varobj.c   [plain text]


/* Implementation of the GDB variable objects API.

   Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
   Free Software Foundation, Inc.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "exceptions.h"
#include "value.h"
/* APPLE LOCAL cp-abi.h */
#include "cp-abi.h"
#include "expression.h"
#include "frame.h"
#include "language.h"
#include "wrapper.h"
#include "gdbcmd.h"

#include "gdb_assert.h"
#include "gdb_string.h"
/* APPLE LOCAL block.h */
#include "block.h"
#include "target.h"
#include "objfiles.h"

#include <math.h>

#include "varobj.h"
#include "parser-defs.h"

/* Non-zero if we want to see trace of varobj level stuff.  */

int varobjdebug = 0;

/* APPLE LOCAL begin */
/* Non-zero if we use a varobj's full type to construct its children. */
static int varobj_use_dynamic_type = 1;
/* APPLE LOCAL end */

/* APPLE LOCAL: We use this to lookup from fake child to type index.  */
static int varobj_get_type_index_from_fake_child (struct varobj *parent, int index);
static int varobj_value_struct_elt_by_index (struct varobj *parent, int index,
					     struct value **ret_val);
static struct type *varobj_lookup_struct_elt_type_by_index (struct varobj *parent, int index);

static void
show_varobjdebug (struct ui_file *file, int from_tty,
		  struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
}

/* String representations of gdb's format codes */
char *varobj_format_string[] =
  /* APPLE LOCAL: add "unsigned", "OSType", "floating point hex" */
  { "natural", "binary", "decimal", "hexadecimal", "octal", "unsigned", "OSType", "floating point hex" };

/* String representations of gdb's known languages */
char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };

/* Data structures */

/* Every root variable has one of these structures saved in its
   varobj. Members which must be free'd are noted. */
struct varobj_root
{

  /* Alloc'd expression for this parent. */
  struct expression *exp;

  /* Block for which this expression is valid */
  struct block *valid_block;

  /* The frame for this expression */
  struct frame_id frame;

  /* If 1, "update" always recomputes the frame & valid block
     using the currently selected frame. */
  int use_selected_frame;

  /* APPLE LOCAL begin */
  /* If 1, the variable was IN SCOPE when last updated,
     if 0 it was out of scope.  Use this to tell whether
     the variable has gone from in scope to out of scope
     or vice versa. */
  int in_scope;
  /* APPLE LOCAL end */

  /* Language info for this variable and its children */
  struct language_specific *lang;

  /* The varobj for this root node. */
  struct varobj *rootvar;

  /* Next root variable */
  struct varobj_root *next;
};

/* APPLE LOCAL: In building up the path expression for a varobj,
   we need to know how to join the children of a varobj to the
   expression of the parent.  We figure this out as we are making
   the varobj's, and this enum records the result.  See the 
   join_in_expr varobj struct element below for some discussion of
   why this is tricky.  */
enum varobj_join_type
  {
    VAROBJ_AS_DUNNO,   /* This is a error - for types that can't have children.  */
    VAROBJ_AS_STRUCT, /* For children of structs, joined with a ".".  */
    VAROBJ_AS_PTR_TO_SCALAR,  /* This is a simple dereference.  */
    VAROBJ_AS_PTR_TO_STRUCT, /* This will be "->".  */
    VAROBJ_AS_ARRAY,  /* This is an array reference "[n]".  */
  };

/* Every variable in the system has a structure of this type defined
   for it. This structure holds all information necessary to manipulate
   a particular object variable. Members which must be freed are noted. */
struct varobj
{

  /* Alloc'd name of the variable for this object.. If this variable is a
     child, then this name will be the child's source name.
     (bar, not foo.bar) */
  /* NOTE: This is the "expression" */
  char *name;

  /* APPLE LOCAL begin */
  /* Alloc'd expression for this child.  Can be used to create a
     root variable corresponding to this child. */
  char *path_expr;
  /* In ObjC you can't put the Class name in expressions, even though
     it shows up in the varobj hierarchy (at least it does with DWARF).
     So on the one hand we need to propagate the knowledge of how the
     last parent that actually contributes to the expression should join
     to its children over these non-contributing elements.  */
  enum varobj_join_type join_in_expr;
  /* And it's more convenient to mark whether this variable contributes
     or not as we build up the varobj.  
     FIXME: I don't set this for the CPLUS_FAKE_CHILD elements.  They
     recieve special treatment in too many places, so for now I'm only
     using this variable for ObjC Objects.  */
  int elide_in_expr;
  /* APPLE LOCAL end */

  /* The alloc'd name for this variable's object. This is here for
     convenience when constructing this object's children. */
  char *obj_name;

  /* Index of this variable in its parent or -1 */
  /* APPLE LOCAL: For children of a structure, the index has always
     been the same as the index in the TYPE_FIELD structure of the
     parent (except for C++ where you have to count only elements of
     the same protection.)  But nothing relied on this in the FSF
     version.  That was because the FSF version assumed that the
     structure element name was sufficient to find the varobj in it's
     parent.  But with anonymous unions and structures, that's no
     longer true.  So now we have to use the index to disambiguate
     these.  Which means the index MUST be tied to the TYPE_FIELD as
     given above.  Don't change this!  */     
  int index;

  /* APPLE LOCAL */
  /* The static type of this variable. This may NEVER be NULL. */
  struct type *type;

  /* APPLE LOCAL begin */
  /* This is the most specific type of a C++ class object - as obtained from
     value_rtti_type.  It will be set in two cases:

     a) If the varobj is a pointer or reference to a C++ object.  In this
        case the dynamic_type will be a pointer or reference to the full 
	class.
     b) If the varobj is a C++ object.  In this case, it will be the type
        of the full object, and the value field will be adjusted by 
	value_full_object to the full object. */
  struct type *dynamic_type;
  /* Sometimes we can figure out the dynamic type, but it's not something
     that we have type info for.  In this case, record the type name, 
     in case our client finds that interesting.  This and the dynamic_type
     are exclusive of each other.  So if dynamic_type is set, then
     dynamic_type_name will be NULL & vice versa.  */
  char *dynamic_type_name;
  /* APPLE LOCAL end */

  /* APPLE LOCAL begin */
  /* The value of this expression or subexpression.  This may be NULL. 
     If varobj_use_dynamic_type is 1, this will be cast to the full type
     if necessary.  */
  /* APPLE LOCAL end */
  struct value *value;

  /* Did an error occur evaluating the expression or getting its value? */
  int error;

  /* The number of (immediate) children this variable has */
  int num_children;

  /* If this object is a child, this points to its immediate parent. */
  struct varobj *parent;

  /* A list of this object's children */
  struct varobj_child *children;

  /* APPLE LOCAL begin */
  /* Marker that this is a "fake" child - e.g. the Public, Private, Protected
     varobj's for C++ */
  int fake_child;
  /* APPLE LOCAL end */

  /* Description of the root variable. Points to root variable for children. */
  struct varobj_root *root;

  /* The format of the output for this object */
  enum varobj_display_formats format;

  /* Was this variable updated via a varobj_set_value operation */
  int updated;

  /* This is the list of the objfiles that were referenced in creating
     the varobj.  */
  struct objfile_hitlist *hitlist;
};

/* Every variable keeps a linked list of its children, described
   by the following structure. */
/* FIXME: Deprecated.  All should use vlist instead */

struct varobj_child
{

  /* Pointer to the child's data */
  struct varobj *child;

  /* Pointer to the next child */
  struct varobj_child *next;
};

/* A stack of varobjs */
/* FIXME: Deprecated.  All should use vlist instead */

struct vstack
{
  struct varobj *var;
  struct vstack *next;
};

struct cpstack
{
  char *name;
  struct cpstack *next;
};

/* A list of varobjs */

struct vlist
{
  struct varobj *var;
  struct vlist *next;
};

/* APPLE LOCAL begin */
/* This is the list varobj_update builds up */

struct varobj_changelist_elem {
  struct varobj *var;
  enum varobj_type_change type_changed;
  struct varobj_changelist_elem *next;
};

struct varobj_changelist {
  struct varobj_changelist_elem *tail;
  struct varobj_changelist_elem *head;
};
/* APPLE LOCAL end */

/* Private function prototypes */

/* Helper functions for the above subcommands. */

static int delete_variable (struct cpstack **, struct varobj *, int);

static void delete_variable_1 (struct cpstack **, int *,
			       struct varobj *, int, int);

static int install_variable (struct varobj *);

static void uninstall_variable (struct varobj *);

/* APPLE LOCAL */
static struct varobj *child_exists (struct varobj *, int index);

static struct varobj *create_child (struct varobj *, int, char *);

static void save_child_in_parent (struct varobj *, struct varobj *);

static void remove_child_from_parent (struct varobj *, struct varobj *);

/* Utility routines */

static struct varobj *new_variable (void);

static struct varobj *new_root_variable (void);

static void free_variable (struct varobj *var);

static struct cleanup *make_cleanup_free_variable (struct varobj *var);

static struct type *get_type (struct varobj *var);

static struct type *get_type_deref (struct varobj *var, int *was_ptr);

static struct type *get_target_type (struct type *);

static enum varobj_display_formats variable_default_display (struct varobj *);

static int my_value_equal (struct value *, struct value *, int *);

static struct varobj_changelist *varobj_changelist_init ();

static void varobj_add_to_changelist(struct varobj_changelist *changelist, 
				   struct varobj *var, 
				   enum varobj_type_change type_changed);

static void vpush (struct vstack **pstack, struct varobj *var);

static struct varobj *vpop (struct vstack **pstack);

static void cppush (struct cpstack **pstack, char *name);

static char *cppop (struct cpstack **pstack);

/* Language-specific routines. */

static enum varobj_languages variable_language (struct varobj *var);

static int number_of_children (struct varobj *);

static char *name_of_variable (struct varobj *);

static char *path_expr_of_variable (struct varobj *);

static char *make_name_of_child (struct varobj *, int);

static char *path_expr_of_child (struct varobj *, int);

static struct value *value_of_root (struct varobj **var_handle, enum varobj_type_change *);

static struct value *value_of_child (struct varobj *parent, int index,
				     enum varobj_type_change *);

static struct type *type_of_child (struct varobj *var);

static int variable_editable (struct varobj *var);

static char *my_value_of_variable (struct varobj *var);

/* APPLE LOCAL rename type_changeable */
static int varobj_value_is_changeable_p (struct varobj *var);

/* APPLE LOCAL is_root_p */
static int is_root_p (struct varobj *var);

/* APPLE LOCAL set path expression junk.  */
static enum varobj_join_type get_join_type (struct type *type);

/* C implementation */

static int c_number_of_children (struct varobj *var);

static char *c_make_name_of_child (struct varobj *parent, int index);

static char *c_path_expr_of_child (struct varobj *parent, int index);

static struct value *c_value_of_root (struct varobj **var_handle, enum varobj_type_change *type_changed);

static struct value *c_value_of_child (struct varobj *parent, int index, int *lookup_dynamic_type);

static struct type *c_type_of_child (struct varobj *parent, int index);

static int c_variable_editable (struct varobj *var);

static char *c_value_of_variable (struct varobj *var);

/* C++ implementation */

static int cplus_number_of_children (struct varobj *var);

static void cplus_class_num_children (struct type *type, int children[3]);

static char *cplus_make_name_of_child (struct varobj *parent, int index);

static char *cplus_path_expr_of_child (struct varobj *parent, int index);

static struct value *cplus_value_of_root (struct varobj **var_handle, enum varobj_type_change *type_changed);

static struct value *cplus_value_of_child (struct varobj *parent, int index, int *lookup_dynamic_type);

static struct type *cplus_type_of_child (struct varobj *parent, int index);

static int cplus_variable_editable (struct varobj *var);

static char *cplus_value_of_variable (struct varobj *var);

/* Java implementation */

static int java_number_of_children (struct varobj *var);

static char *java_make_name_of_child (struct varobj *parent, int index);

static char *java_path_expr_of_child (struct varobj *parent, int index);

static struct value *java_value_of_root (struct varobj **var_handle, enum varobj_type_change *type_changed);

static struct value *java_value_of_child (struct varobj *parent, int index, int *lookup_dynamic_type);

static struct type *java_type_of_child (struct varobj *parent, int index);

static int java_variable_editable (struct varobj *var);

static char *java_value_of_variable (struct varobj *var);

/* The language specific vector */

struct language_specific
{

  /* The language of this variable */
  enum varobj_languages language;

  /* The number of children of PARENT. */
  int (*number_of_children) (struct varobj * parent);

  /* The makes & returns the name of the INDEX'th child of PARENT. */
  char *(*make_name_of_child) (struct varobj * parent, int index);

  /* Returns the rooted expression of the INDEX'th child of PARENT. */
  char *(*path_expr_of_child) (struct varobj * parent, int index);

  /* The ``struct value *'' of the root variable ROOT. */
  struct value *(*value_of_root) (struct varobj ** root_handle, 
				  enum varobj_type_change *type_changed);

  /* The ``struct value *'' of the INDEX'th child of PARENT. If LOOKUP_DYNAMIC_TYPE
      comes back true, then we should look up the dynamic type of the variable.  */
  struct value *(*value_of_child) (struct varobj * parent, int index, int *lookup_dynamic_type);

  /* The type of the INDEX'th child of PARENT. */
  struct type *(*type_of_child) (struct varobj * parent, int index);

  /* Is VAR editable? */
  int (*variable_editable) (struct varobj * var);

  /* The current value of VAR. */
  char *(*value_of_variable) (struct varobj * var);
};

