i386-linux-tdep.c   [plain text]


/* Target-dependent code for GNU/Linux i386.

   Copyright 2000, 2001, 2002, 2003, 2004, 2005
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "gdbcore.h"
#include "frame.h"
#include "value.h"
#include "regcache.h"
#include "inferior.h"
#include "osabi.h"
#include "reggroups.h"
#include "dwarf2-frame.h"
#include "gdb_string.h"

#include "i386-tdep.h"
#include "i386-linux-tdep.h"
#include "glibc-tdep.h"
#include "solib-svr4.h"

/* Return the name of register REG.  */

static const char *
i386_linux_register_name (int reg)
{
  /* Deal with the extra "orig_eax" pseudo register.  */
  if (reg == I386_LINUX_ORIG_EAX_REGNUM)
    return "orig_eax";

  return i386_register_name (reg);
}

/* Return non-zero, when the register is in the corresponding register
   group.  Put the LINUX_ORIG_EAX register in the system group.  */
static int
i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
				struct reggroup *group)
{
  if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
    return (group == system_reggroup
	    || group == save_reggroup
	    || group == restore_reggroup);
  return i386_register_reggroup_p (gdbarch, regnum, group);
}


/* Recognizing signal handler frames.  */

/* GNU/Linux has two flavors of signals.  Normal signal handlers, and
   "realtime" (RT) signals.  The RT signals can provide additional
   information to the signal handler if the SA_SIGINFO flag is set
   when establishing a signal handler using `sigaction'.  It is not
   unlikely that future versions of GNU/Linux will support SA_SIGINFO
   for normal signals too.  */

/* When the i386 Linux kernel calls a signal handler and the
   SA_RESTORER flag isn't set, the return address points to a bit of
   code on the stack.  This function returns whether the PC appears to
   be within this bit of code.

   The instruction sequence for normal signals is
       pop    %eax
       mov    $0x77, %eax
       int    $0x80
   or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.

   Checking for the code sequence should be somewhat reliable, because
   the effect is to call the system call sigreturn.  This is unlikely
   to occur anywhere other than in a signal trampoline.

   It kind of sucks that we have to read memory from the process in
   order to identify a signal trampoline, but there doesn't seem to be
   any other way.  Therefore we only do the memory reads if no
   function name could be identified, which should be the case since
   the code is on the stack.

   Detection of signal trampolines for handlers that set the
   SA_RESTORER flag is in general not possible.  Unfortunately this is
   what the GNU C Library has been doing for quite some time now.
   However, as of version 2.1.2, the GNU C Library uses signal
   trampolines (named __restore and __restore_rt) that are identical
   to the ones used by the kernel.  Therefore, these trampolines are
   supported too.  */

#define LINUX_SIGTRAMP_INSN0	0x58	/* pop %eax */
#define LINUX_SIGTRAMP_OFFSET0	0
#define LINUX_SIGTRAMP_INSN1	0xb8	/* mov $NNNN, %eax */
#define LINUX_SIGTRAMP_OFFSET1	1
#define LINUX_SIGTRAMP_INSN2	0xcd	/* int */
#define LINUX_SIGTRAMP_OFFSET2	6

static const gdb_byte linux_sigtramp_code[] =
{
  LINUX_SIGTRAMP_INSN0,					/* pop %eax */
  LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00,		/* mov $0x77, %eax */
  LINUX_SIGTRAMP_INSN2, 0x80				/* int $0x80 */
};

#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)

/* If NEXT_FRAME unwinds into a sigtramp routine, return the address
   of the start of the routine.  Otherwise, return 0.  */

static CORE_ADDR
i386_linux_sigtramp_start (struct frame_info *next_frame)
{
  CORE_ADDR pc = frame_pc_unwind (next_frame);
  gdb_byte buf[LINUX_SIGTRAMP_LEN];

  /* We only recognize a signal trampoline if PC is at the start of
     one of the three instructions.  We optimize for finding the PC at
     the start, as will be the case when the trampoline is not the
     first frame on the stack.  We assume that in the case where the
     PC is not at the start of the instruction sequence, there will be
     a few trailing readable bytes on the stack.  */

  if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN))
    return 0;

  if (buf[0] != LINUX_SIGTRAMP_INSN0)
    {
      int adjust;

      switch (buf[0])
	{
	case LINUX_SIGTRAMP_INSN1:
	  adjust = LINUX_SIGTRAMP_OFFSET1;
	  break;
	case LINUX_SIGTRAMP_INSN2:
	  adjust = LINUX_SIGTRAMP_OFFSET2;
	  break;
	default:
	  return 0;
	}

      pc -= adjust;

      if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN))
	return 0;
    }

  if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
    return 0;

  return pc;
}

/* This function does the same for RT signals.  Here the instruction
   sequence is
       mov    $0xad, %eax
       int    $0x80
   or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.

