/************************************************************************* * * $Id: trionan.c,v 1.1.1.2 2004/02/05 20:17:02 rbraun Exp $ * * Copyright (C) 2001 Bjorn Reese * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER. * ************************************************************************ * * Functions to handle special quantities in floating-point numbers * (that is, NaNs and infinity). They provide the capability to detect * and fabricate special quantities. * * Although written to be as portable as possible, it can never be * guaranteed to work on all platforms, as not all hardware supports * special quantities. * * The approach used here (approximately) is to: * * 1. Use C99 functionality when available. * 2. Use IEEE 754 bit-patterns if possible. * 3. Use platform-specific techniques. * ************************************************************************/ /* * TODO: * o Put all the magic into trio_fpclassify_and_signbit(), and use this from * trio_isnan() etc. */ /************************************************************************* * Include files */ #include "triodef.h" #include "trionan.h" #include #include #include #include #if defined(TRIO_PLATFORM_UNIX) # include #endif #if defined(TRIO_COMPILER_DECC) # if defined(__linux__) # include # else # include # endif #endif #include #if defined(TRIO_DOCUMENTATION) # include "doc/doc_nan.h" #endif /** @addtogroup SpecialQuantities @{ */ /************************************************************************* * Definitions */ #define TRIO_TRUE (1 == 1) #define TRIO_FALSE (0 == 1) /* * We must enable IEEE floating-point on Alpha */ #if defined(__alpha) && !defined(_IEEE_FP) # if defined(TRIO_COMPILER_DECC) # if defined(TRIO_PLATFORM_VMS) # error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE" # else # if !defined(_CFE) # error "Must be compiled with option -ieee" # endif # endif # elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__)) # error "Must be compiled with option -mieee" # endif #endif /* __alpha && ! _IEEE_FP */ /* * In ANSI/IEEE 754-1985 64-bits double format numbers have the * following properties (amoungst others) * * o FLT_RADIX == 2: binary encoding * o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used * to indicate special numbers (e.g. NaN and Infinity), so the * maximum exponent is 10 bits wide (2^10 == 1024). * o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because * numbers are normalized the initial binary 1 is represented * implicitly (the so-called "hidden bit"), which leaves us with * the ability to represent 53 bits wide mantissa. */ #if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53) # define USE_IEEE_754 #endif /************************************************************************* * Constants */ static TRIO_CONST char rcsid[] = "@(#)$Id: trionan.c,v 1.1.1.2 2004/02/05 20:17:02 rbraun Exp $"; #if defined(USE_IEEE_754) /* * Endian-agnostic indexing macro. * * The value of internalEndianMagic, when converted into a 64-bit * integer, becomes 0x0706050403020100 (we could have used a 64-bit * integer value instead of a double, but not all platforms supports * that type). The value is automatically encoded with the correct * endianess by the compiler, which means that we can support any * kind of endianess. The individual bytes are then used as an index * for the IEEE 754 bit-patterns and masks. */ #define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)]) static TRIO_CONST double