/* Array of known source language routines. */
static struct language_specific
  languages[vlang_end][sizeof (struct language_specific)] = {
  /* Unknown (try treating as C */
  {
   vlang_unknown,
   c_number_of_children,
   c_make_name_of_child,
   c_path_expr_of_child,
   c_value_of_root,
   c_value_of_child,
   c_type_of_child,
   c_variable_editable,
   c_value_of_variable}
  ,
  /* C */
  {
   vlang_c,
   c_number_of_children,
   c_make_name_of_child,
   c_path_expr_of_child,
   c_value_of_root,
   c_value_of_child,
   c_type_of_child,
   c_variable_editable,
   c_value_of_variable}
  ,
  /* C++ */
  {
   vlang_cplus,
   cplus_number_of_children,
   cplus_make_name_of_child,
   cplus_path_expr_of_child,
   cplus_value_of_root,
   cplus_value_of_child,
   cplus_type_of_child,
   cplus_variable_editable,
   cplus_value_of_variable}
  ,
  /* Java */
  {
   vlang_java,
   java_number_of_children,
   java_make_name_of_child,
   java_path_expr_of_child,
   java_value_of_root,
   java_value_of_child,
   java_type_of_child,
   java_variable_editable,
   java_value_of_variable}
};

/* A little convenience enum for dealing with C++/Java */
enum vsections
{
  v_public = 0, v_private, v_protected
};
static int cplus_real_type_index_for_fake_child_index (
                                      struct type *type, 
                                      enum vsections prot, 
                                      int num);

/* Private data */

/* Mappings of varobj_display_formats enums to gdb's format codes */
/* APPLE LOCAL: "u" (unsigned) and "T" (OSType) */
static int format_code[] = { 0, 't', 'd', 'x', 'o', 'u', 'T' };

/* Header of the list of root variable objects */
static struct varobj_root *rootlist;
static int rootcount = 0;	/* number of root varobjs in the list */

/* Prime number indicating the number of buckets in the hash table */
/* A prime large enough to avoid too many colisions */
#define VAROBJ_TABLE_SIZE 227

/* Pointer to the varobj hash table (built at run time) */
static struct vlist **varobj_table;

/* APPLE LOCAL begin */
/* Switch to determine whether to try to freeze the other threads in the 
   inferior when I evaluate varobj's (so that if the varobj is a function
   call I don't inadvertently allow the inferior to make progress while
   evaluating the varobj. */

int varobj_runs_all_threads = 0;
/* APPLE LOCAL end */

/* Is the variable X one of our "fake" children? */
#define CPLUS_FAKE_CHILD(x) \
/* APPLE LOCAL fake child */ \
((x) != NULL && (x)->fake_child)


/* These wrappers of "evaluate_expression" and "evaluate_type" turn off
   the automatic closure detection.  Otherwise changes in these won't show
   up as a "dynamic" type, and we won't notice they have changed.  */

int
varobj_parse_exp_1 (char **stringptr, struct block *block, int comma,
		 struct expression **expression)
{
  struct cleanup *print_closure_cleanup;
  int ret_val;

  print_closure_cleanup = make_cleanup_set_restore_print_closure (0);

  ret_val = gdb_parse_exp_1 (stringptr, block, comma, expression);

  do_cleanups (print_closure_cleanup);

  return ret_val;
}

static int
varobj_evaluate_expression (struct expression *exp, struct value **value)
{
  struct cleanup *print_closure_cleanup;
  int ret_val;

  print_closure_cleanup = make_cleanup_set_restore_print_closure (0);

  ret_val = gdb_evaluate_expression (exp, value);

  do_cleanups (print_closure_cleanup);

  return ret_val;
}

int
varobj_evaluate_type (struct expression *exp, struct value **value)
{
  struct cleanup *print_closure_cleanup;
  int ret_val;

  print_closure_cleanup = make_cleanup_set_restore_print_closure (0);

  ret_val = gdb_evaluate_type (exp, value);

  do_cleanups (print_closure_cleanup);

  return ret_val;
}

/* API Implementation */

/* APPLE LOCAL begin is_root_p */
static int
is_root_p (struct varobj *var)
{
  return (var->root->rootvar == var);
}
/* APPLE LOCAL end is_root_p */

/* APPLE LOCAL: Returns how you would join the children of
   a varobj of type TYPE to the varobj's path expression.  */

static enum varobj_join_type 
get_join_type (struct type *in_type)
{
  struct type *type = check_typedef (in_type);

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_PTR:
    case TYPE_CODE_REF:
      {
	struct type *target = get_target_type (type);
	switch (TYPE_CODE (target))
	  {
	  case TYPE_CODE_STRUCT:
	  case TYPE_CODE_UNION:
	    return VAROBJ_AS_PTR_TO_STRUCT;
	  default:
	    return VAROBJ_AS_PTR_TO_SCALAR;
	    break;
	  }
      case TYPE_CODE_STRUCT:
      case TYPE_CODE_UNION:
	return VAROBJ_AS_STRUCT;
	break;
      case TYPE_CODE_ARRAY:
	return VAROBJ_AS_ARRAY;
	break;
      default:
	return VAROBJ_AS_DUNNO;
      }
    }
}


static struct type *
safe_value_rtti_target_type (struct value *val, int *full, int *top, int *using_enc)
{
  volatile struct gdb_exception except;
  struct ui_file *saved_gdb_stderr;
  static struct ui_file *null_stderr = NULL;
  struct type *dynamic_type;

  /* suppress error messages */
  if (null_stderr == NULL)
    null_stderr = ui_file_new ();

  saved_gdb_stderr = gdb_stderr;
  gdb_stderr = null_stderr;

  TRY_CATCH (except, RETURN_MASK_ALL)
    {
      dynamic_type = value_rtti_target_type (val, full, top, using_enc);
    }

  gdb_stderr = saved_gdb_stderr;

  if (except.reason < 0)
    return NULL;
  else
    return dynamic_type;
}

  /* Look up the full type of the varobj, and record that in
     var->dynamic_type.  Also, if there is an enclosing type, reset
     the value to that full object.  Otherwise, we leave dynamic_type
     NULL, and don't adjust the value. 
     Note: we don't handle the case where TYPE_CODE is TYPE_CODE_CLASS
     since that can't have a dynamic type.  
     Also, if we can't find a dynamic type, but we can find the
     dynamic type name, then we'll return that in DYNAMIC_TYPE_NAME.
     N.B. If we can find the dynamic type, we won't fill in 
     DYNAMIC_TYPE_NAME.  */

static struct value *
varobj_fixup_value (struct value *in_value, 
		    int use_dynamic_type,
		    struct block *block,
		    struct type **dynamic_type_handle,
		    char **dynamic_type_name)
{  
  struct value *full_value = in_value;
  struct type *dynamic_type;
  struct type *base_type;
      
  dynamic_type = NULL;
  if (dynamic_type_name != NULL)
    *dynamic_type_name = NULL;
  
  base_type = check_typedef (value_type (in_value));
  if (TYPE_CODE(base_type) == TYPE_CODE_PTR)
    {
      int top, full, using_enc;
      
      dynamic_type = safe_value_rtti_target_type (in_value, &full, &top, 
						  &using_enc);
      
      if (dynamic_type)
	{
	  dynamic_type = lookup_pointer_type (dynamic_type);
	}
      else
	{
	  /* If it's not got a C++ dynamic type, let's see if it has
	     a closure dynamic type.  We prefer the closure to ObjC
	     because ObjC closures also masquerade as ObjC objects, so
	     they WILL have an ObjC class type, just not a useful one.  */

	  dynamic_type = get_closure_dynamic_type (in_value);
	  if (dynamic_type == NULL)
	    {
	      /* If it hasn't got a C++ or closure dynamic type,
		 see if it has an ObjC type.  */
	      int ret_val;
	      char *dynamic_class_name;
	      
	      ret_val = safe_value_objc_target_type (in_value, block, &dynamic_type, &dynamic_class_name);
	      if (!ret_val
		  || dynamic_type == 0)
		{
		  if (dynamic_type != NULL)
		    *dynamic_type_name = NULL;
		}
	      
	      if (dynamic_type)
		dynamic_type = lookup_pointer_type (dynamic_type);
	      else if (dynamic_class_name != NULL)
		{
		  if (dynamic_type_name == NULL)
		    xfree (dynamic_class_name);
		  else
		    {
		      int namelen = strlen (dynamic_class_name);
		      char *typestr;
		      typestr = xmalloc (namelen + 3);
		      memmove (typestr, dynamic_class_name, namelen);
		      xfree (dynamic_class_name);
		      strcpy (typestr + namelen, " *");
		      *dynamic_type_name = typestr;
		    }
		}
	    }
	}
    }
  else if (TYPE_CODE (base_type) == TYPE_CODE_REF)
    {
      /* Need to create a pointer type for this value so
	 value_rtti_target_type will be happy.  This is also done
	 in c_value_print.  Maybe we should move this into
	 value_rtti_target_type? */
      struct value *temp_val;
      struct type *target_type;
	  
      temp_val = value_copy (in_value);
      target_type = get_target_type (base_type);
      if (target_type != NULL)
	{
	  int full, top, using_enc;
	  
	  deprecated_set_value_type (temp_val, lookup_pointer_type (target_type));
	  dynamic_type = safe_value_rtti_target_type (temp_val, 
						      &full, &top, 
						      &using_enc);
	  if (dynamic_type)
	    dynamic_type = lookup_reference_type (dynamic_type);
	  else
	    {
	      /* If we didn't find a C++ class, let's see if we can find
		 an ObjC class. */
	      int ret_val;
	      char *dynamic_class_name;
	      
	      ret_val = safe_value_objc_target_type (in_value, block, &dynamic_type, &dynamic_class_name);
	      if (!ret_val)
		dynamic_type = NULL;
	      else if (dynamic_type)
		dynamic_type = lookup_reference_type (dynamic_type);
	      else if (dynamic_class_name != NULL)
		{
		  if (dynamic_type_name == NULL)
		    xfree (dynamic_class_name);
		  else
		    {
		      int namelen = strlen (dynamic_class_name);
		      char *typestr;
		      typestr = xmalloc (namelen + 3);
		      memmove (typestr, dynamic_class_name, namelen);
		      xfree (dynamic_class_name);
		      strcpy (typestr + namelen, " &");
		      *dynamic_type_name = typestr;
		    }
		}
	    }
	}
    }

  /* Now, if we have found a full type, record the static type in the
     type field, and then cast the value to the new type.  For now we 
     have to wrap the call to value_cast, since gdb fails - sometime with
     a real error - when casting up classes with virtual inheritance.  */
  
  if (dynamic_type && use_dynamic_type)
    {
      int retval;
      retval = gdb_value_cast (dynamic_type, in_value, &full_value);
      /* If there is an error back out, resetting the dynamic value,
	 and the dynamic_type. */

      if (retval == 0)
	{
	  full_value = in_value;
	  dynamic_type = value_type (in_value);
	}
    }

  if (dynamic_type_handle != NULL)
    *dynamic_type_handle = dynamic_type;

  return full_value;
}
/* APPLE LOCAL end rtti */

/* Creates a varobj (not its children) */

/* Return the full FRAME which corresponds to the given CORE_ADDR
   or NULL if no FRAME on the chain corresponds to CORE_ADDR.  */

static struct frame_info *
find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
{
  struct frame_info *frame = NULL;

  if (frame_addr == (CORE_ADDR) 0)
    return NULL;

  while (1)
    {
      frame = get_prev_frame (frame);
      if (frame == NULL)
	return NULL;
      if (get_frame_base_address (frame) == frame_addr)
	return frame;
    }
}

struct varobj *
varobj_create (char *objname,
	       char *expression, CORE_ADDR frame, 
	       struct block *block,
	       enum varobj_type type)
{
  struct varobj *var;
  struct frame_info *fi;
  struct frame_id var_frame_id;
  struct frame_id old_frame_id = null_frame_id;
  struct cleanup *old_chain, *schedlock_chain;
  int expr_len;
  /* APPLE LOCAL radar 6529939  */
  struct block *superblock;

  /* Fill out a varobj structure for the (root) variable being constructed. */
  var = new_root_variable ();
  old_chain = make_cleanup_free_variable (var);

  make_cleanup_objfile_init_clear_hitlist ();

  /* We are also going to fix the scheduler-locking here so we
     don't end up running other threads.  Note that not only can
     getting the value cause a function call, even parsing the
     expression for dynamic languages might trigger a lookup 
     call. */
  
  if (!varobj_runs_all_threads)
    schedlock_chain = make_cleanup_set_restore_scheduler_locking_mode (scheduler_locking_on);
  else
    schedlock_chain = make_cleanup (null_cleanup, NULL);

  if (expression != NULL)
    {
      char *p;
      enum varobj_languages lang;

      /* Parse and evaluate the expression, filling in as much
         of the variable's data as possible */

      /* Allow creator to specify context of variable */
      if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME)
	  || (type == USE_BLOCK_IN_FRAME))
	fi = deprecated_selected_frame;
      else if (type == NO_FRAME_NEEDED)
	fi = NULL;
      else
	/* FIXME: cagney/2002-11-23: This code should be doing a
	   lookup using the frame ID and not just the frame's
	   ``address''.  This, of course, means an interface change.
	   However, with out that interface change ISAs, such as the
	   ia64 with its two stacks, won't work.  Similar goes for the
	   case where there is a frameless function.  */
	fi = find_frame_addr_in_frame_chain (frame);


      if (fi != NULL)
	var_frame_id = get_frame_id (fi);

