gdb_10.html   [plain text]


<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.51
     from /mnt/apple/gdb/source/gdb.apple/source/gdb/gdb/doc/gdb.texinfo on 23 November 1999 -->

<TITLE>Debugging with GDB - Using GDB with Different Languages</TITLE>
</HEAD>
<BODY>
Go to the <A HREF="gdb_1.html">first</A>, <A HREF="gdb_9.html">previous</A>, <A HREF="gdb_11.html">next</A>, <A HREF="gdb_21.html">last</A> section, <A HREF="gdb_toc.html">table of contents</A>.
<P><HR><P>


<H1><A NAME="SEC63" HREF="gdb_toc.html#TOC63">Using GDB with Different Languages</A></H1>
<P>
<A NAME="IDX350"></A>

</P>
<P>
Although programming languages generally have common aspects, they are
rarely expressed in the same manner.  For instance, in ANSI C,
dereferencing a pointer <CODE>p</CODE> is accomplished by <CODE>*p</CODE>, but in
Modula-2, it is accomplished by <CODE>p^</CODE>.  Values can also be
represented (and displayed) differently.  Hex numbers in C appear as 
<SAMP>`0x1ae'</SAMP>, while in Modula-2 they appear as <SAMP>`1AEH'</SAMP>.

</P>
<P>
<A NAME="IDX351"></A>
Language-specific information is built into GDB for some languages,
allowing you to express operations like the above in your program's
native language, and allowing GDB to output values in a manner
consistent with the syntax of your program's native language.  The
language you use to build expressions is called the <STRONG>working
language</STRONG>.

</P>



<H2><A NAME="SEC64" HREF="gdb_toc.html#TOC64">Switching between source languages</A></H2>

<P>
There are two ways to control the working language--either have GDB
set it automatically, or select it manually yourself.  You can use the
<CODE>set language</CODE> command for either purpose.  On startup, GDB
defaults to setting the language automatically.  The working language is
used to determine how expressions you type are interpreted, how values
are printed, etc.

</P>
<P>
In addition to the working language, every source file that
GDB knows about has its own working language.  For some object
file formats, the compiler might indicate which language a particular
source file is in.  However, most of the time GDB infers the
language from the name of the file.  The language of a source file
controls whether C++ names are demangled--this way <CODE>backtrace</CODE> can
show each frame appropriately for its own language.  There is no way to
set the language of a source file from within GDB.  

</P>
<P>
This is most commonly a problem when you use a program, such
as <CODE>cfront</CODE> or <CODE>f2c</CODE>, that generates C but is written in 
another language.  In that case, make the
program use <CODE>#line</CODE> directives in its C output; that way
GDB will know the correct language of the source code of the original
program, and will display that source code, not the generated C code.

</P>



<H3><A NAME="SEC65" HREF="gdb_toc.html#TOC65">List of filename extensions and languages</A></H3>

<P>
If a source file name ends in one of the following extensions, then
GDB infers that its language is the one indicated.

</P>
<DL COMPACT>

<DT><TT>`.c'</TT>
<DD>
C source file

<DT><TT>`.C'</TT>
<DD>
<DT><TT>`.cc'</TT>
<DD>
<DT><TT>`.cp'</TT>
<DD>
<DT><TT>`.cpp'</TT>
<DD>
<DT><TT>`.cxx'</TT>
<DD>
<DT><TT>`.c++'</TT>
<DD>
C++ source file

<DT><TT>`.m'</TT>
<DD>
Objective-C source file

<DT><TT>`.M'</TT>
<DD>
Objective-C++ source file

<DT><TT>`.f'</TT>
<DD>
<DT><TT>`.F'</TT>
<DD>
Fortran source file

<DT><TT>`.ch'</TT>
<DD>
<DT><TT>`.c186'</TT>
<DD>
<DT><TT>`.c286'</TT>
<DD>
CHILL source file.

<DT><TT>`.mod'</TT>
<DD>
Modula-2 source file

<DT><TT>`.s'</TT>
<DD>
<DT><TT>`.S'</TT>
<DD>
Assembler source file.  This actually behaves almost like C, but
GDB does not skip over function prologues when stepping.
</DL>

<P>
In addition, you may set the language associated with a filename
extension.  See section <A HREF="gdb_10.html#SEC68">Displaying the language</A>.

</P>


<H3><A NAME="SEC66" HREF="gdb_toc.html#TOC66">Setting the working language</A></H3>

<P>
If you allow GDB to set the language automatically,
expressions are interpreted the same way in your debugging session and
your program.

</P>
<P>
<A NAME="IDX352"></A>
If you wish, you may set the language manually.  To do this, issue the
command <SAMP>`set language <VAR>lang</VAR>'</SAMP>, where <VAR>lang</VAR> is the name of
a language, such as 
<CODE>c</CODE> or <CODE>modula-2</CODE>.
For a list of the supported languages, type <SAMP>`set language'</SAMP>.

</P>
<P>
Setting the language manually prevents GDB from updating the working
language automatically.  This can lead to confusion if you try
to debug a program when the working language is not the same as the
source language, when an expression is acceptable to both
languages--but means different things.  For instance, if the current
source file were written in C, and GDB was parsing Modula-2, a
command such as:

</P>

<PRE>
print a = b + c
</PRE>

<P>
might not have the effect you intended.  In C, this means to add
<CODE>b</CODE> and <CODE>c</CODE> and place the result in <CODE>a</CODE>.  The result
printed would be the value of <CODE>a</CODE>.  In Modula-2, this means to compare
<CODE>a</CODE> to the result of <CODE>b+c</CODE>, yielding a <CODE>BOOLEAN</CODE> value.

</P>


<H3><A NAME="SEC67" HREF="gdb_toc.html#TOC67">Having GDB infer the source language</A></H3>

<P>
To have GDB set the working language automatically, use
<SAMP>`set language local'</SAMP> or <SAMP>`set language auto'</SAMP>.  GDB
then infers the working language.  That is, when your program stops in a
frame (usually by encountering a breakpoint), GDB sets the
working language to the language recorded for the function in that
frame.  If the language for a frame is unknown (that is, if the function
or block corresponding to the frame was defined in a source file that
does not have a recognized extension), the current working language is
not changed, and GDB issues a warning.

</P>
<P>
This may not seem necessary for most programs, which are written
entirely in one source language.  However, program modules and libraries
written in one source language can be used by a main program written in
a different source language.  Using <SAMP>`set language auto'</SAMP> in this
case frees you from having to set the working language manually.

</P>


<H2><A NAME="SEC68" HREF="gdb_toc.html#TOC68">Displaying the language</A></H2>

<P>
The following commands help you find out which language is the
working language, and also what language source files were written in.

</P>
<P>
<A NAME="IDX353"></A>
<A NAME="IDX354"></A>
<A NAME="IDX355"></A>
<DL COMPACT>

<DT><CODE>show language</CODE>
<DD>
Display the current working language.  This is the
language you can use with commands such as <CODE>print</CODE> to
build and compute expressions that may involve variables in your program.

<DT><CODE>info frame</CODE>
<DD>
Display the source language for this frame.  This language becomes the 
working language if you use an identifier from this frame.
See section <A HREF="gdb_7.html#SEC44">Information about a frame</A>, to identify the other 
information listed here.

<DT><CODE>info source</CODE>
<DD>
Display the source language of this source file.
See section <A HREF="gdb_11.html#SEC101">Examining the Symbol Table</A>, to identify the other 
information listed here.
</DL>

<P>
In unusual circumstances, you may have source files with extensions
not in the standard list.  You can then set the extension associated
with a language explicitly:

</P>
<P>
<A NAME="IDX356"></A>
<A NAME="IDX357"></A>
<DL COMPACT>

<DT><CODE>set extension-language <VAR>.ext</VAR> <VAR>language</VAR></CODE>
<DD>
Set source files with extension <VAR>.ext</VAR> to be assumed to be in
the source language <VAR>language</VAR>.

<DT><CODE>info extensions</CODE>
<DD>
List all the filename extensions and the associated languages.
</DL>



<H2><A NAME="SEC69" HREF="gdb_toc.html#TOC69">Type and range checking</A></H2>


<BLOCKQUOTE>
<P>
<EM>Warning:</EM> In this release, the GDB commands for type and range
checking are included, but they do not yet have any effect.  This
section documents the intended facilities.
</BLOCKQUOTE>

<P>
Some languages are designed to guard you against making seemingly common
errors through a series of compile- and run-time checks.  These include
checking the type of arguments to functions and operators, and making
sure mathematical overflows are caught at run time.  Checks such as
these help to ensure a program's correctness once it has been compiled
by eliminating type mismatches, and providing active checks for range
errors when your program is running.

</P>
<P>
GDB can check for conditions like the above if you wish.
Although GDB does not check the statements in your program, it
can check expressions entered directly into GDB for evaluation via
the <CODE>print</CODE> command, for example.  As with the working language,
GDB can also decide whether or not to check automatically based on
your program's source language.  See section <A HREF="gdb_10.html#SEC72">Supported languages</A>,
for the default settings of supported languages.

