name, args, NULL_TREE);
  TREE_SIDE_EFFECTS (call) = 1;
  EXPR_WFL_LINECOL (call) = EXPR_WFL_LINECOL (name);
  return call;
}

/* Build an incomplete new xxx(...) node. */

static tree
build_new_invocation (tree name, tree args)
{
  tree call = build3 (NEW_CLASS_EXPR, NULL_TREE, name, args, NULL_TREE);
  TREE_SIDE_EFFECTS (call) = 1;
  EXPR_WFL_LINECOL (call) = EXPR_WFL_LINECOL (name);
  return call;
}

/* Build an incomplete assignment expression. */

static tree
build_assignment (int op, int op_location, tree lhs, tree rhs)
{
  tree assignment;
  /* Build the corresponding binop if we deal with a Compound
     Assignment operator. Mark the binop sub-tree as part of a
     Compound Assignment expression */
  if (op != ASSIGN_TK)
    {
      rhs = build_binop (BINOP_LOOKUP (op), op_location, lhs, rhs);
      COMPOUND_ASSIGN_P (rhs) = 1;
    }
  assignment = build2 (MODIFY_EXPR, NULL_TREE, lhs, rhs);
  TREE_SIDE_EFFECTS (assignment) = 1;
  EXPR_WFL_LINECOL (assignment) = op_location;
  return assignment;
}

/* Print an INTEGER_CST node as decimal in a static buffer, and return
   the buffer.  This is used only for string conversion.  */
static char *
string_convert_int_cst (tree node)
{
  /* Long.MIN_VALUE is -9223372036854775808, 20 characters.  */
  static char buffer[21];

  unsigned HOST_WIDE_INT lo = TREE_INT_CST_LOW (node);
  unsigned HOST_WIDE_INT hi = TREE_INT_CST_HIGH (node);
  char *p = buffer + sizeof (buffer);
  int neg = 0;

  unsigned HOST_WIDE_INT hibit = (((unsigned HOST_WIDE_INT) 1)
				  << (HOST_BITS_PER_WIDE_INT - 1));

  *--p = '\0';

  /* If negative, note the fact and negate the value.  */
  if ((hi & hibit))
    {
      lo = ~lo;
      hi = ~hi;
      if (++lo == 0)
	++hi;
      neg = 1;
    }

  /* Divide by 10 until there are no bits left.  */
  do
    {
      unsigned HOST_WIDE_INT acc = 0;
      unsigned HOST_WIDE_INT outhi = 0, outlo = 0;
      unsigned int i;

      /* Use long division to compute the result and the remainder.  */
      for (i = 0; i < 2 * HOST_BITS_PER_WIDE_INT; ++i)
	{
	  /* Shift a bit into accumulator.  */
	  acc <<= 1;
	  if ((hi & hibit))
	    acc |= 1;

	  /* Shift the value.  */
	  hi <<= 1;
	  if ((lo & hibit))
	    hi |= 1;
	  lo <<= 1;

	  /* Shift the correct bit into the result.  */
	  outhi <<= 1;
	  if ((outlo & hibit))
	    outhi |= 1;
	  outlo <<= 1;
	  if (acc >= 10)
	    {
	      acc -= 10;
	      outlo |= 1;
	    }
	}

      /* '0' == 060 in Java, but might not be here (think EBCDIC).  */
      *--p = '\060' + acc;

      hi = outhi;
      lo = outlo;
    }
  while (hi || lo);

  if (neg)
    *--p = '\055'; /* '-' == 055 in Java, but might not be here.  */

  return p;
}

/* Print an INTEGER_CST node in a static buffer, and return the
   buffer.  This is used only for error handling.  */
char *
print_int_node (tree node)
{
  static char buffer [80];
  if (TREE_CONSTANT_OVERFLOW (node))
    sprintf (buffer, "<overflow>");

  if (TREE_INT_CST_HIGH (node) == 0)
    sprintf (buffer, HOST_WIDE_INT_PRINT_UNSIGNED,
	     TREE_INT_CST_LOW (node));
  else if (TREE_INT_CST_HIGH (node) == -1
	   && TREE_INT_CST_LOW (node) != 0)
    sprintf (buffer, "-" HOST_WIDE_INT_PRINT_UNSIGNED,
	     -TREE_INT_CST_LOW (node));
  else
    sprintf (buffer, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
	     TREE_INT_CST_HIGH (node), TREE_INT_CST_LOW (node));

  return buffer;
}


/* Return 1 if an assignment to a FINAL is attempted in a non suitable
   context.  */

/* 15.25 Assignment operators. */

static tree
patch_assignment (tree node, tree wfl_op1)
{
  tree rhs = TREE_OPERAND (node, 1);
  tree lvalue = TREE_OPERAND (node, 0), llvalue;
  tree lhs_type = NULL_TREE, rhs_type, new_rhs = NULL_TREE;
  int error_found = 0;
  int lvalue_from_array = 0;
  int is_return = 0;

  EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node);

  /* Lhs can be a named variable */
  if (JDECL_P (lvalue))
    {
      lhs_type = TREE_TYPE (lvalue);
    }
  /* Or Lhs can be an array access. */
  else if (TREE_CODE (lvalue) == ARRAY_REF)
    {
      lhs_type = TREE_TYPE (lvalue);
      lvalue_from_array = 1;
    }
  /* Or a field access */
  else if (TREE_CODE (lvalue) == COMPONENT_REF)
    lhs_type = TREE_TYPE (lvalue);
  /* Or a function return slot */
  else if (TREE_CODE (lvalue) == RESULT_DECL)
    {
      /* If the return type is an integral type, then we create the
	 RESULT_DECL with a promoted type, but we need to do these
	 checks against the unpromoted type to ensure type safety.  So
	 here we look at the real type, not the type of the decl we
	 are modifying.  */
      lhs_type = TREE_TYPE (TREE_TYPE (current_function_decl));
      is_return = 1;
    }
  /* Otherwise, we might want to try to write into an optimized static
     final, this is an of a different nature, reported further on. */
  else if (TREE_CODE (wfl_op1) == EXPR_WITH_FILE_LOCATION
	   && resolve_expression_name (wfl_op1, &llvalue))
    {
      lhs_type = TREE_TYPE (lvalue);
    }
  else
    {
      parse_error_context (wfl_op1, "Invalid left hand side of assignment");
      error_found = 1;
    }

  rhs_type = TREE_TYPE (rhs);

  /* 5.1 Try the assignment conversion for builtin type. */
  new_rhs = try_builtin_assignconv (wfl_op1, lhs_type, rhs);

  /* 5.2 If it failed, try a reference conversion */
  if (!new_rhs)
    new_rhs = try_reference_assignconv (lhs_type, rhs);

  /* 15.25.2 If we have a compound assignment, convert RHS into the
     type of the LHS */
  else if (COMPOUND_ASSIGN_P (TREE_OPERAND (node, 1)))
    new_rhs = convert (lhs_type, rhs);

  /* Explicit cast required. This is an error */
  if (!new_rhs)
    {
      char *t1 = xstrdup (lang_printable_name (TREE_TYPE (rhs), 0));
      char *t2 = xstrdup (lang_printable_name (lhs_type, 0));
      tree wfl;
      char operation [32];	/* Max size known */

      /* If the assignment is part of a declaration, we use the WFL of
	 the declared variable to point out the error and call it a
	 declaration problem. If the assignment is a genuine =
	 operator, we call is a operator `=' problem, otherwise we
	 call it an assignment problem. In both of these last cases,
	 we use the WFL of the operator to indicate the error. */

      if (MODIFY_EXPR_FROM_INITIALIZATION_P (node))
	{
	  wfl = wfl_op1;
	  strcpy (operation, "declaration");
	}
      else
	{
	  wfl = wfl_operator;
	  if (COMPOUND_ASSIGN_P (TREE_OPERAND (node, 1)))
	    strcpy (operation, "assignment");
	  else if (is_return)
	    strcpy (operation, "'return'");
	  else
	    strcpy (operation, "'='");
	}

      if (!valid_cast_to_p (rhs_type, lhs_type))
	parse_error_context
	  (wfl, "Incompatible type for %s. Can't convert %qs to %qs",
	   operation, t1, t2);
      else
	parse_error_context (wfl, "Incompatible type for %s. Explicit cast needed to convert %qs to %qs",
			     operation, t1, t2);
      free (t1); free (t2);
      error_found = 1;
    }

  if (error_found)
    return error_mark_node;

  /* If we're processing a `return' statement, promote the actual type
     to the promoted type.  */
  if (is_return)
    new_rhs = convert (TREE_TYPE (lvalue), new_rhs);

  /* 10.10: Array Store Exception runtime check */
  if (!flag_emit_class_files
      && lvalue_from_array
      && JREFERENCE_TYPE_P (TYPE_ARRAY_ELEMENT (lhs_type)))
    {
      tree array, store_check, base, index_expr;

      /* Save RHS so that it doesn't get re-evaluated by the store check. */
      new_rhs = save_expr (new_rhs);

      /* Get the INDIRECT_REF. */
      array = TREE_OPERAND (TREE_OPERAND (lvalue, 0), 0);
      /* Get the array pointer expr. */
      array = TREE_OPERAND (array, 0);
      store_check = build_java_arraystore_check (array, new_rhs);

      index_expr = TREE_OPERAND (lvalue, 1);

      if (TREE_CODE (index_expr) == COMPOUND_EXPR)
	{
	  /* A COMPOUND_EXPR here is a bounds check. The bounds check must
	     happen before the store check, so prepare to insert the store
	     check within the second operand of the existing COMPOUND_EXPR. */
	  base = index_expr;
	}
      else
        base = lvalue;

      index_expr = TREE_OPERAND (base, 1);
      TREE_OPERAND (base, 1) = build2 (COMPOUND_EXPR, TREE_TYPE (index_expr),
				       store_check, index_expr);
    }

  /* Final locals can be used as case values in switch
     statement. Prepare them for this eventuality. */
  if (TREE_CODE (lvalue) == VAR_DECL
      && DECL_FINAL (lvalue)
      && TREE_CONSTANT (new_rhs)
      && IDENTIFIER_LOCAL_VALUE (DECL_NAME (lvalue))
      && JINTEGRAL_TYPE_P (TREE_TYPE (lvalue))
      )
    {
      TREE_CONSTANT (lvalue) = 1;
      TREE_INVARIANT (lvalue) = 1;
      DECL_INITIAL (lvalue) = new_rhs;
    }

  /* Copy the rhs if it's a reference.  */
  if (! flag_check_references && ! flag_emit_class_files && optimize > 0)
    {
      switch (TREE_CODE (new_rhs))
	{
	case ARRAY_REF:
	case INDIRECT_REF:
	case COMPONENT_REF:
	  /* Transform a = foo.bar 
	     into a = ({int tmp; tmp = foo.bar;}).
	     We need to ensure that if a read from memory fails
	     because of a NullPointerException, a destination variable
	     will remain unchanged.  An explicit temporary does what
	     we need.  

	     If flag_check_references is set, this is unnecessary
	     because we'll check each reference before doing any
	     reads.  If optimize is not set the result will never be
	     written to a stack slot that contains the LHS.  */
	  {
	    tree tmp = build_decl (VAR_DECL, get_identifier ("<tmp>"), 
				   TREE_TYPE (new_rhs));
	    tree block = make_node (BLOCK);
	    tree assignment 
	      = build2 (MODIFY_EXPR, TREE_TYPE (new_rhs), tmp, fold (new_rhs));
	    DECL_CONTEXT (tmp) = current_function_decl;
	    TREE_TYPE (block) = TREE_TYPE (new_rhs);
	    BLOCK_VARS (block) = tmp;
	    BLOCK_EXPR_BODY (block) = assignment;
	    TREE_SIDE_EFFECTS (block) = 1;
	    new_rhs = block;
	  }
	  break;
	default:
	  break;
	}
    }

  TREE_OPERAND (node, 0) = lvalue;
  TREE_OPERAND (node, 1) = new_rhs;
  TREE_TYPE (node) = lhs_type;
  return node;
}

/* Check that type SOURCE can be cast into type DEST. If the cast
   can't occur at all, return NULL; otherwise, return a possibly
   modified rhs.  */

static tree
try_reference_assignconv (tree lhs_type, tree rhs)
{
  tree new_rhs = NULL_TREE;
  tree rhs_type = TREE_TYPE (rhs);

  if (!JPRIMITIVE_TYPE_P (rhs_type) && JREFERENCE_TYPE_P (lhs_type))
    {
      /* `null' may be assigned to any reference type */
      if (rhs == null_pointer_node)
        new_rhs = null_pointer_node;
      /* Try the reference assignment conversion */
      else if (valid_ref_assignconv_cast_p (rhs_type, lhs_type, 0))
	new_rhs = rhs;
      /* This is a magic assignment that we process differently */
      else if (TREE_CODE (rhs) == JAVA_EXC_OBJ_EXPR)
	new_rhs = rhs;
    }
  return new_rhs;
}

/* Check that RHS can be converted into LHS_TYPE by the assignment
   conversion (5.2), for the cases of RHS being a builtin type. Return
   NULL_TREE if the conversion fails or if because RHS isn't of a
   builtin type. Return a converted RHS if the conversion is possible.  */

static tree
try_builtin_assignconv (tree wfl_op1, tree lhs_type, tree rhs)
{
  tree new_rhs = NULL_TREE;
  tree rhs_type = TREE_TYPE (rhs);

  /* Handle boolean specially.  */
  if (TREE_CODE (rhs_type) == BOOLEAN_TYPE
      || TREE_CODE (lhs_type) == BOOLEAN_TYPE)
    {
      if (TREE_CODE (rhs_type) == BOOLEAN_TYPE
	  && TREE_CODE (lhs_type) == BOOLEAN_TYPE)
	new_rhs = rhs;
    }

  /* 5.1.1 Try Identity Conversion,
     5.1.2 Try Widening Primitive Conversion */
  else if (valid_builtin_assignconv_identity_widening_p (lhs_type, rhs_type))
    new_rhs = convert (lhs_type, rhs);

  /* Try a narrowing primitive conversion (5.1.3):
       - expression is a constant expression of type byte, short, char,
         or int, AND
       - variable is byte, short or char AND
       - The value of the expression is representable in the type of the
         variable */
  else if ((rhs_type == byte_type_node || rhs_type == short_type_node
	    || rhs_type == char_type_node || rhs_type == int_type_node)
	    && TREE_CONSTANT (rhs)
	   && (lhs_type == byte_type_node || lhs_type == char_type_node
	       || lhs_type == short_type_node))
    {
      if (int_fits_type_p (rhs, lhs_type))
        new_rhs = convert (lhs_type, rhs);
      else if (wfl_op1)		/* Might be called with a NULL */
	parse_warning_context
	  (wfl_op1,
           "Constant expression %qs too wide for narrowing primitive conversion to %qs",
	   print_int_node (rhs), lang_printable_name (lhs_type, 0));
      /* Reported a warning that will turn into an error further
	 down, so we don't return */
    }

  return new_rhs;
}

/* Return 1 if RHS_TYPE can be converted to LHS_TYPE by identity
   conversion (5.1.1) or widening primitive conversion (5.1.2).  Return
   0 is the conversion test fails.  This implements parts the method
   invocation conversion (5.3).  */

static int
valid_builtin_assignconv_identity_widening_p (tree lhs_type, tree rhs_type)
{
  /* 5.1.1: This is the identity conversion part. */
  if (lhs_type == rhs_type)
    return 1;

  /* Reject non primitive types and boolean conversions.  */
  if (!JNUMERIC_TYPE_P (lhs_type) || !JNUMERIC_TYPE_P (rhs_type))
    return 0;

  /* 5.1.2: widening primitive conversion. byte, even if it's smaller
     than a char can't be converted into a char. Short can't too, but
     the < test below takes care of that */
  if (lhs_type == char_type_node && rhs_type == byte_type_node)
    return 0;

  /* Accept all promoted type here. Note, we can't use <= in the test
     below, because we still need to bounce out assignments of short
     to char and the likes */
  if (lhs_type == int_type_node
      && (rhs_type == promoted_byte_type_node
	  || rhs_type == promoted_short_type_node
	  || rhs_type == promoted_char_type_node
	  || rhs_type == promoted_boolean_type_node))
    return 1;

  /* From here, an integral is widened if its precision is smaller
     than the precision of the LHS or if the LHS is a floating point
     type, or the RHS is a float and the RHS a double. */
  if ((JINTEGRAL_TYPE_P (rhs_type) && JINTEGRAL_TYPE_P (lhs_type)
       && (TYPE_PRECISION (rhs_type) < TYPE_PRECISION (lhs_type)))
      || (JINTEGRAL_TYPE_P (rhs_type) && JFLOAT_TYPE_P (lhs_type))
      || (rhs_type == float_type_node && lhs_type == double_type_node))
    return 1;

  return 0;
}

/* Check that something of SOURCE type can be assigned or cast to
   something of DEST type at runtime. Return 1 if the operation is
   valid, 0 otherwise. If CAST is set to 1, we're treating the case
   were SOURCE is cast into DEST, which borrows a lot of the
   assignment check. */

static int
valid_ref_assignconv_cast_p (tree source, tree dest, int cast)
{
  /* SOURCE or DEST might be null if not from a declared entity. */
  if (!source || !dest)
    return 0;
  if (JNULLP_TYPE_P (source))
    return 1;
  if (TREE_CODE (source) == POINTER_TYPE)
    source = TREE_TYPE (source);
  if (TREE_CODE (dest) == POINTER_TYPE)
    dest = TREE_TYPE (dest);

