bitset   [plain text]


// <bitset> -*- C++ -*-

// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*
 * Copyright (c) 1998
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file include/bitset
 *  This is a Standard C++ Library header.
 */

#ifndef _GLIBCXX_BITSET
#define _GLIBCXX_BITSET 1

#pragma GCC system_header

#include <cstddef>     // For size_t
#include <cstring>     // For memset
#include <limits>      // For numeric_limits
#include <string>
#include <bits/functexcept.h>   // For invalid_argument, out_of_range,
                                // overflow_error
#include <ostream>     // For ostream (operator<<)
#include <istream>     // For istream (operator>>)

#define _GLIBCXX_BITSET_BITS_PER_WORD  numeric_limits<unsigned long>::digits
#define _GLIBCXX_BITSET_WORDS(__n) \
 ((__n) < 1 ? 0 : ((__n) + _GLIBCXX_BITSET_BITS_PER_WORD - 1) \
                  / _GLIBCXX_BITSET_BITS_PER_WORD)

_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)

  /**
   *  @if maint
   *  Base class, general case.  It is a class inveriant that _Nw will be
   *  nonnegative.
   *
   *  See documentation for bitset.
   *  @endif
  */
  template<size_t _Nw>
    struct _Base_bitset
    {
      typedef unsigned long _WordT;

      /// 0 is the least significant word.
      _WordT 		_M_w[_Nw];

      _Base_bitset()
      { _M_do_reset(); }

      _Base_bitset(unsigned long __val)
      {
	_M_do_reset();
	_M_w[0] = __val;
      }

      static size_t
      _S_whichword(size_t __pos )
      { return __pos / _GLIBCXX_BITSET_BITS_PER_WORD; }

      static size_t
      _S_whichbyte(size_t __pos )
      { return (__pos % _GLIBCXX_BITSET_BITS_PER_WORD) / __CHAR_BIT__; }

      static size_t
      _S_whichbit(size_t __pos )
      { return __pos % _GLIBCXX_BITSET_BITS_PER_WORD; }

      static _WordT
      _S_maskbit(size_t __pos )
      { return (static_cast<_WordT>(1)) << _S_whichbit(__pos); }

      _WordT&
      _M_getword(size_t __pos)
      { return _M_w[_S_whichword(__pos)]; }

      _WordT
      _M_getword(size_t __pos) const
      { return _M_w[_S_whichword(__pos)]; }

      _WordT&
      _M_hiword()
      { return _M_w[_Nw - 1]; }

      _WordT
      _M_hiword() const
      { return _M_w[_Nw - 1]; }

      void
      _M_do_and(const _Base_bitset<_Nw>& __x)
      {
	for (size_t __i = 0; __i < _Nw; __i++)
	  _M_w[__i] &= __x._M_w[__i];
      }

      void
      _M_do_or(const _Base_bitset<_Nw>& __x)
      {
	for (size_t __i = 0; __i < _Nw; __i++)
	  _M_w[__i] |= __x._M_w[__i];
      }

      void
      _M_do_xor(const _Base_bitset<_Nw>& __x)
      {
	for (size_t __i = 0; __i < _Nw; __i++)
	  _M_w[__i] ^= __x._M_w[__i];
      }

      void
      _M_do_left_shift(size_t __shift);

      void
      _M_do_right_shift(size_t __shift);

      void
      _M_do_flip()
      {
	for (size_t __i = 0; __i < _Nw; __i++)
	  _M_w[__i] = ~_M_w[__i];
      }

      void
      _M_do_set()
      {
	for (size_t __i = 0; __i < _Nw; __i++)
	  _M_w[__i] = ~static_cast<_WordT>(0);
      }

      void
      _M_do_reset()
      { std::memset(_M_w, 0, _Nw * sizeof(_WordT)); }

      bool
      _M_is_equal(const _Base_bitset<_Nw>& __x) const
      {
	for (size_t __i = 0; __i < _Nw; ++__i)
	  {
	    if (_M_w[__i] != __x._M_w[__i])
	      return false;
	  }
	return true;
      }

      bool
      _M_is_any() const
      {
	for (size_t __i = 0; __i < _Nw; __i++)
	  {
	    if (_M_w[__i] != static_cast<_WordT>(0))
	      return true;
	  }
	return false;
      }

      size_t
      _M_do_count() const
      {
	size_t __result = 0;
	for (size_t __i = 0; __i < _Nw; __i++)
	  __result += __builtin_popcountl(_M_w[__i]);
	return __result;
      }

      unsigned long
      _M_do_to_ulong() const;

      // find first "on" bit
      size_t
      _M_do_find_first(size_t __not_found) const;

      // find the next "on" bit that follows "prev"
      size_t
      _M_do_find_next(size_t __prev, size_t __not_found) const;
    };