</P>

<P>
<A NAME="IDX358"></A>
<A NAME="IDX359"></A>


<H3><A NAME="SEC70" HREF="gdb_toc.html#TOC70">An overview of type checking</A></H3>

<P>
Some languages, such as Modula-2, are strongly typed, meaning that the
arguments to operators and functions have to be of the correct type,
otherwise an error occurs.  These checks prevent type mismatch
errors from ever causing any run-time problems.  For example,

</P>

<PRE>
1 + 2 => 3
but
error--> 1 + 2.3
</PRE>

<P>
The second example fails because the <CODE>CARDINAL</CODE> 1 is not
type-compatible with the <CODE>REAL</CODE> 2.3.

</P>
<P>
For the expressions you use in GDB commands, you can tell the 
GDB type checker to skip checking; 
to treat any mismatches as errors and abandon the expression; 
or to only issue warnings when type mismatches occur, 
but evaluate the expression anyway.  When you choose the last of
these, GDB evaluates expressions like the second example above, but
also issues a warning.

</P>
<P>
Even if you turn type checking off, there may be other reasons 
related to type that prevent GDB from evaluating an expression.  
For instance, GDB does not know how to add an <CODE>int</CODE> and 
a <CODE>struct foo</CODE>.  These particular type errors have nothing to do 
with the language in use, and usually arise from expressions, such as 
the one described above, which make little sense to evaluate anyway.

</P>
<P>
Each language defines to what degree it is strict about type.  For
instance, both Modula-2 and C require the arguments to arithmetical
operators to be numbers.  In C, enumerated types and pointers can be
represented as numbers, so that they are valid arguments to mathematical
operators.  See section <A HREF="gdb_10.html#SEC72">Supported languages</A>, for further
details on specific languages.

</P>
<P>
GDB provides some additional commands for controlling the type checker:

</P>
<P>
<A NAME="IDX360"></A>
<A NAME="IDX361"></A>
<A NAME="IDX362"></A>
<DL COMPACT>

<DT><CODE>set check type auto</CODE>
<DD>
Set type checking on or off based on the current working language.
See section <A HREF="gdb_10.html#SEC72">Supported languages</A>, for the default settings for
each language.

<DT><CODE>set check type on</CODE>
<DD>
<DT><CODE>set check type off</CODE>
<DD>
Set type checking on or off, overriding the default setting for the
current working language.  Issue a warning if the setting does not
match the language default.  If any type mismatches occur in
evaluating an expression while typechecking is on, GDB prints a
message and aborts evaluation of the expression.

<DT><CODE>set check type warn</CODE>
<DD>
Cause the type checker to issue warnings, but to always attempt to
evaluate the expression.  Evaluating the expression may still
be impossible for other reasons.  For example, GDB cannot add
numbers and structures.

<DT><CODE>show type</CODE>
<DD>
Show the current setting of the type checker, and whether or not GDB 
is setting it automatically.
</DL>

<P>
<A NAME="IDX363"></A>
<A NAME="IDX364"></A>


<H3><A NAME="SEC71" HREF="gdb_toc.html#TOC71">An overview of range checking</A></H3>

<P>
In some languages (such as Modula-2), it is an error to exceed the
bounds of a type; this is enforced with run-time checks.  Such range
checking is meant to ensure program correctness by making sure
computations do not overflow, or indices on an array element access do
not exceed the bounds of the array.

</P>
<P>
For expressions you use in GDB commands, you can tell
GDB to treat range errors in one of three ways: ignore them,
always treat them as errors and abandon the expression, or issue
warnings but evaluate the expression anyway.

</P>
<P>
A range error can result from numerical overflow, from exceeding an
array index bound, or when you type a constant that is not a member
of any type.  Some languages, however, do not treat overflows as an
error.  In many implementations of C, mathematical overflow causes the
result to "wrap around" to lower values--for example, if <VAR>m</VAR> is
the largest integer value, and <VAR>s</VAR> is the smallest, then

</P>

<PRE>
<VAR>m</VAR> + 1 => <VAR>s</VAR>
</PRE>

<P>
This, too, is specific to individual languages, and in some cases
specific to individual compilers or machines.  See section <A HREF="gdb_10.html#SEC72">Supported languages</A>, for further details on specific languages.

</P>
<P>
GDB provides some additional commands for controlling the range checker:

</P>
<P>
<A NAME="IDX365"></A>
<A NAME="IDX366"></A>
<A NAME="IDX367"></A>
<DL COMPACT>

<DT><CODE>set check range auto</CODE>
<DD>
Set range checking on or off based on the current working language.
See section <A HREF="gdb_10.html#SEC72">Supported languages</A>, for the default settings for
each language.

<DT><CODE>set check range on</CODE>
<DD>
<DT><CODE>set check range off</CODE>
<DD>
Set range checking on or off, overriding the default setting for the
current working language.  A warning is issued if the setting does not
match the language default.  If a range error occurs, then a message
is printed and evaluation of the expression is aborted.

<DT><CODE>set check range warn</CODE>
<DD>
Output messages when the GDB range checker detects a range error,
but attempt to evaluate the expression anyway.  Evaluating the
expression may still be impossible for other reasons, such as accessing
memory that the process does not own (a typical example from many Unix
systems).

<DT><CODE>show range</CODE>
<DD>
Show the current setting of the range checker, and whether or not it is
being set automatically by GDB.
</DL>



<H2><A NAME="SEC72" HREF="gdb_toc.html#TOC72">Supported languages</A></H2>

<P>
GDB supports C, C++, Objective-C, Objective-C++, Fortran,
Java, Chill, assembly, and Modula-2.  Some GDB features may
be used in expressions regardless of the language you use: the
GDB <CODE>@</CODE> and <CODE>::</CODE> operators, and the
<SAMP>`{type}addr'</SAMP> construct (see section <A HREF="gdb_9.html#SEC52">Expressions</A>) can
be used with the constructs of any supported language.

</P>
<P>
The following sections detail to what degree each source language is
supported by GDB.  These sections are not meant to be language
tutorials or references, but serve only as a reference guide to what the
GDB expression parser accepts, and what input and output
formats should look like for different languages.  There are many good
books written on each of these languages; please look to these for a
language reference or tutorial.

</P>



<H3><A NAME="SEC73" HREF="gdb_toc.html#TOC73">C and C++</A></H3>

<P>
<A NAME="IDX368"></A>
<A NAME="IDX369"></A>

</P>
<P>
Since C and C++ are so closely related, many features of GDB apply
to both languages.  Whenever this is the case, we discuss those languages
together.

</P>
<P>
<A NAME="IDX370"></A>
<A NAME="IDX371"></A>
<A NAME="IDX372"></A>
The C++ debugging facilities are jointly implemented by the C++
compiler and GDB.  Therefore, to debug your C++ code
effectively, you must compile your C++ programs with a supported
C++ compiler, such as GNU <CODE>g++</CODE>, or the HP ANSI C++
compiler (<CODE>aCC</CODE>).

</P>
<P>
For best results when using GNU C++, use the stabs debugging
format.  You can select that format explicitly with the <CODE>g++</CODE>
command-line options <SAMP>`-gstabs'</SAMP> or <SAMP>`-gstabs+'</SAMP>.  See
section `Options for Debugging Your Program or GNU CC' in <CITE>Using GNU CC</CITE>, for more information.

</P>



<H4><A NAME="SEC74" HREF="gdb_toc.html#TOC74">C and C++ operators</A></H4>

<P>
<A NAME="IDX373"></A>

</P>
<P>
Operators must be defined on values of specific types.  For instance,
<CODE>+</CODE> is defined on numbers, but not on structures.  Operators are
often defined on groups of types.  

</P>
<P>
For the purposes of C and C++, the following definitions hold:

</P>

<UL>
<LI>

<EM>Integral types</EM> include <CODE>int</CODE> with any of its storage-class
specifiers; <CODE>char</CODE>; and <CODE>enum</CODE>.

<LI>

<EM>Floating-point types</EM> include <CODE>float</CODE> and <CODE>double</CODE>.

<LI>

<EM>Pointer types</EM> include all types defined as <CODE>(<VAR>type</VAR>
*)</CODE>.

<LI>

<EM>Scalar types</EM> include all of the above.
</UL>

<P>
The following operators are supported.  They are listed here
in order of increasing precedence:

</P>
<DL COMPACT>

<DT><CODE>,</CODE>
<DD>
The comma or sequencing operator.  Expressions in a comma-separated list
are evaluated from left to right, with the result of the entire
expression being the last expression evaluated.

<DT><CODE>=</CODE>
<DD>
Assignment.  The value of an assignment expression is the value
assigned.  Defined on scalar types.