  /* If source and dest are being compiled from bytecode, they may need to
     be loaded. */
  if (CLASS_P (source) && !CLASS_LOADED_P (source))
    {
      load_class (source, 1);
      safe_layout_class (source);
    }
  if (CLASS_P (dest) && !CLASS_LOADED_P (dest))
    {
      load_class (dest, 1);
      safe_layout_class (dest);
    }

  /* Case where SOURCE is a class type */
  if (TYPE_CLASS_P (source))
    {
      if (TYPE_CLASS_P (dest))
	return  (source == dest
		 || inherits_from_p (source, dest)
		 || (cast && inherits_from_p (dest, source)));
      if (TYPE_INTERFACE_P (dest))
	{
	  /* If doing a cast and SOURCE is final, the operation is
             always correct a compile time (because even if SOURCE
             does not implement DEST, a subclass of SOURCE might). */
	  if (cast && !CLASS_FINAL (TYPE_NAME (source)))
	    return 1;
	  /* Otherwise, SOURCE must implement DEST */
	  return interface_of_p (dest, source);
	}
      /* DEST is an array, cast permitted if SOURCE is of Object type */
      return (cast && source == object_type_node ? 1 : 0);
    }
  if (TYPE_INTERFACE_P (source))
    {
      if (TYPE_CLASS_P (dest))
	{
	  /* If not casting, DEST must be the Object type */
	  if (!cast)
	    return dest == object_type_node;
	  /* We're doing a cast. The cast is always valid is class
	     DEST is not final, otherwise, DEST must implement SOURCE */
	  else if (!CLASS_FINAL (TYPE_NAME (dest)))
	    return 1;
	  else
	    return interface_of_p (source, dest);
	}
      if (TYPE_INTERFACE_P (dest))
	{
	  /* If doing a cast, then if SOURCE and DEST contain method
             with the same signature but different return type, then
             this is a (compile time) error */
	  if (cast)
	    {
	      tree method_source, method_dest;
	      tree source_type;
	      tree source_sig;
	      tree source_name;
	      for (method_source = TYPE_METHODS (source); method_source;
		   method_source = TREE_CHAIN (method_source))
		{
		  source_sig =
		    build_java_argument_signature (TREE_TYPE (method_source));
		  source_type = TREE_TYPE (TREE_TYPE (method_source));
		  source_name = DECL_NAME (method_source);
		  for (method_dest = TYPE_METHODS (dest);
		       method_dest; method_dest = TREE_CHAIN (method_dest))
		    if (source_sig ==
			build_java_argument_signature (TREE_TYPE (method_dest))
			&& source_name == DECL_NAME (method_dest)
			&& source_type != TREE_TYPE (TREE_TYPE (method_dest)))
		      return 0;
		}
	      return 1;
	    }
	  else
	    return source == dest || interface_of_p (dest, source);
	}
      else
	{
	  /* Array */
	  return (cast
		  && (DECL_NAME (TYPE_NAME (source))
		      == java_lang_cloneable_identifier_node
		      || (DECL_NAME (TYPE_NAME (source))
			  == java_io_serializable_identifier_node)));
	}
    }
  if (TYPE_ARRAY_P (source))
    {
      if (TYPE_CLASS_P (dest))
	return dest == object_type_node;
      /* Can't cast an array to an interface unless the interface is
	 java.lang.Cloneable or java.io.Serializable.  */
      if (TYPE_INTERFACE_P (dest))
	return (DECL_NAME (TYPE_NAME (dest))
		== java_lang_cloneable_identifier_node
		|| (DECL_NAME (TYPE_NAME (dest))
		    == java_io_serializable_identifier_node));
      else			/* Arrays */
	{
	  tree source_element_type = TYPE_ARRAY_ELEMENT (source);
	  tree dest_element_type = TYPE_ARRAY_ELEMENT (dest);

	  /* In case of severe errors, they turn out null */
	  if (!dest_element_type || !source_element_type)
	    return 0;
	  if (source_element_type == dest_element_type)
	    return 1;
	  return valid_ref_assignconv_cast_p (source_element_type,
					      dest_element_type, cast);
	}
      return 0;
    }
  return 0;
}

static int
valid_cast_to_p (tree source, tree dest)
{
  if (TREE_CODE (source) == POINTER_TYPE)
    source = TREE_TYPE (source);
  if (TREE_CODE (dest) == POINTER_TYPE)
    dest = TREE_TYPE (dest);

  if (TREE_CODE (source) == RECORD_TYPE && TREE_CODE (dest) == RECORD_TYPE)
    return valid_ref_assignconv_cast_p (source, dest, 1);

  else if (JNUMERIC_TYPE_P (source) && JNUMERIC_TYPE_P (dest))
    return 1;

  else if (TREE_CODE (source) == BOOLEAN_TYPE
	   && TREE_CODE (dest) == BOOLEAN_TYPE)
    return 1;

  return 0;
}

static tree
do_unary_numeric_promotion (tree arg)
{
  tree type = TREE_TYPE (arg);
  if (TREE_CODE (type) == INTEGER_TYPE && TYPE_PRECISION (type) < 32)
    arg = convert (int_type_node, arg);
  return arg;
}

/* Return a nonzero value if SOURCE can be converted into DEST using
   the method invocation conversion rule (5.3).  */
static int
valid_method_invocation_conversion_p (tree dest, tree source)
{
  return ((JPRIMITIVE_TYPE_P (source) && JPRIMITIVE_TYPE_P (dest)
	   && valid_builtin_assignconv_identity_widening_p (dest, source))
	  || ((JREFERENCE_TYPE_P (source) || JNULLP_TYPE_P (source))
	      && (JREFERENCE_TYPE_P (dest) || JNULLP_TYPE_P (dest))
	      && valid_ref_assignconv_cast_p (source, dest, 0)));
}

/* Build an incomplete binop expression. */

static tree
build_binop (enum tree_code op, int op_location, tree op1, tree op2)
{
  tree binop = build2 (op, NULL_TREE, op1, op2);
  TREE_SIDE_EFFECTS (binop) = 1;
  /* Store the location of the operator, for better error report. The
     string of the operator will be rebuild based on the OP value. */
  EXPR_WFL_LINECOL (binop) = op_location;
  return binop;
}

/* Build the string of the operator retained by NODE. If NODE is part
   of a compound expression, add an '=' at the end of the string. This
   function is called when an error needs to be reported on an
   operator. The string is returned as a pointer to a static character
   buffer. */

static char *
operator_string (tree node)
{
#define BUILD_OPERATOR_STRING(S)					\
  {									\
    sprintf (buffer, "%s%s", S, (COMPOUND_ASSIGN_P (node) ? "=" : ""));	\
    return buffer;							\
  }

  static char buffer [10];
  switch (TREE_CODE (node))
    {
    case MULT_EXPR: BUILD_OPERATOR_STRING ("*");
    case RDIV_EXPR: BUILD_OPERATOR_STRING ("/");
    case TRUNC_MOD_EXPR: BUILD_OPERATOR_STRING ("%");
    case PLUS_EXPR: BUILD_OPERATOR_STRING ("+");
    case MINUS_EXPR: BUILD_OPERATOR_STRING ("-");
    case LSHIFT_EXPR: BUILD_OPERATOR_STRING ("<<");
    case RSHIFT_EXPR: BUILD_OPERATOR_STRING (">>");
    case URSHIFT_EXPR: BUILD_OPERATOR_STRING (">>>");
    case BIT_AND_EXPR: BUILD_OPERATOR_STRING ("&");
    case BIT_XOR_EXPR: BUILD_OPERATOR_STRING ("^");
    case BIT_IOR_EXPR: BUILD_OPERATOR_STRING ("|");
    case TRUTH_ANDIF_EXPR: BUILD_OPERATOR_STRING ("&&");
    case TRUTH_ORIF_EXPR: BUILD_OPERATOR_STRING ("||");
    case EQ_EXPR: BUILD_OPERATOR_STRING ("==");
    case NE_EXPR: BUILD_OPERATOR_STRING ("!=");
    case GT_EXPR: BUILD_OPERATOR_STRING (">");
    case GE_EXPR: BUILD_OPERATOR_STRING (">=");
    case LT_EXPR: BUILD_OPERATOR_STRING ("<");
    case LE_EXPR: BUILD_OPERATOR_STRING ("<=");
    case UNARY_PLUS_EXPR: BUILD_OPERATOR_STRING ("+");
    case NEGATE_EXPR: BUILD_OPERATOR_STRING ("-");
    case TRUTH_NOT_EXPR: BUILD_OPERATOR_STRING ("!");
    case BIT_NOT_EXPR: BUILD_OPERATOR_STRING ("~");
    case PREINCREMENT_EXPR:	/* Fall through */
    case POSTINCREMENT_EXPR: BUILD_OPERATOR_STRING ("++");
    case PREDECREMENT_EXPR:	/* Fall through */
    case POSTDECREMENT_EXPR: BUILD_OPERATOR_STRING ("--");
    default:
      internal_error ("unregistered operator %s",
		      tree_code_name [TREE_CODE (node)]);
    }
  return NULL;
#undef BUILD_OPERATOR_STRING
}

/* Return 1 if VAR_ACCESS1 is equivalent to VAR_ACCESS2.  */

static int
java_decl_equiv (tree var_acc1, tree var_acc2)
{
  if (JDECL_P (var_acc1))
    return (var_acc1 == var_acc2);

  return (TREE_CODE (var_acc1) == COMPONENT_REF
	  && TREE_CODE (var_acc2) == COMPONENT_REF
	  && TREE_OPERAND (TREE_OPERAND (var_acc1, 0), 0)
	     == TREE_OPERAND (TREE_OPERAND (var_acc2, 0), 0)
	  && TREE_OPERAND (var_acc1, 1) == TREE_OPERAND (var_acc2, 1));
}

/* Return a nonzero value if CODE is one of the operators that can be
   used in conjunction with the `=' operator in a compound assignment.  */

static int
binop_compound_p (enum tree_code code)
{
  int i;
  for (i = 0; i < BINOP_COMPOUND_CANDIDATES; i++)
    if (binop_lookup [i] == code)
      break;

  return i < BINOP_COMPOUND_CANDIDATES;
}

/* Reorganize after a fold to get SAVE_EXPR to generate what we want.  */

static tree
java_refold (tree t)
{
  tree c, b, ns, decl;

  if (TREE_CODE (t) != MODIFY_EXPR)
    return t;

  c = TREE_OPERAND (t, 1);
  if (! (c && TREE_CODE (c) == COMPOUND_EXPR
	 && TREE_CODE (TREE_OPERAND (c, 0)) == MODIFY_EXPR
	 && binop_compound_p (TREE_CODE (TREE_OPERAND (c, 1)))))
    return t;

  /* Now the left branch of the binary operator. */
  b = TREE_OPERAND (TREE_OPERAND (c, 1), 0);
  if (! (b && TREE_CODE (b) == NOP_EXPR
	 && TREE_CODE (TREE_OPERAND (b, 0)) == SAVE_EXPR))
    return t;

  ns = TREE_OPERAND (TREE_OPERAND (b, 0), 0);
  if (! (ns && TREE_CODE (ns) == NOP_EXPR
	 && TREE_CODE (TREE_OPERAND (ns, 0)) == SAVE_EXPR))
    return t;

  decl = TREE_OPERAND (TREE_OPERAND (ns, 0), 0);
  if ((JDECL_P (decl) || TREE_CODE (decl) == COMPONENT_REF)
      /* It's got to be the an equivalent decl */
      && java_decl_equiv (decl, TREE_OPERAND (TREE_OPERAND (c, 0), 0)))
    {
      /* Shorten the NOP_EXPR/SAVE_EXPR path. */
      TREE_OPERAND (TREE_OPERAND (c, 1), 0) = TREE_OPERAND (ns, 0);
      /* Substitute the COMPOUND_EXPR by the BINOP_EXPR */
      TREE_OPERAND (t, 1) = TREE_OPERAND (c, 1);
      /* Change the right part of the BINOP_EXPR */
      TREE_OPERAND (TREE_OPERAND (t, 1), 1) = TREE_OPERAND (c, 0);
    }

  return t;
}

/* Binary operators (15.16 up to 15.18). We return error_mark_node on
   errors but we modify NODE so that it contains the type computed
   according to the expression, when it's fixed. Otherwise, we write
   error_mark_node as the type. It allows us to further the analysis
   of remaining nodes and detects more errors in certain cases.  */

static tree
patch_binop (tree node, tree wfl_op1, tree wfl_op2, int folding)
{
  tree op1 = TREE_OPERAND (node, 0);
  tree op2 = TREE_OPERAND (node, 1);
  tree op1_type = TREE_TYPE (op1);
  tree op2_type = TREE_TYPE (op2);
  tree prom_type = NULL_TREE, cn;
  enum tree_code code = TREE_CODE (node);

  /* If 1, tell the routine that we have to return error_mark_node
     after checking for the initialization of the RHS */
  int error_found = 0;

  EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node);

  /* If either op<n>_type are NULL, this might be early signs of an
     error situation, unless it's too early to tell (in case we're
     handling a `+', `==', `!=' or `instanceof'.) We want to set op<n>_type
     correctly so the error can be later on reported accurately. */
  if (! (code == PLUS_EXPR || code == NE_EXPR
	 || code == EQ_EXPR || code == INSTANCEOF_EXPR))
    {
      tree n;
      if (! op1_type)
	{
	  n = java_complete_tree (op1);
	  op1_type = TREE_TYPE (n);
	}
      if (! op2_type)
	{
	  n = java_complete_tree (op2);
	  op2_type = TREE_TYPE (n);
	}
    }

  switch (code)
    {
    /* 15.16 Multiplicative operators */
    case MULT_EXPR:		/* 15.16.1 Multiplication Operator * */
    case RDIV_EXPR:		/* 15.16.2 Division Operator / */
    case TRUNC_DIV_EXPR:	/* 15.16.2 Integral type Division Operator / */
    case TRUNC_MOD_EXPR:	/* 15.16.3 Remainder operator % */
      if (!JNUMERIC_TYPE_P (op1_type) || !JNUMERIC_TYPE_P (op2_type))
	{
	  if (!JNUMERIC_TYPE_P (op1_type))
	    ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op1_type);
	  if (!JNUMERIC_TYPE_P (op2_type) && (op1_type != op2_type))
	    ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op2_type);
	  TREE_TYPE (node) = error_mark_node;
	  error_found = 1;
	  break;
	}
      prom_type = binary_numeric_promotion (op1_type, op2_type, &op1, &op2);

      /* Detect integral division by zero */
      if ((code == RDIV_EXPR || code == TRUNC_MOD_EXPR)
	  && TREE_CODE (prom_type) == INTEGER_TYPE
	  && (op2 == integer_zero_node || op2 == long_zero_node ||
	      (TREE_CODE (op2) == INTEGER_CST &&
	       ! TREE_INT_CST_LOW (op2)  && ! TREE_INT_CST_HIGH (op2))))
	{
	  parse_warning_context
            (wfl_operator,
             "Evaluating this expression will result in an arithmetic exception being thrown");
	  TREE_CONSTANT (node) = 0;
	  TREE_INVARIANT (node) = 0;
	}

      /* Change the division operator if necessary */
      if (code == RDIV_EXPR && TREE_CODE (prom_type) == INTEGER_TYPE)
	TREE_SET_CODE (node, TRUNC_DIV_EXPR);

      /* Before divisions as is disappear, try to simplify and bail if
         applicable, otherwise we won't perform even simple
         simplifications like (1-1)/3. We can't do that with floating
         point number, folds can't handle them at this stage. */
      if (code == RDIV_EXPR && TREE_CONSTANT (op1) && TREE_CONSTANT (op2)
	  && JINTEGRAL_TYPE_P (op1) && JINTEGRAL_TYPE_P (op2))
	{
	  TREE_TYPE (node) = prom_type;
	  node = fold (node);
	  if (TREE_CODE (node) != code)
	    return node;
	}

      if (TREE_CODE (prom_type) == INTEGER_TYPE
	  && flag_use_divide_subroutine
	  && ! flag_emit_class_files
	  && (code == RDIV_EXPR || code == TRUNC_MOD_EXPR))
	return build_java_soft_divmod (TREE_CODE (node), prom_type, op1, op2);

      /* This one is more complicated. FLOATs are processed by a
	 function call to soft_fmod. Duplicate the value of the
	 COMPOUND_ASSIGN_P flag. */
      if (code == TRUNC_MOD_EXPR)
	{
	  tree mod = build_java_binop (TRUNC_MOD_EXPR, prom_type, op1, op2);
	  COMPOUND_ASSIGN_P (mod) = COMPOUND_ASSIGN_P (node);
	  return mod;
	}
      break;

    /* 15.17 Additive Operators */
    case PLUS_EXPR:		/* 15.17.1 String Concatenation Operator + */