  // Definitions of non-inline functions from _Base_bitset.
  template<size_t _Nw>
    void
    _Base_bitset<_Nw>::_M_do_left_shift(size_t __shift)
    {
      if (__builtin_expect(__shift != 0, 1))
	{
	  const size_t __wshift = __shift / _GLIBCXX_BITSET_BITS_PER_WORD;
	  const size_t __offset = __shift % _GLIBCXX_BITSET_BITS_PER_WORD;

	  if (__offset == 0)
	    for (size_t __n = _Nw - 1; __n >= __wshift; --__n)
	      _M_w[__n] = _M_w[__n - __wshift];
	  else
	    {
	      const size_t __sub_offset = (_GLIBCXX_BITSET_BITS_PER_WORD 
					   - __offset);
	      for (size_t __n = _Nw - 1; __n > __wshift; --__n)
		_M_w[__n] = ((_M_w[__n - __wshift] << __offset)
			     | (_M_w[__n - __wshift - 1] >> __sub_offset));
	      _M_w[__wshift] = _M_w[0] << __offset;
	    }

	  std::fill(_M_w + 0, _M_w + __wshift, static_cast<_WordT>(0));
	}
    }

  template<size_t _Nw>
    void
    _Base_bitset<_Nw>::_M_do_right_shift(size_t __shift)
    {
      if (__builtin_expect(__shift != 0, 1))
	{
	  const size_t __wshift = __shift / _GLIBCXX_BITSET_BITS_PER_WORD;
	  const size_t __offset = __shift % _GLIBCXX_BITSET_BITS_PER_WORD;
	  const size_t __limit = _Nw - __wshift - 1;

	  if (__offset == 0)
	    for (size_t __n = 0; __n <= __limit; ++__n)
	      _M_w[__n] = _M_w[__n + __wshift];
	  else
	    {
	      const size_t __sub_offset = (_GLIBCXX_BITSET_BITS_PER_WORD
					   - __offset);
	      for (size_t __n = 0; __n < __limit; ++__n)
		_M_w[__n] = ((_M_w[__n + __wshift] >> __offset)
			     | (_M_w[__n + __wshift + 1] << __sub_offset));
	      _M_w[__limit] = _M_w[_Nw-1] >> __offset;
	    }
	  
	  std::fill(_M_w + __limit + 1, _M_w + _Nw, static_cast<_WordT>(0));
	}
    }

  template<size_t _Nw>
    unsigned long
    _Base_bitset<_Nw>::_M_do_to_ulong() const
    {
      for (size_t __i = 1; __i < _Nw; ++__i)
	if (_M_w[__i])
	  __throw_overflow_error(__N("_Base_bitset::_M_do_to_ulong"));
      return _M_w[0];
    }

  template<size_t _Nw>
    size_t
    _Base_bitset<_Nw>::_M_do_find_first(size_t __not_found) const
    {
      for (size_t __i = 0; __i < _Nw; __i++)
	{
	  _WordT __thisword = _M_w[__i];
	  if (__thisword != static_cast<_WordT>(0))
	    return (__i * _GLIBCXX_BITSET_BITS_PER_WORD
		    + __builtin_ctzl(__thisword));
	}
      // not found, so return an indication of failure.
      return __not_found;
    }

  template<size_t _Nw>
    size_t
    _Base_bitset<_Nw>::_M_do_find_next(size_t __prev, size_t __not_found) const
    {
      // make bound inclusive
      ++__prev;

      // check out of bounds
      if (__prev >= _Nw * _GLIBCXX_BITSET_BITS_PER_WORD)
	return __not_found;

      // search first word
      size_t __i = _S_whichword(__prev);
      _WordT __thisword = _M_w[__i];

      // mask off bits below bound
      __thisword &= (~static_cast<_WordT>(0)) << _S_whichbit(__prev);

      if (__thisword != static_cast<_WordT>(0))
	return (__i * _GLIBCXX_BITSET_BITS_PER_WORD
		+ __builtin_ctzl(__thisword));

      // check subsequent words
      __i++;
      for (; __i < _Nw; __i++)
	{
	  __thisword = _M_w[__i];
	  if (__thisword != static_cast<_WordT>(0))
	    return (__i * _GLIBCXX_BITSET_BITS_PER_WORD
		    + __builtin_ctzl(__thisword));
	}
      // not found, so return an indication of failure.
      return __not_found;
    } // end _M_do_find_next

  /**
   *  @if maint
   *  Base class, specialization for a single word.
   *
   *  See documentation for bitset.
   *  @endif
  */
  template<>
    struct _Base_bitset<1>
    {
      typedef unsigned long _WordT;
      _WordT _M_w;