<DT><CODE><VAR>op</VAR>=</CODE>
<DD>
Used in an expression of the form <CODE><VAR>a</VAR> <VAR>op</VAR>= <VAR>b</VAR></CODE>,
and translated to <CODE><VAR>a</VAR> = <VAR>a op b</VAR></CODE>.
<CODE><VAR>op</VAR>=</CODE> and <CODE>=</CODE> have the same precendence.
<VAR>op</VAR> is any one of the operators <CODE>|</CODE>, <CODE>^</CODE>, <CODE>&#38;</CODE>,
<CODE>&#60;&#60;</CODE>, <CODE>&#62;&#62;</CODE>, <CODE>+</CODE>, <CODE>-</CODE>, <CODE>*</CODE>, <CODE>/</CODE>, <CODE>%</CODE>.

<DT><CODE>?:</CODE>
<DD>
The ternary operator.  <CODE><VAR>a</VAR> ? <VAR>b</VAR> : <VAR>c</VAR></CODE> can be thought
of as:  if <VAR>a</VAR> then <VAR>b</VAR> else <VAR>c</VAR>.  <VAR>a</VAR> should be of an
integral type.

<DT><CODE>||</CODE>
<DD>
Logical OR.  Defined on integral types.

<DT><CODE>&#38;&#38;</CODE>
<DD>
Logical AND.  Defined on integral types.

<DT><CODE>|</CODE>
<DD>
Bitwise OR.  Defined on integral types.

<DT><CODE>^</CODE>
<DD>
Bitwise exclusive-OR.  Defined on integral types.

<DT><CODE>&#38;</CODE>
<DD>
Bitwise AND.  Defined on integral types.

<DT><CODE>==, !=</CODE>
<DD>
Equality and inequality.  Defined on scalar types.  The value of these
expressions is 0 for false and non-zero for true.

<DT><CODE>&#60;, &#62;, &#60;=, &#62;=</CODE>
<DD>
Less than, greater than, less than or equal, greater than or equal.
Defined on scalar types.  The value of these expressions is 0 for false
and non-zero for true.

<DT><CODE>&#60;&#60;, &#62;&#62;</CODE>
<DD>
left shift, and right shift.  Defined on integral types.

<DT><CODE>@</CODE>
<DD>
The GDB "artificial array" operator (see section <A HREF="gdb_9.html#SEC52">Expressions</A>).

<DT><CODE>+, -</CODE>
<DD>
Addition and subtraction.  Defined on integral types, floating-point types and
pointer types.

<DT><CODE>*, /, %</CODE>
<DD>
Multiplication, division, and modulus.  Multiplication and division are
defined on integral and floating-point types.  Modulus is defined on
integral types.

<DT><CODE>++, --</CODE>
<DD>
Increment and decrement.  When appearing before a variable, the
operation is performed before the variable is used in an expression;
when appearing after it, the variable's value is used before the
operation takes place.

<DT><CODE>*</CODE>
<DD>
Pointer dereferencing.  Defined on pointer types.  Same precedence as
<CODE>++</CODE>.

<DT><CODE>&#38;</CODE>
<DD>
Address operator.  Defined on variables.  Same precedence as <CODE>++</CODE>.

For debugging C++, GDB implements a use of <SAMP>`&#38;'</SAMP> beyond what is
allowed in the C++ language itself: you can use <SAMP>`&#38;(&#38;<VAR>ref</VAR>)'</SAMP>
(or, if you prefer, simply <SAMP>`&#38;&#38;<VAR>ref</VAR>'</SAMP>) to examine the address
where a C++ reference variable (declared with <SAMP>`&#38;<VAR>ref</VAR>'</SAMP>) is
stored.

<DT><CODE>-</CODE>
<DD>
Negative.  Defined on integral and floating-point types.  Same
precedence as <CODE>++</CODE>.

<DT><CODE>!</CODE>
<DD>
Logical negation.  Defined on integral types.  Same precedence as
<CODE>++</CODE>.

<DT><CODE>~</CODE>
<DD>
Bitwise complement operator.  Defined on integral types.  Same precedence as
<CODE>++</CODE>.

<DT><CODE>., -&#62;</CODE>
<DD>
Structure member, and pointer-to-structure member.  For convenience,
GDB regards the two as equivalent, choosing whether to dereference a
pointer based on the stored type information.
Defined on <CODE>struct</CODE> and <CODE>union</CODE> data.

<DT><CODE>[]</CODE>
<DD>
Array indexing.  <CODE><VAR>a</VAR>[<VAR>i</VAR>]</CODE> is defined as
<CODE>*(<VAR>a</VAR>+<VAR>i</VAR>)</CODE>.  Same precedence as <CODE>-&#62;</CODE>.

<DT><CODE>()</CODE>
<DD>
Function parameter list.  Same precedence as <CODE>-&#62;</CODE>.

<DT><CODE>::</CODE>
<DD>
C++ scope resolution operator.  Defined on <CODE>struct</CODE>, <CODE>union</CODE>,
and <CODE>class</CODE> types.

<DT><CODE>::</CODE>
<DD>
Doubled colons also represent the GDB scope operator
(see section <A HREF="gdb_9.html#SEC52">Expressions</A>).  Same precedence as <CODE>::</CODE>,
above.
</DL>



<H4><A NAME="SEC75" HREF="gdb_toc.html#TOC75">C and C++ constants</A></H4>

<P>
<A NAME="IDX374"></A>

</P>
<P>
GDB allows you to express the constants of C and C++ in the
following ways:

</P>

<UL>
<LI>

Integer constants are a sequence of digits.  Octal constants are
specified by a leading <SAMP>`0'</SAMP> (i.e. zero), and hexadecimal constants by
a leading <SAMP>`0x'</SAMP> or <SAMP>`0X'</SAMP>.  Constants may also end with a letter
<SAMP>`l'</SAMP>, specifying that the constant should be treated as a
<CODE>long</CODE> value.

<LI>

Floating point constants are a sequence of digits, followed by a decimal
point, followed by a sequence of digits, and optionally followed by an
exponent.  An exponent is of the form:
<SAMP>`e[[+]|-]<VAR>nnn</VAR>'</SAMP>, where <VAR>nnn</VAR> is another
sequence of digits.  The <SAMP>`+'</SAMP> is optional for positive exponents.

<LI>

Enumerated constants consist of enumerated identifiers, or their
integral equivalents.

<LI>

Character constants are a single character surrounded by single quotes
(<CODE>'</CODE>), or a number--the ordinal value of the corresponding character
(usually its ASCII value).  Within quotes, the single character may
be represented by a letter or by <STRONG>escape sequences</STRONG>, which are of
the form <SAMP>`\<VAR>nnn</VAR>'</SAMP>, where <VAR>nnn</VAR> is the octal representation
of the character's ordinal value; or of the form <SAMP>`\<VAR>x</VAR>'</SAMP>, where
<SAMP>`<VAR>x</VAR>'</SAMP> is a predefined special character--for example,
<SAMP>`\n'</SAMP> for newline.

<LI>

String constants are a sequence of character constants surrounded
by double quotes (<CODE>"</CODE>).

<LI>

Pointer constants are an integral value.  You can also write pointers
to constants using the C operator <SAMP>`&#38;'</SAMP>.

<LI>

Array constants are comma-separated lists surrounded by braces <SAMP>`{'</SAMP>
and <SAMP>`}'</SAMP>; for example, <SAMP>`{1,2,3}'</SAMP> is a three-element array of
integers, <SAMP>`{{1,2}, {3,4}, {5,6}}'</SAMP> is a three-by-two array,
and <SAMP>`{&#38;"hi", &#38;"there", &#38;"fred"}'</SAMP> is a three-element array of pointers.
</UL>



<H4><A NAME="SEC76" HREF="gdb_toc.html#TOC76">C++ expressions</A></H4>

<P>
<A NAME="IDX375"></A>
GDB expression handling can interpret most C++ expressions.

</P>
<P>
<A NAME="IDX376"></A>
<A NAME="IDX377"></A>
<A NAME="IDX378"></A>
<A NAME="IDX379"></A>
<A NAME="IDX380"></A>
<A NAME="IDX381"></A>
<A NAME="IDX382"></A>
<A NAME="IDX383"></A>
<A NAME="IDX384"></A>

<BLOCKQUOTE>
<P>
<EM>Warning:</EM> GDB can only debug C++ code if you use the
proper compiler.  Typically, C++ debugging depends on the use of
additional debugging information in the symbol table, and thus requires
special support.  In particular, if your compiler generates a.out, MIPS
ECOFF, RS/6000 XCOFF, or ELF with stabs extensions to the
symbol table, these facilities are all available.  (With GNU CC,
you can use the <SAMP>`-gstabs'</SAMP> option to request stabs debugging
extensions explicitly.)  Where the object code format is standard
COFF or DWARF in ELF, on the other hand, most of the C++
support in GDB does <EM>not</EM> work.
</BLOCKQUOTE>


<OL>

<LI>

<A NAME="IDX385"></A>
 
Member function calls are allowed; you can use expressions like


<PRE>
count = aml-&#62;GetOriginal(x, y)
</PRE>

<A NAME="IDX386"></A>
<A NAME="IDX387"></A>
<LI>

While a member function is active (in the selected stack frame), your
expressions have the same namespace available as the member function;
that is, GDB allows implicit references to the class instance
pointer <CODE>this</CODE> following the same rules as C++.