      /* Operation is valid if either one argument is a string
	 constant, a String object or a StringBuffer crafted for the
	 purpose of the a previous usage of the String concatenation
	 operator */

      if (TREE_CODE (op1) == STRING_CST
	  || TREE_CODE (op2) == STRING_CST
	  || JSTRING_TYPE_P (op1_type)
	  || JSTRING_TYPE_P (op2_type)
	  || IS_CRAFTED_STRING_BUFFER_P (op1)
	  || IS_CRAFTED_STRING_BUFFER_P (op2))
	return build_string_concatenation (op1, op2);

    case MINUS_EXPR:		/* 15.17.2 Additive Operators (+ and -) for
				   Numeric Types */
      if (!JNUMERIC_TYPE_P (op1_type) || !JNUMERIC_TYPE_P (op2_type))
	{
	  if (!JNUMERIC_TYPE_P (op1_type))
	    ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op1_type);
	  if (!JNUMERIC_TYPE_P (op2_type) && (op1_type != op2_type))
	    ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op2_type);
	  TREE_TYPE (node) = error_mark_node;
	  error_found = 1;
	  break;
	}
      prom_type = binary_numeric_promotion (op1_type, op2_type, &op1, &op2);
      break;

    /* 15.18 Shift Operators */
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case URSHIFT_EXPR:
      if (!JINTEGRAL_TYPE_P (op1_type) || !JINTEGRAL_TYPE_P (op2_type))
	{
	  if (!JINTEGRAL_TYPE_P (op1_type))
	    ERROR_CAST_NEEDED_TO_INTEGRAL (wfl_operator, node, op1_type);
	  else
	    {
	      if (JNUMERIC_TYPE_P (op2_type))
		parse_error_context (wfl_operator,
				     "Incompatible type for %qs. Explicit cast needed to convert shift distance from %qs to integral",
				     operator_string (node),
				     lang_printable_name (op2_type, 0));
	      else
		parse_error_context (wfl_operator,
				     "Incompatible type for %qs. Can't convert shift distance from %qs to integral",
				     operator_string (node),
				     lang_printable_name (op2_type, 0));
	    }
	  TREE_TYPE (node) = error_mark_node;
	  error_found = 1;
	  break;
	}

      /* Unary numeric promotion (5.6.1) is performed on each operand
         separately */
      op1 = do_unary_numeric_promotion (op1);
      op2 = do_unary_numeric_promotion (op2);

      /* If the right hand side is of type `long', first cast it to
	 `int'.  */
      if (TREE_TYPE (op2) == long_type_node)
	op2 = build1 (CONVERT_EXPR, int_type_node, op2);

      /* The type of the shift expression is the type of the promoted
         type of the left-hand operand */
      prom_type = TREE_TYPE (op1);

      /* Shift int only up to 0x1f and long up to 0x3f */
      if (prom_type == int_type_node)
	op2 = fold_build2 (BIT_AND_EXPR, int_type_node, op2,
			   build_int_cst (NULL_TREE, 0x1f));
      else
	op2 = fold_build2 (BIT_AND_EXPR, int_type_node, op2,
			   build_int_cst (NULL_TREE, 0x3f));

      /* The >>> operator is a >> operating on unsigned quantities */
      if (code == URSHIFT_EXPR && (folding || ! flag_emit_class_files))
	{
	  tree to_return;
          tree utype = java_unsigned_type (prom_type);
          op1 = convert (utype, op1);

	  to_return = fold_build2 (RSHIFT_EXPR, utype, op1, op2);
	  to_return = convert (prom_type, to_return);
	  /* Copy the original value of the COMPOUND_ASSIGN_P flag */
	  COMPOUND_ASSIGN_P (to_return) = COMPOUND_ASSIGN_P (node);
	  TREE_SIDE_EFFECTS (to_return)
	    = TREE_SIDE_EFFECTS (op1) | TREE_SIDE_EFFECTS (op2);
	  return to_return;
	}
      break;

      /* 15.19.1 Type Comparison Operator instanceof */
    case INSTANCEOF_EXPR:

      TREE_TYPE (node) = boolean_type_node;

      /* OP1_TYPE might be NULL when OP1 is a string constant.  */
      if ((cn = patch_string (op1)))
	{
	  op1 = cn;
	  op1_type = TREE_TYPE (op1);
	}
      if (op1_type == NULL_TREE)
	abort ();

      if (!(op2_type = resolve_type_during_patch (op2)))
	return error_mark_node;

      /* The first operand must be a reference type or the null type */
      if (!JREFERENCE_TYPE_P (op1_type) && op1 != null_pointer_node)
	error_found = 1;	/* Error reported further below */

      /* The second operand must be a reference type */
      if (!JREFERENCE_TYPE_P (op2_type))
	{
	  SET_WFL_OPERATOR (wfl_operator, node, wfl_op2);
	  parse_error_context
	    (wfl_operator, "Invalid argument %qs for %<instanceof%>",
	     lang_printable_name (op2_type, 0));
	  error_found = 1;
	}

      if (!error_found && valid_ref_assignconv_cast_p (op1_type, op2_type, 1))
	{
	  /* If the first operand is null, the result is always false */
	  if (op1 == null_pointer_node)
	    return boolean_false_node;
	  else if (flag_emit_class_files)
	    {
	      TREE_OPERAND (node, 1) = op2_type;
	      TREE_SIDE_EFFECTS (node) = TREE_SIDE_EFFECTS (op1);
	      return node;
	    }
	  /* Otherwise we have to invoke instance of to figure it out */
	  else
	    return build_instanceof (op1, op2_type);
	}
      /* There is no way the expression operand can be an instance of
	 the type operand. This is a compile time error. */
      else
	{
	  char *t1 = xstrdup (lang_printable_name (op1_type, 0));
	  SET_WFL_OPERATOR (wfl_operator, node, wfl_op1);
	  parse_error_context
	    (wfl_operator, "Impossible for %qs to be instance of %qs",
	     t1, lang_printable_name (op2_type, 0));
	  free (t1);
	  error_found = 1;
	}

      break;

      /* 15.21 Bitwise and Logical Operators */
    case BIT_AND_EXPR:
    case BIT_XOR_EXPR:
    case BIT_IOR_EXPR:
      if (JINTEGRAL_TYPE_P (op1_type) && JINTEGRAL_TYPE_P (op2_type))
	/* Binary numeric promotion is performed on both operand and the
	   expression retain that type */
	prom_type = binary_numeric_promotion (op1_type, op2_type, &op1, &op2);

      else if (TREE_CODE (op1_type) == BOOLEAN_TYPE
	       && TREE_CODE (op1_type) == BOOLEAN_TYPE)
	/* The type of the bitwise operator expression is BOOLEAN */
	prom_type = boolean_type_node;
      else
	{
	  if (!JINTEGRAL_TYPE_P (op1_type))
	    ERROR_CAST_NEEDED_TO_INTEGRAL (wfl_operator, node, op1_type);
	  if (!JINTEGRAL_TYPE_P (op2_type) && (op1_type != op2_type))
	    ERROR_CAST_NEEDED_TO_INTEGRAL (wfl_operator, node, op2_type);
	  TREE_TYPE (node) = error_mark_node;
	  error_found = 1;
	  /* Insert a break here if adding thing before the switch's
             break for this case */
	}
      break;

      /* 15.22 Conditional-And Operator */
    case TRUTH_ANDIF_EXPR:
      /* 15.23 Conditional-Or Operator */
    case TRUTH_ORIF_EXPR:
      /* Operands must be of BOOLEAN type */
      if (TREE_CODE (op1_type) != BOOLEAN_TYPE ||
	  TREE_CODE (op2_type) != BOOLEAN_TYPE)
	{
	  if (TREE_CODE (op1_type) != BOOLEAN_TYPE)
	    ERROR_CANT_CONVERT_TO_BOOLEAN (wfl_operator, node, op1_type);
	  if (TREE_CODE (op2_type) != BOOLEAN_TYPE && (op1_type != op2_type))
	    ERROR_CANT_CONVERT_TO_BOOLEAN (wfl_operator, node, op2_type);
	  TREE_TYPE (node) = boolean_type_node;
	  error_found = 1;
	  break;
	}
      else if (integer_zerop (op1))
	{
	  return code == TRUTH_ANDIF_EXPR ? op1 : op2;
	}
      else if (integer_onep (op1))
	{
	  return code == TRUTH_ANDIF_EXPR ? op2 : op1;
	}
      /* The type of the conditional operators is BOOLEAN */
      prom_type = boolean_type_node;
      break;

      /* 15.19.1 Numerical Comparison Operators <, <=, >, >= */
    case LT_EXPR:
    case GT_EXPR:
    case LE_EXPR:
    case GE_EXPR:
      /* The type of each of the operands must be a primitive numeric
         type */
      if (!JNUMERIC_TYPE_P (op1_type) || ! JNUMERIC_TYPE_P (op2_type))
	{
	  if (!JNUMERIC_TYPE_P (op1_type))
	    ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op1_type);
	  if (!JNUMERIC_TYPE_P (op2_type) && (op1_type != op2_type))
	    ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op2_type);
	  TREE_TYPE (node) = boolean_type_node;
	  error_found = 1;
	  break;
	}
      /* Binary numeric promotion is performed on the operands */
      binary_numeric_promotion (op1_type, op2_type, &op1, &op2);
      /* The type of the relation expression is always BOOLEAN */
      prom_type = boolean_type_node;
      break;

      /* 15.20 Equality Operator */
    case EQ_EXPR:
    case NE_EXPR:
      /* It's time for us to patch the strings. */
      if ((cn = patch_string (op1)))
       {
         op1 = cn;
         op1_type = TREE_TYPE (op1);
       }
      if ((cn = patch_string (op2)))
       {
         op2 = cn;
         op2_type = TREE_TYPE (op2);
       }

      /* 15.20.1 Numerical Equality Operators == and != */
      /* Binary numeric promotion is performed on the operands */
      if (JNUMERIC_TYPE_P (op1_type) && JNUMERIC_TYPE_P (op2_type))
	binary_numeric_promotion (op1_type, op2_type, &op1, &op2);

      /* 15.20.2 Boolean Equality Operators == and != */
      else if (TREE_CODE (op1_type) == BOOLEAN_TYPE &&
	  TREE_CODE (op2_type) == BOOLEAN_TYPE)
	;			/* Nothing to do here */

      /* 15.20.3 Reference Equality Operators == and != */
      /* Types have to be either references or the null type. If
         they're references, it must be possible to convert either
         type to the other by casting conversion. */
      else if ((op1 == null_pointer_node && op2 == null_pointer_node)
               || (op1 == null_pointer_node && JREFERENCE_TYPE_P (op2_type))
               || (JREFERENCE_TYPE_P (op1_type) && op2 == null_pointer_node)
	       || (JREFERENCE_TYPE_P (op1_type) && JREFERENCE_TYPE_P (op2_type)
		   && (valid_ref_assignconv_cast_p (op1_type, op2_type, 1)
		       || valid_ref_assignconv_cast_p (op2_type,
						       op1_type, 1))))
	;			/* Nothing to do here */

      /* Else we have an error figure what can't be converted into
	 what and report the error */
      else
	{
	  char *t1;
	  t1 = xstrdup (lang_printable_name (op1_type, 0));
	  parse_error_context
	    (wfl_operator,
	     "Incompatible type for %qs. Can't convert %qs to %qs",
	     operator_string (node), t1,
	     lang_printable_name (op2_type, 0));
	  free (t1);
	  TREE_TYPE (node) = boolean_type_node;
	  error_found = 1;
	  break;
	}
      prom_type = boolean_type_node;
      break;
    default:
      abort ();
    }

  if (error_found)
    return error_mark_node;

  TREE_OPERAND (node, 0) = op1;
  TREE_OPERAND (node, 1) = op2;
  TREE_TYPE (node) = prom_type;
  TREE_SIDE_EFFECTS (node) = TREE_SIDE_EFFECTS (op1) | TREE_SIDE_EFFECTS (op2);

  /* fold does not respect side-effect order as required for Java but not C.
   * Also, it sometimes create SAVE_EXPRs which are bad when emitting
   * bytecode.
   */
  if (flag_emit_class_files ? (TREE_CONSTANT (op1) && TREE_CONSTANT (op2))
      : ! TREE_SIDE_EFFECTS (node))
    node = fold (node);
  return node;
}

/* Concatenate the STRING_CST CSTE and STRING. When AFTER is a non
   zero value, the value of CSTE comes after the valude of STRING */

static tree
do_merge_string_cste (tree cste, const char *string, int string_len, int after)
{
  const char *old = TREE_STRING_POINTER (cste);
  int old_len = TREE_STRING_LENGTH (cste);
  int len = old_len + string_len;
  char *new = alloca (len+1);

  if (after)
    {
      memcpy (new, string, string_len);
      memcpy (&new [string_len], old, old_len);
    }
  else
    {
      memcpy (new, old, old_len);
      memcpy (&new [old_len], string, string_len);
    }
  new [len] = '\0';
  return build_string (len, new);
}

/* Tries to merge OP1 (a STRING_CST) and OP2 (if suitable). Return a
   new STRING_CST on success, NULL_TREE on failure.  */

static tree
merge_string_cste (tree op1, tree op2, int after)
{
  /* Handle two string constants right away.  */
  if (TREE_CODE (op2) == STRING_CST)
    return do_merge_string_cste (op1, TREE_STRING_POINTER (op2),
				 TREE_STRING_LENGTH (op2), after);

  /* Reasonable integer constant can be treated right away.  */
  if (TREE_CODE (op2) == INTEGER_CST && !TREE_CONSTANT_OVERFLOW (op2))
    {
      static const char *const boolean_true = "true";
      static const char *const boolean_false = "false";
      static const char *const null_pointer = "null";
      char ch[4];
      const char *string;

      if (op2 == boolean_true_node)
	string = boolean_true;
      else if (op2 == boolean_false_node)
	string = boolean_false;
      else if (op2 == null_pointer_node
	       || (integer_zerop (op2)
		   && TREE_CODE (TREE_TYPE (op2)) == POINTER_TYPE))
	/* FIXME: null is not a compile-time constant, so it is only safe to
	   merge if the overall expression is non-constant. However, this
	   code always merges without checking the overall expression.  */
	string = null_pointer;
      else if (TREE_TYPE (op2) == char_type_node)
	{
	  /* Convert the character into UTF-8.	*/
	  unsigned int c = (unsigned int) TREE_INT_CST_LOW (op2);
	  unsigned char *p = (unsigned char *) ch;
	  if (0x01 <= c && c <= 0x7f)
	    *p++ = (unsigned char) c;
	  else if (c < 0x7ff)
	    {
	      *p++ = (unsigned char) (c >> 6 | 0xc0);
	      *p++ = (unsigned char) ((c & 0x3f) | 0x80);
	    }
	  else
	    {
	      *p++ = (unsigned char) (c >> 12 | 0xe0);
	      *p++ = (unsigned char) (((c >> 6) & 0x3f) | 0x80);
	      *p++ = (unsigned char) ((c & 0x3f) | 0x80);
	    }
	  *p = '\0';

	  string = ch;
	}
      else
	string = string_convert_int_cst (op2);

      return do_merge_string_cste (op1, string, strlen (string), after);
    }
  return NULL_TREE;
}

/* Tries to statically concatenate OP1 and OP2 if possible. Either one
   has to be a STRING_CST and the other part must be a STRING_CST or a
   INTEGRAL constant. Return a new STRING_CST if the operation
   succeed, NULL_TREE otherwise.