      /* APPLE LOCAL begin radar 6529939  */
      /* If we're trying to create a variable using a block for a 
	 particular frame, verify that the frame and block being used
	 actually correspond!  */

      superblock = block;
      if ((type == USE_BLOCK_IN_FRAME)
	  && block)
	{
	  /* For purposes of the test below, find the outermost
	     block for the current function.  */
	  while (!superblock->function
		 && superblock->superblock)
	    superblock = superblock->superblock;
	}


      if (type == USE_BLOCK_IN_FRAME
	  && block && fi 
	  && ((get_frame_pc (fi) <  superblock->startaddr)
	      || get_frame_pc (fi) > superblock->endaddr))
	{
	  warning ("Attempting to create USE_BLOCK_IN_FRAME variable with block that isn't in the frame.");
	  goto error_cleanup;
	}
      /* APPLE LOCAL end radar 6529939  */

      /* frame = -2 means always use selected frame */
      if (type == USE_SELECTED_FRAME)
	var->root->use_selected_frame = 1;

      if (block == NULL)
	{
	  if (type == USE_BLOCK_IN_FRAME) 
	    {
	      warning ("Attempting to create USE_BLOCK_IN_FRAME variable with NULL block.");
	      goto error_cleanup;
	    }
	  else if (type == NO_FRAME_NEEDED)
	    {
	      warning ("Attempting to create NO_FRAME_NEEDED variable with NULL block.");
	      goto error_cleanup;
	    }
	  else if (fi != NULL)
	    block = get_frame_block (fi, 0);
	}

      p = expression;
      innermost_block = NULL;
      /* APPLE LOCAL: Set block_found to NULL as it can cause problems when 
         looking up member variables in objective C.  The global block_found
         could still be set from a previous expression evaluation and 
         accidentally get used incorrectly during evaluation.  */
      block_found = NULL;
      /* Wrap the call to parse expression, so we can 
         return a sensible error.  For use_selected_frame variables
         create a dummy here that will get filled in later when 
         we get to a frame that actually has this variable.  */
      
      if (varobj_parse_exp_1 (&p, block, 0, &var->root->exp))
	{

	  /* Don't allow variables to be created for types. */
	  if (var->root->exp->elts[0].opcode == OP_TYPE)
	    {
	      /* APPLE LOCAL: suppress this warning, since Xcode does this 
		 when raising tooltips over the cast part of an expression.
		 warning ("Attempt to use a type name as an expression."); */
	      goto error_cleanup;
	    }
	}
      else if (var->root->use_selected_frame != 1)
	goto error_cleanup;

      var->format = variable_default_display (var);
      var->root->valid_block = innermost_block;

      /* APPLE LOCAL: Cache expr_len so we don't compute it twice.  */
      expr_len = strlen (expression);
      var->name = savestring (expression, expr_len);
      /* APPLE LOCAL: For a root var, the name and the expr are the same... */
      var->path_expr = savestring (expression, expr_len);

      /* Okay, if we were able to make an expression for this variable
	 then evaluate it here. */

      if (var->root->exp != NULL)
	{
	  /* When the frame is different from the current frame, 
	     we must select the appropriate frame before parsing
	     the expression, otherwise the value will not be current.
	     Since select_frame is so benign, just call it for all cases. */
	  if (fi != NULL)
	    {
	      fi = frame_find_by_id (var_frame_id);

	      var->root->frame = var_frame_id;
	      old_frame_id = get_frame_id (get_selected_frame (NULL));
	      select_frame (fi);
	    }

	  /* We definitively need to catch errors here.
	     If evaluate_expression succeeds we got the value we wanted.
	     But if it fails, we still go on with a call to evaluate_type().
	     
             APPLE LOCAL: If this is not a "use_selected_frame" variable,
             then it may be in a block which is not yet in scope (for instance
             when you are creating ALL the variables in a function at a blow).
             If the variable is not in scope yet, don't evaluate it.  This
             will often succeed (since the memory is set aside for it) but
             that is a bogus success, since technically the variable does not
             exist yet...  */

	      	      
	  if ((var->root->use_selected_frame || varobj_pc_in_valid_block_p (var)
	       || type == NO_FRAME_NEEDED) 
	      && varobj_evaluate_expression (var->root->exp, &var->value))
	    {
	      /* no error */

	      var->root->in_scope = 1;
	      var->type = value_type (var->value);
	      var->value = varobj_fixup_value (var->value, 
                                               varobj_use_dynamic_type, block,
					       &(var->dynamic_type),
					       &(var->dynamic_type_name));

	      if (value_lazy (var->value))
               {
                 if (!gdb_value_fetch_lazy (var->value))
                   {
                     var->value = NULL;
                     var->error = 1;
                   }
                 else
                   var->error = 0;
               }
	    }
	  else
	    {
	      int retval;
	      /* You might wonder how evaluate_type could get an error?
		 If you are in ObjC, then to get the type of an expression that
		 contains a method call, we currently look up the function that
		 implementation, and if the object is bad, the runtime can crash
		 in the lookup call...  */

	      retval = varobj_evaluate_type (var->root->exp, &var->value);
	      if (retval != 0)
		{
		  var->type = value_type (var->value);
		  var->root->in_scope = 0;
		}
	      else
		{
		  /* If we haven't been able to parse either the value
		     or the type from the expression, it is probably bogus.
		     Discard it so we can remake it later when it might
		     actually work.  */
		  free_current_contents (&var->root->exp);
		  var->root->in_scope = 0;
		  var->type = NULL;
		  var->value = NULL;
		}
	    }

	  /* APPLE LOCAL: If we managed to find a value, we should
	     remove it from the Values auto-free list */
	  
	  if (var->value)
	    release_value (var->value);
	  
	  /* Set language info */
	  lang = variable_language (var);
	  var->root->lang = languages[lang];
	}
      else
	{
	  /* APPLE LOCAL: If we didn't get an expr yet, then just say we
	     are out of scope. */
	  var->root->in_scope = 0;
	}

      /* APPLE LOCAL: Set ourselves as our root */
      var->root->rootvar = var;

      /* APPLE LOCAL: Reset the selected frame */
      if (frame_id_p (old_frame_id))
	select_frame (frame_find_by_id (old_frame_id));
    }

  /* If the variable object name is null, that means this
     is a temporary variable, so don't install it. */

  if ((var != NULL) && (objname != NULL))
    {
      var->obj_name = savestring (objname, strlen (objname));

      /* If a varobj name is duplicated, the install will fail so
         we must clenup */
      if (!install_variable (var))
	{
	  do_cleanups (old_chain);
	  return NULL;
	}
    }

  /* APPLE LOCAL: Give ourselves a hint about how to join this varobj
     in path expressions.  */

  if (var != NULL && var->type != NULL)
      var->join_in_expr = get_join_type (var->type);

  var->hitlist = objfile_detach_hitlist ();

  /* APPLE LOCAL: Reset the scheduler lock, and discard the varobj deletion. */
  do_cleanups (schedlock_chain);
  discard_cleanups (old_chain);
  return var;

 error_cleanup:
  do_cleanups (old_chain);
  return NULL;
}

/* Generates an unique name that can be used for a varobj */

char *
varobj_gen_name (void)
{
  static int id = 0;
  char *obj_name;

  /* generate a name for this object */
  id++;
  obj_name = xstrprintf ("var%d", id);

  return obj_name;
}

/* Given an "objname", returns the pointer to the corresponding varobj
   or NULL if not found */

struct varobj *
varobj_get_handle (char *objname)
{
  struct vlist *cv;
  const char *chp;
  unsigned int index = 0;
  unsigned int i = 1;

  for (chp = objname; *chp; chp++)
    {
      index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
    }

  cv = *(varobj_table + index);
  while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
    cv = cv->next;

  if (cv == NULL)
    error (_("Variable object not found"));

  return cv->var;
}

/* Given the handle, return the name of the object */

char *
varobj_get_objname (struct varobj *var)
{
  return var->obj_name;
}

/* Given the handle, return the expression represented by the object */

char *
varobj_get_expression (struct varobj *var)
{
  return name_of_variable (var);
}

/* Deletes a varobj and all its children if only_children == 0,
   otherwise deletes only the children; returns a malloc'ed list of all the 
   (malloc'ed) names of the variables that have been deleted (NULL terminated) */

int
varobj_delete (struct varobj *var, char ***dellist, int only_children)
{
  int delcount;
  int mycount;
  struct cpstack *result = NULL;
  char **cp;

  /* Initialize a stack for temporary results */
  cppush (&result, NULL);

  if (only_children)
    /* Delete only the variable children */
    delcount = delete_variable (&result, var, 1 /* only the children */ );
  else
    /* Delete the variable and all its children */
    delcount = delete_variable (&result, var, 0 /* parent+children */ );

  /* We may have been asked to return a list of what has been deleted */
  if (dellist != NULL)
    {
      *dellist = xmalloc ((delcount + 1) * sizeof (char *));

      cp = *dellist;
      mycount = delcount;
      *cp = cppop (&result);
      while ((*cp != NULL) && (mycount > 0))
	{
	  mycount--;
	  cp++;
	  *cp = cppop (&result);
	}

      if (mycount || (*cp != NULL))
	warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
		 mycount);
    }

  return delcount;
}

/* Set/Get variable object display format */

enum varobj_display_formats
varobj_set_display_format (struct varobj *var,
			   enum varobj_display_formats format)
{
  switch (format)
    {
    case FORMAT_NATURAL:
    case FORMAT_BINARY:
    case FORMAT_DECIMAL:
    case FORMAT_HEXADECIMAL:
    case FORMAT_OCTAL:
    /* APPLE LOCAL: formatting as unsigned */
    case FORMAT_UNSIGNED:
    /* APPLE LOCAL: formatting as OSType */
    case FORMAT_OSTYPE:
    /* APPLE LOCAL: formatting a floating point value as hex aka %a */
    case FORMAT_HEXFLOAT:
      var->format = format;
      break;

    default:
      var->format = variable_default_display (var);
    }

  return var->format;
}

enum varobj_display_formats
varobj_get_display_format (struct varobj *var)
{
  return var->format;
}

int
varobj_get_num_children (struct varobj *var)
{
  if (var->root->exp == NULL)
    return -1;

  if (var->num_children == -1)
    var->num_children = number_of_children (var);

  return var->num_children;
}

/* Creates a list of the immediate children of a variable object;
   the return code is the number of such children or -1 on error */

int
varobj_list_children (struct varobj *var, struct varobj ***childlist)
{
  struct varobj *child;
  char *name;
  int i;

  /* sanity check: have we been passed a pointer? */
  if (childlist == NULL)
    return -1;

  *childlist = NULL;

  if (var->num_children == -1)
    var->num_children = number_of_children (var);

  /* List of children */
  *childlist = xmalloc ((var->num_children + 1) * sizeof (struct varobj *));

  for (i = 0; i < var->num_children; i++)
    {
      /* Mark as the end in case we bail out */
      *((*childlist) + i) = NULL;

      /* check if child exists, if not create */
      child = child_exists (var, i);
      if (child == NULL)
	{
	  name = make_name_of_child (var, i);
	  child = create_child (var, i, name);
	}

      *((*childlist) + i) = child;
    }

  /* End of list is marked by a NULL pointer */
  *((*childlist) + i) = NULL;

  return var->num_children;
}

int 
varobj_is_fake_child (struct varobj *var)
{
  return CPLUS_FAKE_CHILD (var);
}

/* APPLE LOCAL: Factored out common code so we can either return
   the specific type, or the type stripped of typedef's.  */

char *
varobj_get_type_internal (struct varobj *var, int check_typedef_p)
{
  struct value *val;

  /* For the "fake" variables, do not return a type. (It's type is
     NULL, too.) */
  if (CPLUS_FAKE_CHILD (var))
    return NULL;

  if (var->type == NULL)
    return savestring ("<error getting type>", strlen ("<error getting type>"));

  /* To print the type, we simply create a zero ``struct value *'' and
     cast it to our type. We then typeprint this variable. */
  if (check_typedef_p)
    val = value_zero (remove_all_typedefs (var->type), not_lval);
  else
    val = value_zero (var->type, not_lval);

  return (type_sprint (value_type (val), "", -1));
}

/* Obtain the type of an object Variable as a string similar to the one gdb
   prints on the console */
char *
varobj_get_type (struct varobj *var)
{
  return varobj_get_type_internal (var, 0);
}

/* Obtain the type of object VAR stripped of all typedef's.  */
char *
varobj_get_resolved_type (struct varobj *var)
{
  return varobj_get_type_internal (var, 1);
}

/* Obtain the full (most specific class) type of an object Variable as
   a string similar to the one gdb prints on the console */

char *
varobj_get_dynamic_type (struct varobj *var)
{
  struct value *val;

  if (var->dynamic_type != NULL)
    {
      /* To print the type, we simply create a zero ``struct value *'' and
	 cast it to our type. We then typeprint this variable. */
      val = value_zero (var->dynamic_type, not_lval);
      
      return (type_sprint (value_type (val), "", -1));
    }
  else if (var->dynamic_type_name != NULL)
    return xstrdup (var->dynamic_type_name);
  else
    return xstrdup ("");
}

struct type *
varobj_get_type_struct (struct varobj *var)
{
  return get_type (var);
}

char *
varobj_get_path_expr (struct varobj *var)
{
  return path_expr_of_variable (var);
}

/* Obtain the type of an object variable.  */

struct type *
varobj_get_gdb_type (struct varobj *var)
{
  return var->type;
}

enum varobj_languages
varobj_get_language (struct varobj *var)
{
  return variable_language (var);
}