<A NAME="IDX388"></A>
<A NAME="IDX389"></A>
<LI>

You can call overloaded functions; GDB resolves the function
call to the right definition, with one restriction--you must use
arguments of the type required by the function that you want to call.
GDB does not perform conversions requiring constructors or
user-defined type operators.

<A NAME="IDX390"></A>
<LI>

GDB understands variables declared as C++ references; you can use 
them in expressions just as you do in C++ source--they are automatically
dereferenced.

In the parameter list shown when GDB displays a frame, the values of
reference variables are not displayed (unlike other variables); this
avoids clutter, since references are often used for large structures.
The <EM>address</EM> of a reference variable is always shown, unless
you have specified <SAMP>`set print address off'</SAMP>.

<LI>

GDB supports the C++ name resolution operator <CODE>::</CODE>---your
expressions can use it just as expressions in your program do.  Since
one scope may be defined in another, you can use <CODE>::</CODE> repeatedly if
necessary, for example in an expression like
<SAMP>`<VAR>scope1</VAR>::<VAR>scope2</VAR>::<VAR>name</VAR>'</SAMP>.  GDB also allows
resolving name scope by reference to source files, in both C and C++
debugging (see section <A HREF="gdb_9.html#SEC53">Program variables</A>).
</OL>



<H4><A NAME="SEC77" HREF="gdb_toc.html#TOC77">C and C++ defaults</A></H4>

<P>
<A NAME="IDX391"></A>

</P>
<P>
If you allow GDB to set type and range checking automatically, they
both default to <CODE>off</CODE> whenever the working language changes to
C or C++.  This happens regardless of whether you or GDB
selects the working language.

</P>
<P>
If you allow GDB to set the language automatically, it
recognizes source files whose names end with <TT>`.c'</TT>, <TT>`.C'</TT>, or
<TT>`.cc'</TT>, etc, and when GDB enters code compiled from one of
these files, it sets the working language to C or C++.
See section <A HREF="gdb_10.html#SEC67">Having GDB infer the source language</A>,
for further details.

</P>



<H4><A NAME="SEC78" HREF="gdb_toc.html#TOC78">C and C++ type and range checks</A></H4>

<P>
<A NAME="IDX392"></A>

</P>
<P>
By default, when GDB parses C or C++ expressions, type checking
is not used.  However, if you turn type checking on, GDB
considers two variables type equivalent if:

</P>

<UL>
<LI>

The two variables are structured and have the same structure, union, or
enumerated tag.

<LI>

The two variables have the same type name, or types that have been
declared equivalent through <CODE>typedef</CODE>.

</UL>

<P>
Range checking, if turned on, is done on mathematical operations.  Array
indices are not checked, since they are often used to index a pointer
that is not itself an array.

</P>


<H4><A NAME="SEC79" HREF="gdb_toc.html#TOC79">GDB and C</A></H4>

<P>
The <CODE>set print union</CODE> and <CODE>show print union</CODE> commands apply to
the <CODE>union</CODE> type.  When set to <SAMP>`on'</SAMP>, any <CODE>union</CODE> that is
inside a <CODE>struct</CODE> or <CODE>class</CODE> is also printed.  Otherwise, it
appears as <SAMP>`{...}'</SAMP>.

</P>
<P>
The <CODE>@</CODE> operator aids in the debugging of dynamic arrays, formed
with pointers and a memory allocation function.  See section <A HREF="gdb_9.html#SEC52">Expressions</A>.

</P>



<H4><A NAME="SEC80" HREF="gdb_toc.html#TOC80">GDB features for C++</A></H4>

<P>
<A NAME="IDX393"></A>

</P>
<P>
Some GDB commands are particularly useful with C++, and some are
designed specifically for use with C++.  Here is a summary:

</P>
<DL COMPACT>

<DT><CODE>breakpoint menus</CODE>
<DD>
<A NAME="IDX394"></A>
 
When you want a breakpoint in a function whose name is overloaded,
GDB breakpoint menus help you specify which function definition
you want.  See section <A HREF="gdb_6.html#SEC36">Breakpoint menus</A>.

<A NAME="IDX395"></A>
<DT><CODE>rbreak <VAR>regex</VAR></CODE>
<DD>
Setting breakpoints using regular expressions is helpful for setting
breakpoints on overloaded functions that are not members of any special
classes.
See section <A HREF="gdb_6.html#SEC29">Setting breakpoints</A>.

<A NAME="IDX396"></A>
<DT><CODE>catch throw</CODE>
<DD>
<DT><CODE>catch catch</CODE>
<DD>
Debug C++ exception handling using these commands.  See section <A HREF="gdb_6.html#SEC31">Setting catchpoints</A>.

<A NAME="IDX397"></A>
<DT><CODE>ptype <VAR>typename</VAR></CODE>
<DD>
Print inheritance relationships as well as other information for type
<VAR>typename</VAR>.
See section <A HREF="gdb_11.html#SEC101">Examining the Symbol Table</A>.

<A NAME="IDX398"></A>
<DT><CODE>set print demangle</CODE>
<DD>
<DT><CODE>show print demangle</CODE>
<DD>
<DT><CODE>set print asm-demangle</CODE>
<DD>
<DT><CODE>show print asm-demangle</CODE>
<DD>
Control whether C++ symbols display in their source form, both when
displaying code as C++ source and when displaying disassemblies.
See section <A HREF="gdb_9.html#SEC58">Print settings</A>.

<DT><CODE>set print object</CODE>
<DD>
<DT><CODE>show print object</CODE>
<DD>
Choose whether to print derived (actual) or declared types of objects.
See section <A HREF="gdb_9.html#SEC58">Print settings</A>.

<DT><CODE>set print vtbl</CODE>
<DD>
<DT><CODE>show print vtbl</CODE>
<DD>
Control the format for printing virtual function tables.
See section <A HREF="gdb_9.html#SEC58">Print settings</A>.

<DT><CODE>Overloaded symbol names</CODE>
<DD>
You can specify a particular definition of an overloaded symbol, using
the same notation that is used to declare such symbols in C++: type
<CODE><VAR>symbol</VAR>(<VAR>types</VAR>)</CODE> rather than just <VAR>symbol</VAR>.  You can
also use the GDB command-line word completion facilities to list the
available choices, or to finish the type list for you.
See section <A HREF="gdb_4.html#SEC13">Command completion</A>, for details on how to do this.
</DL>



<H3><A NAME="SEC81" HREF="gdb_toc.html#TOC81">Modula-2</A></H3>

<P>
<A NAME="IDX399"></A>

</P>
<P>
The extensions made to GDB to support Modula-2 only support
output from the GNU Modula-2 compiler (which is currently being
developed).  Other Modula-2 compilers are not currently supported, and
attempting to debug executables produced by them is most likely
to give an error as GDB reads in the executable's symbol
table.

</P>
<P>
<A NAME="IDX400"></A>

</P>


<H4><A NAME="SEC82" HREF="gdb_toc.html#TOC82">Operators</A></H4>
<P>
<A NAME="IDX401"></A>

</P>
<P>
Operators must be defined on values of specific types.  For instance,
<CODE>+</CODE> is defined on numbers, but not on structures.  Operators are
often defined on groups of types.  For the purposes of Modula-2, the
following definitions hold:

</P>

<UL>

<LI>

<EM>Integral types</EM> consist of <CODE>INTEGER</CODE>, <CODE>CARDINAL</CODE>, and
their subranges.

<LI>

<EM>Character types</EM> consist of <CODE>CHAR</CODE> and its subranges.

<LI>

<EM>Floating-point types</EM> consist of <CODE>REAL</CODE>.

<LI>

<EM>Pointer types</EM> consist of anything declared as <CODE>POINTER TO
<VAR>type</VAR></CODE>.

<LI>

<EM>Scalar types</EM> consist of all of the above.

<LI>

<EM>Set types</EM> consist of <CODE>SET</CODE> and <CODE>BITSET</CODE> types.

<LI>

<EM>Boolean types</EM> consist of <CODE>BOOLEAN</CODE>.
</UL>

<P>
The following operators are supported, and appear in order of
increasing precedence:

</P>
<DL COMPACT>

<DT><CODE>,</CODE>
<DD>
Function argument or array index separator.

<DT><CODE>:=</CODE>
<DD>
Assignment.  The value of <VAR>var</VAR> <CODE>:=</CODE> <VAR>value</VAR> is
<VAR>value</VAR>.

<DT><CODE>&#60;, &#62;</CODE>
<DD>
Less than, greater than on integral, floating-point, or enumerated
types.