   If the case we want to optimize for space, we might want to return
   NULL_TREE for each invocation of this routine. FIXME */

static tree
string_constant_concatenation (tree op1, tree op2)
{
  if (TREE_CODE (op1) == STRING_CST || (TREE_CODE (op2) == STRING_CST))
    {
      tree string, rest;
      int invert;

      string = (TREE_CODE (op1) == STRING_CST ? op1 : op2);
      rest   = (string == op1 ? op2 : op1);
      invert = (string == op1 ? 0 : 1 );

      /* Walk REST, only if it looks reasonable */
      if (TREE_CODE (rest) != STRING_CST
	  && !IS_CRAFTED_STRING_BUFFER_P (rest)
	  && !JSTRING_TYPE_P (TREE_TYPE (rest))
	  && TREE_CODE (rest) == EXPR_WITH_FILE_LOCATION)
	{
	  rest = java_complete_tree (rest);
	  if (rest == error_mark_node)
	    return error_mark_node;
	  rest = fold (rest);
	}
      return merge_string_cste (string, rest, invert);
    }
  return NULL_TREE;
}

/* Implement the `+' operator. Does static optimization if possible,
   otherwise create (if necessary) and append elements to a
   StringBuffer. The StringBuffer will be carried around until it is
   used for a function call or an assignment. Then toString() will be
   called on it to turn it into a String object. */

static tree
build_string_concatenation (tree op1, tree op2)
{
  tree result;
  int side_effects = TREE_SIDE_EFFECTS (op1) | TREE_SIDE_EFFECTS (op2);

  /* Try to do some static optimization */
  if ((result = string_constant_concatenation (op1, op2)))
    return result;

  /* Discard empty strings on either side of the expression */
  if (TREE_CODE (op1) == STRING_CST && TREE_STRING_LENGTH (op1) == 0)
    {
      op1 = op2;
      op2 = NULL_TREE;
    }
  else if (TREE_CODE (op2) == STRING_CST && TREE_STRING_LENGTH (op2) == 0)
    op2 = NULL_TREE;

  /* If operands are string constant, turn then into object references */
  if (TREE_CODE (op1) == STRING_CST)
    op1 = patch_string_cst (op1);
  if (op2 && TREE_CODE (op2) == STRING_CST)
    op2 = patch_string_cst (op2);

  /* If either one of the constant is null and the other non null
     operand is a String constant, return it. */
  if ((TREE_CODE (op1) == STRING_CST) && !op2)
    return op1;

  /* If OP1 isn't already a StringBuffer, create and
     initialize a new one */
  if (!IS_CRAFTED_STRING_BUFFER_P (op1))
    {
      /* Two solutions here:
	 1) OP1 is a constant string reference, we call new StringBuffer(OP1)
	 2) OP1 is something else, we call new StringBuffer().append(OP1).  */
      if (TREE_CONSTANT (op1) && JSTRING_TYPE_P (TREE_TYPE (op1)))
	op1 = BUILD_STRING_BUFFER (op1);
      else
	{
	  tree aNew = BUILD_STRING_BUFFER (NULL_TREE);
	  op1 = make_qualified_primary (aNew, BUILD_APPEND (op1), 0);
	}
    }

  if (op2)
    {
      /* OP1 is no longer the last node holding a crafted StringBuffer */
      IS_CRAFTED_STRING_BUFFER_P (op1) = 0;
      /* Create a node for `{new...,xxx}.append (op2)' */
      op1 = make_qualified_primary (op1, BUILD_APPEND (op2), 0);
    }

  /* Mark the last node holding a crafted StringBuffer */
  IS_CRAFTED_STRING_BUFFER_P (op1) = 1;

  TREE_SIDE_EFFECTS (op1) = side_effects;
  return op1;
}

/* Patch the string node NODE. NODE can be a STRING_CST of a crafted
   StringBuffer. If no string were found to be patched, return
   NULL. */

static tree
patch_string (tree node)
{
  if (node == error_mark_node)
    return error_mark_node;
  if (TREE_CODE (node) == STRING_CST)
    return patch_string_cst (node);
  else if (IS_CRAFTED_STRING_BUFFER_P (node))
    {
      int saved = ctxp->explicit_constructor_p;
      tree invoke = build_method_invocation (wfl_to_string, NULL_TREE);
      tree ret;
      /* Temporary disable forbid the use of `this'. */
      ctxp->explicit_constructor_p = 0;
      ret = java_complete_tree (make_qualified_primary (node, invoke, 0));
      /* String concatenation arguments must be evaluated in order too. */
      ret = force_evaluation_order (ret);
      /* Restore it at its previous value */
      ctxp->explicit_constructor_p = saved;
      return ret;
    }
  return NULL_TREE;
}

/* Build the internal representation of a string constant.  */

static tree
patch_string_cst (tree node)
{
  int location;
  if (! flag_emit_class_files)
    {
      node = get_identifier (TREE_STRING_POINTER (node));
      location = alloc_name_constant (CONSTANT_String, node);
      node = build_ref_from_constant_pool (location);
    }
  TREE_CONSTANT (node) = 1;
  TREE_INVARIANT (node) = 1;

  /* ??? Guessing that the class file code can't handle casts.  */
  if (! flag_emit_class_files)
    node = convert (string_ptr_type_node, node);
  else
    TREE_TYPE (node) = string_ptr_type_node;

  return node;
}

/* Build an incomplete unary operator expression. */

static tree
build_unaryop (int op_token, int op_location, tree op1)
{
  enum tree_code op;
  tree unaryop;
  switch (op_token)
    {
    case PLUS_TK: op = UNARY_PLUS_EXPR; break;
    case MINUS_TK: op = NEGATE_EXPR; break;
    case NEG_TK: op = TRUTH_NOT_EXPR; break;
    case NOT_TK: op = BIT_NOT_EXPR; break;
    default: abort ();
    }

  unaryop = build1 (op, NULL_TREE, op1);
  TREE_SIDE_EFFECTS (unaryop) = 1;
  /* Store the location of the operator, for better error report. The
     string of the operator will be rebuild based on the OP value. */
  EXPR_WFL_LINECOL (unaryop) = op_location;
  return unaryop;
}

/* Special case for the ++/-- operators, since they require an extra
   argument to build, which is set to NULL and patched
   later. IS_POST_P is 1 if the operator, 0 otherwise.  */

static tree
build_incdec (int op_token, int op_location, tree op1, int is_post_p)
{
  static const enum tree_code lookup [2][2] =
    {
      { PREDECREMENT_EXPR, PREINCREMENT_EXPR, },
      { POSTDECREMENT_EXPR, POSTINCREMENT_EXPR, },
    };
  tree node = build2 (lookup [is_post_p][(op_token - DECR_TK)],
		      NULL_TREE, op1, NULL_TREE);
  TREE_SIDE_EFFECTS (node) = 1;
  /* Store the location of the operator, for better error report. The
     string of the operator will be rebuild based on the OP value. */
  EXPR_WFL_LINECOL (node) = op_location;

  /* Report an error if the operand is a constant. */
  if (TREE_CONSTANT (op1)) {
    parse_error_context (node, "%qs cannot be used with a constant",
                         operator_string (node));
    return error_mark_node;
  }

  return node;
}

/* Build an incomplete cast operator, based on the use of the
   CONVERT_EXPR. Note that TREE_TYPE of the constructed node is
   set. java_complete_tree is trained to walk a CONVERT_EXPR even
   though its type is already set.  */

static tree
build_cast (int location, tree type, tree exp)
{
  tree node = build1 (CONVERT_EXPR, type, exp);
  EXPR_WFL_LINECOL (node) = location;
  return node;
}

/* Build an incomplete class reference operator.  */
static tree
build_incomplete_class_ref (int location, tree class_name)
{
  tree node = build1 (CLASS_LITERAL, NULL_TREE, class_name);
  tree class_decl = GET_CPC ();
  tree this_class = TREE_TYPE (class_decl);

  /* Generate the synthetic static method `class$'.  (Previously we
     deferred this, causing different method tables to be emitted
     for native code and bytecode.)  */
  if (!TYPE_DOT_CLASS (this_class)
      && !JPRIMITIVE_TYPE_P (class_name)
      && !(TREE_CODE (class_name) == VOID_TYPE))
    {
      tree cpc_list = GET_CPC_LIST();
      tree cpc = cpc_list;
      tree target_class;

      /* For inner classes, add a 'class$' method to their outermost
	 context, creating it if necessary.  */
      
      while (GET_NEXT_ENCLOSING_CPC(cpc))
	cpc = GET_NEXT_ENCLOSING_CPC(cpc);
      class_decl = TREE_VALUE (cpc);

      target_class = TREE_TYPE (class_decl);

      if (CLASS_INTERFACE (TYPE_NAME (target_class)))
	{
	  /* For interfaces, adding a static 'class$' method directly 
	     is illegal.  So create an inner class to contain the new
	     method.  Empirically this matches the behavior of javac.  */
	  tree t, inner;
	  /* We want the generated inner class inside the outermost class. */
	  GET_CPC_LIST() = cpc;
	  t = build_wfl_node (DECL_NAME (TYPE_NAME (object_type_node)));
	  inner = create_anonymous_class (t);
	  target_class = TREE_TYPE (inner);
	  end_class_declaration (1);
	  GET_CPC_LIST() = cpc_list;
	}

      if (TYPE_DOT_CLASS (target_class) == NULL_TREE)
	build_dot_class_method (target_class);

      if (this_class != target_class)
      	TYPE_DOT_CLASS (this_class) = TYPE_DOT_CLASS (target_class);
    }

  EXPR_WFL_LINECOL (node) = location;
  return node;
}

/* Complete an incomplete class reference operator.  */
static tree
patch_incomplete_class_ref (tree node)
{
  tree type = TREE_OPERAND (node, 0);
  tree ref_type;

  if (!(ref_type = resolve_type_during_patch (type)))
    return error_mark_node;

  /* If we're not emitting class files and we know ref_type is a
     compiled class, build a direct reference.  */
  if ((! flag_emit_class_files && is_compiled_class (ref_type))
      || JPRIMITIVE_TYPE_P (ref_type)
      || TREE_CODE (ref_type) == VOID_TYPE)
    {
      tree dot = build_class_ref (ref_type);
      /* A class referenced by `foo.class' is initialized.  */
      if (!flag_emit_class_files)
       dot = build_class_init (ref_type, dot);
      return java_complete_tree (dot);
    }

  /* If we're emitting class files and we have to deal with non
     primitive types, we invoke the synthetic static method `class$'.  */
  ref_type = build_dot_class_method_invocation (current_class, ref_type);
  return java_complete_tree (ref_type);
}

/* 15.14 Unary operators. We return error_mark_node in case of error,
   but preserve the type of NODE if the type is fixed.  */

static tree
patch_unaryop (tree node, tree wfl_op)
{
  tree op = TREE_OPERAND (node, 0);
  tree op_type = TREE_TYPE (op);
  tree prom_type = NULL_TREE, value, decl;
  int nested_field_flag = 0;
  int code = TREE_CODE (node);
  int error_found = 0;

  EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node);

  switch (code)
    {
      /* 15.13.2 Postfix Increment Operator ++ */
    case POSTINCREMENT_EXPR:
      /* 15.13.3 Postfix Increment Operator -- */
    case POSTDECREMENT_EXPR:
      /* 15.14.1 Prefix Increment Operator ++ */
    case PREINCREMENT_EXPR:
      /* 15.14.2 Prefix Decrement Operator -- */
    case PREDECREMENT_EXPR:
      op = decl = extract_field_decl (op);
      nested_field_flag
        = nested_field_expanded_access_p (op, NULL, NULL, NULL);
      /* We might be trying to change an outer field accessed using
         access method. */
      if (nested_field_flag)
	{
	  /* Retrieve the decl of the field we're trying to access. We
             do that by first retrieving the function we would call to
             access the field. It has been already verified that this
             field isn't final */
	  if (flag_emit_class_files)
	    decl = TREE_OPERAND (op, 0);
	  else
	    decl = TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (op, 0), 0), 0);
	  decl = DECL_FUNCTION_ACCESS_DECL (decl);
	}
      /* We really should have a JAVA_ARRAY_EXPR to avoid this */
      else if (!JDECL_P (decl)
	  && TREE_CODE (decl) != COMPONENT_REF
	  && !(flag_emit_class_files && TREE_CODE (decl) == ARRAY_REF)
	  && TREE_CODE (decl) != INDIRECT_REF
	  && !(TREE_CODE (decl) == COMPOUND_EXPR
	       && TREE_OPERAND (decl, 1)
	       && (TREE_CODE (TREE_OPERAND (decl, 1)) == INDIRECT_REF)))
	{
	  TREE_TYPE (node) = error_mark_node;
	  error_found = 1;
	}

      /* From now on, we know that op is a variable and that it has a
         valid wfl. We use wfl_op to locate errors related to the
         ++/-- operand. */
      if (!JNUMERIC_TYPE_P (op_type))
	{
	  parse_error_context
	    (wfl_op, "Invalid argument type %qs to %qs",
	     lang_printable_name (op_type, 0), operator_string (node));
	  TREE_TYPE (node) = error_mark_node;
	  error_found = 1;
	}
      else
	{
	  /* Before the addition, binary numeric promotion is performed on
	     both operands, if really necessary */
	  if (JINTEGRAL_TYPE_P (op_type))
	    {
	      value = build_int_cst (op_type, 1);
	      TREE_TYPE (node) = op_type;
	    }
	  else
	    {
	      value = build_int_cst (NULL_TREE, 1);
	      TREE_TYPE (node) =
		binary_numeric_promotion (op_type,
					  TREE_TYPE (value), &op, &value);
	    }

	  /* We remember we might be accessing an outer field */
	  if (nested_field_flag)
	    {
	      /* We re-generate an access to the field */
	      value = build2 (PLUS_EXPR, TREE_TYPE (op),
			      build_nested_field_access (wfl_op, decl), value);

	      /* And we patch the original access$() into a write
                 with plus_op as a rhs */
	      return nested_field_access_fix (node, op, value);
	    }

	  /* And write back into the node. */
	  TREE_OPERAND (node, 0) = op;
	  TREE_OPERAND (node, 1) = value;
	  /* Convert the overall back into its original type, if
             necessary, and return */
	  if (JINTEGRAL_TYPE_P (op_type))
	    return fold (node);
	  else
	    return fold (convert (op_type, node));
	}
      break;

      /* 15.14.3 Unary Plus Operator + */
    case UNARY_PLUS_EXPR:
      /* 15.14.4 Unary Minus Operator - */
    case NEGATE_EXPR:
      if (!JNUMERIC_TYPE_P (op_type))
	{
	  ERROR_CANT_CONVERT_TO_NUMERIC (wfl_operator, node, op_type);
	  TREE_TYPE (node) = error_mark_node;
	  error_found = 1;
	}
      /* Unary numeric promotion is performed on operand */
      else
	{
	  op = do_unary_numeric_promotion (op);
	  prom_type = TREE_TYPE (op);
	  if (code == UNARY_PLUS_EXPR)
	    return fold (op);
	}
      break;

      /* 15.14.5 Bitwise Complement Operator ~ */
    case BIT_NOT_EXPR:
      if (!JINTEGRAL_TYPE_P (op_type))
	{
	  ERROR_CAST_NEEDED_TO_INTEGRAL (wfl_operator, node, op_type);
	  TREE_TYPE (node) = error_mark_node;
	  error_found = 1;
	}
      else
	{
	  op = do_unary_numeric_promotion (op);
	  prom_type = TREE_TYPE (op);
	}
      break;

      /* 15.14.6 Logical Complement Operator ! */
    case TRUTH_NOT_EXPR:
      if (TREE_CODE (op_type) != BOOLEAN_TYPE)
	{
	  ERROR_CANT_CONVERT_TO_BOOLEAN (wfl_operator, node, op_type);
	  /* But the type is known. We will report an error if further
	     attempt of a assignment is made with this rhs */
	  TREE_TYPE (node) = boolean_type_node;
	  error_found = 1;
	}
      else
	prom_type = boolean_type_node;
      break;

      /* 15.15 Cast Expression */
    case CONVERT_EXPR:
      value = patch_cast (node, wfl_operator);
      if (value == error_mark_node)
	{
	  /* If this cast is part of an assignment, we tell the code
	     that deals with it not to complain about a mismatch,
	     because things have been cast, anyways */
	  TREE_TYPE (node) = error_mark_node;
	  error_found = 1;
	}
      else
	{
	  value = fold (value);
	  return value;
	}
      break;

    case NOP_EXPR:
      /* This can only happen when the type is already known.  */
      gcc_assert (TREE_TYPE (node) != NULL_TREE);
      prom_type = TREE_TYPE (node);
      break;
    }

  if (error_found)
    return error_mark_node;

  /* There are cases where node has been replaced by something else
     and we don't end up returning here: UNARY_PLUS_EXPR,
     CONVERT_EXPR, {POST,PRE}{INCR,DECR}EMENT_EXPR. */
  TREE_OPERAND (node, 0) = fold (op);
  TREE_TYPE (node) = prom_type;
  TREE_SIDE_EFFECTS (node) = TREE_SIDE_EFFECTS (op);
  return fold (node);
}

/* Generic type resolution that sometimes takes place during node
   patching. Returned the resolved type or generate an error
   message. Return the resolved type or NULL_TREE.  */

static tree
resolve_type_during_patch (tree type)
{
  if (unresolved_type_p (type, NULL))
    {
      tree type_decl = resolve_and_layout (EXPR_WFL_NODE (type), type);
      if (!type_decl)
	{
	  parse_error_context (type,
			       "Class %qs not found in type declaration",
			       IDENTIFIER_POINTER (EXPR_WFL_NODE (type)));
	  return NULL_TREE;
	}

      check_deprecation (type, type_decl);

      return TREE_TYPE (type_decl);
    }
  return type;
}

/* 5.5 Casting Conversion. error_mark_node is returned if an error is
   found. Otherwise NODE or something meant to replace it is returned.  */

static tree
patch_cast (tree node, tree wfl_op)
{
  tree op = TREE_OPERAND (node, 0);
  tree cast_type = TREE_TYPE (node);
  tree patched, op_type;
  char *t1;

  /* Some string patching might be necessary at this stage */
  if ((patched = patch_string (op)))
    TREE_OPERAND (node, 0) = op = patched;
  op_type = TREE_TYPE (op);

  /* First resolve OP_TYPE if unresolved */
  if (!(cast_type = resolve_type_during_patch (cast_type)))
    return error_mark_node;

  /* Check on cast that are proven correct at compile time */
  if (JNUMERIC_TYPE_P (cast_type) && JNUMERIC_TYPE_P (op_type))
    {
      /* Same type */
      if (cast_type == op_type)
	return node;

      /* A narrowing conversion from a floating-point number to an
	 integral type requires special handling (5.1.3).  */
      if (JFLOAT_TYPE_P (op_type) && JINTEGRAL_TYPE_P (cast_type))
	if (cast_type != long_type_node)
	  op = convert (integer_type_node, op);