/*
 * Returns whether the variable is in scope or not.  This
 * just checks the flag in the varobj root var, so you are
 * responsible for calling update before you call this.
 */

int
varobj_in_scope_p (struct varobj *var)
{
  return var->root->in_scope;
}

int
varobj_get_attributes (struct varobj *var)
{
  int attributes = 0;

  if (variable_editable (var))
    /* FIXME: define masks for attributes */
    attributes |= 0x00000001;	/* Editable */

  return attributes;
}

void 
varobj_get_valid_block (struct varobj *var, CORE_ADDR *start,
				    CORE_ADDR *end)
{
  if (var->root->valid_block == NULL)
    {
      *start = -1;
      *end = -1;
      return;
    }

  *start = var->root->valid_block->startaddr;
  *end = var->root->valid_block->endaddr;
}

char *
varobj_get_value (struct varobj *var)
{
  if (var->root->exp == NULL)
    return NULL;
  else if (var->value == NULL)
    return NULL;
  else
    return my_value_of_variable (var);
}

/* Set the value of an object variable (if it is editable) to the
   value of the given expression */
/* Note: Invokes functions that can call error() */

int
varobj_set_value (struct varobj *var, char *expression)
{
  struct value *val;
  int error = 0;

  /* The argument "expression" contains the variable's new value.
     We need to first construct a legal expression for this -- ugh! */
  /* Does this cover all the bases? */
  struct expression *exp;
  struct value *value;
  int saved_input_radix = input_radix;
  int ret_val = 1;
  struct cleanup *schedlock_chain;

  schedlock_chain = make_cleanup_set_restore_scheduler_locking_mode (scheduler_locking_on);

  if (var->value != NULL && variable_editable (var) && !var->error)
    {
      char *s = expression;

      input_radix = 10;		/* ALWAYS reset to decimal temporarily */
      
      if (!varobj_parse_exp_1 (&s, 0, 0, &exp))
	{
	  /* We cannot proceed without a well-formed expression. */
	  ret_val = 0;
	  goto cleanup;
	}
      if (!varobj_evaluate_expression (exp, &value))
	{
	  /* We cannot proceed without a valid expression. */
	  xfree (exp);
	  ret_val = 0;
	  goto cleanup;
	}

      if (!my_value_equal (var->value, value, &error))
	var->updated = 1;
      if (!gdb_value_assign (var->value, value, &val))
	{
	  ret_val = 0;
	  goto cleanup;
	}
      value_free (var->value);
      release_value (val);
      var->value = val;
      input_radix = saved_input_radix;
      ret_val = 1;
    }

 cleanup:
  do_cleanups (schedlock_chain);
  return ret_val;

}

/* Returns a malloc'ed list with all root variable objects */
int
varobj_list (struct varobj ***varlist)
{
  struct varobj **cv;
  struct varobj_root *croot;
  int mycount = rootcount;

  /* Alloc (rootcount + 1) entries for the result */
  *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));

  cv = *varlist;
  croot = rootlist;
  while ((croot != NULL) && (mycount > 0))
    {
      *cv = croot->rootvar;
      mycount--;
      cv++;
      croot = croot->next;
    }
  /* Mark the end of the list */
  *cv = NULL;

  if (mycount || (croot != NULL))
    warning
      ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
       rootcount, mycount);

  return rootcount;
}

/* Update the values for a variable and its children.  This is a
   two-pronged attack.  First, re-parse the value for the root's
   expression to see if it's changed.  Then go all the way
   through its children, reconstructing them and noting if they've
   changed.
   Return value:
    -1 if there was an error updating the varobj
    -2 if the type changed
    -3 if it switched from in scope to out of scope
    Otherwise it is the number of children + parent changed

   Only root variables can be updated... 

   NOTE: This function may delete the caller's varobj. If it
   returns -2, then it has done this and VARP will be modified
   to point to the new varobj. */

int
varobj_update (struct varobj **varp, struct varobj_changelist **changelist)
{
  int changed = 0;
  enum varobj_type_change child_type_changed;
  int error2;
  int error = 0;
  enum varobj_type_change type_changed;
  struct varobj *v;
  struct value *new;
  struct vstack *stack = NULL;
  struct varobj_changelist *result = NULL;
  struct frame_id old_fid;
  struct frame_info *fi;
  int came_in_scope = 0;

  /* sanity check: have we been passed a pointer? */
  if (changelist == NULL)
    return -1;

  /*  Only root variables can be updated... */
  if ((*varp)->root->rootvar != *varp)
    /* Not a root var */
    return -1;

  /* Save the selected stack frame, since we will need to change it
     in order to evaluate expressions. */
  old_fid = get_frame_id (deprecated_selected_frame);

  /* Update the root variable. value_of_root can return NULL
     if the variable is no longer around, i.e. we stepped out of
     the frame in which a local existed.  We are letting the 
     value_of_root variable dispose of the varobj if the type
     has changed. */
  type_changed = VAROBJ_TYPE_CHANGED;
  new = value_of_root (varp, &type_changed);
  if (new != NULL && value_lazy (new))
    {
      if (!gdb_value_fetch_lazy (new))
      new = NULL;
    }

  if (new == NULL)
    {
      int retval;
      (*varp)->error = 1;
      if ((*varp)->root->in_scope
	  && type_changed != VAROBJ_TYPE_UNCHANGED)
	{
	  retval = -3;
	  (*varp)->root->in_scope = 0;
	}
      else if (type_changed == VAROBJ_SCOPE_CHANGED)
	{
	  retval = -4;
	  (*varp)->root->in_scope = 1;
	}
      else if (type_changed == VAROBJ_TYPE_UNCHANGED)
	retval = 0;
      else
	{
	  retval = 0;
	  (*varp)->root->in_scope = 0;
	}
      return retval;
    }
  else
    {
      (*varp)->error = 0;
      if ((*varp)->root->in_scope)
        came_in_scope = 0;
      else
        came_in_scope = 1;
      (*varp)->root->in_scope = 1;
    }

  /* Now make up the change list */

  result = varobj_changelist_init ();

  /* If the type has changed, then value_of_root will have killed all
     the children, so all we have to do is note that it has changed,
     and we are done... */
  if (type_changed != VAROBJ_TYPE_UNCHANGED)
    {
      varobj_add_to_changelist (result, *varp, type_changed);
      changed++;
    }

  /* If the variable just came in scope, then by definition it has changed */
  
  /* If values are not equal, note that it's changed.
     There a couple of exceptions here, though.
     We don't want some types to be reported as "changed". */
  else if (came_in_scope
           || (varobj_value_is_changeable_p (*varp)
	       && ((*varp)->updated || !my_value_equal ((*varp)->value, new, &error2))))
    {
      varobj_add_to_changelist (result, *varp, type_changed);
      (*varp)->updated = 0;
      changed++;
      /* Its value is going to be updated to NEW.  */
      (*varp)->error = error;
    }

  /* We must always keep around the new value for this root
     variable expression, or we lose the updated children! */
  value_free ((*varp)->value);
  (*varp)->value = new;
  
  /* Initialize a stack */
  vpush (&stack, NULL);

  /* Push the root's children */
  if ((*varp)->children != NULL)
    {
      struct varobj_child *c;
      for (c = (*varp)->children; c != NULL; c = c->next)
	vpush (&stack, c->child);
    }

  /* Walk through the children, reconstructing them all. */
  v = vpop (&stack);
  while (v != NULL)
    {
      /* First update the child.  Since the dynamic type
	 might change, we need to do this BEFORE we push
	 the children on the stack, since we might need to
	 delete them.  */

      /* Update this variable */
      new = value_of_child (v->parent, v->index, &child_type_changed);
      if ((child_type_changed != VAROBJ_TYPE_UNCHANGED)
	  || came_in_scope
          || (varobj_value_is_changeable_p (v) 
	      && (v->updated || !my_value_equal (v->value, new, &error2))))
	{
	  /* Note that it's changed */
	  varobj_add_to_changelist (result, v, child_type_changed);
	  v->updated = 0;
	  changed++;
	}
      /* Its value is going to be updated to NEW.  */
      v->error = error;

      /* We must always keep new values, since children depend on it. */
      if (v->value != NULL)
	value_free (v->value);
      v->value = new;

      /* If the type has changed, delete the children, 
	 otherwise push any children */
      if (child_type_changed == VAROBJ_TYPE_UNCHANGED)
	{
	  if (v->children != NULL)
	    {
	      struct varobj_child *c;
	      for (c = v->children; c != NULL; c = c->next)
		vpush (&stack, c->child);
	    }
	}
      else
	{
	  varobj_delete (v, NULL, 1);
	}


      /* Get next child */
      v = vpop (&stack);
    }

  /* Restore selected frame */
  fi = frame_find_by_id (old_fid);
  if (fi)
    select_frame (fi);

  *changelist = result;

  if (type_changed != VAROBJ_TYPE_UNCHANGED)
    return -2;
  else
    return changed;
}


/* Helper functions */

/*
 * Variable object construction/destruction
 */

static int
delete_variable (struct cpstack **resultp, struct varobj *var,
		 int only_children_p)
{
  int delcount = 0;

  delete_variable_1 (resultp, &delcount, var,
		     only_children_p, 1 /* remove_from_parent_p */ );

  return delcount;
}

/* Delete the variable object VAR and its children */
/* IMPORTANT NOTE: If we delete a variable which is a child
   and the parent is not removed we dump core.  It must be always
   initially called with remove_from_parent_p set */
static void
delete_variable_1 (struct cpstack **resultp, int *delcountp,
		   struct varobj *var, int only_children_p,
		   int remove_from_parent_p)
{
  struct varobj_child *vc;
  struct varobj_child *next;

  /* Delete any children of this variable, too. */
  for (vc = var->children; vc != NULL; vc = next)
    {
      if (!remove_from_parent_p)
	vc->child->parent = NULL;
      delete_variable_1 (resultp, delcountp, vc->child, 0, only_children_p);
      next = vc->next;
      xfree (vc);
    }

  /* if we were called to delete only the children we are done here */
  if (only_children_p)
    return;

  /* Otherwise, add it to the list of deleted ones and proceed to do so */
  /* If the name is null, this is a temporary variable, that has not
     yet been installed, don't report it, it belongs to the caller... */
  if (var->obj_name != NULL)
    {
      cppush (resultp, xstrdup (var->obj_name));
      *delcountp = *delcountp + 1;
    }

  /* If this variable has a parent, remove it from its parent's list */
  /* OPTIMIZATION: if the parent of this variable is also being deleted, 
     (as indicated by remove_from_parent_p) we don't bother doing an
     expensive list search to find the element to remove when we are
     discarding the list afterwards */
  if ((remove_from_parent_p) && (var->parent != NULL))
    {
      remove_child_from_parent (var->parent, var);
    }

  if (var->obj_name != NULL)
    uninstall_variable (var);

  /* Free memory associated with this variable */
  free_variable (var);
}

/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
static int
install_variable (struct varobj *var)
{
  struct vlist *cv;
  struct vlist *newvl;
  const char *chp;
  unsigned int index = 0;
  unsigned int i = 1;

  for (chp = var->obj_name; *chp; chp++)
    {
      index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
    }

  cv = *(varobj_table + index);
  while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
    cv = cv->next;

  if (cv != NULL)
    error (_("Duplicate variable object name"));

  /* Add varobj to hash table */
  newvl = xmalloc (sizeof (struct vlist));
  newvl->next = *(varobj_table + index);
  newvl->var = var;
  *(varobj_table + index) = newvl;

  /* If root, add varobj to root list */
  /* APPLE LOCAL is_root_p */
  if (is_root_p (var))
    {
      /* Add to list of root variables */
      if (rootlist == NULL)
	var->root->next = NULL;
      else
	var->root->next = rootlist;
      rootlist = var->root;
      rootcount++;
    }

  return 1;			/* OK */
}

/* Unistall the object VAR. */
static void
uninstall_variable (struct varobj *var)
{
  struct vlist *cv;
  struct vlist *prev;
  struct varobj_root *cr;
  struct varobj_root *prer;
  const char *chp;
  unsigned int index = 0;
  unsigned int i = 1;

  /* Remove varobj from hash table */
  for (chp = var->obj_name; *chp; chp++)
    {
      index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
    }

  cv = *(varobj_table + index);
  prev = NULL;
  while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
    {
      prev = cv;
      cv = cv->next;
    }

  if (varobjdebug)
    fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);

  if (cv == NULL)
    {
      warning
	("Assertion failed: Could not find variable object \"%s\" to delete",
	 var->obj_name);
      return;
    }

  if (prev == NULL)
    *(varobj_table + index) = cv->next;
  else
    prev->next = cv->next;

  xfree (cv);

  /* If root, remove varobj from root list */
  /* APPLE LOCAL is_root_p */
  if (is_root_p (var))
    {
      /* Remove from list of root variables */
      if (rootlist == var->root)
	rootlist = var->root->next;
      else
	{
	  prer = NULL;
	  cr = rootlist;
	  while ((cr != NULL) && (cr->rootvar != var))
	    {
	      prer = cr;
	      cr = cr->next;
	    }
	  if (cr == NULL)
	    {
	      warning
		("Assertion failed: Could not find varobj \"%s\" in root list",
		 var->obj_name);
	      return;
	    }
	  if (prer == NULL)
	    rootlist = NULL;
	  else
	    prer->next = cr->next;
	}
      rootcount--;
    }