      _Base_bitset(void)
      : _M_w(0)
      { }

      _Base_bitset(unsigned long __val)
      : _M_w(__val)
      { }

      static size_t
      _S_whichword(size_t __pos )
      { return __pos / _GLIBCXX_BITSET_BITS_PER_WORD; }

      static size_t
      _S_whichbyte(size_t __pos )
      { return (__pos % _GLIBCXX_BITSET_BITS_PER_WORD) / __CHAR_BIT__; }

      static size_t
      _S_whichbit(size_t __pos )
      {  return __pos % _GLIBCXX_BITSET_BITS_PER_WORD; }

      static _WordT
      _S_maskbit(size_t __pos )
      { return (static_cast<_WordT>(1)) << _S_whichbit(__pos); }

      _WordT&
      _M_getword(size_t)
      { return _M_w; }

      _WordT
      _M_getword(size_t) const
      { return _M_w; }

      _WordT&
      _M_hiword()
      { return _M_w; }

      _WordT
      _M_hiword() const
      { return _M_w; }

      void
      _M_do_and(const _Base_bitset<1>& __x)
      { _M_w &= __x._M_w; }

      void
      _M_do_or(const _Base_bitset<1>& __x)
      { _M_w |= __x._M_w; }

      void
      _M_do_xor(const _Base_bitset<1>& __x)
      { _M_w ^= __x._M_w; }

      void
      _M_do_left_shift(size_t __shift)
      { _M_w <<= __shift; }

      void
      _M_do_right_shift(size_t __shift)
      { _M_w >>= __shift; }

      void
      _M_do_flip()
      { _M_w = ~_M_w; }

      void
      _M_do_set()
      { _M_w = ~static_cast<_WordT>(0); }

      void
      _M_do_reset()
      { _M_w = 0; }

      bool
      _M_is_equal(const _Base_bitset<1>& __x) const
      { return _M_w == __x._M_w; }

      bool
      _M_is_any() const
      { return _M_w != 0; }

      size_t
      _M_do_count() const
      { return __builtin_popcountl(_M_w); }

      unsigned long
      _M_do_to_ulong() const
      { return _M_w; }

      size_t
      _M_do_find_first(size_t __not_found) const
      {
        if (_M_w != 0)
          return __builtin_ctzl(_M_w);
        else
          return __not_found;
      }

      // find the next "on" bit that follows "prev"
      size_t
      _M_do_find_next(size_t __prev, size_t __not_found) const
      {
	++__prev;
	if (__prev >= ((size_t) _GLIBCXX_BITSET_BITS_PER_WORD))
	  return __not_found;

	_WordT __x = _M_w >> __prev;
	if (__x != 0)
	  return __builtin_ctzl(__x) + __prev;
	else
	  return __not_found;
      }
    };

  /**
   *  @if maint
   *  Base class, specialization for no storage (zero-length %bitset).
   *
   *  See documentation for bitset.
   *  @endif
  */
  template<>
    struct _Base_bitset<0>
    {
      typedef unsigned long _WordT;

      _Base_bitset()
      { }

      _Base_bitset(unsigned long)
      { }

      static size_t
      _S_whichword(size_t __pos )
      { return __pos / _GLIBCXX_BITSET_BITS_PER_WORD; }

      static size_t
      _S_whichbyte(size_t __pos )
      { return (__pos % _GLIBCXX_BITSET_BITS_PER_WORD) / __CHAR_BIT__; }

      static size_t
      _S_whichbit(size_t __pos )
      {  return __pos % _GLIBCXX_BITSET_BITS_PER_WORD; }

      static _WordT
      _S_maskbit(size_t __pos )
      { return (static_cast<_WordT>(1)) << _S_whichbit(__pos); }

      // This would normally give access to the data.  The bounds-checking
      // in the bitset class will prevent the user from getting this far,
      // but (1) it must still return an lvalue to compile, and (2) the
      // user might call _Unchecked_set directly, in which case this /needs/
      // to fail.  Let's not penalize zero-length users unless they actually
      // make an unchecked call; all the memory ugliness is therefore
      // localized to this single should-never-get-this-far function.
      _WordT&
      _M_getword(size_t) const
      { 
	__throw_out_of_range(__N("_Base_bitset::_M_getword")); 
	return *new _WordT; 
      }

      _WordT
      _M_hiword() const
      { return 0; }

      void
      _M_do_and(const _Base_bitset<0>&)
      { }

      void
      _M_do_or(const _Base_bitset<0>&)
      { }

      void
      _M_do_xor(const _Base_bitset<0>&)
      { }

      void
      _M_do_left_shift(size_t)
      { }

      void
      _M_do_right_shift(size_t)
      { }

      void
      _M_do_flip()
      { }

      void
      _M_do_set()
      { }

      void
      _M_do_reset()
      { }

      // Are all empty bitsets equal to each other?  Are they equal to
      // themselves?  How to compare a thing which has no state?  What is
      // the sound of one zero-length bitset clapping?
      bool
      _M_is_equal(const _Base_bitset<0>&) const
      { return true; }

      bool
      _M_is_any() const
      { return false; }

      size_t
      _M_do_count() const
      { return 0; }

      unsigned long
      _M_do_to_ulong() const
      { return 0; }

      // Normally "not found" is the size, but that could also be
      // misinterpreted as an index in this corner case.  Oh well.
      size_t
      _M_do_find_first(size_t) const
      { return 0; }

      size_t
      _M_do_find_next(size_t, size_t) const
      { return 0; }
    };


