disasm.c   [plain text]


/* Disassemble support for GDB.

   Copyright 2000, 2001, 2002, 2003, 2004, 2005
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "target.h"
#include "value.h"
#include "ui-out.h"
#include "gdb_string.h"
#include "disasm.h"
#include "gdbcore.h"
#include "dis-asm.h"
#include "gdb_assert.h"

/* Disassemble functions.
   FIXME: We should get rid of all the duplicate code in gdb that does
   the same thing: disassemble_command() and the gdbtk variation. */

/* This Structure is used to store line number information.
   We need a different sort of line table from the normal one cuz we can't
   depend upon implicit line-end pc's for lines to do the
   reordering in this function.  */

struct dis_line_entry
{
  int line;
  CORE_ADDR start_pc;
  CORE_ADDR end_pc;
};

/* Like target_read_memory, but slightly different parameters.  */
static int
dis_asm_read_memory (bfd_vma memaddr, gdb_byte *myaddr, unsigned int len,
		     struct disassemble_info *info)
{
  return target_read_memory (memaddr, myaddr, len);
}

/* Like memory_error with slightly different parameters.  */
static void
dis_asm_memory_error (int status, bfd_vma memaddr,
		      struct disassemble_info *info)
{
  memory_error (status, memaddr);
}

/* Like print_address with slightly different parameters.  */
static void
dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
{
  print_address (addr, info->stream);
}

static int
compare_lines (const void *mle1p, const void *mle2p)
{
  struct dis_line_entry *mle1, *mle2;
  int val;

  mle1 = (struct dis_line_entry *) mle1p;
  mle2 = (struct dis_line_entry *) mle2p;

  val = mle1->line - mle2->line;

  if (val != 0)
    return val;

  return mle1->start_pc - mle2->start_pc;
}

static int
dump_insns (struct ui_out *uiout, struct disassemble_info * di,
	    CORE_ADDR low, CORE_ADDR high,
	    int how_many, struct ui_stream *stb)
{
  int num_displayed = 0;
  CORE_ADDR pc;

  /* parts of the symbolic representation of the address */
  int unmapped;
  int offset;
  int line;
  struct cleanup *ui_out_chain;

  for (pc = low; pc < high;)
    {
      char *filename = NULL;
      char *name = NULL;

      QUIT;
      if (how_many >= 0)
	{
	  if (num_displayed >= how_many)
	    break;
	  else
	    num_displayed++;
	}
      ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
      ui_out_field_core_addr (uiout, "address", pc);

      if (!build_address_symbolic (pc, 0, &name, &offset, &filename,
				   &line, &unmapped))
	{
	  /* We don't care now about line, filename and
	     unmapped. But we might in the future. */
	  ui_out_text (uiout, " <");
	  ui_out_field_string (uiout, "func-name", name);
	  ui_out_text (uiout, "+");
	  ui_out_field_int (uiout, "offset", offset);
	  ui_out_text (uiout, ">:\t");
	}
      else
	ui_out_text (uiout, ":\t");

      if (filename != NULL)
	xfree (filename);
      if (name != NULL)
	xfree (name);

      ui_file_rewind (stb->stream);
      pc += TARGET_PRINT_INSN (pc, di);
      ui_out_field_stream (uiout, "inst", stb);
      ui_file_rewind (stb->stream);
      do_cleanups (ui_out_chain);
      ui_out_text (uiout, "\n");
    }
  return num_displayed;
}

/* The idea here is to present a source-O-centric view of a
   function to the user.  This means that things are presented
   in source order, with (possibly) out of order assembly
   immediately following.  */
static void
do_mixed_source_and_assembly (struct ui_out *uiout,
			      struct disassemble_info *di, int nlines,
			      struct linetable_entry *le,
			      CORE_ADDR low, CORE_ADDR high,
			      struct symtab *symtab,
			      int how_many, struct ui_stream *stb)
{
  int newlines = 0;
  struct dis_line_entry *mle;
  struct symtab_and_line sal;
  int i;
  int out_of_order = 0;
  int next_line = 0;
  CORE_ADDR pc;
  int num_displayed = 0;
  struct cleanup *ui_out_chain;
  struct cleanup *ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
  struct cleanup *ui_out_list_chain = make_cleanup (null_cleanup, 0);

  mle = (struct dis_line_entry *) alloca (nlines
					  * sizeof (struct dis_line_entry));

  /* Copy linetable entries for this function into our data
     structure, creating end_pc's and setting out_of_order as
     appropriate.  */

  /* First, skip all the preceding functions.  */

  for (i = 0; i < nlines - 1 && le[i].pc < low; i++);