      /* Try widening/narrowing conversion.  Potentially, things need
	 to be worked out in gcc so we implement the extreme cases
	 correctly.  fold_convert() needs to be fixed.  */
      return convert (cast_type, op);
    }

  /* It's also valid to cast a boolean into a boolean */
  if (op_type == boolean_type_node && cast_type == boolean_type_node)
    return node;

  /* null can be casted to references */
  if (op == null_pointer_node && JREFERENCE_TYPE_P (cast_type))
    return build_null_of_type (cast_type);

  /* The remaining legal casts involve conversion between reference
     types. Check for their compile time correctness. */
  if (JREFERENCE_TYPE_P (op_type) && JREFERENCE_TYPE_P (cast_type)
      && valid_ref_assignconv_cast_p (op_type, cast_type, 1))
    {
      TREE_TYPE (node) = promote_type (cast_type);
      /* Now, the case can be determined correct at compile time if
         OP_TYPE can be converted into CAST_TYPE by assignment
         conversion (5.2) */

      if (valid_ref_assignconv_cast_p (op_type, cast_type, 0))
	{
	  TREE_SET_CODE (node, NOP_EXPR);
	  return node;
	}

      if (flag_emit_class_files)
	{
	  TREE_SET_CODE (node, CONVERT_EXPR);
	  return node;
	}

      /* The cast requires a run-time check */
      return build3 (CALL_EXPR, promote_type (cast_type),
		     build_address_of (soft_checkcast_node),
		     tree_cons (NULL_TREE, build_class_ref (cast_type),
				build_tree_list (NULL_TREE, op)),
		     NULL_TREE);
    }

  /* Any other casts are proven incorrect at compile time */
  t1 = xstrdup (lang_printable_name (op_type, 0));
  parse_error_context (wfl_op, "Invalid cast from %qs to %qs",
		       t1, lang_printable_name (cast_type, 0));
  free (t1);
  return error_mark_node;
}

/* Build a null constant and give it the type TYPE.  */

static tree
build_null_of_type (tree type)
{
  tree node = build_int_cst (promote_type (type), 0);
  return node;
}

/* Build an ARRAY_REF incomplete tree node. Note that operand 1 isn't
   a list of indices. */
static tree
build_array_ref (int location, tree array, tree index)
{
  tree node = build4 (ARRAY_REF, NULL_TREE, array, index,
		      NULL_TREE, NULL_TREE);
  EXPR_WFL_LINECOL (node) = location;
  return node;
}

/* 15.12 Array Access Expression */

static tree
patch_array_ref (tree node)
{
  tree array = TREE_OPERAND (node, 0);
  tree array_type  = TREE_TYPE (array);
  tree index = TREE_OPERAND (node, 1);
  tree index_type = TREE_TYPE (index);
  int error_found = 0;

  EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node);

  if (TREE_CODE (array_type) == POINTER_TYPE)
    array_type = TREE_TYPE (array_type);

  /* The array reference must be an array */
  if (!TYPE_ARRAY_P (array_type))
    {
      parse_error_context
	(wfl_operator,
	 "%<[]%> can only be applied to arrays. It can't be applied to %qs",
	 lang_printable_name (array_type, 0));
      TREE_TYPE (node) = error_mark_node;
      error_found = 1;
    }

  /* The array index undergoes unary numeric promotion. The promoted
     type must be int */
  index = do_unary_numeric_promotion (index);
  if (TREE_TYPE (index) != int_type_node)
    {
      if (valid_cast_to_p (index_type, int_type_node))
	parse_error_context (wfl_operator,
   "Incompatible type for %<[]%>. Explicit cast needed to convert %qs to %<int%>",
			     lang_printable_name (index_type, 0));
      else
	parse_error_context (wfl_operator,
          "Incompatible type for %<[]%>. Can't convert %qs to %<int%>",
			     lang_printable_name (index_type, 0));
      TREE_TYPE (node) = error_mark_node;
      error_found = 1;
    }

  if (error_found)
    return error_mark_node;

  array_type = TYPE_ARRAY_ELEMENT (array_type);

  if (flag_emit_class_files)
    {
      TREE_OPERAND (node, 0) = array;
      TREE_OPERAND (node, 1) = index;
    }
  else
    node = build_java_arrayaccess (array, array_type, index);
  TREE_TYPE (node) = array_type;
  return node;
}

/* 15.9 Array Creation Expressions */

static tree
build_newarray_node (tree type, tree dims, int extra_dims)
{
  tree node = build3 (NEW_ARRAY_EXPR, NULL_TREE, type,
		      nreverse (dims),
		      build_int_cst (NULL_TREE, extra_dims));
  return node;
}

static tree
patch_newarray (tree node)
{
  tree type = TREE_OPERAND (node, 0);
  tree dims = TREE_OPERAND (node, 1);
  tree cdim, array_type;
  int error_found = 0;
  int ndims = 0;
  int xdims = TREE_INT_CST_LOW (TREE_OPERAND (node, 2));

  /* Dimension types are verified. It's better for the types to be
     verified in order. */
  for (cdim = dims, ndims = 0; cdim; cdim = TREE_CHAIN (cdim), ndims++ )
    {
      int dim_error = 0;
      tree dim = TREE_VALUE (cdim);

      /* Dim might have been saved during its evaluation */
      dim = (TREE_CODE (dim) == SAVE_EXPR ? TREE_OPERAND (dim, 0) : dim);

      /* The type of each specified dimension must be an integral type. */
      if (!JINTEGRAL_TYPE_P (TREE_TYPE (dim)))
	dim_error = 1;

      /* Each expression undergoes an unary numeric promotion (5.6.1) and the
	 promoted type must be int. */
      else
	{
	  dim = do_unary_numeric_promotion (dim);
	  if (TREE_TYPE (dim) != int_type_node)
	    dim_error = 1;
	}

      /* Report errors on types here */
      if (dim_error)
	{
	  parse_error_context
	    (TREE_PURPOSE (cdim),
	     "Incompatible type for dimension in array creation expression. %s convert %qs to %<int%>",
	     (valid_cast_to_p (TREE_TYPE (dim), int_type_node) ?
	      "Explicit cast needed to" : "Can't"),
	     lang_printable_name (TREE_TYPE (dim), 0));
	  error_found = 1;
	}

      TREE_PURPOSE (cdim) = NULL_TREE;
    }

  /* Resolve array base type if unresolved */
  if (!(type = resolve_type_during_patch (type)))
    error_found = 1;

  if (error_found)
    {
      /* We don't want further evaluation of this bogus array creation
         operation */
      TREE_TYPE (node) = error_mark_node;
      return error_mark_node;
    }

  /* Set array_type to the actual (promoted) array type of the result. */
  if (TREE_CODE (type) == RECORD_TYPE)
    type = build_pointer_type (type);
  while (--xdims >= 0)
    {
      type = promote_type (build_java_array_type (type, -1));
    }
  dims = nreverse (dims);
  array_type = type;
  for (cdim = dims; cdim; cdim = TREE_CHAIN (cdim))
    {
      type = array_type;
      array_type
	= build_java_array_type (type,
				 TREE_CODE (cdim) == INTEGER_CST
				 ? (HOST_WIDE_INT) TREE_INT_CST_LOW (cdim)
				 : -1);
      array_type = promote_type (array_type);
    }
  dims = nreverse (dims);

  /* The node is transformed into a function call. Things are done
     differently according to the number of dimensions. If the number
     of dimension is equal to 1, then the nature of the base type
     (primitive or not) matters. */
  if (ndims == 1)
    return build_new_array (type, TREE_VALUE (dims));

  /* Can't reuse what's already written in expr.c because it uses the
     JVM stack representation. Provide a build_multianewarray. FIXME */
  return build3 (CALL_EXPR, array_type,
		 build_address_of (soft_multianewarray_node),
		 tree_cons (NULL_TREE,
			    build_class_ref (TREE_TYPE (array_type)),
			    tree_cons (NULL_TREE,
				       build_int_cst (NULL_TREE, ndims),
				       dims)),
		 NULL_TREE);
}

/* 10.6 Array initializer.  */

/* Build a wfl for array element that don't have one, so we can
   pin-point errors.  */

static tree
maybe_build_array_element_wfl (tree node)
{
  if (TREE_CODE (node) != EXPR_WITH_FILE_LOCATION)
    {
      /* FIXME - old code used "prev_lc.line" and "elc.prev_col */
      return build_expr_wfl (NULL_TREE,
#ifdef USE_MAPPED_LOCATION
			     input_location
#else
			     ctxp->filename,
			     ctxp->lexer->token_start.line,
			     ctxp->lexer->token_start.col
#endif
			     );
    }
  else
    return NULL_TREE;
}

/* Build a NEW_ARRAY_INIT that features a CONSTRUCTOR node. This makes
   identification of initialized arrays easier to detect during walk
   and expansion.  */

static tree
build_new_array_init (int location, tree values)
{
  tree constructor = build_constructor_from_list (NULL_TREE,
						  nreverse (values));
  tree to_return = build1 (NEW_ARRAY_INIT, NULL_TREE, constructor);
  EXPR_WFL_LINECOL (to_return) = location;
  return to_return;
}

/* Expand a NEW_ARRAY_INIT node. Return error_mark_node if an error
   occurred.  Otherwise return NODE after having set its type
   appropriately.  */

static tree
patch_new_array_init (tree type, tree node)
{
  int error_seen = 0;
  tree element_type;
  unsigned HOST_WIDE_INT length;
  constructor_elt *current;
  int all_constant = 1;
  tree init = TREE_OPERAND (node, 0);

  if (TREE_CODE (type) != POINTER_TYPE || ! TYPE_ARRAY_P (TREE_TYPE (type)))
    {
      parse_error_context (node,
			   "Invalid array initializer for non-array type %qs",
			   lang_printable_name (type, 1));
      return error_mark_node;
    }
  type = TREE_TYPE (type);
  element_type = TYPE_ARRAY_ELEMENT (type);

  for (length = 0;
       VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (init),
		    length, current);
       length++)
    {
      tree elt = current->value;
      if (elt == NULL_TREE || TREE_CODE (elt) != NEW_ARRAY_INIT)
	{
	  error_seen |= array_constructor_check_entry (element_type, current);
	  elt = current->value;
	  /* When compiling to native code, STRING_CST is converted to
	     INDIRECT_REF, but still with a TREE_CONSTANT flag. */
	  if (! TREE_CONSTANT (elt) || TREE_CODE (elt) == INDIRECT_REF)
	    all_constant = 0;
	}
      else
	{
	  current->value = patch_new_array_init (element_type, elt);
	  current->index = NULL_TREE;
	  all_constant = 0;
	}
      if (elt && TREE_CODE (elt) == TREE_LIST
	  && TREE_VALUE (elt) == error_mark_node)
	error_seen = 1;
    }

  if (error_seen)
    return error_mark_node;

  /* Create a new type. We can't reuse the one we have here by
     patching its dimension because it originally is of dimension -1
     hence reused by gcc. This would prevent triangular arrays. */
  type = build_java_array_type (element_type, length);
  TREE_TYPE (init) = TREE_TYPE (TREE_CHAIN (TREE_CHAIN (TYPE_FIELDS (type))));
  TREE_TYPE (node) = promote_type (type);
  TREE_CONSTANT (init) = all_constant;
  TREE_INVARIANT (init) = all_constant;
  TREE_CONSTANT (node) = all_constant;
  TREE_INVARIANT (node) = all_constant;
  return node;
}

/* Verify that one entry of the initializer element list can be
   assigned to the array base type. Report 1 if an error occurred, 0
   otherwise.  */

static int
array_constructor_check_entry (tree type, constructor_elt *entry)
{
  char *array_type_string = NULL;	/* For error reports */
  tree value, type_value, new_value, wfl_value, patched;
  int error_seen = 0;

  new_value = NULL_TREE;
  wfl_value = entry->value;

  value = java_complete_tree (entry->value);
  /* patch_string return error_mark_node if arg is error_mark_node */
  if ((patched = patch_string (value)))
    value = patched;
  if (value == error_mark_node)
    return 1;

  type_value = TREE_TYPE (value);

  /* At anytime, try_builtin_assignconv can report a warning on
     constant overflow during narrowing. */
  SET_WFL_OPERATOR (wfl_operator, entry->index, wfl_value);
  new_value = try_builtin_assignconv (wfl_operator, type, value);
  if (!new_value && (new_value = try_reference_assignconv (type, value)))
    type_value = promote_type (type);

  /* Check and report errors */
  if (!new_value)
    {
      const char *const msg = (!valid_cast_to_p (type_value, type) ?
		   "Can't" : "Explicit cast needed to");
      if (!array_type_string)
	array_type_string = xstrdup (lang_printable_name (type, 1));
      parse_error_context
	(wfl_operator, "Incompatible type for array. %s convert %qs to %qs",
	 msg, lang_printable_name (type_value, 1), array_type_string);
      error_seen = 1;
    }

  if (new_value)
    entry->value = new_value;

  if (array_type_string)
    free (array_type_string);

  entry->index = NULL_TREE;
  return error_seen;
}

static tree
build_this (int location)
{
  tree node = build_wfl_node (this_identifier_node);
  TREE_SET_CODE (node, THIS_EXPR);
  EXPR_WFL_LINECOL (node) = location;
  return node;
}

/* 14.15 The return statement. It builds a modify expression that
   assigns the returned value to the RESULT_DECL that hold the value
   to be returned. */

static tree
build_return (int location, tree op)
{
  tree node = build1 (RETURN_EXPR, NULL_TREE, op);
  EXPR_WFL_LINECOL (node) = location;
  node = build_debugable_stmt (location, node);
  return node;
}

static tree
patch_return (tree node)
{
  tree return_exp = TREE_OPERAND (node, 0);
  tree meth = current_function_decl;
  tree mtype = TREE_TYPE (TREE_TYPE (current_function_decl));
  int error_found = 0;

  TREE_TYPE (node) = error_mark_node;
  EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node);

  /* It's invalid to have a return value within a function that is
     declared with the keyword void or that is a constructor */
  if (return_exp && (mtype == void_type_node || DECL_CONSTRUCTOR_P (meth)))
    error_found = 1;

  /* It's invalid to use a return statement in a static block */
  if (DECL_CLINIT_P (current_function_decl))
    error_found = 1;

  /* It's invalid to have a no return value within a function that
     isn't declared with the keyword `void' */
  if (!return_exp && (mtype != void_type_node && !DECL_CONSTRUCTOR_P (meth)))
    error_found = 2;

  if (DECL_INSTINIT_P (current_function_decl))
    error_found = 1;

  if (error_found)
    {
      if (DECL_INSTINIT_P (current_function_decl))
	parse_error_context (wfl_operator,
			     "%<return%> inside instance initializer");

      else if (DECL_CLINIT_P (current_function_decl))
	parse_error_context (wfl_operator,
			     "%<return%> inside static initializer");

      else if (!DECL_CONSTRUCTOR_P (meth))
	{
	  char *t = xstrdup (lang_printable_name (mtype, 0));
	  parse_error_context (wfl_operator,
			       "%<return%> with%s value from %<%s %s%>",
			       (error_found == 1 ? "" : "out"),
			       t, lang_printable_name (meth, 2));
	  free (t);
	}
      else
	parse_error_context (wfl_operator,
			     "%<return%> with value from constructor %qs",
			     lang_printable_name (meth, 2));
      return error_mark_node;
    }

  /* If we have a return_exp, build a modify expression and expand
     it. Note: at that point, the assignment is declared valid, but we
     may want to carry some more hacks */
  if (return_exp)
    {
      tree exp = java_complete_tree (return_exp);
      tree modify, patched;

      if ((patched = patch_string (exp)))
	exp = patched;

      modify = build2 (MODIFY_EXPR, NULL_TREE, DECL_RESULT (meth), exp);
      EXPR_WFL_LINECOL (modify) = EXPR_WFL_LINECOL (node);
      modify = java_complete_tree (modify);

      if (modify != error_mark_node)
	{
	  TREE_SIDE_EFFECTS (modify) = 1;
	  TREE_OPERAND (node, 0) = modify;
	}
      else
	return error_mark_node;
    }
  TREE_TYPE (node) = void_type_node;
  TREE_SIDE_EFFECTS (node) = 1;
  return node;
}

/* 14.8 The if Statement */

static tree
build_if_else_statement (int location, tree expression, tree if_body,
			 tree else_body)
{
  tree node;
  if (!else_body)
    else_body = build_java_empty_stmt ();
  node = build3 (COND_EXPR, NULL_TREE, expression, if_body, else_body);
  EXPR_WFL_LINECOL (node) = location;
  node = build_debugable_stmt (location, node);
  return node;
}

static tree
patch_if_else_statement (tree node)
{
  tree expression = TREE_OPERAND (node, 0);
  int can_complete_normally
    = (CAN_COMPLETE_NORMALLY (TREE_OPERAND (node, 1))
       | CAN_COMPLETE_NORMALLY (TREE_OPERAND (node, 2)));

  TREE_TYPE (node) = error_mark_node;
  EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node);

  /* The type of expression must be boolean */
  if (TREE_TYPE (expression) != boolean_type_node
      && TREE_TYPE (expression) != promoted_boolean_type_node)
    {
      parse_error_context
	(wfl_operator,
	 "Incompatible type for %<if%>. Can't convert %qs to %<boolean%>",
	 lang_printable_name (TREE_TYPE (expression), 0));
      return error_mark_node;
    }