  // Helper class to zero out the unused high-order bits in the highest word.
  template<size_t _Extrabits>
    struct _Sanitize
    {
      static void _S_do_sanitize(unsigned long& __val)
      { __val &= ~((~static_cast<unsigned long>(0)) << _Extrabits); }
    };

  template<>
    struct _Sanitize<0>
    { static void _S_do_sanitize(unsigned long) {} };

  /**
   *  @brief  The %bitset class represents a @e fixed-size sequence of bits.
   *
   *  @ingroup Containers
   *
   *  (Note that %bitset does @e not meet the formal requirements of a
   *  <a href="tables.html#65">container</a>.  Mainly, it lacks iterators.)
   *
   *  The template argument, @a Nb, may be any non-negative number,
   *  specifying the number of bits (e.g., "0", "12", "1024*1024").
   *
   *  In the general unoptimized case, storage is allocated in word-sized
   *  blocks.  Let B be the number of bits in a word, then (Nb+(B-1))/B
   *  words will be used for storage.  B - Nb%B bits are unused.  (They are
   *  the high-order bits in the highest word.)  It is a class invariant
   *  that those unused bits are always zero.
   *
   *  If you think of %bitset as "a simple array of bits," be aware that
   *  your mental picture is reversed:  a %bitset behaves the same way as
   *  bits in integers do, with the bit at index 0 in the "least significant
   *  / right-hand" position, and the bit at index Nb-1 in the "most
   *  significant / left-hand" position.  Thus, unlike other containers, a
   *  %bitset's index "counts from right to left," to put it very loosely.
   *
   *  This behavior is preserved when translating to and from strings.  For
   *  example, the first line of the following program probably prints
   *  "b('a') is 0001100001" on a modern ASCII system.
   *
   *  @code
   *     #include <bitset>
   *     #include <iostream>
   *     #include <sstream>
   *
   *     using namespace std;
   *
   *     int main()
   *     {
   *         long         a = 'a';
   *         bitset<10>   b(a);
   *
   *         cout << "b('a') is " << b << endl;
   *
   *         ostringstream s;
   *         s << b;
   *         string  str = s.str();
   *         cout << "index 3 in the string is " << str[3] << " but\n"
   *              << "index 3 in the bitset is " << b[3] << endl;
   *     }
   *  @endcode
   *
   *  Also see http://gcc.gnu.org/onlinedocs/libstdc++/ext/sgiexts.html#ch23
   *  for a description of extensions.
   *
   *  @if maint
   *  Most of the actual code isn't contained in %bitset<> itself, but in the
   *  base class _Base_bitset.  The base class works with whole words, not with
   *  individual bits.  This allows us to specialize _Base_bitset for the
   *  important special case where the %bitset is only a single word.
   *
   *  Extra confusion can result due to the fact that the storage for
   *  _Base_bitset @e is a regular array, and is indexed as such.  This is
   *  carefully encapsulated.
   *  @endif
  */
  template<size_t _Nb>
    class bitset
    : private _Base_bitset<_GLIBCXX_BITSET_WORDS(_Nb)>
    {
    private:
      typedef _Base_bitset<_GLIBCXX_BITSET_WORDS(_Nb)> _Base;
      typedef unsigned long _WordT;

      void
	_M_do_sanitize()
	{
	  _Sanitize<_Nb % _GLIBCXX_BITSET_BITS_PER_WORD>::
	    _S_do_sanitize(this->_M_hiword());
	}

    public:
      /**
       *  This encapsulates the concept of a single bit.  An instance of this
       *  class is a proxy for an actual bit; this way the individual bit
       *  operations are done as faster word-size bitwise instructions.
       *
       *  Most users will never need to use this class directly; conversions
       *  to and from bool are automatic and should be transparent.  Overloaded
       *  operators help to preserve the illusion.
       *
       *  (On a typical system, this "bit %reference" is 64 times the size of
       *  an actual bit.  Ha.)
       */
      class reference
      {
	friend class bitset;

	_WordT *_M_wp;
	size_t _M_bpos;
	
	// left undefined
	reference();
	
      public:
	reference(bitset& __b, size_t __pos)
	{
	  _M_wp = &__b._M_getword(__pos);
	  _M_bpos = _Base::_S_whichbit(__pos);
	}