}

/* APPLE LOCAL begin */
/* Does a child with the index INDEX exist in VAR? If so, return its data.
   If not, return NULL.  NB. The child must already have been installed
   in its parent for this call to work. */
/* APPLE LOCAL end */

static struct varobj *
/* APPLE LOCAL */
child_exists (struct varobj *var, int index)
{
  struct varobj_child *vc;

  for (vc = var->children; vc != NULL; vc = vc->next)
    {
      /* APPLE LOCAL */
      if (vc->child->index == index)
	return vc->child;
    }

  return NULL;
}

/* Create and install a child of the parent of the given name */
static struct varobj *
create_child (struct varobj *parent, int index, char *name)
{
  struct varobj *child;
  char *childs_name;
  enum varobj_type_change type_changed;
  struct type *target;

  child = new_variable ();

  /* name is allocated by make_name_of_child */
  child->name = name;
  child->index = index;
  child->parent = parent;
  child->root = parent->root;

  /* APPLE LOCAL: If the name is empty (for instance for anonymous 
     bitfields) we need to cons up some fake unique name for the
     varobj.  Use the index, since different anonymous elements will
     always have distinct indices.  */

  if (*name != '\0')
    childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
  else
    childs_name = xstrprintf ("%s.#anon#%d", parent->obj_name, index);
  /* END APPLE LOCAL */

  child->obj_name = childs_name;

  if (variable_language (parent) == vlang_cplus
      && name[0] == 'p'
      && ( strcmp ("private", name) == 0
	   || strcmp ("public", name) == 0
	   || strcmp ("protected", name) == 0))
    {
      child->fake_child = 1;
    }
  else 
    {
      child->fake_child = 0;
    }

  install_variable (child);

  /* Save a pointer to this child in the parent */
  save_child_in_parent (parent, child);

  /* Now get the type & value of the child. */
  child->type = type_of_child (child);
  
  /* APPLE LOCAL: Compute here how we would join this child in
     expressions.  ObjC base classes and C++ fake children just
     inherit the join type of their parents.  */

  /* FIXME: We should really set "elide_in_expr" for C++ fake children
     as well, but there's too much other code that treats the
     CPLUS_FAKE_CHILD specially and I don't have time to disentangle
     it right now.  So we don't set the elide_in_expr, and let the
     other code handle the fake children.  */
  
  if (CPLUS_FAKE_CHILD (parent))
    child->join_in_expr = parent->join_in_expr;
  else
    {
      if (TYPE_CODE (parent->type) == TYPE_CODE_PTR)
	{
	  target = get_target_type (parent->type);
	}
      else
	target = parent->type;

      if (target != NULL
	  && TYPE_CODE (target) == TYPE_CODE_STRUCT
	  && TYPE_RUNTIME (target) == OBJC_RUNTIME 
	  && index < TYPE_N_BASECLASSES (target))
	{
	  /* This is an ObjC base class.  */
	  child->elide_in_expr = 1;
	  child->join_in_expr = parent->join_in_expr;
	}
      else if (CPLUS_FAKE_CHILD (child))
	  child->join_in_expr = parent->join_in_expr;
      else
	child->join_in_expr = get_join_type (child->type);
    }

  child->value = value_of_child (parent, index, &type_changed);

  if ((!CPLUS_FAKE_CHILD(child) && child->value == NULL) || parent->error)
    child->error = 1;

  return child;
}

/* FIXME: This should be a generic add to list */
/* Save CHILD in the PARENT's data. */
static void
save_child_in_parent (struct varobj *parent, struct varobj *child)
{
  struct varobj_child *vc;

  /* Insert the child at the top */
  vc = parent->children;
  parent->children =
    (struct varobj_child *) xmalloc (sizeof (struct varobj_child));

  parent->children->next = vc;
  parent->children->child = child;
}

/* FIXME: This should be a generic remove from list */
/* Remove the CHILD from the PARENT's list of children. */
static void
remove_child_from_parent (struct varobj *parent, struct varobj *child)
{
  struct varobj_child *vc, *prev;

  /* Find the child in the parent's list */
  prev = NULL;
  for (vc = parent->children; vc != NULL;)
    {
      if (vc->child == child)
	break;
      prev = vc;
      vc = vc->next;
    }

  if (prev == NULL)
    parent->children = vc->next;
  else
    prev->next = vc->next;

}


/*
 * Miscellaneous utility functions.
 */

/* Allocate memory and initialize a new variable */
static struct varobj *
new_variable (void)
{
  struct varobj *var;

  var = (struct varobj *) xmalloc (sizeof (struct varobj));
  var->name = NULL;
  var->obj_name = NULL;
  var->index = -1;
  var->type = NULL;
  /* APPLE LOCAL dynamic type and path_expr.  */
  var->dynamic_type = NULL;
  var->dynamic_type_name = NULL;
  var->path_expr = NULL;
  var->elide_in_expr = 0;
  var->join_in_expr = VAROBJ_AS_DUNNO;
  var->value = NULL;
  var->error = 0;
  var->num_children = -1;
  var->parent = NULL;
  var->children = NULL;
  var->fake_child = 0;
  var->format = 0;
  var->root = NULL;
  var->updated = 0;
  var->hitlist = NULL;

  return var;
}

/* Allocate memory and initialize a new root variable */
static struct varobj *
new_root_variable (void)
{
  struct varobj *var = new_variable ();
  var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
  var->root->lang = NULL;
  var->root->exp = NULL;
  var->root->valid_block = NULL;
  var->root->frame = null_frame_id;
  var->root->use_selected_frame = 0;
  var->root->in_scope = 0;
  var->root->rootvar = NULL;

  return var;
}

/* Free any allocated memory associated with VAR. */
static void
free_variable (struct varobj *var)
{
  /* Free the expression if this is a root variable. */
  /* APPLE LOCAL is_root_p */
  if (is_root_p (var))
    {
      if (var->root->exp != NULL)
	free_current_contents ((char **) &var->root->exp);
      xfree (var->root);
    }

  xfree (var->name);
  xfree (var->path_expr);
  xfree (var->obj_name);
  xfree (var->dynamic_type_name);
  if (var->value != NULL)
    value_free (var->value);
  if (var->hitlist != NULL)
    xfree (var->hitlist);
  xfree (var);
}

static void
do_free_variable_cleanup (void *var)
{
  free_variable (var);
}

static struct cleanup *
make_cleanup_free_variable (struct varobj *var)
{
  return make_cleanup (do_free_variable_cleanup, var);
}

void  
varobj_delete_objfiles_vars (struct objfile *ofile)
{
  struct varobj **rootlist;
  struct varobj **root;
  int nroots;

  nroots = varobj_list (&rootlist);

  if (nroots <= 0)
    return;
  
  root = rootlist;

  /* We only have to go through the roots.  Since when we discover a 
     stub type, we copy it into the objfile where the stub lived, we
     can't have a child variable that touches any objfiles other than
     those its parent used.  */

  while (*root != NULL)
    {
      /* For now, if the objfile is on the hitlist for the
	 parent varobj, we delete the varobj & all its children.
	 FUTURE: Consider trying to preserve the varobj's and
	 the child structure, but setting all types, expressions 
	 & values to NULL.  This probably isn't possible.
	 Also, if this is a use_selected_frame variable, we might
	 want to delete the children, but preserve everything else.  */
      if (objfile_on_hitlist_p ((*root)->hitlist, ofile))
	{
	  struct cleanup *notify_cleanup;
	  notify_cleanup =
	    make_cleanup_ui_out_notify_begin_end (uiout, "var-deleted");
	  ui_out_field_string (uiout, "var", (*root)->obj_name);
	  do_cleanups (notify_cleanup);
	  varobj_delete (*root, NULL, 0);	  
	}
      root++;
    }
  xfree (rootlist);
}

/* This returns the type of the variable. This skips past typedefs
   and returns the real type of the variable. Also, if dynamic_type 
   is set, it will return the full type rather than the base type.

   NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
   except within get_target_type and get_type. 

   APPLE LOCAL:
   JCI: This comment does not seem right to me.  When we get the type of
   a child varobj, where the parent is a struct or a union, we call
   lookup_struct_elt_type.  This directly calls TYPE_TARGET_TYPE, so we
   get the TYPEDEF name, not the resolved name.  This is actually useful,
   since you may want to display two typedef's differently, though their
   base type is the same.  Of course, when you go to make the child of
   one of these child varobj's, you need to resolve the typedef then...

   This comes up below in c_type_of_child, when we are creating children of
   an array type.  There we were calling get_target_type (parent) but that
   obscured the typedef info.  Calling TYPE_TARGET_TYPE directly is more
   useful.
*/

static struct type *
get_type (struct varobj *var)
{
  struct type *type;

  if (varobj_use_dynamic_type && var->dynamic_type != NULL)
    type = var->dynamic_type;
  else
    type = var->type;

  if (type != NULL)
    type = check_typedef (type);

  return type;
}

/* This returns the type of the variable, dereferencing pointers, too. 
   If was_ptr non-null, this will also return whether the original
   was a pointer (1) a reference (2) or not (0). */

static struct type *
get_type_deref (struct varobj *var, int *was_ptr)
{
  struct type *type;
  enum type_code code;

  if (was_ptr != NULL)
    *was_ptr = 0;

  type = get_type (var);
  code = TYPE_CODE (type);

  if (type != NULL && (code == TYPE_CODE_PTR
		       || code == TYPE_CODE_REF))
    {
      type = get_target_type (type);
      if (was_ptr != NULL)
	{
	  if (code == TYPE_CODE_PTR)
	    *was_ptr = 1;
	  else if (code == TYPE_CODE_REF)
	    *was_ptr = 2;
	}
    }

  return type;
}

/* This returns the target type (or NULL) of TYPE, also skipping
   past typedefs, just like get_type ().

   NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
   except within get_target_type and get_type. */
static struct type *
get_target_type (struct type *type)
{
  if (type != NULL)
    {
      type = TYPE_TARGET_TYPE (type);
      if (type != NULL)
	type = check_typedef (type);
    }

  return type;
}

/* What is the default display for this variable? We assume that
   everything is "natural". Any exceptions? */
static enum varobj_display_formats
variable_default_display (struct varobj *var)
{
  return FORMAT_NATURAL;
}

/* This function is similar to GDB's value_contents_equal, except that
   this one is "safe"; it never longjmps.  It determines if the VAL1's
   value is the same as VAL2.  If for some reason the value of VAR2
   can't be established, *ERROR2 is set to non-zero.  */

static int
my_value_equal (struct value *val1, struct value *volatile val2, int *error2)
{
  int r, err1, err2;

  /* As a special case, if both are null, we say they're equal.  */
  if (val1 == NULL && val2 == NULL)
    return 1;
  else if (val1 == NULL || val2 == NULL)
    return 0;

  /* The contents of VAL1 are supposed to be known.  */
  gdb_assert (!value_lazy (val1));

  /* This is bogus, but unfortunately necessary. We must know
     exactly what caused an error -- reading val1 or val2 --  so
     that we can really determine if we think that something has changed. */
  err1 = 0;
  err2 = 0;
  /* We do need to catch errors here because the whole purpose
     is to test if value_equal() has errored */
  if (!gdb_value_equal (val1, val1, &r))
    err1 = 1;

  if (!gdb_value_equal (val2, val2, &r))
    *error2 = err2 = 1;

  if (err1 != err2)
    return 0;

  if (!gdb_value_equal (val1, val2, &r))
    {
      /* An error occurred, this could have happened if
         either val1 or val2 errored. ERR1 and ERR2 tell
         us which of these it is. If both errored, then
         we assume nothing has changed. If one of them is
         valid, though, then something has changed. */
      if (err1 == err2)
        {
          /* both the old and new values caused errors, so
             we say the value did not change */
          /* This is indeterminate, though. Perhaps we should
             be safe and say, yes, it changed anyway?? */
          return 1;
        }
      else
        {
          return 0;
        }
    }

  return r;
}

/* Handle the changelist for varobj_update.  This has two data bits for
   each entry, the varobj, and whether its type has changed. */

static struct varobj_changelist *
varobj_changelist_init ()
{
  struct varobj_changelist *result =
    (struct varobj_changelist *) xmalloc (sizeof (struct varobj_changelist *));

  result->tail = NULL;
  result->head = NULL;

  return result;
}

static void
varobj_add_to_changelist (struct varobj_changelist *changelist, 
			  struct varobj *var, 
			  enum varobj_type_change type_changed)
{
  struct varobj_changelist_elem *s;

  s = (struct varobj_changelist_elem *) 
    xmalloc (sizeof (struct varobj_changelist_elem));
  s->var = var;
  s->type_changed = type_changed;
  s->next = NULL;
  if (changelist->head == NULL) 
    {
      changelist->head = s;
      changelist->tail = s;
    }
  else
    {
      changelist->tail->next = s;
      changelist->tail = s;
    }
}

/* pop the next element off of CHANGELIST, and return the varobj,
   and type_changed if necessary.  When the list is empty, return
   NULL, and delete the changelist.  After NULL is returned, you
   can't use the list any more. */

struct varobj *
varobj_changelist_pop (struct varobj_changelist *changelist, 
		       enum varobj_type_change *type_changed)
{
  struct varobj_changelist_elem *s;
  struct varobj *v;

  if (changelist->head == NULL)
    {
      xfree (changelist);
      return NULL;
    }

  s = changelist->head;
  changelist->head = s->next;

  v = s->var;
  if (type_changed != NULL)
    *type_changed = s->type_changed;

  xfree (s);

  return v;
}

/* FIXME: The following should be generic for any pointer */
static void
vpush (struct vstack **pstack, struct varobj *var)
{
  struct vstack *s;

  s = (struct vstack *) xmalloc (sizeof (struct vstack));
  s->var = var;
  s->next = *pstack;
  *pstack = s;
}