  /* Now, copy all entries before the end of this function.  */

  for (; i < nlines - 1 && le[i].pc < high; i++)
    {
      if (le[i].line == le[i + 1].line && le[i].pc == le[i + 1].pc)
	continue;		/* Ignore duplicates */

      /* Skip any end-of-function markers.  */
      if (le[i].line == 0)
	continue;

      mle[newlines].line = le[i].line;
      if (le[i].line > le[i + 1].line)
	out_of_order = 1;
      mle[newlines].start_pc = le[i].pc;
      mle[newlines].end_pc = le[i + 1].pc;
      newlines++;
    }

  /* If we're on the last line, and it's part of the function,
     then we need to get the end pc in a special way.  */

  if (i == nlines - 1 && le[i].pc < high)
    {
      mle[newlines].line = le[i].line;
      mle[newlines].start_pc = le[i].pc;
      sal = find_pc_line (le[i].pc, 0);
      mle[newlines].end_pc = sal.end;
      newlines++;
    }

  /* Now, sort mle by line #s (and, then by addresses within
     lines). */

  if (out_of_order)
    qsort (mle, newlines, sizeof (struct dis_line_entry), compare_lines);

  /* Now, for each line entry, emit the specified lines (unless
     they have been emitted before), followed by the assembly code
     for that line.  */

  ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");

  for (i = 0; i < newlines; i++)
    {
      /* Print out everything from next_line to the current line.  */
      if (mle[i].line >= next_line)
	{
	  if (next_line != 0)
	    {
	      /* Just one line to print. */
	      if (next_line == mle[i].line)
		{
		  ui_out_tuple_chain
		    = make_cleanup_ui_out_tuple_begin_end (uiout,
							   "src_and_asm_line");
		  print_source_lines (symtab, next_line, mle[i].line + 1, 0);
		}
	      else
		{
		  /* Several source lines w/o asm instructions associated. */
		  for (; next_line < mle[i].line; next_line++)
		    {
		      struct cleanup *ui_out_list_chain_line;
		      struct cleanup *ui_out_tuple_chain_line;
		      
		      ui_out_tuple_chain_line
			= make_cleanup_ui_out_tuple_begin_end (uiout,
							       "src_and_asm_line");
		      print_source_lines (symtab, next_line, next_line + 1,
					  0);
		      ui_out_list_chain_line
			= make_cleanup_ui_out_list_begin_end (uiout,
							      "line_asm_insn");
		      do_cleanups (ui_out_list_chain_line);
		      do_cleanups (ui_out_tuple_chain_line);
		    }
		  /* Print the last line and leave list open for
		     asm instructions to be added. */
		  ui_out_tuple_chain
		    = make_cleanup_ui_out_tuple_begin_end (uiout,
							   "src_and_asm_line");
		  print_source_lines (symtab, next_line, mle[i].line + 1, 0);
		}
	    }
	  else
	    {
	      ui_out_tuple_chain
		= make_cleanup_ui_out_tuple_begin_end (uiout, "src_and_asm_line");
	      print_source_lines (symtab, mle[i].line, mle[i].line + 1, 0);
	    }

	  next_line = mle[i].line + 1;
	  ui_out_list_chain
	    = make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
	}

      num_displayed += dump_insns (uiout, di, mle[i].start_pc, mle[i].end_pc,
				   how_many, stb);

      /* When we've reached the end of the mle array, or we've seen the last
         assembly range for this source line, close out the list/tuple.  */
      if (i == (newlines - 1) || mle[i + 1].line > mle[i].line)
	{
	  do_cleanups (ui_out_list_chain);
	  do_cleanups (ui_out_tuple_chain);
	  ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
	  ui_out_list_chain = make_cleanup (null_cleanup, 0);
	  ui_out_text (uiout, "\n");
	}
      if (how_many >= 0 && num_displayed >= how_many)
	break;
    }
  do_cleanups (ui_out_chain);
}


static void
do_assembly_only (struct ui_out *uiout, struct disassemble_info * di,
		  CORE_ADDR low, CORE_ADDR high,
		  int how_many, struct ui_stream *stb)
{
  int num_displayed = 0;
  struct cleanup *ui_out_chain;

  ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");

  num_displayed = dump_insns (uiout, di, low, high, how_many, stb);

  do_cleanups (ui_out_chain);
}

/* Initialize the disassemble info struct ready for the specified
   stream.  */

static int ATTR_FORMAT (printf, 2, 3)
fprintf_disasm (void *stream, const char *format, ...)
{
  va_list args;
  va_start (args, format);
  vfprintf_filtered (stream, format, args);
  va_end (args);
  /* Something non -ve.  */
  return 0;
}

static struct disassemble_info
gdb_disassemble_info (struct gdbarch *gdbarch, struct ui_file *file)
{
  struct disassemble_info di;
  init_disassemble_info (&di, file, fprintf_disasm);
  di.flavour = bfd_target_unknown_flavour;
  di.memory_error_func = dis_asm_memory_error;
  di.print_address_func = dis_asm_print_address;
  /* NOTE: cagney/2003-04-28: The original code, from the old Insight
     disassembler had a local optomization here.  By default it would
     access the executable file, instead of the target memory (there
     was a growing list of exceptions though).  Unfortunately, the
     heuristic was flawed.  Commands like "disassemble &variable"
     didn't work as they relied on the access going to the target.
     Further, it has been supperseeded by trust-read-only-sections
     (although that should be superseeded by target_trust..._p()).  */
  di.read_memory_func = dis_asm_read_memory;
  di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
  di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
  di.endian = gdbarch_byte_order (gdbarch);
  disassemble_init_for_target (&di);
  return di;
}

/* A variant of gdb_disassemble_info that generates no output.  Used
   by find_pc_offset to determine the lengths of instructions it is
   skipping. */

static struct disassemble_info
gdb_disassemble_info_null (struct gdbarch *gdbarch)
{
  struct disassemble_info ret = gdb_disassemble_info (gdbarch, gdb_null);
  return ret;
}

void
gdb_disassembly (struct ui_out *uiout,
		 CORE_ADDR low, CORE_ADDR high,
		 int mixed_source_and_assembly,
		 int how_many)
{
  struct ui_stream *stb = ui_out_stream_new (uiout);
  struct cleanup *cleanups = make_cleanup_ui_out_stream_delete (stb);
  struct disassemble_info di = gdb_disassemble_info (current_gdbarch, stb->stream);
  /* To collect the instruction outputted from opcodes. */
  struct symtab *symtab = NULL;
  struct linetable_entry *le = NULL;
  int nlines = -1;

  /* Assume symtab is valid for whole PC range */
  symtab = find_pc_symtab (low);

  if (symtab != NULL && symtab->linetable != NULL)
    {
      /* Convert the linetable to a bunch of my_line_entry's.  */
      le = symtab->linetable->item;
      nlines = symtab->linetable->nitems;
    }

  if (!mixed_source_and_assembly || nlines <= 0
      || symtab == NULL || symtab->linetable == NULL)
    do_assembly_only (uiout, &di, low, high, how_many, stb);

  else if (mixed_source_and_assembly)
    do_mixed_source_and_assembly (uiout, &di, nlines, le, low,
				  high, symtab, how_many, stb);

  do_cleanups (cleanups);
  gdb_flush (gdb_stdout);
}

/* If the architecture in GDBARCH has fixed-length instructions,
   return that length.  Otherwise, or if we do not know the length of
   an instruction, return -1. 

   FIXME: This should really be a gdbarch method.  That's a more
   appropriate change to make post-turmeric, though.
*/

static
int gdbarch_instruction_length (struct gdbarch *gdbarch)
{
  struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);

  switch (info->arch)
    {
    case bfd_arch_powerpc:
      return 4;
    default:
      return -1;
    }
}

/*  Find the address of the instruction OFFSET instructions away from
    START, and return it in RESULT.  START must be the address of a
    valid instruction.  For some architectures, the only way to seek
    backwards is to find a previous point that is known to be a valid
    instruction, and seek forward.  In this case, PEEKLIMIT will be
    used as an upper bound on the number of bytes we are willing to
    search.  If FUNCLIMIT is specified, constrain the instruction to
    remain within the current function boundaries.

    If we are unable to properly parse the instruction stream, return
    -1 and store INVALID_ADDRESS in RESULT.  if PEEKLIMIT would be
    exceeded, or if we were unable to seek the requested number of
    instructions due to function boundaries, return 1 and store the
    constrained address in RESULT.  If we are able to seek the
    requested number of instructions, return 0 and store the result in
    RESULT.