	~reference()
	{ }

	// For b[i] = __x;
	reference&
	operator=(bool __x)
	{
	  if (__x)
	    *_M_wp |= _Base::_S_maskbit(_M_bpos);
	  else
	    *_M_wp &= ~_Base::_S_maskbit(_M_bpos);
	  return *this;
	}

	// For b[i] = b[__j];
	reference&
	operator=(const reference& __j)
	{
	  if ((*(__j._M_wp) & _Base::_S_maskbit(__j._M_bpos)))
	    *_M_wp |= _Base::_S_maskbit(_M_bpos);
	  else
	    *_M_wp &= ~_Base::_S_maskbit(_M_bpos);
	  return *this;
	}

	// Flips the bit
	bool
	operator~() const
	{ return (*(_M_wp) & _Base::_S_maskbit(_M_bpos)) == 0; }

	// For __x = b[i];
	operator bool() const
	{ return (*(_M_wp) & _Base::_S_maskbit(_M_bpos)) != 0; }

	// For b[i].flip();
	reference&
	flip()
	{
	  *_M_wp ^= _Base::_S_maskbit(_M_bpos);
	  return *this;
	}
      };
      friend class reference;

      // 23.3.5.1 constructors:
      /// All bits set to zero.
      bitset()
      { }

      /// Initial bits bitwise-copied from a single word (others set to zero).
      bitset(unsigned long __val)
      : _Base(__val)
      { _M_do_sanitize(); }

      /**
       *  @brief  Use a subset of a string.
       *  @param  s  A string of '0' and '1' characters.
       *  @param  position  Index of the first character in @a s to use;
       *                    defaults to zero.
       *  @throw  std::out_of_range  If @a pos is bigger the size of @a s.
       *  @throw  std::invalid_argument  If a character appears in the string
       *                                 which is neither '0' nor '1'.
       */
      template<class _CharT, class _Traits, class _Alloc>
	explicit
	bitset(const std::basic_string<_CharT, _Traits, _Alloc>& __s,
	       size_t __position = 0)
	: _Base()
	{
	  if (__position > __s.size())
	    __throw_out_of_range(__N("bitset::bitset initial position "
				     "not valid"));
	  _M_copy_from_string(__s, __position,
			      std::basic_string<_CharT, _Traits, _Alloc>::npos);
	}

      /**
       *  @brief  Use a subset of a string.
       *  @param  s  A string of '0' and '1' characters.
       *  @param  position  Index of the first character in @a s to use.
       *  @param  n    The number of characters to copy.
       *  @throw  std::out_of_range  If @a pos is bigger the size of @a s.
       *  @throw  std::invalid_argument  If a character appears in the string
       *                                 which is neither '0' nor '1'.
       */
      template<class _CharT, class _Traits, class _Alloc>
	bitset(const std::basic_string<_CharT, _Traits, _Alloc>& __s,
	       size_t __position, size_t __n)
	: _Base()
	{
	  if (__position > __s.size())
	    __throw_out_of_range(__N("bitset::bitset initial position "
				     "not valid"));
	  _M_copy_from_string(__s, __position, __n);
	}
      
      // 23.3.5.2 bitset operations:
      //@{
      /**
       *  @brief  Operations on bitsets.
       *  @param  rhs  A same-sized bitset.
       *
       *  These should be self-explanatory.
       */
      bitset<_Nb>&
      operator&=(const bitset<_Nb>& __rhs)
      {
	this->_M_do_and(__rhs);
	return *this;
      }

      bitset<_Nb>&
      operator|=(const bitset<_Nb>& __rhs)
      {
	this->_M_do_or(__rhs);
	return *this;
      }

      bitset<_Nb>&
      operator^=(const bitset<_Nb>& __rhs)
      {
	this->_M_do_xor(__rhs);
	return *this;
      }
      //@}
      
      //@{
      /**
       *  @brief  Operations on bitsets.
       *  @param  position  The number of places to shift.
       *
       *  These should be self-explanatory.
       */
      bitset<_Nb>&
      operator<<=(size_t __position)
      {
	if (__builtin_expect(__position < _Nb, 1))
	  {
	    this->_M_do_left_shift(__position);
	    this->_M_do_sanitize();
	  }
	else
	  this->_M_do_reset();
	return *this;
      }

      bitset<_Nb>&
      operator>>=(size_t __position)
      {
	if (__builtin_expect(__position < _Nb, 1))
	  {
	    this->_M_do_right_shift(__position);
	    this->_M_do_sanitize();
	  }
	else
	  this->_M_do_reset();
	return *this;
      }
      //@}
      