internalEndianMagic = 7.949928895127363e-275; /* Mask for the exponent */ static TRIO_CONST unsigned char ieee_754_exponent_mask[] = { 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; /* Mask for the mantissa */ static TRIO_CONST unsigned char ieee_754_mantissa_mask[] = { 0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; /* Mask for the sign bit */ static TRIO_CONST unsigned char ieee_754_sign_mask[] = { 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; /* Bit-pattern for negative zero */ static TRIO_CONST unsigned char ieee_754_negzero_array[] = { 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; /* Bit-pattern for infinity */ static TRIO_CONST unsigned char ieee_754_infinity_array[] = { 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; /* Bit-pattern for quiet NaN */ static TRIO_CONST unsigned char ieee_754_qnan_array[] = { 0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; /************************************************************************* * Functions */ /* * trio_make_double */ TRIO_PRIVATE double trio_make_double TRIO_ARGS1((values), TRIO_CONST unsigned char *values) { TRIO_VOLATILE double result; int i; for (i = 0; i < (int)sizeof(double); i++) { ((TRIO_VOLATILE unsigned char *)&result)[TRIO_DOUBLE_INDEX(i)] = values[i]; } return result; } /* * trio_is_special_quantity */ TRIO_PRIVATE int trio_is_special_quantity TRIO_ARGS2((number, has_mantissa), double number, int *has_mantissa) { unsigned int i; unsigned char current; int is_special_quantity = TRIO_TRUE; *has_mantissa = 0; for (i = 0; i < (unsigned int)sizeof(double); i++) { current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)]; is_special_quantity &= ((current & ieee_754_exponent_mask[i]) == ieee_754_exponent_mask[i]); *has_mantissa |= (current & ieee_754_mantissa_mask[i]); } return is_special_quantity; } /* * trio_is_negative */ TRIO_PRIVATE int trio_is_negative TRIO_ARGS1((number), double number) { unsigned int i; int is_negative = TRIO_FALSE; for (i = 0; i < (unsigned int)sizeof(double); i++) { is_negative |= (((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)] & ieee_754_sign_mask[i]); } return is_negative; } #endif /* USE_IEEE_754 */ /** Generate negative zero. @return Floating-point representation of negative zero. */ TRIO_PUBLIC double trio_nzero(TRIO_NOARGS) { #if defined(USE_IEEE_754) return trio_make_double(ieee_754_negzero_array); #else TRIO_VOLATILE double zero = 0.0; return -zero; #endif } /** Generate positive infinity. @return Floating-point representation of positive infinity. */ TRIO_PUBLIC double trio_pinf(TRIO_NOARGS) { /* Cache the result */ static double result = 0.0; if (result == 0.0) { #if defined(INFINITY) && defined(__STDC_IEC_559__) result = (double)INFINITY; #elif defined(USE_IEEE_754) result = trio_make_double(ieee_754_infinity_array); #else /* * If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used * as infinity. Otherwise we have to resort to an overflow * operation to generate infinity. */ # if defined(TRIO_PLATFORM_UNIX) void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN); # endif result = HUGE_VAL; if (HUGE_VAL == DBL_MAX) { /* Force overflow */ result += HUGE_VAL; } # if defined(TRIO_PLATFORM_UNIX) signal(SIGFPE, signal_handler); # endif #endif } return result; } /** Generate negative infinity. @return Floating-point value of negative infinity. */ TRIO_PUBLIC double trio_ninf(TRIO_NOARGS) { static double result = 0.0; if (result == 0.0) { /* * Negative