  TREE_TYPE (node) = void_type_node;
  TREE_SIDE_EFFECTS (node) = 1;
  CAN_COMPLETE_NORMALLY (node) = can_complete_normally;
  return node;
}

/* 14.6 Labeled Statements */

/* Action taken when a labeled statement is parsed. a new
   LABELED_BLOCK_EXPR is created. No statement is attached to the
   label, yet.  LABEL can be NULL_TREE for artificially-generated blocks. */

static tree
build_labeled_block (int location, tree label)
{
  tree label_name ;
  tree label_decl, node;
  if (label == NULL_TREE || label == continue_identifier_node)
    label_name = label;
  else
    {
      label_name = merge_qualified_name (label_id, label);
      /* Issue an error if we try to reuse a label that was previously
	 declared */
      if (IDENTIFIER_LOCAL_VALUE (label_name))
	{
	  EXPR_WFL_LINECOL (wfl_operator) = location;
	  parse_error_context (wfl_operator,
            "Declaration of %qs shadows a previous label declaration",
			       IDENTIFIER_POINTER (label));
	  EXPR_WFL_LINECOL (wfl_operator) =
	    EXPR_WFL_LINECOL (IDENTIFIER_LOCAL_VALUE (label_name));
	  parse_error_context (wfl_operator,
            "This is the location of the previous declaration of label %qs",
			       IDENTIFIER_POINTER (label));
	  java_error_count--;
	}
    }

  label_decl = create_label_decl (label_name);
  node = build2 (LABELED_BLOCK_EXPR, NULL_TREE, label_decl, NULL_TREE);
  EXPR_WFL_LINECOL (node) = location;
  TREE_SIDE_EFFECTS (node) = 1;
  return node;
}

/* A labeled statement LBE is attached a statement.  */

static tree
finish_labeled_statement (tree lbe, /* Labeled block expr */
			  tree statement)
{
  /* In anyways, tie the loop to its statement */
  LABELED_BLOCK_BODY (lbe) = statement;
  pop_labeled_block ();
  POP_LABELED_BLOCK ();
  return lbe;
}

/* 14.10, 14.11, 14.12 Loop Statements */

/* Create an empty LOOP_EXPR and make it the last in the nested loop
   list. */

static tree
build_new_loop (tree loop_body)
{
  tree loop = build1 (LOOP_EXPR, NULL_TREE, loop_body);
  TREE_SIDE_EFFECTS (loop) = 1;
  PUSH_LOOP (loop);
  return loop;
}

/* Create a loop body according to the following structure:
     COMPOUND_EXPR
       COMPOUND_EXPR		(loop main body)
         EXIT_EXPR		(this order is for while/for loops.
         LABELED_BLOCK_EXPR      the order is reversed for do loops)
           LABEL_DECL           (a continue occurring here branches at the
           BODY			 end of this labeled block)
       INCREMENT		(if any)

  REVERSED, if nonzero, tells that the loop condition expr comes
  after the body, like in the do-while loop.

  To obtain a loop, the loop body structure described above is
  encapsulated within a LOOP_EXPR surrounded by a LABELED_BLOCK_EXPR:

   LABELED_BLOCK_EXPR
     LABEL_DECL                   (use this label to exit the loop)
     LOOP_EXPR
       <structure described above> */

static tree
build_loop_body (int location, tree condition, int reversed)
{
  tree first, second, body;

  condition = build1 (EXIT_EXPR, NULL_TREE, condition); /* Force walk */
  EXPR_WFL_LINECOL (condition) = location; /* For accurate error report */
  condition = build_debugable_stmt (location, condition);
  TREE_SIDE_EFFECTS (condition) = 1;

  body = build_labeled_block (0, continue_identifier_node);
  first = (reversed ? body : condition);
  second = (reversed ? condition : body);
  return build2 (COMPOUND_EXPR, NULL_TREE,
		 build2 (COMPOUND_EXPR, NULL_TREE, first, second),
		 build_java_empty_stmt ());
}

/* Install CONDITION (if any) and loop BODY (using REVERSED to tell
   their order) on the current loop. Unlink the current loop from the
   loop list.  */

static tree
finish_loop_body (int location, tree condition, tree body, int reversed)
{
  tree to_return = ctxp->current_loop;
  tree loop_body = LOOP_EXPR_BODY (to_return);
  if (condition)
    {
      tree cnode = LOOP_EXPR_BODY_CONDITION_EXPR (loop_body, reversed);
      /* We wrapped the EXIT_EXPR around a WFL so we can debug it.
         The real EXIT_EXPR is one operand further. */
      EXPR_WFL_LINECOL (cnode) = location;
      if (TREE_CODE (cnode) == EXPR_WITH_FILE_LOCATION)
	{
	  cnode = EXPR_WFL_NODE (cnode);
	  /* This one is for accurate error reports */
	  EXPR_WFL_LINECOL (cnode) = location;
	}
      TREE_OPERAND (cnode, 0) = condition;
    }
  LOOP_EXPR_BODY_BODY_EXPR (loop_body, reversed) = body;
  POP_LOOP ();
  return to_return;
}

/* Tailored version of finish_loop_body for FOR loops, when FOR
   loops feature the condition part */

static tree
finish_for_loop (int location, tree condition, tree update, tree body)
{
  /* Put the condition and the loop body in place */
  tree loop = finish_loop_body (location, condition, body, 0);
  /* LOOP is the current loop which has been now popped of the loop
     stack.  Mark the update block as reachable and install it.  We do
     this because the (current interpretation of the) JLS requires
     that the update expression be considered reachable even if the
     for loop's body doesn't complete normally.  */
  if (update != NULL_TREE && !IS_EMPTY_STMT (update))
    {
      tree up2 = update;
      if (TREE_CODE (up2) == EXPR_WITH_FILE_LOCATION)
	up2 = EXPR_WFL_NODE (up2);
      /* It is possible for the update expression to be an
	 EXPR_WFL_NODE wrapping nothing.  */
      if (up2 != NULL_TREE && !IS_EMPTY_STMT (up2))
	{
	  /* Try to detect constraint violations.  These would be
	     programming errors somewhere.  */
	  if (! EXPR_P (up2) || TREE_CODE (up2) == LOOP_EXPR)
	    abort ();
	  SUPPRESS_UNREACHABLE_ERROR (up2) = 1;
	}
    }
  LOOP_EXPR_BODY_UPDATE_BLOCK (LOOP_EXPR_BODY (loop)) = update;
  return loop;
}

/* Try to find the loop a block might be related to. This comprises
   the case where the LOOP_EXPR is found as the second operand of a
   COMPOUND_EXPR, because the loop happens to have an initialization
   part, then expressed as the first operand of the COMPOUND_EXPR. If
   the search finds something, 1 is returned. Otherwise, 0 is
   returned. The search is assumed to start from a
   LABELED_BLOCK_EXPR's block.  */

static tree
search_loop (tree statement)
{
  if (TREE_CODE (statement) == LOOP_EXPR)
    return statement;

  if (TREE_CODE (statement) == BLOCK)
    statement = BLOCK_SUBBLOCKS (statement);
  else
    return NULL_TREE;

  if (statement && TREE_CODE (statement) == COMPOUND_EXPR)
    while (statement && TREE_CODE (statement) == COMPOUND_EXPR)
      statement = TREE_OPERAND (statement, 1);

  return (TREE_CODE (statement) == LOOP_EXPR
	  && FOR_LOOP_P (statement) ? statement : NULL_TREE);
}

/* Return 1 if LOOP can be found in the labeled block BLOCK. 0 is
   returned otherwise.  */

static int
labeled_block_contains_loop_p (tree block, tree loop)
{
  if (!block)
    return 0;

  if (LABELED_BLOCK_BODY (block) == loop)
    return 1;

  if (FOR_LOOP_P (loop) && search_loop (LABELED_BLOCK_BODY (block)) == loop)
    return 1;

  return 0;
}

/* If the loop isn't surrounded by a labeled statement, create one and
   insert LOOP as its body.  */

static tree
patch_loop_statement (tree loop)
{
  tree loop_label;

  TREE_TYPE (loop) = void_type_node;
  if (labeled_block_contains_loop_p (ctxp->current_labeled_block, loop))
    return loop;

  loop_label = build_labeled_block (0, NULL_TREE);
  /* LOOP is an EXPR node, so it should have a valid EXPR_WFL_LINECOL
     that LOOP_LABEL could enquire about, for a better accuracy. FIXME */
  LABELED_BLOCK_BODY (loop_label) = loop;
  PUSH_LABELED_BLOCK (loop_label);
  return loop_label;
}

/* 14.13, 14.14: break and continue Statements */

/* Build a break or a continue statement. a null NAME indicates an
   unlabeled break/continue statement.  */

static tree
build_bc_statement (int location, int is_break, tree name)
{
  tree break_continue, label_block_expr = NULL_TREE;

  if (name)
    {
      if (!(label_block_expr = IDENTIFIER_LOCAL_VALUE
	    (merge_qualified_name (label_id, EXPR_WFL_NODE (name)))))
	/* Null means that we don't have a target for this named
	   break/continue. In this case, we make the target to be the
	   label name, so that the error can be reported accurately in
	   patch_bc_statement. */
	label_block_expr = EXPR_WFL_NODE (name);
    }
  /* Unlabeled break/continue will be handled during the
     break/continue patch operation */
  break_continue = build1 (EXIT_BLOCK_EXPR, NULL_TREE, label_block_expr);

  IS_BREAK_STMT_P (break_continue) = is_break;
  TREE_SIDE_EFFECTS (break_continue) = 1;
  EXPR_WFL_LINECOL (break_continue) = location;
  break_continue = build_debugable_stmt (location, break_continue);
  return break_continue;
}

/* Verification of a break/continue statement. */

static tree
patch_bc_statement (tree node)
{
  tree bc_label = EXIT_BLOCK_LABELED_BLOCK (node), target_stmt;
  tree labeled_block = ctxp->current_labeled_block;
  EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node);

  /* Having an identifier here means that the target is unknown. */
  if (bc_label != NULL_TREE && TREE_CODE (bc_label) == IDENTIFIER_NODE)
    {
      parse_error_context (wfl_operator, "No label definition found for %qs",
			   IDENTIFIER_POINTER (bc_label));
      return error_mark_node;
    }
  if (! IS_BREAK_STMT_P (node))
    {
      /* It's a continue statement. */
      for (;; labeled_block = TREE_CHAIN (labeled_block))
	{
	  if (labeled_block == NULL_TREE)
	    {
	      if (bc_label == NULL_TREE)
		parse_error_context (wfl_operator,
				     "%<continue%> must be in loop");
	      else
		parse_error_context
		  (wfl_operator, "continue label %qs does not name a loop",
		   IDENTIFIER_POINTER (bc_label));
	      return error_mark_node;
	    }
	  if ((DECL_NAME (LABELED_BLOCK_LABEL (labeled_block))
	       == continue_identifier_node)
	      && (bc_label == NULL_TREE
		  || TREE_CHAIN (labeled_block) == bc_label))
	    {
	      bc_label = labeled_block;
	      break;
	    }
	}
    }
  else if (!bc_label)
    {
      for (;; labeled_block = TREE_CHAIN (labeled_block))
	{
	  if (labeled_block == NULL_TREE)
	    {
	      parse_error_context (wfl_operator,
				     "%<break%> must be in loop or switch");
	      return error_mark_node;
	    }
	  target_stmt = LABELED_BLOCK_BODY (labeled_block);
	  if (TREE_CODE (target_stmt) == SWITCH_EXPR
	      || search_loop (target_stmt))
	    {
	      bc_label = labeled_block;
	      break;
	    }
	}
    }

  EXIT_BLOCK_LABELED_BLOCK (node) = bc_label;
  CAN_COMPLETE_NORMALLY (bc_label) = 1;

  /* Our break/continue don't return values. */
  TREE_TYPE (node) = void_type_node;
  /* Encapsulate the break within a compound statement so that it's
     expanded all the times by expand_expr (and not clobbered
     sometimes, like after a if statement) */
  node = add_stmt_to_compound (NULL_TREE, void_type_node, node);
  TREE_SIDE_EFFECTS (node) = 1;
  return node;
}

/* Process the exit expression belonging to a loop. Its type must be
   boolean.  */

static tree
patch_exit_expr (tree node)
{
  tree expression = TREE_OPERAND (node, 0);
  TREE_TYPE (node) = error_mark_node;
  EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node);

  /* The type of expression must be boolean */
  if (TREE_TYPE (expression) != boolean_type_node)
    {
      parse_error_context
	(wfl_operator,
    "Incompatible type for loop conditional. Can't convert %qs to %<boolean%>",
	 lang_printable_name (TREE_TYPE (expression), 0));
      return error_mark_node;
    }
  /* Now we know things are allright, invert the condition, fold and
     return */
  TREE_OPERAND (node, 0) =
    fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, expression);

  if (! integer_zerop (TREE_OPERAND (node, 0))
      && ctxp->current_loop != NULL_TREE
      && TREE_CODE (ctxp->current_loop) == LOOP_EXPR)
    CAN_COMPLETE_NORMALLY (ctxp->current_loop) = 1;
  if (! integer_onep (TREE_OPERAND (node, 0)))
    CAN_COMPLETE_NORMALLY (node) = 1;


  TREE_TYPE (node) = void_type_node;
  return node;
}

/* 14.9 Switch statement */

static tree
patch_switch_statement (tree node)
{
  tree se = TREE_OPERAND (node, 0), se_type;
  tree save, iter;

  /* Complete the switch expression */
  se = TREE_OPERAND (node, 0) = java_complete_tree (se);
  se_type = TREE_TYPE (se);
  /* The type of the switch expression must be char, byte, short or
     int */
  if (! JINTEGRAL_TYPE_P (se_type) || se_type == long_type_node)
    {
      EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (node);
      parse_error_context (wfl_operator,
	  "Incompatible type for %<switch%>. Can't convert %qs to %<int%>",
			   lang_printable_name (se_type, 0));
      /* This is what java_complete_tree will check */
      TREE_OPERAND (node, 0) = error_mark_node;
      return error_mark_node;
    }

  /* Save and restore the outer case label list.  */
  save = case_label_list;
  case_label_list = NULL_TREE;

  TREE_OPERAND (node, 1) = java_complete_tree (TREE_OPERAND (node, 1));

  /* See if we've found a duplicate label.  We can't leave this until
     code generation, because in `--syntax-only' and `-C' modes we
     don't do ordinary code generation.  */
  for (iter = case_label_list; iter != NULL_TREE; iter = TREE_CHAIN (iter))
    {
      HOST_WIDE_INT val = TREE_INT_CST_LOW (TREE_VALUE (iter));
      tree subiter;
      for (subiter = TREE_CHAIN (iter);
	   subiter != NULL_TREE;
	   subiter = TREE_CHAIN (subiter))
	{
	  HOST_WIDE_INT subval = TREE_INT_CST_LOW (TREE_VALUE (subiter));
	  if (val == subval)
	    {
	      EXPR_WFL_LINECOL (wfl_operator)
		= EXPR_WFL_LINECOL (TREE_PURPOSE (iter));
	      /* The case_label_list is in reverse order, so print the
		 outer label first.  */
	      parse_error_context (wfl_operator, "duplicate case label: %<"
				   HOST_WIDE_INT_PRINT_DEC "%>", subval);
	      EXPR_WFL_LINECOL (wfl_operator)
		= EXPR_WFL_LINECOL (TREE_PURPOSE (subiter));
	      parse_error_context (wfl_operator, "original label is here");

	      break;
	    }
	}
    }

  case_label_list = save;

  /* Ready to return */
  if (TREE_CODE (TREE_OPERAND (node, 1)) == ERROR_MARK)
    {
      TREE_TYPE (node) = error_mark_node;
      return error_mark_node;
    }
  TREE_TYPE (node) = void_type_node;
  TREE_SIDE_EFFECTS (node) = 1;
  CAN_COMPLETE_NORMALLY (node)
    = CAN_COMPLETE_NORMALLY (TREE_OPERAND (node, 1))
      || ! SWITCH_HAS_DEFAULT (node);
  return node;
}

/* Assertions.  */

/* Build an assertion expression for `assert CONDITION : VALUE'; VALUE
   might be NULL_TREE.  */
static tree
build_assertion (
#ifdef USE_MAPPED_LOCATION
		 source_location location,
#else
		 int location,
#endif
		 tree condition, tree value)
{
  tree node;
  tree klass = GET_CPC ();

  if (! enable_assertions (klass))
    {
      condition = build2 (TRUTH_ANDIF_EXPR, NULL_TREE,
			  boolean_false_node, condition);
      if (value == NULL_TREE)
	value = build_java_empty_stmt ();
      return build_if_else_statement (location, condition,
				      value, NULL_TREE);
    }

  if (! CLASS_USES_ASSERTIONS (klass))
    {
      tree field, classdollar, id, call;
      tree class_type = TREE_TYPE (klass);

      field = add_field (class_type,
			 get_identifier ("$assertionsDisabled"),
			 boolean_type_node,
			 ACC_PRIVATE | ACC_STATIC | ACC_FINAL);
      MAYBE_CREATE_VAR_LANG_DECL_SPECIFIC (field);
      FIELD_SYNTHETIC (field) = 1;

      classdollar = build_incomplete_class_ref (location, class_type);