      //@{
      /**
       *  These versions of single-bit set, reset, flip, and test are
       *  extensions from the SGI version.  They do no range checking.
       *  @ingroup SGIextensions
       */
      bitset<_Nb>&
      _Unchecked_set(size_t __pos)
      {
	this->_M_getword(__pos) |= _Base::_S_maskbit(__pos);
	return *this;
      }

      bitset<_Nb>&
      _Unchecked_set(size_t __pos, int __val)
      {
	if (__val)
	  this->_M_getword(__pos) |= _Base::_S_maskbit(__pos);
	else
	  this->_M_getword(__pos) &= ~_Base::_S_maskbit(__pos);
	return *this;
      }

      bitset<_Nb>&
      _Unchecked_reset(size_t __pos)
      {
	this->_M_getword(__pos) &= ~_Base::_S_maskbit(__pos);
	return *this;
      }

      bitset<_Nb>&
      _Unchecked_flip(size_t __pos)
      {
	this->_M_getword(__pos) ^= _Base::_S_maskbit(__pos);
	return *this;
      }

      bool
      _Unchecked_test(size_t __pos) const
      { return ((this->_M_getword(__pos) & _Base::_S_maskbit(__pos))
		!= static_cast<_WordT>(0)); }
      //@}
      
      // Set, reset, and flip.
      /**
       *  @brief Sets every bit to true.
       */
      bitset<_Nb>&
      set()
      {
	this->_M_do_set();
	this->_M_do_sanitize();
	return *this;
      }

      /**
       *  @brief Sets a given bit to a particular value.
       *  @param  position  The index of the bit.
       *  @param  val  Either true or false, defaults to true.
       *  @throw  std::out_of_range  If @a pos is bigger the size of the %set.
       */
      bitset<_Nb>&
      set(size_t __position, bool __val = true)
      {
	if (__position >= _Nb)
	  __throw_out_of_range(__N("bitset::set"));
	return _Unchecked_set(__position, __val);
      }

      /**
       *  @brief Sets every bit to false.
       */
      bitset<_Nb>&
      reset()
      {
	this->_M_do_reset();
	return *this;
      }

      /**
       *  @brief Sets a given bit to false.
       *  @param  position  The index of the bit.
       *  @throw  std::out_of_range  If @a pos is bigger the size of the %set.
       *
       *  Same as writing @c set(pos,false).
       */
      bitset<_Nb>&
      reset(size_t __position)
      {
	if (__position >= _Nb)
	  __throw_out_of_range(__N("bitset::reset"));
	return _Unchecked_reset(__position);
      }
      
      /**
       *  @brief Toggles every bit to its opposite value.
       */
      bitset<_Nb>&
      flip()
      {
	this->_M_do_flip();
	this->_M_do_sanitize();
	return *this;
      }

      /**
       *  @brief Toggles a given bit to its opposite value.
       *  @param  position  The index of the bit.
       *  @throw  std::out_of_range  If @a pos is bigger the size of the %set.
       */
      bitset<_Nb>&
      flip(size_t __position)
      {
	if (__position >= _Nb)
	  __throw_out_of_range(__N("bitset::flip"));
	return _Unchecked_flip(__position);
      }
      
      /// See the no-argument flip().
      bitset<_Nb>
      operator~() const
      { return bitset<_Nb>(*this).flip(); }

      //@{
      /**
       *  @brief  Array-indexing support.
       *  @param  position  Index into the %bitset.
       *  @return  A bool for a 'const %bitset'.  For non-const bitsets, an
       *           instance of the reference proxy class.
       *  @note  These operators do no range checking and throw no exceptions,
       *         as required by DR 11 to the standard.
       *
       *  @if maint
       *  _GLIBCXX_RESOLVE_LIB_DEFECTS Note that this implementation already
       *  resolves DR 11 (items 1 and 2), but does not do the range-checking
       *  required by that DR's resolution.  -pme
       *  The DR has since been changed:  range-checking is a precondition
       *  (users' responsibility), and these functions must not throw.  -pme
       *  @endif
       */
      reference
      operator[](size_t __position)
      { return reference(*this,__position); }

      bool
      operator[](size_t __position) const
      { return _Unchecked_test(__position); }
      //@}
      
      /**
       *  @brief Retuns a numerical interpretation of the %bitset.
       *  @return  The integral equivalent of the bits.
       *  @throw  std::overflow_error  If there are too many bits to be
       *                               represented in an @c unsigned @c long.
       */
      unsigned long
      to_ulong() const
      { return this->_M_do_to_ulong(); }

      /**
       *  @brief Retuns a character interpretation of the %bitset.
       *  @return  The string equivalent of the bits.
       *
       *  Note the ordering of the bits:  decreasing character positions
       *  correspond to increasing bit positions (see the main class notes for
       *  an example).
       */
      template<class _CharT, class _Traits, class _Alloc>
	std::basic_string<_CharT, _Traits, _Alloc>
	to_string() const
	{
	  std::basic_string<_CharT, _Traits, _Alloc> __result;
	  _M_copy_to_string(__result);
	  return __result;
	}