infinity is calculated by negating positive infinity, * which can be done because it is legal to do calculations on * infinity (for example, 1 / infinity == 0). */ result = -trio_pinf(); } return result; } /** Generate NaN. @return Floating-point representation of NaN. */ TRIO_PUBLIC double trio_nan(TRIO_NOARGS) { /* Cache the result */ static double result = 0.0; if (result == 0.0) { #if defined(TRIO_COMPILER_SUPPORTS_C99) result = nan(""); #elif defined(NAN) && defined(__STDC_IEC_559__) result = (double)NAN; #elif defined(USE_IEEE_754) result = trio_make_double(ieee_754_qnan_array); #else /* * There are several ways to generate NaN. The one used here is * to divide infinity by infinity. I would have preferred to add * negative infinity to positive infinity, but that yields wrong * result (infinity) on FreeBSD. * * This may fail if the hardware does not support NaN, or if * the Invalid Operation floating-point exception is unmasked. */ # if defined(TRIO_PLATFORM_UNIX) void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN); # endif result = trio_pinf() / trio_pinf(); # if defined(TRIO_PLATFORM_UNIX) signal(SIGFPE, signal_handler); # endif #endif } return result; } /** Check for NaN. @param number An arbitrary floating-point number. @return Boolean value indicating whether or not the number is a NaN. */ TRIO_PUBLIC int trio_isnan TRIO_ARGS1((number), double number) { #if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \ || defined(TRIO_COMPILER_SUPPORTS_UNIX95) /* * C99 defines isnan() as a macro. UNIX95 defines isnan() as a * function. This function was already present in XPG4, but this * is a bit tricky to detect with compiler defines, so we choose * the conservative approach and only use it for UNIX95. */ return isnan(number); #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB) /* * Microsoft Visual C++ and Borland C++ Builder have an _isnan() * function. */ return _isnan(number) ? TRIO_TRUE : TRIO_FALSE; #elif defined(USE_IEEE_754) /* * Examine IEEE 754 bit-pattern. A NaN must have a special exponent * pattern, and a non-empty mantissa. */ int has_mantissa; int is_special_quantity; is_special_quantity = trio_is_special_quantity(number, &has_mantissa); return (is_special_quantity && has_mantissa); #else /* * Fallback solution */ int status; double integral, fraction; # if defined(TRIO_PLATFORM_UNIX) void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN); # endif status = (/* * NaN is the only number which does not compare to itself */ ((TRIO_VOLATILE double)number != (TRIO_VOLATILE double)number) || /* * Fallback solution if NaN compares to NaN */ ((number != 0.0) && (fraction = modf(number, &integral), integral == fraction))); # if defined(TRIO_PLATFORM_UNIX) signal(SIGFPE, signal_handler); # endif return status; #endif } /** Check for infinity. @param number An arbitrary floating-point number. @return 1 if positive infinity, -1 if negative infinity, 0 otherwise. */ TRIO_PUBLIC int trio_isinf TRIO_ARGS1((number), double number) { #if defined(TRIO_COMPILER_DECC) && !defined(__linux__) /* * DECC has an isinf() macro, but it works differently than that * of C99, so we use the fp_class() function instead. */ return ((fp_class(number) == FP_POS_INF) ? 1 : ((fp_class(number) == FP_NEG_INF) ? -1 : 0)); #elif defined(isinf) /* * C99 defines isinf() as a macro. */ return isinf(number) ? ((number > 0.0) ? 