      /* Call CLASS.desiredAssertionStatus().  */
      id = build_wfl_node (get_identifier ("desiredAssertionStatus"));
      call = build3 (CALL_EXPR, NULL_TREE, id, NULL_TREE, NULL_TREE);
      call = make_qualified_primary (classdollar, call, location);
      TREE_SIDE_EFFECTS (call) = 1;

      /* Invert to obtain !CLASS.desiredAssertionStatus().  This may
	 seem odd, but we do it to generate code identical to that of
	 the JDK.  */
      call = build1 (TRUTH_NOT_EXPR, NULL_TREE, call);
      TREE_SIDE_EFFECTS (call) = 1;
      DECL_INITIAL (field) = call;

      /* Record the initializer in the initializer statement list.  */
      call = build2 (MODIFY_EXPR, NULL_TREE, field, call);
      TREE_CHAIN (call) = CPC_STATIC_INITIALIZER_STMT (ctxp);
      SET_CPC_STATIC_INITIALIZER_STMT (ctxp, call);
      MODIFY_EXPR_FROM_INITIALIZATION_P (call) = 1;

      CLASS_USES_ASSERTIONS (klass) = 1;
    }

  if (value != NULL_TREE)
    value = tree_cons (NULL_TREE, value, NULL_TREE);

  node = build_wfl_node (get_identifier ("java"));
  node = make_qualified_name (node, build_wfl_node (get_identifier ("lang")),
			      location);
  node = make_qualified_name (node, build_wfl_node (get_identifier ("AssertionError")),
			      location);

  node = build3 (NEW_CLASS_EXPR, NULL_TREE, node, value, NULL_TREE);
  TREE_SIDE_EFFECTS (node) = 1;
  /* It is too early to use BUILD_THROW.  */
  node = build1 (THROW_EXPR, NULL_TREE, node);
  TREE_SIDE_EFFECTS (node) = 1;

  /* We invert the condition; if we just put NODE as the `else' part
     then we generate weird-looking bytecode.  */
  condition = build1 (TRUTH_NOT_EXPR, NULL_TREE, condition);
  /* Check $assertionsDisabled.  */
  condition
    = build2 (TRUTH_ANDIF_EXPR, NULL_TREE,
	      build1 (TRUTH_NOT_EXPR, NULL_TREE,
		      build_wfl_node (get_identifier ("$assertionsDisabled"))),
	      condition);
  node = build_if_else_statement (location, condition, node, NULL_TREE);
  return node;
}

/* 14.18 The try/catch statements */

/* Encapsulate TRY_STMTS' in a try catch sequence. The catch clause
   catches TYPE and executes CATCH_STMTS.  */

static tree
encapsulate_with_try_catch (int location, tree type_or_name, tree try_stmts,
			    tree catch_stmts)
{
  tree try_block, catch_clause_param, catch_block, catch;

  /* First build a try block */
  try_block = build_expr_block (try_stmts, NULL_TREE);

  /* Build a catch block: we need a catch clause parameter */
  if (TREE_CODE (type_or_name) == EXPR_WITH_FILE_LOCATION)
    {
      tree catch_type = obtain_incomplete_type (type_or_name);
      jdep *dep;
      catch_clause_param = build_decl (VAR_DECL, wpv_id, catch_type);
      register_incomplete_type (JDEP_VARIABLE, type_or_name,
				catch_clause_param, catch_type);
      dep = CLASSD_LAST (ctxp->classd_list);
      JDEP_GET_PATCH (dep) = &TREE_TYPE (catch_clause_param);
    }
  else
    catch_clause_param = build_decl (VAR_DECL, wpv_id,
				     build_pointer_type (type_or_name));

  /* And a block */
  catch_block = build_expr_block (NULL_TREE, catch_clause_param);

  /* Initialize the variable and store in the block */
  catch = build2 (MODIFY_EXPR, NULL_TREE, catch_clause_param,
		  build0 (JAVA_EXC_OBJ_EXPR, ptr_type_node));
  add_stmt_to_block (catch_block, NULL_TREE, catch);

  /* Add the catch statements */
  add_stmt_to_block (catch_block, NULL_TREE, catch_stmts);

  /* Now we can build a JAVA_CATCH_EXPR */
  catch_block = build1 (JAVA_CATCH_EXPR, NULL_TREE, catch_block);

  return build_try_statement (location, try_block, catch_block);
}

static tree
build_try_statement (int location, tree try_block, tree catches)
{
  tree node = build2 (TRY_EXPR, NULL_TREE, try_block, catches);
  EXPR_WFL_LINECOL (node) = location;
  return node;
}

static tree
build_try_finally_statement (int location, tree try_block, tree finally)
{
  tree node = build2 (TRY_FINALLY_EXPR, NULL_TREE, try_block, finally);
  EXPR_WFL_LINECOL (node) = location;
  return node;
}

static tree
patch_try_statement (tree node)
{
  int error_found = 0;
  tree try = TREE_OPERAND (node, 0);
  /* Exception handlers are considered in left to right order */
  tree catch = nreverse (TREE_OPERAND (node, 1));
  tree current, caught_type_list = NULL_TREE;

  /* Check catch clauses, if any. Every time we find an error, we try
     to process the next catch clause. We process the catch clause before
     the try block so that when processing the try block we can check thrown
     exceptions against the caught type list. */
  for (current = catch; current; current = TREE_CHAIN (current))
    {
      tree carg_decl, carg_type;
      tree sub_current, catch_block, catch_clause;
      int unreachable;

      /* At this point, the structure of the catch clause is
	   JAVA_CATCH_EXPR		(catch node)
	     BLOCK	        (with the decl of the parameter)
               COMPOUND_EXPR
                 MODIFY_EXPR   (assignment of the catch parameter)
		 BLOCK	        (catch clause block)
       */
      catch_clause = TREE_OPERAND (current, 0);
      carg_decl = BLOCK_EXPR_DECLS (catch_clause);
      carg_type = TREE_TYPE (TREE_TYPE (carg_decl));

      /* Catch clauses can't have more than one parameter declared,
	 but it's already enforced by the grammar. Make sure that the
	 only parameter of the clause statement in of class Throwable
	 or a subclass of Throwable, but that was done earlier. The
	 catch clause parameter type has also been resolved. */

      /* Just make sure that the catch clause parameter type inherits
	 from java.lang.Throwable */
      if (!inherits_from_p (carg_type, throwable_type_node))
	{
	  EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (current);
	  parse_error_context (wfl_operator,
			       "Can't catch class %qs. Catch clause parameter type must be a subclass of class %<java.lang.Throwable%>",
			       lang_printable_name (carg_type, 0));
	  error_found = 1;
	  continue;
	}

      /* Partial check for unreachable catch statement: The catch
	 clause is reachable iff is no earlier catch block A in
	 the try statement such that the type of the catch
	 clause's parameter is the same as or a subclass of the
	 type of A's parameter */
      unreachable = 0;
      for (sub_current = catch;
	   sub_current != current; sub_current = TREE_CHAIN (sub_current))
	{
	  tree sub_catch_clause, decl;
	  sub_catch_clause = TREE_OPERAND (sub_current, 0);
	  decl = BLOCK_EXPR_DECLS (sub_catch_clause);

	  if (inherits_from_p (carg_type, TREE_TYPE (TREE_TYPE (decl))))
	    {
	      EXPR_WFL_LINECOL (wfl_operator) = EXPR_WFL_LINECOL (current);
	      parse_error_context
		(wfl_operator,
		 "%<catch%> not reached because of the catch clause at line %d",
		 EXPR_WFL_LINENO (sub_current));
	      unreachable = error_found = 1;
	      break;
	    }
	}
      /* Complete the catch clause block */
      catch_block = java_complete_tree (TREE_OPERAND (current, 0));
      if (catch_block == error_mark_node)
	{
	  error_found = 1;
	  continue;
	}
      if (CAN_COMPLETE_NORMALLY (catch_block))
	CAN_COMPLETE_NORMALLY (node) = 1;
      TREE_OPERAND (current, 0) = catch_block;

      if (unreachable)
	continue;

      /* Things to do here: the exception must be thrown */

      /* Link this type to the caught type list */
      caught_type_list = tree_cons (NULL_TREE, carg_type, caught_type_list);
    }

  PUSH_EXCEPTIONS (caught_type_list);
  if ((try = java_complete_tree (try)) == error_mark_node)
    error_found = 1;
  if (CAN_COMPLETE_NORMALLY (try))
    CAN_COMPLETE_NORMALLY (node) = 1;
  POP_EXCEPTIONS ();

  /* Verification ends here */
  if (error_found)
    return error_mark_node;

  TREE_OPERAND (node, 0) = try;
  TREE_OPERAND (node, 1) = catch;
  TREE_TYPE (node) = void_type_node;
  return node;
}

/* 14.17 The synchronized Statement */

static tree
patch_synchronized_statement (tree node, tree wfl_op1)
{
  tree expr = java_complete_tree (TREE_OPERAND (node, 0));
  tree block = TREE_OPERAND (node, 1);

  tree tmp, enter, exit, expr_decl, assignment;

  if (expr == error_mark_node)
    {
      block = java_complete_tree (block);
      return expr;
    }

  /* We might be trying to synchronize on a STRING_CST */
  if ((tmp = patch_string (expr)))
    expr = tmp;

  /* The TYPE of expr must be a reference type */
  if (!JREFERENCE_TYPE_P (TREE_TYPE (expr)))
    {
      SET_WFL_OPERATOR (wfl_operator, node, wfl_op1);
      parse_error_context (wfl_operator, "Incompatible type for %<synchronized%>. Can't convert %qs to %<java.lang.Object%>",
			   lang_printable_name (TREE_TYPE (expr), 0));
      return error_mark_node;
    }

  /* Generate a try-finally for the synchronized statement, except
     that the handler that catches all throw exception calls
     _Jv_MonitorExit and then rethrow the exception.
     The synchronized statement is then implemented as:
     TRY
       {
         _Jv_MonitorEnter (expression)
	 synchronized_block
         _Jv_MonitorExit (expression)
       }
     CATCH_ALL
       {
         e = _Jv_exception_info ();
	 _Jv_MonitorExit (expression)
	 Throw (e);
       } */

  expr_decl = build_decl (VAR_DECL, generate_name (), TREE_TYPE (expr));
  BUILD_MONITOR_ENTER (enter, expr_decl);
  BUILD_MONITOR_EXIT (exit, expr_decl);
  CAN_COMPLETE_NORMALLY (enter) = 1;
  CAN_COMPLETE_NORMALLY (exit) = 1;
  assignment = build2 (MODIFY_EXPR, NULL_TREE, expr_decl, expr);
  TREE_SIDE_EFFECTS (assignment) = 1;
  node = build2 (COMPOUND_EXPR, NULL_TREE,
		 build2 (COMPOUND_EXPR, NULL_TREE, assignment, enter),
		 build2 (TRY_FINALLY_EXPR, NULL_TREE, block, exit));
  node = build_expr_block (node, expr_decl);

  return java_complete_tree (node);
}

/* 14.16 The throw Statement */

static tree
patch_throw_statement (tree node, tree wfl_op1)
{
  tree expr = TREE_OPERAND (node, 0);
  tree type = TREE_TYPE (expr);
  int unchecked_ok = 0, tryblock_throws_ok = 0;

  /* Thrown expression must be assignable to java.lang.Throwable */
  if (!try_reference_assignconv (throwable_type_node, expr))
    {
      SET_WFL_OPERATOR (wfl_operator, node, wfl_op1);
      parse_error_context (wfl_operator,
    "Can't throw %qs; it must be a subclass of class %<java.lang.Throwable%>",
			   lang_printable_name (type, 0));
      /* If the thrown expression was a reference, we further the
         compile-time check. */
      if (!JREFERENCE_TYPE_P (type))
	return error_mark_node;
    }

  /* At least one of the following must be true */

  /* The type of the throw expression is a not checked exception,
     i.e. is a unchecked expression. */
  unchecked_ok = IS_UNCHECKED_EXCEPTION_P (TREE_TYPE (type));

  SET_WFL_OPERATOR (wfl_operator, node, wfl_op1);
  /* An instance can't throw a checked exception unless that exception
     is explicitly declared in the `throws' clause of each
     constructor. This doesn't apply to anonymous classes, since they
     don't have declared constructors. */
  if (!unchecked_ok
      && DECL_INSTINIT_P (current_function_decl)
      && !ANONYMOUS_CLASS_P (current_class))
    {
      tree current;
      for (current = TYPE_METHODS (current_class); current;
	   current = TREE_CHAIN (current))
	if (DECL_CONSTRUCTOR_P (current)
	    && !check_thrown_exceptions_do (TREE_TYPE (expr)))
	  {
	    parse_error_context (wfl_operator, "Checked exception %qs can't be thrown in instance initializer (not all declared constructor are declaring it in their %<throws%> clause)",
				 lang_printable_name (TREE_TYPE (expr), 0));
	    return error_mark_node;
	  }
    }

  /* Throw is contained in a try statement and at least one catch
     clause can receive the thrown expression or the current method is
     declared to throw such an exception. Or, the throw statement is
     contained in a method or constructor declaration and the type of
     the Expression is assignable to at least one type listed in the
     throws clause the declaration. */
  if (!unchecked_ok)
    tryblock_throws_ok = check_thrown_exceptions_do (TREE_TYPE (expr));
  if (!(unchecked_ok || tryblock_throws_ok))
    {
      /* If there is a surrounding try block that has no matching
	 clatch clause, report it first. A surrounding try block exits
	 only if there is something after the list of checked
	 exception thrown by the current function (if any). */
      if (IN_TRY_BLOCK_P ())
	parse_error_context (wfl_operator, "Checked exception %qs can't be caught by any of the catch clause(s) of the surrounding %<try%> block",
			     lang_printable_name (type, 0));
      /* If we have no surrounding try statement and the method doesn't have
	 any throws, report it now. FIXME */

      /* We report that the exception can't be throw from a try block
         in all circumstances but when the `throw' is inside a static
         block. */
      else if (!EXCEPTIONS_P (currently_caught_type_list)
	       && !tryblock_throws_ok)
	{
	  if (DECL_CLINIT_P (current_function_decl))
	    parse_error_context (wfl_operator,
                   "Checked exception %qs can't be thrown in initializer",
				 lang_printable_name (type, 0));
	  else
	    parse_error_context (wfl_operator,
                   "Checked exception %qs isn't thrown from a %<try%> block",
				 lang_printable_name (type, 0));
	}
      /* Otherwise, the current method doesn't have the appropriate
         throws declaration */
      else
	parse_error_context (wfl_operator, "Checked exception %qs doesn't match any of current method's %<throws%> declaration(s)",
			     lang_printable_name (type, 0));
      return error_mark_node;
    }

  if (! flag_emit_class_files)
    BUILD_THROW (node, expr);

  return node;
}

/* Add EXCEPTION to the throws clause of MDECL.  If MDECL already throws
   a super-class of EXCEPTION, keep the superclass instead.  If MDECL already
   throws a sub-class of EXCEPTION, replace the sub-class with EXCEPTION.  */
static void
add_exception_to_throws (tree mdecl, tree exception)
{
  tree mthrows;
  
  /* Ignore unchecked exceptions. */
  if (IS_UNCHECKED_EXCEPTION_P (exception))
    return;

  for (mthrows = DECL_FUNCTION_THROWS (mdecl);
       mthrows; mthrows = TREE_CHAIN (mthrows))
    {
      if (inherits_from_p (exception, TREE_VALUE (mthrows)))
        return;
      if (inherits_from_p (TREE_VALUE (mthrows), exception))
        {
	  TREE_VALUE (mthrows) = exception;
	  return;
	}
    }
  
  mthrows = DECL_FUNCTION_THROWS (mdecl);
  DECL_FUNCTION_THROWS (mdecl) = build_tree_list (mthrows, exception);
}

/* Check that exception said to be thrown by method DECL can be
   effectively caught from where DECL is invoked.  THIS_EXPR is the
   expression that computes `this' for the method call.  */
static void
check_thrown_exceptions (
#ifdef USE_MAPPED_LOCATION
			 source_location location,
#else

			 int location,
#endif
			 tree decl, tree this_expr)
{
  tree throws;
  int is_array_call = 0;

  /* Skip check within generated methods, such as access$<n>.  */
  if (NESTED_FIELD_ACCESS_IDENTIFIER_P (DECL_NAME (current_function_decl)))
    return;

  if (this_expr != NULL_TREE
      && TREE_CODE (TREE_TYPE (this_expr)) == POINTER_TYPE
      && TYPE_ARRAY_P (TREE_TYPE (TREE_TYPE (this_expr))))
    is_array_call = 1;

  /* For all the unchecked exceptions thrown by DECL.  */
  for (throws = DECL_FUNCTION_THROWS (decl); throws;
       throws = TREE_CHAIN (throws))
    if (!check_thrown_exceptions_do (TREE_VALUE (throws)))
      {
	/* Suppress errors about cloning arrays.  */
	if (is_array_call && DECL_NAME (decl) == get_identifier ("clone"))
	  continue;