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 434. bitset::to_string() hard to use.
      template<class _CharT, class _Traits>
	std::basic_string<_CharT, _Traits, std::allocator<_CharT> >
	to_string() const
	{ return to_string<_CharT, _Traits, std::allocator<_CharT> >(); }

      template<class _CharT>
	std::basic_string<_CharT, std::char_traits<_CharT>,
	                  std::allocator<_CharT> >
	to_string() const
	{
	  return to_string<_CharT, std::char_traits<_CharT>,
	                   std::allocator<_CharT> >();
	}

      std::basic_string<char, std::char_traits<char>, std::allocator<char> >
      to_string() const
      {
	return to_string<char, std::char_traits<char>,
	                 std::allocator<char> >();
      }

      // Helper functions for string operations.
      template<class _CharT, class _Traits, class _Alloc>
	void
	_M_copy_from_string(const std::basic_string<_CharT,
			    _Traits, _Alloc>& __s,
			    size_t, size_t);

      template<class _CharT, class _Traits, class _Alloc>
	void
	_M_copy_to_string(std::basic_string<_CharT, _Traits, _Alloc>&) const;

      /// Returns the number of bits which are set.
      size_t
      count() const
      { return this->_M_do_count(); }

      /// Returns the total number of bits.
      size_t
      size() const
      { return _Nb; }

      //@{
      /// These comparisons for equality/inequality are, well, @e bitwise.
      bool
      operator==(const bitset<_Nb>& __rhs) const
      { return this->_M_is_equal(__rhs); }

      bool
      operator!=(const bitset<_Nb>& __rhs) const
      { return !this->_M_is_equal(__rhs); }
      //@}
      
      /**
       *  @brief Tests the value of a bit.
       *  @param  position  The index of a bit.
       *  @return  The value at @a pos.
       *  @throw  std::out_of_range  If @a pos is bigger the size of the %set.
       */
      bool
      test(size_t __position) const
      {
	if (__position >= _Nb)
	  __throw_out_of_range(__N("bitset::test"));
	return _Unchecked_test(__position);
      }
      
      /**
       *  @brief Tests whether any of the bits are on.
       *  @return  True if at least one bit is set.
       */
      bool
      any() const
      { return this->_M_is_any(); }

      /**
       *  @brief Tests whether any of the bits are on.
       *  @return  True if none of the bits are set.
       */
      bool
      none() const
      { return !this->_M_is_any(); }

      //@{
      /// Self-explanatory.
      bitset<_Nb>
      operator<<(size_t __position) const
      { return bitset<_Nb>(*this) <<= __position; }

      bitset<_Nb>
      operator>>(size_t __position) const
      { return bitset<_Nb>(*this) >>= __position; }
      //@}
      
      /**
       *  @brief  Finds the index of the first "on" bit.
       *  @return  The index of the first bit set, or size() if not found.
       *  @ingroup SGIextensions
       *  @sa  _Find_next
       */
      size_t
      _Find_first() const
      { return this->_M_do_find_first(_Nb); }

      /**
       *  @brief  Finds the index of the next "on" bit after prev.
       *  @return  The index of the next bit set, or size() if not found.
       *  @param  prev  Where to start searching.
       *  @ingroup SGIextensions
       *  @sa  _Find_first
       */
      size_t
      _Find_next(size_t __prev ) const
      { return this->_M_do_find_next(__prev, _Nb); }
    };

  // Definitions of non-inline member functions.
  template<size_t _Nb>
    template<class _CharT, class _Traits, class _Alloc>
      void
      bitset<_Nb>::
      _M_copy_from_string(const std::basic_string<_CharT, _Traits,
			  _Alloc>& __s, size_t __pos, size_t __n)
      {
	reset();
	const size_t __nbits = std::min(_Nb, std::min(__n, __s.size() - __pos));
	for (size_t __i = __nbits; __i > 0; --__i)
	  {
	    switch(__s[__pos + __nbits - __i])
	      {
	      case '0':
		break;
	      case '1':
		_Unchecked_set(__i - 1);
		break;
	      default:
		__throw_invalid_argument(__N("bitset::_M_copy_from_string"));
	      }
	  }
      }

  template<size_t _Nb>
    template<class _CharT, class _Traits, class _Alloc>
      void
      bitset<_Nb>::
      _M_copy_to_string(std::basic_string<_CharT, _Traits, _Alloc>& __s) const
      {
	__s.assign(_Nb, '0');
	for (size_t __i = _Nb; __i > 0; --__i)
	  if (_Unchecked_test(__i - 1))
	    __s[_Nb - __i] = '1';
      }