1 : -1) : 0; #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB) /* * Microsoft Visual C++ and Borland C++ Builder have an _fpclass() * function that can be used to detect infinity. */ return ((_fpclass(number) == _FPCLASS_PINF) ? 1 : ((_fpclass(number) == _FPCLASS_NINF) ? -1 : 0)); #elif defined(USE_IEEE_754) /* * Examine IEEE 754 bit-pattern. Infinity must have a special exponent * pattern, and an empty mantissa. */ int has_mantissa; int is_special_quantity; is_special_quantity = trio_is_special_quantity(number, &has_mantissa); return (is_special_quantity && !has_mantissa) ? ((number < 0.0) ? -1 : 1) : 0; #else /* * Fallback solution. */ int status; # if defined(TRIO_PLATFORM_UNIX) void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN); # endif double infinity = trio_pinf(); status = ((number == infinity) ? 1 : ((number == -infinity) ? -1 : 0)); # if defined(TRIO_PLATFORM_UNIX) signal(SIGFPE, signal_handler); # endif return status; #endif } #if 0 /* Temporary fix - this routine is not used anywhere */ /** Check for finity. @param number An arbitrary floating-point number. @return Boolean value indicating whether or not the number is a finite. */ TRIO_PUBLIC int trio_isfinite TRIO_ARGS1((number), double number) { #if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite) /* * C99 defines isfinite() as a macro. */ return isfinite(number); #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB) /* * Microsoft Visual C++ and Borland C++ Builder use _finite(). */ return _finite(number); #elif defined(USE_IEEE_754) /* * Examine IEEE 754 bit-pattern. For finity we do not care about the * mantissa. */ int dummy; return (! trio_is_special_quantity(number, &dummy)); #else /* * Fallback solution. */ return ((trio_isinf(number) == 0) && (trio_isnan(number) == 0)); #endif } #endif /* * The sign of NaN is always false */ TRIO_PUBLIC int trio_fpclassify_and_signbit TRIO_ARGS2((number, is_negative), double number, int *is_negative) { #if defined(fpclassify) && defined(signbit) /* * C99 defines fpclassify() and signbit() as a macros */ *is_negative = signbit(number); switch (fpclassify(number)) { case FP_NAN: return TRIO_FP_NAN; case FP_INFINITE: return TRIO_FP_INFINITE; case FP_SUBNORMAL: return TRIO_FP_SUBNORMAL; case FP_ZERO: return TRIO_FP_ZERO; default: return TRIO_FP_NORMAL; } #else # if defined(TRIO_COMPILER_DECC) /* * DECC has an fp_class() function. */ # define TRIO_FPCLASSIFY(n) fp_class(n) # define TRIO_QUIET_NAN FP_QNAN # define TRIO_SIGNALLING_NAN FP_SNAN # define TRIO_POSITIVE_INFINITY FP_POS_INF # define TRIO_NEGATIVE_INFINITY FP_NEG_INF # define TRIO_POSITIVE_SUBNORMAL FP_POS_DENORM # define TRIO_NEGATIVE_SUBNORMAL FP_NEG_DENORM # define TRIO_POSITIVE_ZERO FP_POS_ZERO # define TRIO_NEGATIVE_ZERO FP_NEG_ZERO # define TRIO_POSITIVE_NORMAL FP_POS_NORM # define TRIO_NEGATIVE_NORMAL FP_NEG_NORM # elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB) /* * Microsoft Visual C++ and Borland C++ Builder have an _fpclass() * function. */ # define TRIO_FPCLASSIFY(n) _fpclass(n) # define TRIO_QUIET_NAN _FPCLASS_QNAN # define TRIO_SIGNALLING_NAN _FPCLASS_SNAN # define TRIO_POSITIVE_INFINITY _FPCLASS_PINF # define TRIO_NEGATIVE_INFINITY _FPCLASS_NINF # define TRIO_POSITIVE_SUBNORMAL _FPCLASS_PD # define TRIO_NEGATIVE_SUBNORMAL _FPCLASS_ND # define TRIO_POSITIVE_ZERO _FPCLASS_PZ # define TRIO_NEGATIVE_ZERO _FPCLASS_NZ # define TRIO_POSITIVE_NORMAL _FPCLASS_PN # define TRIO_NEGATIVE_NORMAL _FPCLASS_NN # elif defined(FP_PLUS_NORM) /* * HP-UX 9.x and 10.x have an fpclassify() function, that is different * from the C99 