<DT><CODE>&#60;=, &#62;=</CODE>
<DD>
Less than, greater than, less than or equal to, greater than or equal to
on integral, floating-point and enumerated types, or set inclusion on
set types.  Same precedence as <CODE>&#60;</CODE>.

<DT><CODE>=, &#60;&#62;, #</CODE>
<DD>
Equality and two ways of expressing inequality, valid on scalar types.
Same precedence as <CODE>&#60;</CODE>.  In GDB scripts, only <CODE>&#60;&#62;</CODE> is
available for inequality, since <CODE>#</CODE> conflicts with the script
comment character.

<DT><CODE>IN</CODE>
<DD>
Set membership.  Defined on set types and the types of their members.
Same precedence as <CODE>&#60;</CODE>.

<DT><CODE>OR</CODE>
<DD>
Boolean disjunction.  Defined on boolean types.

<DT><CODE>AND, &#38;</CODE>
<DD>
Boolean conjuction.  Defined on boolean types.

<DT><CODE>@</CODE>
<DD>
The GDB "artificial array" operator (see section <A HREF="gdb_9.html#SEC52">Expressions</A>).

<DT><CODE>+, -</CODE>
<DD>
Addition and subtraction on integral and floating-point types, or union
and difference on set types.

<DT><CODE>*</CODE>
<DD>
Multiplication on integral and floating-point types, or set intersection
on set types.

<DT><CODE>/</CODE>
<DD>
Division on floating-point types, or symmetric set difference on set
types.  Same precedence as <CODE>*</CODE>.

<DT><CODE>DIV, MOD</CODE>
<DD>
Integer division and remainder.  Defined on integral types.  Same
precedence as <CODE>*</CODE>.

<DT><CODE>-</CODE>
<DD>
Negative. Defined on <CODE>INTEGER</CODE> and <CODE>REAL</CODE> data.

<DT><CODE>^</CODE>
<DD>
Pointer dereferencing.  Defined on pointer types.

<DT><CODE>NOT</CODE>
<DD>
Boolean negation.  Defined on boolean types.  Same precedence as
<CODE>^</CODE>.

<DT><CODE>.</CODE>
<DD>
<CODE>RECORD</CODE> field selector.  Defined on <CODE>RECORD</CODE> data.  Same
precedence as <CODE>^</CODE>.

<DT><CODE>[]</CODE>
<DD>
Array indexing.  Defined on <CODE>ARRAY</CODE> data.  Same precedence as <CODE>^</CODE>.

<DT><CODE>()</CODE>
<DD>
Procedure argument list.  Defined on <CODE>PROCEDURE</CODE> objects.  Same precedence
as <CODE>^</CODE>.

<DT><CODE>::, .</CODE>
<DD>
GDB and Modula-2 scope operators.
</DL>


<BLOCKQUOTE>
<P>
<EM>Warning:</EM> Sets and their operations are not yet supported, so GDB
treats the use of the operator <CODE>IN</CODE>, or the use of operators
<CODE>+</CODE>, <CODE>-</CODE>, <CODE>*</CODE>, <CODE>/</CODE>, <CODE>=</CODE>, , <CODE>&#60;&#62;</CODE>, <CODE>#</CODE>,
<CODE>&#60;=</CODE>, and <CODE>&#62;=</CODE> on sets as an error.
</BLOCKQUOTE>

<P>
<A NAME="IDX402"></A>


<H4><A NAME="SEC83" HREF="gdb_toc.html#TOC83">Built-in functions and procedures</A></H4>

<P>
Modula-2 also makes available several built-in procedures and functions.
In describing these, the following metavariables are used:

</P>
<DL COMPACT>

<DT><VAR>a</VAR>
<DD>
represents an <CODE>ARRAY</CODE> variable.

<DT><VAR>c</VAR>
<DD>
represents a <CODE>CHAR</CODE> constant or variable.

<DT><VAR>i</VAR>
<DD>
represents a variable or constant of integral type.

<DT><VAR>m</VAR>
<DD>
represents an identifier that belongs to a set.  Generally used in the
same function with the metavariable <VAR>s</VAR>.  The type of <VAR>s</VAR> should
be <CODE>SET OF <VAR>mtype</VAR></CODE> (where <VAR>mtype</VAR> is the type of <VAR>m</VAR>).

<DT><VAR>n</VAR>
<DD>
represents a variable or constant of integral or floating-point type.

<DT><VAR>r</VAR>
<DD>
represents a variable or constant of floating-point type.

<DT><VAR>t</VAR>
<DD>
represents a type.

<DT><VAR>v</VAR>
<DD>
represents a variable.

<DT><VAR>x</VAR>
<DD>
represents a variable or constant of one of many types.  See the
explanation of the function for details.
</DL>

<P>
All Modula-2 built-in procedures also return a result, described below.

</P>
<DL COMPACT>

<DT><CODE>ABS(<VAR>n</VAR>)</CODE>
<DD>
Returns the absolute value of <VAR>n</VAR>.

<DT><CODE>CAP(<VAR>c</VAR>)</CODE>
<DD>
If <VAR>c</VAR> is a lower case letter, it returns its upper case
equivalent, otherwise it returns its argument

<DT><CODE>CHR(<VAR>i</VAR>)</CODE>
<DD>
Returns the character whose ordinal value is <VAR>i</VAR>.

<DT><CODE>DEC(<VAR>v</VAR>)</CODE>
<DD>
Decrements the value in the variable <VAR>v</VAR>.  Returns the new value.

<DT><CODE>DEC(<VAR>v</VAR>,<VAR>i</VAR>)</CODE>
<DD>
Decrements the value in the variable <VAR>v</VAR> by <VAR>i</VAR>.  Returns the
new value.

<DT><CODE>EXCL(<VAR>m</VAR>,<VAR>s</VAR>)</CODE>
<DD>
Removes the element <VAR>m</VAR> from the set <VAR>s</VAR>.  Returns the new
set.

<DT><CODE>FLOAT(<VAR>i</VAR>)</CODE>
<DD>
Returns the floating point equivalent of the integer <VAR>i</VAR>.

<DT><CODE>HIGH(<VAR>a</VAR>)</CODE>
<DD>
Returns the index of the last member of <VAR>a</VAR>.

<DT><CODE>INC(<VAR>v</VAR>)</CODE>
<DD>
Increments the value in the variable <VAR>v</VAR>.  Returns the new value.

<DT><CODE>INC(<VAR>v</VAR>,<VAR>i</VAR>)</CODE>
<DD>
Increments the value in the variable <VAR>v</VAR> by <VAR>i</VAR>.  Returns the
new value.

<DT><CODE>INCL(<VAR>m</VAR>,<VAR>s</VAR>)</CODE>
<DD>
Adds the element <VAR>m</VAR> to the set <VAR>s</VAR> if it is not already
there.  Returns the new set.

<DT><CODE>MAX(<VAR>t</VAR>)</CODE>
<DD>
Returns the maximum value of the type <VAR>t</VAR>.

<DT><CODE>MIN(<VAR>t</VAR>)</CODE>
<DD>
Returns the minimum value of the type <VAR>t</VAR>.

<DT><CODE>ODD(<VAR>i</VAR>)</CODE>
<DD>
Returns boolean TRUE if <VAR>i</VAR> is an odd number.

<DT><CODE>ORD(<VAR>x</VAR>)</CODE>
<DD>
Returns the ordinal value of its argument.  For example, the ordinal
value of a character is its ASCII value (on machines supporting the
ASCII character set).  <VAR>x</VAR> must be of an ordered type, which include
integral, character and enumerated types.

<DT><CODE>SIZE(<VAR>x</VAR>)</CODE>
<DD>
Returns the size of its argument.  <VAR>x</VAR> can be a variable or a type.

<DT><CODE>TRUNC(<VAR>r</VAR>)</CODE>
<DD>
Returns the integral part of <VAR>r</VAR>.

<DT><CODE>VAL(<VAR>t</VAR>,<VAR>i</VAR>)</CODE>
<DD>
Returns the member of the type <VAR>t</VAR> whose ordinal value is <VAR>i</VAR>.
</DL>


<BLOCKQUOTE>
<P>
<EM>Warning:</EM>  Sets and their operations are not yet supported, so
GDB treats the use of procedures <CODE>INCL</CODE> and <CODE>EXCL</CODE> as
an error.
</BLOCKQUOTE>

<P>
<A NAME="IDX403"></A>


<H4><A NAME="SEC84" HREF="gdb_toc.html#TOC84">Constants</A></H4>

<P>
GDB allows you to express the constants of Modula-2 in the following
ways:

</P>

<UL>

<LI>

Integer constants are simply a sequence of digits.  When used in an
expression, a constant is interpreted to be type-compatible with the
rest of the expression.  Hexadecimal integers are specified by a
trailing <SAMP>`H'</SAMP>, and octal integers by a trailing <SAMP>`B'</SAMP>.