   The effect is to call the system call rt_sigreturn.  */

#define LINUX_RT_SIGTRAMP_INSN0		0xb8 /* mov $NNNN, %eax */
#define LINUX_RT_SIGTRAMP_OFFSET0	0
#define LINUX_RT_SIGTRAMP_INSN1		0xcd /* int */
#define LINUX_RT_SIGTRAMP_OFFSET1	5

static const gdb_byte linux_rt_sigtramp_code[] =
{
  LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00,	/* mov $0xad, %eax */
  LINUX_RT_SIGTRAMP_INSN1, 0x80				/* int $0x80 */
};

#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)

/* If NEXT_FRAME unwinds into an RT sigtramp routine, return the
   address of the start of the routine.  Otherwise, return 0.  */

static CORE_ADDR
i386_linux_rt_sigtramp_start (struct frame_info *next_frame)
{
  CORE_ADDR pc = frame_pc_unwind (next_frame);
  gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];

  /* We only recognize a signal trampoline if PC is at the start of
     one of the two instructions.  We optimize for finding the PC at
     the start, as will be the case when the trampoline is not the
     first frame on the stack.  We assume that in the case where the
     PC is not at the start of the instruction sequence, there will be
     a few trailing readable bytes on the stack.  */

  if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
    return 0;

  if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
    {
      if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
	return 0;

      pc -= LINUX_RT_SIGTRAMP_OFFSET1;

      if (!safe_frame_unwind_memory (next_frame, pc, buf,
				     LINUX_RT_SIGTRAMP_LEN))
	return 0;
    }

  if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
    return 0;

  return pc;
}

/* Return whether the frame preceding NEXT_FRAME corresponds to a
   GNU/Linux sigtramp routine.  */

static int
i386_linux_sigtramp_p (struct frame_info *next_frame)
{
  CORE_ADDR pc = frame_pc_unwind (next_frame);
  char *name;

  find_pc_partial_function (pc, &name, NULL, NULL);

  /* If we have NAME, we can optimize the search.  The trampolines are
     named __restore and __restore_rt.  However, they aren't dynamically
     exported from the shared C library, so the trampoline may appear to
     be part of the preceding function.  This should always be sigaction,
     __sigaction, or __libc_sigaction (all aliases to the same function).  */
  if (name == NULL || strstr (name, "sigaction") != NULL)
    return (i386_linux_sigtramp_start (next_frame) != 0
	    || i386_linux_rt_sigtramp_start (next_frame) != 0);

  return (strcmp ("__restore", name) == 0
	  || strcmp ("__restore_rt", name) == 0);
}

/* Return one if the unwound PC from NEXT_FRAME is in a signal trampoline
   which may have DWARF-2 CFI.  */

static int
i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
				 struct frame_info *next_frame)
{
  CORE_ADDR pc = frame_pc_unwind (next_frame);
  char *name;

  find_pc_partial_function (pc, &name, NULL, NULL);

  /* If a vsyscall DSO is in use, the signal trampolines may have these
     names.  */
  if (name && (strcmp (name, "__kernel_sigreturn") == 0
	       || strcmp (name, "__kernel_rt_sigreturn") == 0))
    return 1;

  return 0;
}

/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>.  */
#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20

/* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
   routine, return the address of the associated sigcontext structure.  */

static CORE_ADDR
i386_linux_sigcontext_addr (struct frame_info *next_frame)
{
  CORE_ADDR pc;
  CORE_ADDR sp;
  gdb_byte buf[4];

  frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
  sp = extract_unsigned_integer (buf, 4);

  pc = i386_linux_sigtramp_start (next_frame);
  if (pc)
    {
      /* The sigcontext structure lives on the stack, right after
	 the signum argument.  We determine the address of the
	 sigcontext structure by looking at the frame's stack
	 pointer.  Keep in mind that the first instruction of the
	 sigtramp code is "pop %eax".  If the PC is after this
	 instruction, adjust the returned value accordingly.  */
      if (pc == frame_pc_unwind (next_frame))
	return sp + 4;
      return sp;
    }

  pc = i386_linux_rt_sigtramp_start (next_frame);
  if (pc)
    {
      CORE_ADDR ucontext_addr;

      /* The sigcontext structure is part of the user context.  A
	 pointer to the user context is passed as the third argument
	 to the signal handler.  */
      read_memory (sp + 8, buf, 4);
      ucontext_addr = extract_unsigned_integer (buf, 4);
      return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
    }

  error (_("Couldn't recognize signal trampoline."));
  return 0;
}

/* Set the program counter for process PTID to PC.  */

static void
i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
{
  write_register_pid (I386_EIP_REGNUM, pc, ptid);

  /* We must be careful with modifying the program counter.  If we
     just interrupted a system call, the kernel might try to restart
     it when we resume the inferior.  On restarting the system call,
     the kernel will try backing up the program counter even though it
     no longer points at the system call.  This typically results in a
     SIGSEGV or SIGILL.  We can prevent this by writing `-1' in the
     "orig_eax" pseudo-register.