    FIXME: Currently, we only use function symbols as possible rewind
    points from which to seek forward.  This isn't typically a
    problem, since the only functions for which we use this are likely
    to be system functions, which are typically small and don't have
    debugging information anyway.  But we should still modify this
    function to use other sources of information where available, such
    as line table information.
*/

int
find_pc_offset (CORE_ADDR start, CORE_ADDR *result, int offset, int funclimit, 
                int peeklimit)
{
  CORE_ADDR low = INVALID_ADDRESS;
  CORE_ADDR high = INVALID_ADDRESS;
  CORE_ADDR cur;
  CORE_ADDR constrained;

  int length;

  struct disassemble_info di = gdb_disassemble_info_null (current_gdbarch);
  CORE_ADDR *addrs = NULL;
  unsigned int index;
  struct cleanup *cleanup = NULL;

  *result = INVALID_ADDRESS;
  cur = start;

  /* If we are constraining the address to stay in the same function,
     we need to be able to find its boundaries. */

  if (funclimit)
    {
      if (find_pc_partial_function (start, NULL, &low, &high) == 0)
	{
	  /* We were unable to find the start of the function. */
	  return -1;
	}
    }

  /* If the architecture has fixed-sized instructions, just use simple
     arithmetic. */
  
  length = gdbarch_instruction_length (current_gdbarch);
  if (length > 0)
    {
      cur = start + length * offset;

      /* Constrain to be within the function limits if appropriate. */
      if (funclimit && (cur > high))
	constrained = high;
      else if (funclimit && (cur < low))
	constrained = low;
      else
	constrained = cur;

      /* Return 1 if we constrained the address; 0 otherwise. */
      *result = constrained;
      return (constrained != cur);
    }
  
  /* From here, we must assume variable-sized instructions. */

  if ((! funclimit) && (offset < 0))
    {
      /* FIXME: We don't support seeking backwards past the beginning
	 of a function. */
      return -1;
    }

  /* If we have a positive offset, start seeking forward until we are
     either done, or reach the end of the function. */

  cur = start;
  while (offset > 0)
    {
      cur += TARGET_PRINT_INSN (cur, &di);
      offset--;
      
      if (funclimit && (cur > high))
	{
	  /* We went past the end of the function without ever
	     reaching the purportedly final instruction. */
	  return -1;
	}
      
      if (funclimit && (cur == high))
	{
	  /* We reached the end of the function.  Return 1 if we had
	     to constrain the address; 0 otherwise. */
	  *result = cur;
	  return (offset > 0);
	}
    }

  if (offset == 0)
    {
      *result = cur;
      return 0;
    }

  /* From here out we can assume we are doing a negative offset. */

  gdb_assert (low <= start);
  gdb_assert (offset < 0);

  /* There's no point searching for more instructions slots than there
     are bytes.  If we were given a PEEKLIMIT of -1, or a PEEKLIMIT
     higher than we need, set it to the number of bytes from the start
     of the function. */

  if (peeklimit < 0 || peeklimit > (start - low))
    peeklimit = start - low;
  
  /* If PEEKLIMIT is less than (start - low), we can still attempt the
     search --- maybe enough of the instruction stream will be
     multi-byte that we'll find our address regardless. */

  addrs = (CORE_ADDR *) xmalloc (peeklimit * sizeof (CORE_ADDR));
  cleanup = make_cleanup (xfree, addrs);

  /* We can assume that we are constrained to the current function at
     this point (see the comment above). */

  gdb_assert (funclimit);

  cur = low;
  index = 0;

  /* Seek forward until we either reach our starting point, or reach
     PEEKLIMIT. */

  for (;;)
    {
      if (cur >= start)
	break;
      if (index >= peeklimit)
	break;

      gdb_assert (index < peeklimit);
      addrs[index++] = cur;
      cur += TARGET_PRINT_INSN (cur, &di);
    }

  if (cur == start)
    {
      /* We were able to seek all the way forward to the start address. */

      gdb_assert (funclimit);
      gdb_assert (offset < 0);

      if (index < -offset)
	{
	  /* We weren't able to go far enough back; return the earliest
             instruction of the function.  */
	  *result = low;
	  do_cleanups (cleanup);
	  return 1;
	} 
      else
	{
	  *result = addrs[index + offset];
	  do_cleanups (cleanup);
	  return 0;
	}
    }

  if (cur > start)
    {
      /* We seeked forward right past the start address, without ever
	 hitting it. */
      do_cleanups (cleanup);
      return -1;
    }

  if (index >= peeklimit)
    {
      /* We went past PEEKLIMIT instructions, and hence, weren't able
	 to complete the backwards seek.  */
      do_cleanups (cleanup);
      return -1;
    }

  internal_error (__FILE__, __LINE__, "should never have reached here");
  do_cleanups (cleanup);
  return -1;
}

/* Print the instruction at address MEMADDR in debugged memory,
   on STREAM.  Returns length of the instruction, in bytes.  */

int
gdb_print_insn (CORE_ADDR memaddr, struct ui_file *stream)
{
  struct disassemble_info di = gdb_disassemble_info (current_gdbarch, stream);
  return TARGET_PRINT_INSN (memaddr, &di);
}