<LI>

Floating point constants appear as a sequence of digits, followed by a
decimal point and another sequence of digits.  An optional exponent can
then be specified, in the form <SAMP>`E[+|-]<VAR>nnn</VAR>'</SAMP>, where
<SAMP>`[+|-]<VAR>nnn</VAR>'</SAMP> is the desired exponent.  All of the
digits of the floating point constant must be valid decimal (base 10)
digits.

<LI>

Character constants consist of a single character enclosed by a pair of
like quotes, either single (<CODE>'</CODE>) or double (<CODE>"</CODE>).  They may
also be expressed by their ordinal value (their ASCII value, usually)
followed by a <SAMP>`C'</SAMP>.

<LI>

String constants consist of a sequence of characters enclosed by a
pair of like quotes, either single (<CODE>'</CODE>) or double (<CODE>"</CODE>).
Escape sequences in the style of C are also allowed.  See section <A HREF="gdb_10.html#SEC75">C and C++ constants</A>, for a brief explanation of escape
sequences.

<LI>

Enumerated constants consist of an enumerated identifier.

<LI>

Boolean constants consist of the identifiers <CODE>TRUE</CODE> and
<CODE>FALSE</CODE>.

<LI>

Pointer constants consist of integral values only.

<LI>

Set constants are not yet supported.
</UL>



<H4><A NAME="SEC85" HREF="gdb_toc.html#TOC85">Modula-2 defaults</A></H4>
<P>
<A NAME="IDX404"></A>

</P>
<P>
If type and range checking are set automatically by GDB, they
both default to <CODE>on</CODE> whenever the working language changes to
Modula-2.  This happens regardless of whether you, or GDB,
selected the working language.

</P>
<P>
If you allow GDB to set the language automatically, then entering
code compiled from a file whose name ends with <TT>`.mod'</TT> sets the
working language to Modula-2. See section <A HREF="gdb_10.html#SEC67">Having GDB infer the source language</A>, for further details.

</P>


<H4><A NAME="SEC86" HREF="gdb_toc.html#TOC86">Deviations from standard Modula-2</A></H4>
<P>
<A NAME="IDX405"></A>

</P>
<P>
A few changes have been made to make Modula-2 programs easier to debug.
This is done primarily via loosening its type strictness:

</P>

<UL>
<LI>

Unlike in standard Modula-2, pointer constants can be formed by
integers.  This allows you to modify pointer variables during
debugging.  (In standard Modula-2, the actual address contained in a
pointer variable is hidden from you; it can only be modified
through direct assignment to another pointer variable or expression that
returned a pointer.)

<LI>

C escape sequences can be used in strings and characters to represent
non-printable characters.  GDB prints out strings with these
escape sequences embedded.  Single non-printable characters are
printed using the <SAMP>`CHR(<VAR>nnn</VAR>)'</SAMP> format.

<LI>

The assignment operator (<CODE>:=</CODE>) returns the value of its right-hand
argument.

<LI>

All built-in procedures both modify <EM>and</EM> return their argument.
</UL>



<H4><A NAME="SEC87" HREF="gdb_toc.html#TOC87">Modula-2 type and range checks</A></H4>
<P>
<A NAME="IDX406"></A>

</P>

<BLOCKQUOTE>
<P>
<EM>Warning:</EM> in this release, GDB does not yet perform type or
range checking.
</BLOCKQUOTE>

<P>
GDB considers two Modula-2 variables type equivalent if:

</P>

<UL>
<LI>

They are of types that have been declared equivalent via a <CODE>TYPE
<VAR>t1</VAR> = <VAR>t2</VAR></CODE> statement

<LI>

They have been declared on the same line.  (Note:  This is true of the
GNU Modula-2 compiler, but it may not be true of other compilers.)
</UL>

<P>
As long as type checking is enabled, any attempt to combine variables
whose types are not equivalent is an error.

</P>
<P>
Range checking is done on all mathematical operations, assignment, array
index bounds, and all built-in functions and procedures.

</P>


<H4><A NAME="SEC88" HREF="gdb_toc.html#TOC88">The scope operators <CODE>::</CODE> and <CODE>.</CODE></A></H4>
<P>
<A NAME="IDX407"></A>
<A NAME="IDX408"></A>
<A NAME="IDX409"></A>
<A NAME="IDX410"></A>

</P>
<P>
There are a few subtle differences between the Modula-2 scope operator
(<CODE>.</CODE>) and the GDB scope operator (<CODE>::</CODE>).  The two have
similar syntax:

</P>

<PRE>

<VAR>module</VAR> . <VAR>id</VAR>
<VAR>scope</VAR> :: <VAR>id</VAR>
</PRE>

<P>
where <VAR>scope</VAR> is the name of a module or a procedure,
<VAR>module</VAR> the name of a module, and <VAR>id</VAR> is any declared
identifier within your program, except another module.

</P>
<P>
Using the <CODE>::</CODE> operator makes GDB search the scope
specified by <VAR>scope</VAR> for the identifier <VAR>id</VAR>.  If it is not
found in the specified scope, then GDB searches all scopes
enclosing the one specified by <VAR>scope</VAR>.

</P>
<P>
Using the <CODE>.</CODE> operator makes GDB search the current scope for
the identifier specified by <VAR>id</VAR> that was imported from the
definition module specified by <VAR>module</VAR>.  With this operator, it is
an error if the identifier <VAR>id</VAR> was not imported from definition
module <VAR>module</VAR>, or if <VAR>id</VAR> is not an identifier in
<VAR>module</VAR>.

</P>


<H4><A NAME="SEC89" HREF="gdb_toc.html#TOC89">GDB and Modula-2</A></H4>

<P>
Some GDB commands have little use when debugging Modula-2 programs.
Five subcommands of <CODE>set print</CODE> and <CODE>show print</CODE> apply
specifically to C and C++: <SAMP>`vtbl'</SAMP>, <SAMP>`demangle'</SAMP>,
<SAMP>`asm-demangle'</SAMP>, <SAMP>`object'</SAMP>, and <SAMP>`union'</SAMP>.  The first four
apply to C++, and the last to the C <CODE>union</CODE> type, which has no direct
analogue in Modula-2.

</P>
<P>
The <CODE>@</CODE> operator (see section <A HREF="gdb_9.html#SEC52">Expressions</A>), while available
while using any language, is not useful with Modula-2.  Its
intent is to aid the debugging of <STRONG>dynamic arrays</STRONG>, which cannot be
created in Modula-2 as they can in C or C++.  However, because an
address can be specified by an integral constant, the construct
<SAMP>`{<VAR>type</VAR>}<VAR>adrexp</VAR>'</SAMP> is still useful.  (see section <A HREF="gdb_9.html#SEC52">Expressions</A>)

</P>
<P>
<A NAME="IDX411"></A>
In GDB scripts, the Modula-2 inequality operator <CODE>#</CODE> is
interpreted as the beginning of a comment.  Use <CODE>&#60;&#62;</CODE> instead.

</P>


<H3><A NAME="SEC90" HREF="gdb_toc.html#TOC90">Chill</A></H3>

<P>
The extensions made to GDB to support Chill only support output
from the GNU Chill compiler.  Other Chill compilers are not currently
supported, and attempting to debug executables produced by them is most
likely to give an error as GDB reads in the executable's symbol
table.

</P>
<P>
This section covers the following Chill related topics and the features
of GDB which support these topics.

</P>



<H4><A NAME="SEC91" HREF="gdb_toc.html#TOC91">How modes are displayed</A></H4>

<P>
The Chill Datatype- (Mode) support of GDB is directly related
with the functionality of the GNU Chill compiler, and therefore deviates
slightly from the standard specification of the Chill language. The
provided modes are:
<DL COMPACT>

<DT><CODE><EM>Discrete modes:</EM></CODE>
<DD>

<UL>
<LI>

<EM>Integer Modes</EM> which are predefined by <CODE>BYTE, UBYTE, INT,
UINT, LONG, ULONG</CODE>,
<LI>

<EM>Boolean Mode</EM> which is predefined by <CODE>BOOL</CODE>, 
<LI>

<EM>Character Mode</EM> which is predefined by <CODE>CHAR</CODE>, 
<LI>

<EM>Set Mode</EM> which is displayed by the keyword <CODE>SET</CODE>.

<PRE>
(gdb) ptype x
type = SET (karli = 10, susi = 20, fritzi = 100)
</PRE>

If the type is an unnumbered set the set element values are omitted.
<LI>

<EM>Range Mode</EM> which is displayed by <CODE>type = &#60;basemode&#62;
(&#60;lower bound&#62; : &#60;upper bound&#62;)</CODE>, where <CODE>&#60;lower bound&#62;, &#60;upper
bound&#62;</CODE> can be of any discrete literal expression (e.g. set element
names).
</UL>

<DT><CODE><EM>Powerset Mode:</EM></CODE>
<DD>
A Powerset Mode is displayed by the keyword <CODE>POWERSET</CODE> followed by
the member mode of the powerset. The member mode can be any discrete mode.