     Note that "orig_eax" is saved when setting up a dummy call frame.
     This means that it is properly restored when that frame is
     popped, and that the interrupted system call will be restarted
     when we resume the inferior on return from a function call from
     within GDB.  In all other cases the system call will not be
     restarted.  */
  write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid);
}


/* The register sets used in GNU/Linux ELF core-dumps are identical to
   the register sets in `struct user' that are used for a.out
   core-dumps.  These are also used by ptrace(2).  The corresponding
   types are `elf_gregset_t' for the general-purpose registers (with
   `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
   for the floating-point registers.

   Those types used to be available under the names `gregset_t' and
   `fpregset_t' too, and GDB used those names in the past.  But those
   names are now used for the register sets used in the `mcontext_t'
   type, which have a different size and layout.  */

/* Mapping between the general-purpose registers in `struct user'
   format and GDB's register cache layout.  */

/* From <sys/reg.h>.  */
static int i386_linux_gregset_reg_offset[] =
{
  6 * 4,			/* %eax */
  1 * 4,			/* %ecx */
  2 * 4,			/* %edx */
  0 * 4,			/* %ebx */
  15 * 4,			/* %esp */
  5 * 4,			/* %ebp */
  3 * 4,			/* %esi */
  4 * 4,			/* %edi */
  12 * 4,			/* %eip */
  14 * 4,			/* %eflags */
  13 * 4,			/* %cs */
  16 * 4,			/* %ss */
  7 * 4,			/* %ds */
  8 * 4,			/* %es */
  9 * 4,			/* %fs */
  10 * 4,			/* %gs */
  -1, -1, -1, -1, -1, -1, -1, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,
  -1,
  11 * 4			/* "orig_eax" */
};

/* Mapping between the general-purpose registers in `struct
   sigcontext' format and GDB's register cache layout.  */

/* From <asm/sigcontext.h>.  */
static int i386_linux_sc_reg_offset[] =
{
  11 * 4,			/* %eax */
  10 * 4,			/* %ecx */
  9 * 4,			/* %edx */
  8 * 4,			/* %ebx */
  7 * 4,			/* %esp */
  6 * 4,			/* %ebp */
  5 * 4,			/* %esi */
  4 * 4,			/* %edi */
  14 * 4,			/* %eip */
  16 * 4,			/* %eflags */
  15 * 4,			/* %cs */
  18 * 4,			/* %ss */
  3 * 4,			/* %ds */
  2 * 4,			/* %es */
  1 * 4,			/* %fs */
  0 * 4				/* %gs */
};

static void
i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* GNU/Linux uses ELF.  */
  i386_elf_init_abi (info, gdbarch);

  /* Since we have the extra "orig_eax" register on GNU/Linux, we have
     to adjust a few things.  */

  set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
  set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
  set_gdbarch_register_name (gdbarch, i386_linux_register_name);
  set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);

  tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
  tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
  tdep->sizeof_gregset = 17 * 4;

  tdep->jb_pc_offset = 20;	/* From <bits/setjmp.h>.  */

  tdep->sigtramp_p = i386_linux_sigtramp_p;
  tdep->sigcontext_addr = i386_linux_sigcontext_addr;
  tdep->sc_reg_offset = i386_linux_sc_reg_offset;
  tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);

  /* GNU/Linux uses SVR4-style shared libraries.  */
  set_solib_svr4_fetch_link_map_offsets
    (gdbarch, svr4_ilp32_fetch_link_map_offsets);

  /* GNU/Linux uses the dynamic linker included in the GNU C Library.  */
  set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);

  dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);

  /* Enable TLS support.  */
  set_gdbarch_fetch_tls_load_module_address (gdbarch,
                                             svr4_fetch_objfile_link_map);
}

/* Provide a prototype to silence -Wmissing-prototypes.  */
extern void _initialize_i386_linux_tdep (void);

void
_initialize_i386_linux_tdep (void)
{
  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
			  i386_linux_init_abi);
}