/* FIXME: The following should be generic for any pointer */
static struct varobj *
vpop (struct vstack **pstack)
{
  struct vstack *s;
  struct varobj *v;

  if ((*pstack)->var == NULL && (*pstack)->next == NULL)
    return NULL;

  s = *pstack;
  v = s->var;
  *pstack = (*pstack)->next;
  xfree (s);

  return v;
}

/* FIXME: The following should be generic for any pointer */
static void
cppush (struct cpstack **pstack, char *name)
{
  struct cpstack *s;

  s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
  s->name = name;
  s->next = *pstack;
  *pstack = s;
}

/* FIXME: The following should be generic for any pointer */
static char *
cppop (struct cpstack **pstack)
{
  struct cpstack *s;
  char *v;

  if ((*pstack)->name == NULL && (*pstack)->next == NULL)
    return NULL;

  s = *pstack;
  v = s->name;
  *pstack = (*pstack)->next;
  xfree (s);

  return v;
}

/*
 * Language-dependencies
 */

/* Common entry points */

/* Get the language of variable VAR. */
static enum varobj_languages
variable_language (struct varobj *var)
{
  enum varobj_languages lang;

  if (var->root->exp == NULL)
    return vlang_c;

  switch (var->root->exp->language_defn->la_language)
    {
    default:
    case language_c:
      lang = vlang_c;
      break;
    case language_objcplus:
    case language_cplus:
      lang = vlang_cplus;
      break;
    case language_java:
      lang = vlang_java;
      break;
    }

  return lang;
}

/* Return the number of children for a given variable.
   The result of this function is defined by the language
   implementation. The number of children returned by this function
   is the number of children that the user will see in the variable
   display. */
static int
number_of_children (struct varobj *var)
{
  return (*var->root->lang->number_of_children) (var);;
}

/* APPLE LOCAL begin */
/* Returns a pointer to the expression for the root varobj VAR? 
   NB call this only on already constructed variables.  */
/* APPLE LOCAL end */

static char *
name_of_variable (struct varobj *var)
{
  /* APPLE LOCAL */
  return var->name;
}

/* APPLE LOCAL begin cast varobj root to dynamic type, if appropriate.  */

/* Given a varobj that is a root, check to see if it has a dynamic type
   (and if the language is one that allows type casting), and if so return
   a path expr for the varobj that casts it to its dynamic type.  */
static char *
path_expr_of_root (struct varobj *var)
{
  char *path_expr = var->name;
  char *dynamic_expr;
  int dynamic_expr_len;
  int root_name_len;

  if (var->root->lang->language != vlang_cplus
      && var->root->lang->language != vlang_c)
    return path_expr;

  if (varobj_use_dynamic_type != 0
      && var->dynamic_type != NULL
      && var->dynamic_type != var->type)
    {
      struct type *root_type = NULL;
      int root_is_ptr;

      root_type = get_type_deref (var, &root_is_ptr);
      if (root_is_ptr)
	{
	  const char *format = "(('%s' *) (%s))";
	  dynamic_expr = TYPE_NAME (root_type);
	  /* I got one report of a crash here because dynamic_expr
	     is NULL.  I don't know how that could happen, however.  */
	  if (dynamic_expr)
	    {
	      dynamic_expr_len = strlen (dynamic_expr);
	      if (dynamic_expr_len > 0)
		{
		  root_name_len = strlen (var->name);
		  path_expr = (char *) xmalloc (dynamic_expr_len + root_name_len +
						strlen (format) - 3);
		  sprintf (path_expr, format, dynamic_expr, var->name);
		}
	    }
	}
    }

  return path_expr;
}
/* APPLE LOCAL end cast varobj root to dynamic type, if appropriate.  */

/* APPLE LOCAL begin */
/* Returns a pointer to the full rooted expression of varobj VAR.
   If it has not been computed yet, this will compute it */

static char *
path_expr_of_variable (struct varobj *var)
{
  /* APPLE LOCAL begin cast varobj root to dynamic type, if appropriate.  */
  if (var->path_expr != NULL
      && (! is_root_p (var)))
    return var->path_expr;
  /* APPLE LOCAL is_root_p */
  else if (is_root_p (var))
    return path_expr_of_root (var);
  /* APPLE LOCAL end cast varobj root to dynamic type, if appropriate.  */
  else if (var->elide_in_expr)
    {
      if (CPLUS_FAKE_CHILD (var->parent))
	/* FIXME: Note we won't get here for now, since I don't set
	   the elide_in_expr for fake children.  But this is how it
	   really should work...  */
	var->path_expr = xstrdup (path_expr_of_variable (var->parent->parent));
      else
	var->path_expr = xstrdup (path_expr_of_variable (var->parent));
      return var->path_expr;
    }
  else
    return path_expr_of_child (var->parent, var->index);
}
/* APPLE LOCAL end */

/* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
static char *
make_name_of_child (struct varobj *var, int index)
{
  return (*var->root->lang->make_name_of_child) (var, index);
}

/* APPLE LOCAL begin */
/* What is the rooted expression of the INDEX'th child of VAR? Returns
   a malloc'd string. */
static char *
path_expr_of_child (struct varobj *var, int index)
{
  return (*var->root->lang->path_expr_of_child) (var, index);
}

int
varobj_type_is_equal_p (struct varobj *old_var, struct varobj *new_var)
{
  char *old_type, *new_type;
  int result;
  
  /* Don't consider them equal if either has a NULL type pointer.  */
  if (old_var->type == NULL || new_var->type == NULL)
    return 0;

  /* FIXME: Just comparing the names is not good enough.  They have to have
     the same children as well, or we could end up casting the variable to
     another of the same name but different layout behind the user's back.  */

  old_type = varobj_get_type (old_var);
  new_type = varobj_get_type (new_var);

  result = (strcmp (old_type, new_type) == 0);

  xfree (old_type);
  xfree (new_type);

  return result;
}
/* APPLE LOCAL end */

/* What is the ``struct value *'' of the root variable VAR? 
   APPLE LOCAL begin
   Returns the current value of VAR_HANDLE, or NULL if there was 
   some error.  

   On return, TYPE_CHANGED will be 1 if the type has changed, and 0
   otherwise.  However, if the return value is NULL, TYPE_CHANGED
   won't be set.
   
   Finally, if the type has changed in the generic value_of_root code,
   then the old varobj will be discarded, and a new one made for it.
   However, if the type changed down in the language part of
   value_of_root (possibly because the dynamic type changed, the
   varobj may just be fixed up, so you shouldn't depend on its being
   replaced or not.  */
/* APPLE LOCAL end */

static struct value *
/* APPLE LOCAL */
value_of_root (struct varobj **var_handle, enum varobj_type_change *type_changed)
{
  struct varobj *var;

  if (var_handle == NULL)
    return NULL;

  var = *var_handle;

  /* This should really be an exception, since this should
     only get called with a root variable. */

  if (var->root->rootvar != var)
    return NULL;

  /* APPLE LOCAL begin */
  /* If we have a use_selected_frame variable, we need to reparse the
     expression from scratch to see if it is of a different type, etc.
     Also, if we failed to even get the type of the varobj, we should try
     to recreate the varobj to see if we have gotten past the failure.
     One example where this could happen is if the varobj is an ObjC expression
     which references something that hasn't been initialized yet... In this
     case one of the "lookup implementation for selector & object" functions
     can crash, so we can't even get the type.  

     FIXME: Shouldn't we be able to short-circuit this here if the valid block
     of the varobj is the same as the currently selected block?  */

  if (var->root->use_selected_frame || get_type (var) == NULL)
    /* APPLE LOCAL end */
    {
      struct varobj *tmp_var;

      tmp_var = varobj_create (NULL, name_of_variable (var), (CORE_ADDR) 0, NULL,
			       USE_SELECTED_FRAME);
      /* If there was some error creating the variable, or we couldn't
	 find an expression for this variable, or we couldn't get its type,
	 then just return NULL.
	 There is no need to update it if it can't be parsed. */

      if (tmp_var == NULL)
	{
	  return NULL;
	}
      else if (tmp_var->root->exp == NULL || tmp_var->type == NULL)
	{
	  free_variable (tmp_var);
	  return NULL;
	}
      if (varobj_type_is_equal_p (tmp_var, var))
	{
	  /* If the frame has changed, we set the var's frame & valid_block
	     to the new values.  Then we'll check the value later on, and
	     if it has changed we'll update it.  */

	  if (!frame_id_eq (tmp_var->root->frame, var->root->frame))
	    {
	      *type_changed = VAROBJ_SCOPE_CHANGED;
	    }

	  else if ((var->root->valid_block != NULL 
	       && tmp_var->root->valid_block != NULL)
	      && ((var->root->valid_block->startaddr 
		   != tmp_var->root->valid_block->startaddr)
		  || (var->root->valid_block->endaddr 
		      != tmp_var->root->valid_block->endaddr)))
	    {
	      /* Oops, there is another case here...  What if the variable
		 is shadowed by another of the same name & type, but different
		 block...  Then we need to select the new varobj as well. */
	      *type_changed = VAROBJ_SCOPE_CHANGED;
	    }

	  else if (tmp_var->root->in_scope 
	      && !var->root->in_scope)
	    {
	      *type_changed = VAROBJ_SCOPE_CHANGED;
	    }
	  else
	    {
	      varobj_delete (tmp_var, NULL, 0);
	      *type_changed = VAROBJ_TYPE_UNCHANGED;
	    }
	}
      else
	*type_changed = VAROBJ_TYPE_CHANGED;

      if (*type_changed != VAROBJ_TYPE_UNCHANGED)
	{
	  tmp_var->obj_name =
	    savestring (var->obj_name, strlen (var->obj_name));
	  varobj_delete (var, NULL, 0);
	  install_variable (tmp_var);
	  *var_handle = tmp_var;
	  var = *var_handle;
	}
    }
  else
    {
      *type_changed = VAROBJ_TYPE_UNCHANGED;
      
      /* We need to make sure that the PC is in the valid block for
	 this variable.  The problem is that gdb will "successfully"
	 evaluate variables that are defined in a block in the current
	 function, even if the pc is not in that block... We need to
	 help the user out in this case. */
      
      if (!varobj_pc_in_valid_block_p (var))
	{
	  if (var->root->in_scope == 1)
	    *type_changed = VAROBJ_SCOPE_CHANGED;
	  return NULL;
	}

      /* The other way the type could change is if this is a pointer to
	 something that has a dynamic type, and the dynamic type has changed. */

      
    }
  
  return (*var->root->lang->value_of_root) (var_handle, type_changed);
}

/* varobj_pc_in_valid_block_p returns 1 if the pc for the frame for varobj
   VAR is in within the var's valid block.  Use this to tell whether a
   variable in a block inside a function is in scope. */

int
varobj_pc_in_valid_block_p (struct varobj *var)
{
  struct frame_info *fi;
  CORE_ADDR cur_pc;
  
  /* valid_block is set by innermost_frame, which uses NULL to mean the variable
     was in a global block. */

  if (var->root->valid_block == NULL)
    return 1;
  
  /* reinit_frame_cache (); */
  
  fi = frame_find_by_id (var->root->frame);
  if (fi != NULL)
    {
      cur_pc = get_frame_pc (fi);
      /* If we are up on the stack, then the pc is actually the
	 RETURN pc.  We could call find_frame_sal to get the full
	 sal for the frame, the pc there is the real caller pc if
	 that can be determined.  But that's expensive, and since
	 all we really care about is whether the pc is in this block
	 or not, it's fine to just subtract 1 here before doing the
	 comparision.  */

      if (frame_relative_level (fi) > 0)
	cur_pc -= 1;

      return (block_contains_pc (var->root->valid_block, cur_pc));
    }
  else
    {
      return 0;
    }

  return 1;
}

/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
static struct value *
value_of_child (struct varobj *parent, int index, 
		enum varobj_type_change *type_changed)
{
  struct value *value;
  struct varobj *child;
  int lookup_dynamic_type;

  *type_changed = VAROBJ_TYPE_UNCHANGED;

  value = (*parent->root->lang->value_of_child) (parent, index, &lookup_dynamic_type);
  child = child_exists (parent, index);

  if (child == NULL)
    error ("value_of_child called with a NULL child");

  if (value == NULL)
    return value;

  if (lookup_dynamic_type)
    {
      struct type *dynamic_type;
      struct value *new_value;
      char *dynamic_type_name;

      new_value = varobj_fixup_value (value, varobj_use_dynamic_type, 
				      child->root->valid_block,
				      &dynamic_type, &dynamic_type_name);

      /* value_of_child returns a value that has been released.  So if
	 we are going to replace it, we need to free the old value,
	 and release the new one.  */

      if (new_value != value) 
	{
	  value_free (value);
	  release_value (new_value);
	  value = new_value;
	}

      if (dynamic_type != child->dynamic_type)
	{
	  child->dynamic_type = dynamic_type;
	  if (child->dynamic_type_name != NULL)
	    {
	      xfree (child->dynamic_type_name);
	      child->dynamic_type_name = NULL;
	    }
	  *type_changed = VAROBJ_DYNAMIC_TYPE_CHANGED;
	}

      if (child->dynamic_type == NULL)
	{
	  if (child->dynamic_type_name == NULL)
	    {
	      if (dynamic_type_name != NULL)
		{
		  child->dynamic_type_name = dynamic_type_name;
		  *type_changed = VAROBJ_DYNAMIC_TYPE_CHANGED;
		}
	    }
	  else
	    {
	      if (dynamic_type_name == NULL
		  || strcmp (child->dynamic_type_name, dynamic_type_name) != 0)
		{
		  xfree (child->dynamic_type_name);
		  child->dynamic_type_name = dynamic_type_name;
		  *type_changed = VAROBJ_DYNAMIC_TYPE_CHANGED;
		}
	    }
	}
    }