<PRE>
(gdb) ptype x
type = POWERSET SET (egon, hugo, otto)
</PRE>

<DT><CODE><EM>Reference Modes:</EM></CODE>
<DD>

<UL>
<LI>

<EM>Bound Reference Mode</EM> which is diplayed by the keyword <CODE>REF</CODE>
followed by the mode name to which the reference is bound.
<LI>

<EM>Free Reference Mode</EM> which is displayed by the keyword <CODE>PTR</CODE>.
</UL>

<DT><CODE><EM>Procedure mode</EM></CODE>
<DD>
The procedure mode is displayed by <CODE>type = PROC(&#60;parameter list&#62;)
&#60;return mode&#62; EXCEPTIONS (&#60;exception list&#62;)</CODE>. The <CODE>&#60;parameter
list&#62;</CODE> is a list of the parameter modes. <CODE>&#60;return mode&#62;</CODE> indicates
the mode of the result of the procedure if any. The exceptionlist lists
all possible exceptions which can be raised by the procedure.

<DT><CODE><EM>Synchronization Modes:</EM></CODE>
<DD>

<UL>
<LI>

<EM>Event Mode</EM> which is displayed by <CODE>EVENT (&#60;event length&#62;)</CODE>,
where <CODE>(&#60;event length&#62;)</CODE> is optional.
<LI>

<EM>Buffer Mode</EM> which is displayed by <CODE>BUFFER (&#60;buffer length&#62;)
&#60;buffer element mode&#62;</CODE>, where <CODE>(&#60;buffer length&#62;)</CODE> is optional.
</UL>

<DT><CODE><EM>Timing Modes:</EM></CODE>
<DD>

<UL>
<LI>

<EM>Duration Mode</EM> which is predefined by <CODE>DURATION</CODE>
<LI>

<EM>Absolute Time Mode</EM> which is predefined by <CODE>TIME</CODE>
</UL>

<DT><CODE><EM>Real Modes:</EM></CODE>
<DD>
Real Modes are predefined with <CODE>REAL</CODE> and <CODE>LONG_REAL</CODE>.

<DT><CODE><EM>String Modes:</EM></CODE>
<DD>

<UL>
<LI>

<EM>Character String Mode</EM> which is displayed by <CODE>CHARS(&#60;string
length&#62;)</CODE>, followed by the keyword <CODE>VARYING</CODE> if the String Mode is
a varying mode
<LI>

<EM>Bit String Mode</EM> which is displayed by <CODE>BOOLS(&#60;string
length&#62;)</CODE>.
</UL>

<DT><CODE><EM>Array Mode:</EM></CODE>
<DD>
The Array Mode is displayed by the keyword <CODE>ARRAY(&#60;range&#62;)</CODE>
followed by the element mode (which may in turn be an array mode).

<PRE>
(gdb) ptype x
type = ARRAY (1:42) 
          ARRAY (1:20) 
             SET (karli = 10, susi = 20, fritzi = 100)
</PRE>

<DT><CODE><EM>Structure Mode</EM></CODE>
<DD>
The Structure mode is displayed by the keyword <CODE>STRUCT(&#60;field
list&#62;)</CODE>. The <CODE>&#60;field list&#62;</CODE> consists of names and modes of fields
of the structure. Variant structures have the keyword <CODE>CASE &#60;field&#62;
OF &#60;variant fields&#62; ESAC</CODE> in their field list. Since the current version
of the GNU Chill compiler doesn't implement tag processing (no runtime
checks of variant fields, and therefore no debugging info), the output
always displays all variant fields.

<PRE>
(gdb) ptype str
type = STRUCT (
    as x,
    bs x,
    CASE bs OF
    (karli):
        cs a
    (ott):
        ds x
    ESAC
)
</PRE>

</DL>



<H4><A NAME="SEC92" HREF="gdb_toc.html#TOC92">Locations and their accesses</A></H4>

<P>
A location in Chill is an object which can contain values.

</P>
<P>
A value of a location is generally accessed by the (declared) name of
the location. The output conforms to the specification of values in
Chill programs. How values are specified, and which operations are valid
is the topic of the next section.

</P>
<P>
The pseudo-location <CODE>RESULT</CODE> (or <CODE>result</CODE>) can be used to
display or change the result of a currently-active procedure:

<PRE>
set result := EXPR
</PRE>

<P>
- does the same as the Chill action <CODE>RESULT EXPR</CODE> (which
is not available in gdb).

</P>
<P>
Values of reference mode locations are printed by <CODE>PTR(&#60;hex
value&#62;)</CODE> in case of a free reference mode, and by <CODE>(REF &#60;reference
mode&#62;) (&#60;hex-value&#62;)</CODE> in case of a bound reference. <CODE>&#60;hex value&#62;</CODE>
represents the address where the reference points to.  To access the
value of the location referenced by the pointer, use the dereference
operator `<CODE>-&#62;</CODE>'.

</P>
<P>
Values of procedure mode locations are displayed by <CODE>{ PROC
(&#60;argument modes&#62; ) &#60;return mode&#62; } &#60;address&#62; &#60;name of procedure
location&#62;</CODE>. <CODE>&#60;argument modes&#62;</CODE> is a list of modes according to the
parameter specification of the procedure and <CODE>&#60;address&#62;</CODE> shows the
address of the entry point. 

</P>

<P>
Substructures of string mode-, array mode- or structure mode-values
(e.g. array slices, fields of structure locations) are accessed using
certain operations which are descibed in the next chapter.

</P>
<P>
A location value may be interpreted as having a different mode using the
location conversion. This mode conversion is written as <CODE>&#60;mode
name&#62;(&#60;location&#62;)</CODE>. The user has to consider that the sizes of the modes
have to be equal otherwise an error message occurs. Further no range
checking of the location against the destination mode is performed and
therefore the result can be quite confusing.

<PRE>
(gdb) print int (s(3 up 4)) XXX TO be filled in !! XXX
</PRE>



<H4><A NAME="SEC93" HREF="gdb_toc.html#TOC93">Values and their Operations</A></H4>

<P>
Values are used to alter locations, to investigate complex structures in
more detail or to filter relevant information out of a large amount of
data. There are several (mode dependent) operations defined which enable
such investigations. These operations are not only applicable to
constant values but also to locations, which can become quite useful
when debugging complex structures. During parsing the command line
(e.g. evaluating an expression) GDB treats location names as
the values behind these locations.

</P>
<P>
This subchapters describes how values have to be specified and which
operations are legal to be used with such values.

</P>
<DL COMPACT>

<DT><CODE>Literal Values</CODE>
<DD>
Literal values are specified in the same manner as in GNU Chill programs.
For detailed specification refer to the GNU Chill implementation Manual
chapter 1.5.

<DT><CODE>Tuple Values</CODE>
<DD>
A tuple is specified by <CODE>&#60;mode name&#62;[&#60;tuple&#62;]</CODE>, where <CODE>&#60;mode
name&#62;</CODE> can be omitted if the mode of the tuple is unambigous. This
unambiguity is derived from the context of a evaluated expression.
<CODE>&#60;tuple&#62;</CODE> can be one of the following:

<UL>
<LI><EM>Powerset Tuple</EM>

<LI><EM>Array Tuple</EM>

<LI><EM>Structure Tuple</EM>

Powerset tuples, array tuples and structure tuples are specified in the
same manner as in Chill programs refer z200/88 chpt 5.2.5.
</UL>

<DT><CODE>String Element Value</CODE>
<DD>
A string element value is specified by <CODE>&#60;string value&#62;(&#60;index&#62;)</CODE>,
where <CODE>&#60;index&#62;</CODE> is a integer expression. It delivers a character
value which is equivalent to the character indexed by <CODE>&#60;index&#62;</CODE> in
the string.

<DT><CODE>String Slice Value</CODE>
<DD>
A string slice value is specified by <CODE>&#60;string value&#62;(&#60;slice
spec&#62;)</CODE>, where <CODE>&#60;slice spec&#62;</CODE> can be either a range of integer
expressions or specified by <CODE>&#60;start expr&#62; up &#60;size&#62;</CODE>.
<CODE>&#60;size&#62;</CODE> denotes the number of elements which the slice contains.
The delivered value is a string value, which is part of the specified
string.

<DT><CODE>Array Element Values</CODE>
<DD>
An array element value is specified by <CODE>&#60;array value&#62;(&#60;expr&#62;)</CODE> and
delivers a array element value of the mode of the specified array.

<DT><CODE>Array Slice Values</CODE>
<DD>
An array slice is specified by <CODE>&#60;array value&#62;(&#60;slice spec&#62;)</CODE>, where
<CODE>&#60;slice spec&#62;</CODE> can be either a range specified by expressions or by
<CODE>&#60;start expr&#62; up &#60;size&#62;</CODE>. <CODE>&#60;size&#62;</CODE> denotes the number of
arrayelements the slice contains. The delivered value is an array value
which is part of the specified array.