  // 23.3.5.3 bitset operations:
  //@{
  /**
   *  @brief  Global bitwise operations on bitsets.
   *  @param  x  A bitset.
   *  @param  y  A bitset of the same size as @a x.
   *  @return  A new bitset.
   *
   *  These should be self-explanatory.
  */
  template<size_t _Nb>
    inline bitset<_Nb>
    operator&(const bitset<_Nb>& __x, const bitset<_Nb>& __y)
    {
      bitset<_Nb> __result(__x);
      __result &= __y;
      return __result;
    }

  template<size_t _Nb>
    inline bitset<_Nb>
    operator|(const bitset<_Nb>& __x, const bitset<_Nb>& __y)
    {
      bitset<_Nb> __result(__x);
      __result |= __y;
      return __result;
    }

  template <size_t _Nb>
    inline bitset<_Nb>
    operator^(const bitset<_Nb>& __x, const bitset<_Nb>& __y)
    {
      bitset<_Nb> __result(__x);
      __result ^= __y;
      return __result;
    }
  //@}

  //@{
  /**
   *  @brief Global I/O operators for bitsets.
   *
   *  Direct I/O between streams and bitsets is supported.  Output is
   *  straightforward.  Input will skip whitespace, only accept '0' and '1'
   *  characters, and will only extract as many digits as the %bitset will
   *  hold.
  */
  template<class _CharT, class _Traits, size_t _Nb>
    std::basic_istream<_CharT, _Traits>&
    operator>>(std::basic_istream<_CharT, _Traits>& __is, bitset<_Nb>& __x)
    {
      typedef typename _Traits::char_type char_type;
      std::basic_string<_CharT, _Traits> __tmp;
      __tmp.reserve(_Nb);

      std::ios_base::iostate __state = std::ios_base::goodbit;
      typename std::basic_istream<_CharT, _Traits>::sentry __sentry(__is);
      if (__sentry)
	{
	  try
	    {
	      basic_streambuf<_CharT, _Traits>* __buf = __is.rdbuf();
	      // _GLIBCXX_RESOLVE_LIB_DEFECTS
	      // 303. Bitset input operator underspecified
	      const char_type __zero = __is.widen('0');
	      const char_type __one = __is.widen('1');
	      for (size_t __i = _Nb; __i > 0; --__i)
		{
		  static typename _Traits::int_type __eof = _Traits::eof();
		  
		  typename _Traits::int_type __c1 = __buf->sbumpc();
		  if (_Traits::eq_int_type(__c1, __eof))
		    {
		      __state |= std::ios_base::eofbit;
		      break;
		    }
		  else
		    {
		      const char_type __c2 = _Traits::to_char_type(__c1);
		      if (__c2 == __zero)
			__tmp.push_back('0');
		      else if (__c2 == __one)
			__tmp.push_back('1');
		      else if (_Traits::eq_int_type(__buf->sputbackc(__c2),
						    __eof))
			{
			  __state |= std::ios_base::failbit;
			  break;
			}
		    }
		}
	    }
	  catch(...)
	    { __is._M_setstate(std::ios_base::badbit); }
	}

      if (__tmp.empty() && _Nb)
	__state |= std::ios_base::failbit;
      else
	__x._M_copy_from_string(__tmp, static_cast<size_t>(0), _Nb);
      if (__state)
	__is.setstate(__state);
      return __is;
    }

  template <class _CharT, class _Traits, size_t _Nb>
    std::basic_ostream<_CharT, _Traits>&
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
	       const bitset<_Nb>& __x)
    {
      std::basic_string<_CharT, _Traits> __tmp;
      __x._M_copy_to_string(__tmp);
      return __os << __tmp;
    }

  // Specializations for zero-sized bitsets, to avoid "unsigned comparison
  // with zero" warnings.
  template<>
    inline bitset<0>&
    bitset<0>::
    set(size_t, bool)
    {
      __throw_out_of_range(__N("bitset::set"));
      return *this;
    }
      
  template<>
    inline bitset<0>&
    bitset<0>::
    reset(size_t)
    {
      __throw_out_of_range(__N("bitset::reset"));
      return *this;
    }
      
  template<>
    inline bitset<0>&
    bitset<0>::
    flip(size_t)
    {
      __throw_out_of_range(__N("bitset::flip"));
      return *this;
    }
      
  template<>
    inline bool
    bitset<0>::
    test(size_t) const
    {
      __throw_out_of_range(__N("bitset::test"));
      return false;
    }
  //@}

_GLIBCXX_END_NESTED_NAMESPACE

#undef _GLIBCXX_BITSET_WORDS
#undef _GLIBCXX_BITSET_BITS_PER_WORD

#ifdef _GLIBCXX_DEBUG
# include <debug/bitset>
#endif

#endif /* _GLIBCXX_BITSET */