#ifdef USE_MAPPED_LOCATION
	SET_EXPR_LOCATION (wfl_operator, location);
#else
	EXPR_WFL_LINECOL (wfl_operator) = location;
#endif
	if (ANONYMOUS_CLASS_P (DECL_CONTEXT (current_function_decl))
	    && (DECL_FINIT_P (current_function_decl)
	        || DECL_INIT_P (current_function_decl)
		|| DECL_CONSTRUCTOR_P (current_function_decl)))
	  {
	    /* Add "throws" to the initializer's exception list */
	    tree exception = TREE_VALUE (throws);
	    add_exception_to_throws (current_function_decl, exception);	  
	  }
	else if (DECL_FINIT_P (current_function_decl))
	  {
	    parse_error_context
              (wfl_operator, "Exception %qs can't be thrown in initializer",
	       lang_printable_name (TREE_VALUE (throws), 0));
	  }
	else
	  {
	    parse_error_context
	      (wfl_operator, "Exception %qs must be caught, or it must be declared in the %<throws%> clause of %qs",
	       lang_printable_name (TREE_VALUE (throws), 0),
	       (DECL_INIT_P (current_function_decl) ?
		IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (current_class))) :
		IDENTIFIER_POINTER (DECL_NAME (current_function_decl))));
	  }
      }
}

/* Return 1 if checked EXCEPTION is caught at the current nesting level of
   try-catch blocks, OR is listed in the `throws' clause of the
   current method.  */

static int
check_thrown_exceptions_do (tree exception)
{
  tree list = currently_caught_type_list;
  resolve_and_layout (exception, NULL_TREE);
  /* First, all the nested try-catch-finally at that stage. The
     last element contains `throws' clause exceptions, if any. */
  if (IS_UNCHECKED_EXCEPTION_P (exception))
    return 1;
  while (list)
    {
      tree caught;
      for (caught = TREE_VALUE (list); caught; caught = TREE_CHAIN (caught))
	if (valid_ref_assignconv_cast_p (exception, TREE_VALUE (caught), 0))
	  return 1;
      list = TREE_CHAIN (list);
    }
  return 0;
}

/* This function goes over all of CLASS_TYPE ctors and checks whether
   each of them features at least one unchecked exception in its
   `throws' clause. If it's the case, it returns `true', `false'
   otherwise.  */

static bool
ctors_unchecked_throws_clause_p (tree class_type)
{
  tree current;

  for (current = TYPE_METHODS (class_type); current;
       current = TREE_CHAIN (current))
    {
      bool ctu = false;	/* Ctor Throws Unchecked */
      if (DECL_CONSTRUCTOR_P (current))
	{
	  tree throws;
	  for (throws = DECL_FUNCTION_THROWS (current); throws && !ctu;
	       throws = TREE_CHAIN (throws))
	    if (inherits_from_p (TREE_VALUE (throws), exception_type_node))
	      ctu = true;
	}
      /* We return false as we found one ctor that is unfit. */
      if (!ctu && DECL_CONSTRUCTOR_P (current))
	return false;
    }
  /* All ctors feature at least one unchecked exception in their
     `throws' clause. */
  return true;
}

/* 15.24 Conditional Operator ?: */

static tree
patch_conditional_expr (tree node, tree wfl_cond, tree wfl_op1)
{
  tree cond = TREE_OPERAND (node, 0);
  tree op1 = TREE_OPERAND (node, 1);
  tree op2 = TREE_OPERAND (node, 2);
  tree resulting_type = NULL_TREE;
  tree t1, t2, patched;
  int error_found = 0;

  /* The condition and operands of ?: might be StringBuffers crafted
     as a result of a string concatenation.  Obtain decent ones here.  */
  if ((patched = patch_string (cond)))
    TREE_OPERAND (node, 0) = cond = patched;
  if ((patched = patch_string (op1)))
    TREE_OPERAND (node, 1) = op1 = patched;
  if ((patched = patch_string (op2)))
    TREE_OPERAND (node, 2) = op2 = patched;

  t1 = TREE_TYPE (op1);
  t2 = TREE_TYPE (op2);

  /* The first expression must be a boolean */
  if (TREE_TYPE (cond) != boolean_type_node)
    {
      SET_WFL_OPERATOR (wfl_operator, node, wfl_cond);
      parse_error_context (wfl_operator,
               "Incompatible type for %<?:%>. Can't convert %qs to %<boolean%>",
			   lang_printable_name (TREE_TYPE (cond), 0));
      error_found = 1;
    }

  /* Second and third can be numeric, boolean (i.e. primitive),
     references or null. Anything else results in an error */
  if (!((JNUMERIC_TYPE_P (t1) && JNUMERIC_TYPE_P (t2))
	|| ((JREFERENCE_TYPE_P (t1) || op1 == null_pointer_node)
	    && (JREFERENCE_TYPE_P (t2) || op2 == null_pointer_node))
	|| (t1 == boolean_type_node && t2 == boolean_type_node)))
    error_found = 1;

  /* Determine the type of the conditional expression. Same types are
     easy to deal with */
  else if (t1 == t2)
    resulting_type = t1;

  /* There are different rules for numeric types */
  else if (JNUMERIC_TYPE_P (t1))
    {
      /* if byte/short found, the resulting type is short */
      if ((t1 == byte_type_node && t2 == short_type_node)
	  || (t1 == short_type_node && t2 == byte_type_node))
	resulting_type = short_type_node;

      /* If t1 is a constant int and t2 is of type byte, short or char
	 and t1's value fits in t2, then the resulting type is t2 */
      else if ((t1 == int_type_node && TREE_CONSTANT (TREE_OPERAND (node, 1)))
	  && JBSC_TYPE_P (t2) && int_fits_type_p (TREE_OPERAND (node, 1), t2))
	resulting_type = t2;

      /* If t2 is a constant int and t1 is of type byte, short or char
	 and t2's value fits in t1, then the resulting type is t1 */
      else if ((t2 == int_type_node && TREE_CONSTANT (TREE_OPERAND (node, 2)))
	  && JBSC_TYPE_P (t1) && int_fits_type_p (TREE_OPERAND (node, 2), t1))
	resulting_type = t1;

      /* Otherwise, binary numeric promotion is applied and the
	 resulting type is the promoted type of operand 1 and 2 */
      else
	resulting_type = binary_numeric_promotion (t1, t2,
						   &TREE_OPERAND (node, 1),
						   &TREE_OPERAND (node, 2));
    }

  /* Cases of a reference and a null type */
  else if (JREFERENCE_TYPE_P (t1) && op2 == null_pointer_node)
    resulting_type = t1;

  else if (JREFERENCE_TYPE_P (t2) && op1 == null_pointer_node)
    resulting_type = t2;

  /* Last case: different reference types. If a type can be converted
     into the other one by assignment conversion, the latter
     determines the type of the expression */
  else if ((resulting_type = try_reference_assignconv (t1, op2)))
    resulting_type = promote_type (t1);

  else if ((resulting_type = try_reference_assignconv (t2, op1)))
    resulting_type = promote_type (t2);

  /* If we don't have any resulting type, we're in trouble */
  if (!resulting_type)
    {
      char *t = xstrdup (lang_printable_name (t1, 0));
      SET_WFL_OPERATOR (wfl_operator, node, wfl_op1);
      parse_error_context (wfl_operator,
		 "Incompatible type for %<?:%>. Can't convert %qs to %qs",
			   t, lang_printable_name (t2, 0));
      free (t);
      error_found = 1;
    }

  if (error_found)
    {
      TREE_TYPE (node) = error_mark_node;
      return error_mark_node;
    }

  TREE_TYPE (node) = resulting_type;
  TREE_SET_CODE (node, COND_EXPR);
  CAN_COMPLETE_NORMALLY (node) = 1;
  return node;
}

/* Wrap EXPR with code to initialize DECL's class, if appropriate. */

static tree
maybe_build_class_init_for_field (tree decl, tree expr)
{
  tree clas = DECL_CONTEXT (decl);
  if (flag_emit_class_files)
    return expr;

  if (TREE_CODE (decl) == VAR_DECL && FIELD_STATIC (decl)
      && FIELD_FINAL (decl))
    {
      tree init = DECL_INITIAL (decl);
      if (init != NULL_TREE)
	init = fold_constant_for_init (init, decl);
      if (init != NULL_TREE && CONSTANT_VALUE_P (init))
	return expr;
    }

  return build_class_init (clas, expr);
}

/* Try to constant fold NODE.
   If NODE is not a constant expression, return NULL_EXPR.
   CONTEXT is a static final VAR_DECL whose initializer we are folding. */

static tree
fold_constant_for_init (tree node, tree context)
{
  tree op0, op1, val;
  enum tree_code code = TREE_CODE (node);

  switch (code)
    {
    case INTEGER_CST:
      if (node == null_pointer_node)
	return NULL_TREE;
    case STRING_CST:
    case REAL_CST:
      return node;

    case PLUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
    case TRUNC_MOD_EXPR:
    case RDIV_EXPR:
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case URSHIFT_EXPR:
    case BIT_AND_EXPR:
    case BIT_XOR_EXPR:
    case BIT_IOR_EXPR:
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case GT_EXPR:
    case GE_EXPR:
    case LT_EXPR:
    case LE_EXPR:
      op0 = TREE_OPERAND (node, 0);
      op1 = TREE_OPERAND (node, 1);
      val = fold_constant_for_init (op0, context);
      if (val == NULL_TREE || ! TREE_CONSTANT (val))
	return NULL_TREE;
      TREE_OPERAND (node, 0) = val;
      val = fold_constant_for_init (op1, context);
      if (val == NULL_TREE || ! TREE_CONSTANT (val))
	return NULL_TREE;
      TREE_OPERAND (node, 1) = val;
      return patch_binop (node, op0, op1, 1);

    case UNARY_PLUS_EXPR:
    case NEGATE_EXPR:
    case TRUTH_NOT_EXPR:
    case BIT_NOT_EXPR:
    case CONVERT_EXPR:
    case NOP_EXPR:
      op0 = TREE_OPERAND (node, 0);
      val = fold_constant_for_init (op0, context);
      if (val == NULL_TREE || ! TREE_CONSTANT (val))
	return NULL_TREE;
      TREE_OPERAND (node, 0) = val;
      val = patch_unaryop (node, op0);
      if (! TREE_CONSTANT (val))
	return NULL_TREE;
      return val;

      break;

    case COND_EXPR:
      val = fold_constant_for_init (TREE_OPERAND (node, 0), context);
      if (val == NULL_TREE || ! TREE_CONSTANT (val))
	return NULL_TREE;
      TREE_OPERAND (node, 0) = val;
      val = fold_constant_for_init (TREE_OPERAND (node, 1), context);
      if (val == NULL_TREE || ! TREE_CONSTANT (val))
	return NULL_TREE;
      TREE_OPERAND (node, 1) = val;
      val = fold_constant_for_init (TREE_OPERAND (node, 2), context);
      if (val == NULL_TREE || ! TREE_CONSTANT (val))
	return NULL_TREE;
      TREE_OPERAND (node, 2) = val;
      return integer_zerop (TREE_OPERAND (node, 0)) ? TREE_OPERAND (node, 2)
	: TREE_OPERAND (node, 1);

    case VAR_DECL:
    case FIELD_DECL:
      if (! FIELD_FINAL (node)
	  || DECL_INITIAL (node) == NULL_TREE)
	return NULL_TREE;
      val = DECL_INITIAL (node);
      /* Guard against infinite recursion. */
      DECL_INITIAL (node) = NULL_TREE;
      val = fold_constant_for_init (val, node);
      if (val != NULL_TREE && TREE_CODE (val) != STRING_CST)
	val = try_builtin_assignconv (NULL_TREE, TREE_TYPE (node), val);
      DECL_INITIAL (node) = val;
      return val;

    case EXPR_WITH_FILE_LOCATION:
      /* Compare java_complete_tree and resolve_expression_name. */
      if (!EXPR_WFL_NODE (node) /* Or a PRIMARY flag ? */
	  || TREE_CODE (EXPR_WFL_NODE (node)) == IDENTIFIER_NODE)
	{
	  tree name = EXPR_WFL_NODE (node);
	  tree decl;
	  if (PRIMARY_P (node))
	    return NULL_TREE;
	  else if (! QUALIFIED_P (name))
	    {
	      decl = lookup_field_wrapper (DECL_CONTEXT (context), name);
	      if (decl == NULL_TREE
		  || (! FIELD_STATIC (decl) && ! FIELD_FINAL (decl)))
		return NULL_TREE;
	      return fold_constant_for_init (decl, decl);
	    }
	  else
	    {
	      tree r = NULL_TREE;
	      /* Install the proper context for the field resolution.  */
	      tree saved_current_class = current_class;
	      /* Wait until the USE_COMPONENT_REF re-write.  FIXME. */
	      current_class = DECL_CONTEXT (context);
	      qualify_ambiguous_name (node);
	      r = resolve_field_access (node, &decl, NULL);
	      /* Restore prior context.  */
	      current_class = saved_current_class;
	      if (r != error_mark_node && decl != NULL_TREE)
		return fold_constant_for_init (decl, decl);
	      return NULL_TREE;
	    }
	}
      else
	{
	  op0 = TREE_OPERAND (node, 0);
	  val = fold_constant_for_init (op0, context);
	  if (val == NULL_TREE || ! TREE_CONSTANT (val))
	    return NULL_TREE;
	  TREE_OPERAND (node, 0) = val;
	  return val;
	}

#ifdef USE_COMPONENT_REF
    case IDENTIFIER:
    case COMPONENT_REF:
      ?;
#endif

    default:
      return NULL_TREE;
    }
}

#ifdef USE_COMPONENT_REF
/* Context is 'T' for TypeName, 'P' for PackageName,
   'M' for MethodName, 'E' for ExpressionName, and 'A' for AmbiguousName. */

tree
resolve_simple_name (tree name, int context)
{
}

tree
resolve_qualified_name (tree name, int context)
{
}
#endif

void
init_src_parse (void)
{
  /* Sanity check; we've been bit by this before.  */
  if (ARRAY_SIZE (ctxp->modifier_ctx) != MODIFIER_TK - PUBLIC_TK)
    abort ();
}



/* This section deals with the functions that are called when tables
   recording class initialization information are traversed.  */

/* This function is called for each class that is known definitely
   initialized when a given static method was called. This function
   augments a compound expression (INFO) storing all assignment to
   initialized static class flags if a flag already existed, otherwise
   a new one is created.  */

static int
emit_test_initialization (void **entry_p, void *info)
{
  tree l = (tree) info;
  tree decl, init;
  tree key = (tree) *entry_p;
  tree *ite;
  htab_t cf_ht = DECL_FUNCTION_INIT_TEST_TABLE (current_function_decl);

  /* If we haven't found a flag and we're dealing with self registered
     with current_function_decl, then don't do anything. Self is
     always added as definitely initialized but this information is
     valid only if used outside the current function. */
  if (current_function_decl == TREE_PURPOSE (l)
      && java_treetreehash_find (cf_ht, key) == NULL)
    return true;

  ite = java_treetreehash_new (cf_ht, key);

  /* If we don't have a variable, create one and install it. */
  if (*ite == NULL)
    {
      tree block;

      decl = build_decl (VAR_DECL, NULL_TREE, boolean_type_node);
      MAYBE_CREATE_VAR_LANG_DECL_SPECIFIC (decl);
      LOCAL_CLASS_INITIALIZATION_FLAG (decl) = 1;
      DECL_CONTEXT (decl) = current_function_decl;
      DECL_INITIAL (decl) = boolean_true_node;
      /* Don't emit any symbolic debugging info for this decl.  */
      DECL_IGNORED_P (decl) = 1;

      /* The trick is to find the right context for it. */
      block = BLOCK_SUBBLOCKS (GET_CURRENT_BLOCK (current_function_decl));
      TREE_CHAIN (decl) = BLOCK_EXPR_DECLS (block);
      BLOCK_EXPR_DECLS (block) = decl;
      *ite = decl;
    }
  else
    decl = *ite;

  /* Now simply augment the compound that holds all the assignments
     pertaining to this method invocation. */
  init = build2 (MODIFY_EXPR, boolean_type_node, decl, boolean_true_node);
  TREE_SIDE_EFFECTS (init) = 1;
  TREE_VALUE (l) = add_stmt_to_compound (TREE_VALUE (l), void_type_node, init);
  TREE_SIDE_EFFECTS (TREE_VALUE (l)) = 1;

  return true;
}

#ifdef __XGETTEXT__
/* Depending on the version of Bison used to compile this grammar,
   it may issue generic diagnostics spelled "syntax error" or
   "parse error".  To prevent this from changing the translation
   template randomly, we list all the variants of this particular
   diagnostic here.  Translators: there is no fine distinction
   between diagnostics with "syntax error" in them, and diagnostics
   with "parse error" in them.  It's okay to give them both the same
   translation.  */
const char d1[] = N_("syntax error");
const char d2[] = N_("parse error");
const char d3[] = N_("syntax error; also virtual memory exhausted");
const char d4[] = N_("parse error; also virtual memory exhausted");
const char d5[] = N_("syntax error: cannot back up");
const char d6[] = N_("parse error: cannot back up");
#endif

#include "gt-java-parse.h"
#include "gtype-java.h"