<DT><CODE>Structure Field Values</CODE>
<DD>
A structure field value is derived by <CODE>&#60;structure value&#62;.&#60;field
name&#62;</CODE>, where <CODE>&#60;field name&#62;</CODE> indcates the name of a field specified
in the mode definition of the structure. The mode of the delivered value
corresponds to this mode definition in the structure definition.

<DT><CODE>Procedure Call Value</CODE>
<DD>
The procedure call value is derived from the return value of the
procedure<A NAME="DOCF3" HREF="gdb_foot.html#FOOT3">(3)</A>.

Values of duration mode locations are represented by ULONG literals.

Values of time mode locations are represented by TIME(&#60;secs&#62;:&#60;nsecs&#62;).

<DT><CODE>Zero-adic Operator Value</CODE>
<DD>
The zero-adic operator value is derived from the instance value for the
current active process.

<DT><CODE>Expression Values</CODE>
<DD>
The value delivered by an expression is the result of the evaluation of
the specified expression. If there are error conditions (mode
incompatibility, etc.) the evaluation of expressions is aborted with a
corresponding error message. Expressions may be paranthesised which
causes the evaluation of this expression before any other expression
which uses the result of the paranthesised expression. The following
operators are supported by GDB:
<DL COMPACT>

<DT><CODE><CODE>OR, ORIF, XOR</CODE></CODE>
<DD>
<DT><CODE><CODE>AND, ANDIF</CODE></CODE>
<DD>
<DT><CODE><CODE>NOT</CODE></CODE>
<DD>
Logical operators defined over operands of boolean mode.
<DT><CODE><CODE>=, /=</CODE></CODE>
<DD>
Equality and inequality operators defined over all modes.
<DT><CODE><CODE>&#62;, &#62;=</CODE></CODE>
<DD>
<DT><CODE><CODE>&#60;, &#60;=</CODE></CODE>
<DD>
Relational operators defined over predefined modes.
<DT><CODE><CODE>+, -</CODE></CODE>
<DD>
<DT><CODE><CODE>*, /, MOD, REM</CODE></CODE>
<DD>
Arithmetic operators defined over predefined modes.
<DT><CODE><CODE>-</CODE></CODE>
<DD>
Change sign operator.
<DT><CODE><CODE>//</CODE></CODE>
<DD>
String concatenation operator.
<DT><CODE><CODE>()</CODE></CODE>
<DD>
String repetition operator.
<DT><CODE><CODE>-&#62;</CODE></CODE>
<DD>
Referenced location operator which can be used either to take the
address of a location (<CODE>-&#62;loc</CODE>), or to dereference a reference
location (<CODE>loc-&#62;</CODE>).
<DT><CODE><CODE>OR, XOR</CODE></CODE>
<DD>
<DT><CODE><CODE>AND</CODE></CODE>
<DD>
<DT><CODE><CODE>NOT</CODE></CODE>
<DD>
Powerset and bitstring operators.
<DT><CODE><CODE>&#62;, &#62;=</CODE></CODE>
<DD>
<DT><CODE><CODE>&#60;, &#60;=</CODE></CODE>
<DD>
Powerset inclusion operators.
<DT><CODE><CODE>IN</CODE></CODE>
<DD>
Membership operator.
</DL>
</DL>



<H4><A NAME="SEC94" HREF="gdb_toc.html#TOC94">Chill type and range checks</A></H4>

<P>
GDB considers two Chill variables mode equivalent if the sizes
of the two modes are equal. This rule applies recursively to more
complex datatypes which means that complex modes are treated
eqivalent if all element modes (which also can be complex modes like
structures, arrays, etc.) have the same size.

</P>
<P>
Range checking is done on all mathematical operations, assignment, array
index bounds and all built in procedures.

</P>
<P>
Strong type checks are forced using the GDB command <CODE>set
check strong</CODE>. This enforces strong type and range checks on all
operations where Chill constructs are used (expressions, built in
functions, etc.) in respect to the semantics as defined in the z.200
language specification.

</P>
<P>
All checks can be disabled by the GDB command <CODE>set check
off</CODE>.

</P>



<H4><A NAME="SEC95" HREF="gdb_toc.html#TOC95">Chill defaults</A></H4>

<P>
If type and range checking are set automatically by GDB, they
both default to <CODE>on</CODE> whenever the working language changes to
Chill.  This happens regardless of whether you, or GDB,
selected the working language.

</P>
<P>
If you allow GDB to set the language automatically, then entering
code compiled from a file whose name ends with <TT>`.ch'</TT> sets the
working language to Chill. See section <A HREF="gdb_10.html#SEC67">Having GDB infer the source language</A>, for further details.

</P>


<H3><A NAME="SEC96" HREF="gdb_toc.html#TOC96">Objective-C/C++</A></H3>

<P>
This section provides information about some commands and command
options that are useful for debugging Objective-C and Objective-C++
code.

</P>


<H4><A NAME="SEC97" HREF="gdb_toc.html#TOC97">Method Names in Commands</A></H4>

<P>
The following commands have been extended to accept Objective-C method
names as line specifications:

</P>

<UL>
<LI><CODE>clear</CODE>

<LI><CODE>break</CODE>

<LI><CODE>info line</CODE>

<LI><CODE>jump</CODE>

<LI><CODE>list</CODE>

</UL>

<P>
For example, to set a breakpoint at the <CODE>create</CODE> instance method of 
class <CODE>Fruit</CODE> in the program currently being debugged, enter:

</P>

<PRE>
break -[Fruit create]
</PRE>

<P>
To list ten program lines around the <CODE>initialize</CODE> class method,
enter:

</P>

<PRE>
list +[NSText initialize]
</PRE>

<P>
In the current version of GDB, the plus or minus sign is required.  In
future versions of GDB, the plus or minus sign will be optional, but you
can use it to narrow the search.  It is also possible to specify just a
method name:

</P>

<PRE>
break create
</PRE>

<P>
You must specify the complete method name, including any colons.  If
your program's source files contain more than one <CODE>create</CODE> method,
you'll be presented with a numbered list of classes that implement that
method.  Indicate your choice by number, or type <SAMP>`0'</SAMP> to exit if
none apply.

</P>
<P>
As another example, to clear a breakpoint established at the
<CODE>makeKeyAndOrderFront:</CODE> method of the <CODE>NSWindow</CODE> class, enter:

</P>

<PRE>
clear -[NSWindow makeKeyAndOrderFront:]
</PRE>



<H4><A NAME="SEC98" HREF="gdb_toc.html#TOC98">Command Descriptions</A></H4>

<P>
This section describes commands and options that are useful in debugging 
Objective-C/C++ code.  Some of these are commands added specifically to
support Objective-C/C++; others are previously existing GDB commands
that have been extended to support Objective-C/C++.

</P>
<DL COMPACT>

<DT><CODE>info classes</CODE>
<DD>
<A NAME="IDX412"></A>
 
@xref{info classes}
<A NAME="IDX413"></A>
<DT><CODE>info selectors</CODE>
<DD>
@xref{info selectors}
</DL>



<H4><A NAME="SEC99" HREF="gdb_toc.html#TOC99">Objective-C/C++ Expressions</A></H4>



<H3><A NAME="SEC100" HREF="gdb_toc.html#TOC100">PostScript</A></H3>

<P>
This section describes commands that are useful when debugging
PostScript source files.

</P>
<P>
These commands are not built directly into GDB; rather, the OpenStep
environment defines them in the system-level GDB configuration file
().  This file is read when you start running GDB (the
contents of this file are shown later in this chapter).

</P>
<DL COMPACT>

<DT><CODE>showps, shownops</CODE>
<DD>
<A NAME="IDX414"></A>
 <A NAME="IDX415"></A>
 

The <CODE>showps</CODE> and <CODE>shownops</CODE> commands turn on and off
(respectively) the display of PostScript code being sent from your
application to the Window Server.  Your application must be running
before you can issue either of these commands.

<A NAME="IDX416"></A>
<DT><CODE>flushps</CODE>
<DD>
The <CODE>flushps</CODE> command sends pending PostScript code to the Window
Server.  This command lets you flush the application's output buffer,
causing any PostScript code waiting there to be interrupted immediately.
Your application must be running before you can issue this command.

<A NAME="IDX417"></A>
<A NAME="IDX418"></A>
<DT><CODE>traceevents, tracenoevents</CODE>
<DD>
The <CODE>traceevents</CODE> and <CODE>tracenoevents</CODE> commands turn on
(respecively) tracing of PostScript events.  When PostScript event
tracing is enabled, all events received from the Window Server are
logged to the standard error output stream.

<A NAME="IDX419"></A>
<DT><CODE>waitps</CODE>
<DD>
The <CODE>waitps</CODE> command waits until the current Display Postscript
Context is ready to receive more input.
</DL>

<P><HR><P>
Go to the <A HREF="gdb_1.html">first</A>, <A HREF="gdb_9.html">previous</A>, <A HREF="gdb_11.html">next</A>, <A HREF="gdb_21.html">last</A> section, <A HREF="gdb_toc.html">table of contents</A>.
</BODY>
</HTML>