  /* If we're being lazy, fetch the real value of the variable. */
  if (value != NULL && value_lazy (value))
    {
      /* If we fail to fetch the value of the child, return
         NULL so that callers notice that we're leaving an
         error message. */
      if (!gdb_value_fetch_lazy (value))
	value = NULL;
    }

  return value;
}

/* What is the type of VAR? */
static struct type *
type_of_child (struct varobj *var)
{

  /* If the child had no evaluation errors, var->value
     will be non-NULL and contain a valid type. */
  if (var->value != NULL)
    return value_type (var->value);

  /* Otherwise, we must compute the type. */
  return (*var->root->lang->type_of_child) (var->parent, var->index);
}

/* Is this variable editable? Use the variable's type to make
   this determination. */
static int
variable_editable (struct varobj *var)
{
  return (*var->root->lang->variable_editable) (var);
}

/* GDB already has a command called "value_of_variable". Sigh. */
static char *
my_value_of_variable (struct varobj *var)
{
  return (*var->root->lang->value_of_variable) (var);
}

/* Is VAR something that can change? Depending on language,
   some variable's values never change. For example,
   struct and unions never change values. */
static int
/* APPLE LOCAL rename type_changeable */
varobj_value_is_changeable_p (struct varobj *var)
{
  int r;
  struct type *type;

  if (CPLUS_FAKE_CHILD (var))
    return 0;

  type = get_type (var);

  /* If the type is not set (maybe a USE_SELECTED_FRAME 
     variable that hasn't been made yet) then say it
     is unchangeable.  That is safest... */

  if (type == NULL)
    return 0;

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_ARRAY:
      r = 0;
      break;

    default:
      r = 1;
    }

  return r;
}

/* C */
static int
c_number_of_children (struct varobj *var)
{
  struct type *type;
  struct type *target;
  int children;

  type = get_type (var);
  if (type == NULL)
    return -1;

  target = get_target_type (type);
  children = 0;

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_ARRAY:
      if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
	  && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED)
	children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
      else
	children = -1;
      break;

    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      children = TYPE_NFIELDS (type);
      break;

    case TYPE_CODE_PTR:
    case TYPE_CODE_REF:
      /* This is where things get compilcated. All pointers have one child.
         Except, of course, for struct and union ptr, which we automagically
         dereference for the user and function ptrs, which have no children.
         We also don't dereference void* as we don't know what to show.
         We can show char* so we allow it to be dereferenced.  If you decide
         to test for it, please mind that a little magic is necessary to
         properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and 
         TYPE_NAME == "char" */

      switch (TYPE_CODE (target))
	{
	case TYPE_CODE_STRUCT:
	case TYPE_CODE_UNION:
	  children = TYPE_NFIELDS (target);
	  break;

	case TYPE_CODE_FUNC:
	case TYPE_CODE_VOID:
	  children = 0;
	  break;

	default:
	  children = 1;
	}
      break;

    default:
      /* Other types have no children */
      break;
    }

  return children;
}

static char *
c_make_name_of_child (struct varobj *parent, int index)
{
  struct type *type;
  struct type *target;
  char *name;
  char *string;

  type = get_type (parent);
  target = get_target_type (type);

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_ARRAY:
      name = xstrprintf ("%d", index);
      break;

    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      string = TYPE_FIELD_NAME (type, index);
      name = savestring (string, strlen (string));
      break;

    case TYPE_CODE_PTR:
      switch (TYPE_CODE (target))
	{
	case TYPE_CODE_STRUCT:
	case TYPE_CODE_UNION:
	  string = TYPE_FIELD_NAME (target, index);
	  name = savestring (string, strlen (string));
	  break;

	default:
	  name = xstrprintf ("*%s", parent->name);
	  break;
	}
      break;
    case TYPE_CODE_REF:
      switch (TYPE_CODE (target))
	{
	case TYPE_CODE_STRUCT:
	case TYPE_CODE_UNION:
	  string = TYPE_FIELD_NAME (target, index);
	  name = savestring (string, strlen (string));
	  break;

	default:
	  name = xstrprintf ("*%s", parent->name);
	  break;
	}
      break;

    default:
      /* This should not happen */
      name = xstrdup ("???");
    }

  return name;
}

static char *
c_path_expr_of_child (struct varobj *parent, int index)
{
  char *path_expr;
  struct varobj *child = child_exists (parent, index);
  char *parent_expr;
  char *name;
  int parent_len, child_len, len;

  if (child == NULL)
    error ("c_path_expr_of_child: " 
	   "Tried to get path expression for a null child.");

  parent_expr = path_expr_of_variable (parent);
  name = name_of_variable (child);

  /* If the child has a NULL or empty name it must be an anonomyous
     structure or union.  In that case, return the parent's name.  */
  if (name == NULL || strlen (name) == 0)
    return parent_expr;

  parent_len = strlen (parent_expr);
  child_len = strlen (name);
  len = parent_len + child_len + 2 + 1; /* 2 for (), and 1 for null */

  switch (parent->join_in_expr)
    {
    case VAROBJ_AS_ARRAY:
      {
	/* We never get here unless parent->num_children is greater than 0... */
	
	len += 2;
	path_expr = (char *) xmalloc (len);
	sprintf (path_expr, "(%s)[%s]", parent_expr, name);
      }
      break;

    case VAROBJ_AS_STRUCT:
      len += 1;
      path_expr = (char *) xmalloc (len);
      sprintf (path_expr, "(%s).%s", parent_expr, name);
      break;

    case VAROBJ_AS_PTR_TO_STRUCT:
      len += 2;
      path_expr = (char *) xmalloc (len);
      sprintf (path_expr, "(%s)->%s", parent_expr, name);
      break;
    case VAROBJ_AS_PTR_TO_SCALAR:
      len += parent_len + 2 + 1 + 1;
      path_expr = (char *) xmalloc (len);
      sprintf (path_expr, "*(%s)", parent_expr);
      break;

    case VAROBJ_AS_DUNNO:
      /* This should not happen */
      len = 5;
      path_expr =
	(char *) xmalloc (len);
      sprintf (path_expr, "????");
    }

  child->path_expr = path_expr;
  return path_expr;
}

static struct value *
c_value_of_root (struct varobj **var_handle, enum varobj_type_change *type_changed)
{
  struct value *new_val;
  struct varobj *var = *var_handle;
  struct frame_info *fi;
  int within_scope;
  struct value *ret_value = NULL; 
  
  /*  Only root variables can be updated... */
  if (var->root->rootvar != var)
    /* Not a root var */
    return NULL;


  /* Determine whether the variable is still around. */
  if (var->root->valid_block == NULL)
    within_scope = 1;
  else
    {
      reinit_frame_cache ();
      fi = frame_find_by_id (var->root->frame);
      within_scope = fi != NULL;
      /* FIXME: select_frame could fail */
      if (within_scope)
	select_frame (fi);
    }

  if (within_scope)
    {
      /* We need to catch errors here, because if evaluate
         expression fails we just want to make val->error = 1 and
         go on */
      struct cleanup *schedlock_chain;

      schedlock_chain = make_cleanup_set_restore_scheduler_locking_mode (scheduler_locking_on);

      if (varobj_evaluate_expression (var->root->exp, &new_val))
	{
	  struct type *dynamic_type;
	  char *dynamic_type_name;
	  new_val = varobj_fixup_value (new_val, varobj_use_dynamic_type, 
					var->root->valid_block,
					&dynamic_type, &dynamic_type_name);
	  if (varobj_use_dynamic_type)
	    {
	      if (var->dynamic_type != dynamic_type)
		{
		  *type_changed = VAROBJ_DYNAMIC_TYPE_CHANGED;
		  var->dynamic_type = dynamic_type;
		  xfree (var->dynamic_type_name);
		  var->dynamic_type_name = NULL;
		  
		  /* Probably need to kill the children and reset the number of children... */
		  varobj_delete (var, NULL, 1);
		  var->num_children = number_of_children (var);
		}
	      if (var->dynamic_type == NULL)
		{
		  if (var->dynamic_type_name == NULL)
		    {
		      if (dynamic_type_name != NULL)
			{
			  *type_changed = VAROBJ_DYNAMIC_TYPE_CHANGED;
			  var->dynamic_type_name = dynamic_type_name;
			}
		    }
		  else
		    {
		      if (dynamic_type_name == NULL
			  || strcmp (dynamic_type_name, var->dynamic_type_name) != 0)
			{
			  *type_changed = VAROBJ_DYNAMIC_TYPE_CHANGED;
			  xfree (var->dynamic_type_name);
			  var->dynamic_type_name = dynamic_type_name;
			}
		    }
		}
	    }

	  if (value_lazy (new_val))
	    {
	      /* We need to catch errors because if
	         value_fetch_lazy fails we still want to continue
	         (after making val->error = 1) */
	      /* FIXME: Shouldn't be using value_contents()?  The
	         comment on value_fetch_lazy() says it is only called
	         from the macro... */
	      if (!gdb_value_fetch_lazy (new_val))
		var->error = 1;
	      else
		var->error = 0;
	    }
	  release_value (new_val);
	  ret_value = new_val;
	}
      else
	{
	  var->error = 1;
	}
      do_cleanups (schedlock_chain);

    }

  return ret_value;
}

/* APPLE LOCAL: varobj_lookup_struct_elt_type_by_index does the same
   fiddling as lookup_struct_elt_type - dereferencing the parent type
   - and then looks up the element by index rather than name.  We have
   to use this rather than lookup_struct_elt_type (as the FSF code
   does) because the name is not unique for anonymous unions and
   structures.  */

static struct type *
varobj_lookup_struct_elt_type_by_index (struct varobj *parent, int index)
{
  struct type *type;
  int type_index;
  char *type_for_printing;

  if (CPLUS_FAKE_CHILD (parent))
    {
      type_index = varobj_get_type_index_from_fake_child (parent, index);
      type = get_type (parent->parent);
    }
  else
    {
      type = get_type (parent);
      type_index = index;
    }
  
  for (;;)
    {
      CHECK_TYPEDEF (type);
      if (TYPE_CODE (type) != TYPE_CODE_PTR
	  && TYPE_CODE (type) != TYPE_CODE_REF)
	break;
      type = TYPE_TARGET_TYPE (type);
    }

  if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
      TYPE_CODE (type) != TYPE_CODE_UNION)
    {
      target_terminal_ours ();
      gdb_flush (gdb_stdout);
      type_for_printing = type_sprint (type, "", -1);
      make_cleanup (xfree, type_for_printing);
      error ("Type %s is not a structure or union type.", type_for_printing);
    }
  return TYPE_FIELD_TYPE (type, type_index);
}

/* APPLE LOCAL: varobj_value_struct_elt_by_index does the same
   fiddling with the incoming value as value_struct_elt does, but it
   uses the INDEX in the varobj PARENT to lookup the value instead of
   using the name.  It only does data, it won't lookup methods.
   Sets RET_VAL to the value, and returns 1 on success, 0 on
   failure.  */

static int
varobj_value_struct_elt_by_index (struct varobj *parent, int index, struct value **ret_val)
{
  struct type *t;
  struct value *value;
  struct value *parent_value;
  int type_index;
  volatile struct gdb_exception e;

  if (CPLUS_FAKE_CHILD (parent))
    parent_value = parent->parent->value;
  else
    parent_value = parent->value;

  parent_value = coerce_array (parent_value);

  t = check_typedef (value_type (parent_value));

  /* Follow pointers until we get to a non-pointer.  */

  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
    {
      parent_value = value_ind (parent_value);
      /* Don't coerce fn pointer to fn and then back again!  */
      if (TYPE_CODE (value_type (parent_value)) != TYPE_CODE_FUNC)
        parent_value = coerce_array (parent_value);
      t = check_typedef (value_type (parent_value));
    }

  if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
    error (_("not implemented: member type in varobj_value_struct_elt_by_index"));

  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error (_("Attempt to extract a component of a value that is not a struct or union."));

  type_index = varobj_get_type_index_from_fake_child (parent, index);

  TRY_CATCH (e, RETURN_MASK_ERROR)
    {
      if (TYPE_FIELD_STATIC (t, type_index))
	value = value_static_field (t, type_index);
      else
	value = value_primitive_field (parent_value, 0, type_index, t);
    }
  if (e.reason < 0)
    {
      *ret_val = NULL;
      return 0;
    }
  else
    {
      *ret_val = value;
      return 1;
    }
}

  /* varobj_get_type_index_from_fake_child: Returns the index
     of the child in the parent's type's TYPE_FIELD. If PARENT
     is not a CPLUS_FAKE_CHILD, returns INDEX.