fpclassify() macro supported on HP-UX 11.x. * * AIX has class() for C, and _class() for C++, which returns the * same values as the HP-UX fpclassify() function. */ # if defined(TRIO_PLATFORM_AIX) # if defined(__cplusplus) # define TRIO_FPCLASSIFY(n) _class(n) # else # define TRIO_FPCLASSIFY(n) class(n) # endif # else # define TRIO_FPCLASSIFY(n) fpclassify(n) # endif # define TRIO_QUIET_NAN FP_QNAN # define TRIO_SIGNALLING_NAN FP_SNAN # define TRIO_POSITIVE_INFINITY FP_PLUS_INF # define TRIO_NEGATIVE_INFINITY FP_MINUS_INF # define TRIO_POSITIVE_SUBNORMAL FP_PLUS_DENORM # define TRIO_NEGATIVE_SUBNORMAL FP_MINUS_DENORM # define TRIO_POSITIVE_ZERO FP_PLUS_ZERO # define TRIO_NEGATIVE_ZERO FP_MINUS_ZERO # define TRIO_POSITIVE_NORMAL FP_PLUS_NORM # define TRIO_NEGATIVE_NORMAL FP_MINUS_NORM # endif # if defined(TRIO_FPCLASSIFY) switch (TRIO_FPCLASSIFY(number)) { case TRIO_QUIET_NAN: case TRIO_SIGNALLING_NAN: *is_negative = TRIO_FALSE; /* NaN has no sign */ return TRIO_FP_NAN; case TRIO_POSITIVE_INFINITY: *is_negative = TRIO_FALSE; return TRIO_FP_INFINITE; case TRIO_NEGATIVE_INFINITY: *is_negative = TRIO_TRUE; return TRIO_FP_INFINITE; case TRIO_POSITIVE_SUBNORMAL: *is_negative = TRIO_FALSE; return TRIO_FP_SUBNORMAL; case TRIO_NEGATIVE_SUBNORMAL: *is_negative = TRIO_TRUE; return TRIO_FP_SUBNORMAL; case TRIO_POSITIVE_ZERO: *is_negative = TRIO_FALSE; return TRIO_FP_ZERO; case TRIO_NEGATIVE_ZERO: *is_negative = TRIO_TRUE; return TRIO_FP_ZERO; case TRIO_POSITIVE_NORMAL: *is_negative = TRIO_FALSE; return TRIO_FP_NORMAL; case TRIO_NEGATIVE_NORMAL: *is_negative = TRIO_TRUE; return TRIO_FP_NORMAL; default: /* Just in case... */ *is_negative = (number < 0.0); return TRIO_FP_NORMAL; } # else /* * Fallback solution. */ int rc; if (number == 0.0) { /* * In IEEE 754 the sign of zero is ignored in comparisons, so we * have to handle this as a special case by examining the sign bit * directly. */ # if defined(USE_IEEE_754) *is_negative = trio_is_negative(number); # else *is_negative = TRIO_FALSE; /* FIXME */ # endif return TRIO_FP_ZERO; } if (trio_isnan(number)) { *is_negative = TRIO_FALSE; return TRIO_FP_NAN; } if ((rc = trio_isinf(number))) { *is_negative = (rc == -1); return TRIO_FP_INFINITE; } if ((number > 0.0) && (number < DBL_MIN)) { *is_negative = TRIO_FALSE; return TRIO_FP_SUBNORMAL; } if ((number < 0.0) && (number > -DBL_MIN)) { *is_negative = TRIO_TRUE; return TRIO_FP_SUBNORMAL; } *is_negative = (number < 0.0); return TRIO_FP_NORMAL; # endif #endif } /** Examine the sign of a number. @param number An arbitrary floating-point number. @return Boolean value indicating whether or not the number has the sign bit set (i.e. is negative). */ TRIO_PUBLIC int trio_signbit TRIO_ARGS1((number), double number) { int is_negative; (void)trio_fpclassify_and_signbit(number, &is_negative); return is_negative; } #if 0 /* Temporary fix - this routine is not used in libxml */ /** Examine the class of a number. @param number An arbitrary floating-point number. @return Enumerable value indicating the class of @p number */ TRIO_PUBLIC int trio_fpclassify TRIO_ARGS1((number), double number) { int dummy; return trio_fpclassify_and_signbit(number, &dummy); } #endif /** @} SpecialQuantities */ /************************************************************************* * For test purposes. * * Add the following compiler option to include this test code. * * Unix : -DSTANDALONE * VMS : /DEFINE=(STANDALONE) */ #if defined(STANDALONE) # include static TRIO_CONST char * getClassification TRIO_ARGS1((type), int type) { switch (type) { case TRIO_FP_INFINITE: return "FP_INFINITE"; case TRIO_FP_NAN: return "FP_NAN"; case TRIO_FP_NORMAL: return "FP_NORMAL"; case TRIO_FP_SUBNORMAL: return "FP_SUBNORMAL"; case TRIO_FP_ZERO: return "FP_ZERO"; default: return "FP_UNKNOWN"; } } static void print_class TRIO_ARGS2((prefix, number), TRIO_CONST char *prefix, double number) { printf("%-6s: %s %-15s %g\n", prefix, trio_signbit(number) ? "-" : "+", getClassification(TRIO_FPCLASSIFY(number)), number); } int main(TRIO_NOARGS) { double my_nan; double my_pinf; double my_ninf; # if defined(TRIO_PLATFORM_UNIX) void (*signal_handler) TRIO_PROTO((int)); # endif my_nan = trio_nan(); my_pinf = trio_pinf(); my_ninf = trio_ninf(); print_class("Nan", my_nan); print_class("PInf", my_pinf); print_class("NInf", my_ninf); print_class("PZero", 0.0); print_class("NZero", -0.0); print_class("PNorm", 1.0); print_class("NNorm", -1.0); print_class("PSub", 1.01e-307 - 1.00e-307); print_class("NSub", 1.00e-307 - 1.01e-307); printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", my_nan, ((unsigned char *)&my_nan)[0], ((unsigned char *)&my_nan)[1], ((unsigned char *)&my_nan)[2], ((unsigned char *)&my_nan)[3], ((unsigned char *)&my_nan)[4], ((unsigned char *)&my_nan)[5], ((unsigned char *)&my_nan)[6], ((unsigned char *)&my_nan)[7], trio_isnan(my_nan), trio_isinf(my_nan)); printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", my_pinf, ((unsigned char *)&my_pinf)[0], ((unsigned char *)&my_pinf)[1], ((unsigned char *)&my_pinf)[2], ((unsigned char *)&my_pinf)[3], ((unsigned char *)&my_pinf)[4], ((unsigned char *)&my_pinf)[5], ((unsigned char *)&my_pinf)[6], ((unsigned char *)&my_pinf)[7], trio_isnan(my_pinf), trio_isinf(my_pinf)); printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", my_ninf, ((unsigned char *)&my_ninf)[0], ((unsigned char *)&my_ninf)[1], ((unsigned char *)&my_ninf)[2], ((unsigned char *)&my_ninf)[3], ((unsigned char *)&my_ninf)[4], ((unsigned char *)&my_ninf)[5], ((unsigned char *)&my_ninf)[6], ((unsigned char *)&my_ninf)[7], trio_isnan(my_ninf), trio_isinf(my_ninf)); # if defined(TRIO_PLATFORM_UNIX) signal_handler = signal(SIGFPE, SIG_IGN); # endif my_pinf = DBL_MAX + DBL_MAX; my_ninf = -my_pinf; my_nan = my_pinf / my_pinf; # if defined(TRIO_PLATFORM_UNIX) signal(SIGFPE, signal_handler); # endif printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", my_nan, ((unsigned char *)&my_nan)[0], ((unsigned char *)&my_nan)[1], ((unsigned char *)&my_nan)[2], ((unsigned char *)&my_nan)[3], ((unsigned char *)&my_nan)[4], ((unsigned char *)&my_nan)[5], ((unsigned char *)&my_nan)[6], ((unsigned char *)&my_nan)[7], trio_isnan(my_nan), trio_isinf(my_nan)); printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", my_pinf, ((unsigned char *)&my_pinf)[0], ((unsigned char *)&my_pinf)[1], ((unsigned char *)&my_pinf)[2], ((unsigned char *)&my_pinf)[3], ((unsigned char *)&my_pinf)[4], ((unsigned char *)&my_pinf)[5], ((unsigned char *)&my_pinf)[6], ((unsigned char *)&my_pinf)[7], trio_isnan(my_pinf), trio_isinf(my_pinf)); printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", my_ninf, ((unsigned char *)&my_ninf)[0], ((unsigned char *)&my_ninf)[1], ((unsigned char *)&my_ninf)[2], ((unsigned char *)&my_ninf)[3], ((unsigned char *)&my_ninf)[4], ((unsigned char *)&my_ninf)[5], ((unsigned char *)&my_ninf)[6], ((unsigned char *)&my_ninf)[7], trio_isnan(my_ninf), trio_isinf(my_ninf)); return 0; } #endif