     The fields of the class type are ordered as they appear in the
     class.  We are given an index for a particular access control
     type ("public","protected", or "private").  We must skip over
     fields that don't have the access control we are looking for to
     properly find the indexed field. */

static int
varobj_get_type_index_from_fake_child (struct varobj *parent, int index)
{
  struct type* type;
  int type_index = -1;

  if (!CPLUS_FAKE_CHILD (parent))
    {
      return index;
    }
  else
    {
      /* Looking for children of public, private, or protected. */
      type = get_type_deref (parent->parent, NULL);
    }
  
  if (TYPE_CODE (type) != TYPE_CODE_STRUCT
      && TYPE_CODE_UNION)
    return index;

  type_index = TYPE_N_BASECLASSES (type);
  if (strcmp (parent->name, "private") == 0)
    {
      while (index >= 0)
	{
	  if (TYPE_VPTR_BASETYPE (type) == type
	      && type_index == TYPE_VPTR_FIELDNO (type))
                    ; /* ignore vptr */
	  else if (TYPE_FIELD_STATIC (type, type_index))
	    ; /* APPLE LOCAL: ignore static fields.  */
	  else if (TYPE_FIELD_PRIVATE (type, type_index))
	    --index;
	  ++type_index;
	}
      --type_index;
    }
  else if (strcmp (parent->name, "protected") == 0)
    {
      while (index >= 0)
	{
	  if (TYPE_VPTR_BASETYPE (type) == type
	      && type_index == TYPE_VPTR_FIELDNO (type))
	    ; /* ignore vptr */
	  else if (TYPE_FIELD_STATIC (type, type_index))
	    ; /* APPLE LOCAL: ignore static fields.  */
	  else if (TYPE_FIELD_PROTECTED (type, type_index))
	    --index;
	  ++type_index;
	}
      --type_index;
    }
  else
    {
      while (index >= 0)
	{
	  if (TYPE_VPTR_BASETYPE (type) == type
	      && type_index == TYPE_VPTR_FIELDNO (type))
	    ; /* ignore vptr */
	  else if (TYPE_FIELD_STATIC (type, type_index))
	    ; /* APPLE LOCAL: ignore static fields.  */
	  else if (!TYPE_FIELD_PRIVATE (type, type_index) &&
		   !TYPE_FIELD_PROTECTED (type, type_index))
	    --index;
	  ++type_index;
	}
      --type_index;
    }
  return type_index;
}

static struct value *
c_value_of_child (struct varobj *parent, int index, int *lookup_dynamic_type)
{
  struct value *value;
  struct value *temp;
  struct value *indval;
  struct type *type, *target;
  struct varobj *child;
  char *name;

  /* APPLE LOCAL: Most of the other languages find their way here, so it's
     just easier to handle the lookup_dynamic_type here than everywhere this
     gets called */

  if (lookup_dynamic_type != NULL)
    {
      switch (parent->root->exp->language_defn->la_language)
	{
	case language_objc:
	case language_objcplus:
	case language_cplus:
	case language_java:
	  *lookup_dynamic_type = 1;
	  break;
	case language_c:
	default:
	  *lookup_dynamic_type = 0;
	  break;
	}
    }


  type = get_type (parent);
  target = get_target_type (type);
  
  child = child_exists (parent, index);

  if (child == NULL)
    error ("c_value_of_child: called with NULL child");

  name = name_of_variable (child);

  temp = parent->value;
  value = NULL;

  if (temp != NULL)
    {
      switch (TYPE_CODE (type))
	{
	case TYPE_CODE_ARRAY:
#if 0
	  /* This breaks if the array lives in a (vector) register. */
	  value = value_slice (temp, index, 1);
	  temp = value_coerce_array (value);
	  gdb_value_ind (temp, &value);
#else
	  indval = value_from_longest (builtin_type_int, (LONGEST) index);
	  gdb_value_subscript (temp, indval, &value);
#endif
	  break;

	case TYPE_CODE_STRUCT:
	case TYPE_CODE_UNION:
	      /* APPLE LOCAL: Can't use the value_struct_elt, since
                 that looks up by name which doesn't work for
                 anonymous unions & structures.  */
	  varobj_value_struct_elt_by_index (parent, index, &value);
	  /* END APPLE LOCAL */
	  break;

	case TYPE_CODE_PTR:
	case TYPE_CODE_REF:
	  switch (TYPE_CODE (target))
	    {
	    case TYPE_CODE_STRUCT:
	    case TYPE_CODE_UNION:
	      /* APPLE LOCAL: Can't use the value_struct_elt, since
                 that looks up by name which doesn't work for
                 anonymous unions & structures.  */
	      varobj_value_struct_elt_by_index (parent, index, &value);
	      /* END APPLE LOCAL */
	      break;

	    default:
	      
	      if (TYPE_CODE (type) == TYPE_CODE_PTR)
		{		
		  if (!gdb_value_ind (temp, &value))
		    {
		      /* If we errored out here, then the value is likely
			 bogus.  Release it and return NULL.  Using it
			 can be dangerous.
		      */
		      if (value != NULL)
			release_value (value);
		      return NULL;
		    }
		}
	      else if (TYPE_CODE (type) == TYPE_CODE_REF)
		{
		  /* If the parent is a reference to a POINTER, then the
		     value of the child is just the coerced reference.  */
		  value = value_copy (temp);
		  value = coerce_ref (value);
		}
	      break;
	    }
	  break;

	default:
	  break;
	}
    }

  if (value != NULL)
    release_value (value);

  return value;
}

static struct type *
c_type_of_child (struct varobj *parent, int index)
{
  struct type *type;
  struct varobj *child;
  struct type *parent_type = get_type (parent);
  struct type *target_type;

  char *name;

  child = child_exists (parent, index);
  if (child == NULL)
    error ("c_type_of_child: called with a NULL child.");

  name = name_of_variable (child);

  switch (TYPE_CODE (parent_type))
    {
    case TYPE_CODE_ARRAY:
      /* APPLE LOCAL: Don't call get_target_type here, that
	 skips over typedefs, but what the variable was typedef'ed
	 to be is often useful.  However, DO call check_typedef
         on the parent, or you won't get the real type of the
         child, you'll get what the parent was typedef'ed to.  */
      type = TYPE_TARGET_TYPE (check_typedef(parent->type)); 
      /* END APPLE LOCAL */
      break;

    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      /* APPLE LOCAL: Can't use the lookup_struct_elt_type, since that looks
	 up by name which doesn't work for anonymous unions &
	 structures.  */
      
      type = varobj_lookup_struct_elt_type_by_index (parent, index);
      /* END APPLE LOCAL */
      break;

    case TYPE_CODE_PTR:
    case TYPE_CODE_REF:
      /* Be careful here, this might be a pointer pointing to a typedef, 
	 and we need to get the real thing here or the children will be
	 wrong. */
      target_type = check_typedef (get_target_type (parent_type));
      switch (TYPE_CODE (target_type))
	{
	case TYPE_CODE_STRUCT:
	case TYPE_CODE_UNION:
	  /* APPLE LOCAL: Can't use the lookup_struct_elt_type, since
	     that looks up by name which doesn't work for anonymous
	     unions & structures.  */
	  type = varobj_lookup_struct_elt_type_by_index (parent, index);
	  break;

	default:
	  type = target_type;
	  break;
	}
      break;

    default:
      /* This should not happen as only the above types have children */
      warning (_("Child of parent whose type does not allow children"));
      /* FIXME: Can we still go on? */
      type = NULL;
      error ("Child of parent: \"%s\" whose type: \"%d\" does not allow children",
	       name_of_variable (parent), TYPE_CODE (parent_type));
      break;
    }

  return type;
}

static int
c_variable_editable (struct varobj *var)
{
  switch (TYPE_CODE (get_type (var)))
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_ARRAY:
    case TYPE_CODE_FUNC:
    case TYPE_CODE_MEMBER:
    case TYPE_CODE_METHOD:
      return 0;
      break;

    default:
      return 1;
      break;
    }
}

static char *
c_value_of_variable (struct varobj *var)
{
  /* BOGUS: if val_print sees a struct/class, it will print out its
     children instead of "{...}" */

  switch (TYPE_CODE (get_type (var)))
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      return xstrdup ("{...}");
      /* break; */

    case TYPE_CODE_ARRAY:
      {
	char *number;
        /* APPLE LOCAL: need to call varobj_get_number_of_children,
           since we compute this lazily.  */
        number = xstrprintf ("[%d]", varobj_get_num_children (var));
	return (number);
      }
      /* break; */

    default:
      {
	if (var->value == NULL)
	  {
	    /* This can happen if we attempt to get the value of a struct
	       member when the parent is an invalid pointer. This is an
	       error condition, so we should tell the caller. */
	    return NULL;
	  }
	else
	  {
	    long dummy;
	    struct ui_file *stb = mem_fileopen ();
	    struct cleanup *old_chain = make_cleanup_ui_file_delete (stb);
	    char *thevalue;

	    if (value_lazy (var->value))
	      gdb_value_fetch_lazy (var->value);
	    /* APPLE LOCAL: It looks ugly to have reference values contain
	       the contents of the reference.  Just print them like pointers.  */
	    common_val_print (var->value, stb,
			      format_code[(int) var->format], 0, 0, 0);
	    thevalue = ui_file_xstrdup (stb, &dummy);
	    do_cleanups (old_chain);
	return thevalue;
      }
      }
    }
}


/* C++ */

static int
cplus_number_of_children (struct varobj *var)
{
  struct type *type;
  int children, dont_know;

  dont_know = 1;
  children = 0;

  if (!CPLUS_FAKE_CHILD (var))
    {
      type = get_type_deref (var, NULL);

      if (type == NULL)
	{
	  /* If I can't get the type, I have no hope of
	     counting the children.  Return -1 for not set... */
	  return -1;
	}
      else if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) 
	       || ((TYPE_CODE (type)) == TYPE_CODE_UNION))
	{
	  int kids[3];
	  
	  cplus_class_num_children (type, kids);
	  if (kids[v_public] != 0)
	    children++;
	  if (kids[v_private] != 0)
	    children++;
	  if (kids[v_protected] != 0)
	    children++;

	  /* Add any baseclasses */
	  children += TYPE_N_BASECLASSES (type);
	  dont_know = 0;

	  /* FIXME: save children in var */
	}
    }
  else
    {
      int kids[3];

      type = get_type_deref (var->parent, NULL);

      cplus_class_num_children (type, kids);
      if (strcmp (name_of_variable (var), "public") == 0)
	children = kids[v_public];
      else if (strcmp (name_of_variable (var), "private") == 0)
	children = kids[v_private];
      else
	children = kids[v_protected];
      dont_know = 0;
    }

  if (dont_know)
    children = c_number_of_children (var);

  return children;
}

/* Compute # of public, private, and protected variables in this class.
   That means we need to descend into all baseclasses and find out
   how many are there, too. */
static void
cplus_class_num_children (struct type *type, int children[3])
{
  int i;

  children[v_public] = 0;
  children[v_private] = 0;
  children[v_protected] = 0;

  for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
    {
      /* If we have a virtual table pointer, omit it. */
      if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
	continue;
      /* APPLE LOCAL: Don't include static members in the object.
	 These should be viewed as globals.  Plus, if we do this we
	 get into trouble when a class has a static member which is an
	 object of the class.  */
      if (TYPE_FIELD_STATIC (type, i))
	continue;

      if (TYPE_FIELD_PROTECTED (type, i))
	children[v_protected]++;
      else if (TYPE_FIELD_PRIVATE (type, i))
	children[v_private]++;
      else
	children[v_public]++;
    }
}

/* Compute the index in the type structure TYPE of the NUM'th field
   of protection level PROT */
static int
cplus_real_type_index_for_fake_child_index (struct type *type, 
                                      enum vsections prot, 
                                      int num)
{
  int num_found = 0;
  int foundit = 0;
  int i = 0;

  switch (prot)
    { 
      case v_public:
        for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
          {
            /* If we have a virtual table pointer, omit it. */
            if (TYPE_VPTR_BASETYPE (type) == type
	        && TYPE_VPTR_FIELDNO (type) == i)
	        continue;
	    /* APPLE LOCAL: Don't include static members in the
	       object printing.  */
	    if (TYPE_FIELD_STATIC (type, i))
	      continue;

            if (!TYPE_FIELD_PROTECTED (type, i) 
                 && !TYPE_FIELD_PRIVATE (type, i))
              {
                if (num_found == num)
                  {
                    foundit = 1;
                    break;
                  }
                else
	          num_found++;
              }
            }
          break;
      case v_protected:
        for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
          {
            /* If we have a virtual table pointer, omit it. */
            if (TYPE_VPTR_BASETYPE (type) == type
	        && TYPE_VPTR_FIELDNO (type) == i)
	        continue;
	    /* APPLE LOCAL: Don't include static members in the
	       object printing.  */
	    if (TYPE_FIELD_STATIC (type, i))
	      continue;

            if (TYPE_FIELD_PROTECTED (type, i))
              {
                if (num_found == num)
                  {
                    foundit = 1;
                    break;
                  }
                else
	          num_found++;
              }
            }
          break;
      case v_private:
        for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
          {
            /* If we have a virtual table pointer, omit it. */
            if (TYPE_VPTR_BASETYPE (type) == type
	        && TYPE_VPTR_FIELDNO (type) == i)
	        continue;
	    /* APPLE LOCAL: Don't include static members in the
	       object printing.  */
	    if (TYPE_FIELD_STATIC (type, i))
	      continue;

            if (TYPE_FIELD_PRIVATE (type, i))
              {
                if (num_found == num)
                  {
                    foundit = 1;
                    break;
                  }
                else
	          num_found++;
              }
            }
          break;
    }
    
    if (!foundit)
      return -1;
      
    return i;
 }

static char *
cplus_make_name_of_child (struct varobj *parent, int index)
{
  char *name;
  struct type *type;

  if (CPLUS_FAKE_CHILD (parent))
    {
      /* Looking for children of public, private, or protected. */
      type = get_type_deref (parent->parent, NULL);
    }
  else
    type = get_type_deref (parent, NULL);

  name = NULL;
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      if (CPLUS_FAKE_CHILD (parent))
	{
	  int type_index = varobj_get_type_index_from_fake_child (parent, index);
	  name = TYPE_FIELD_NAME (type, type_index);
	}
      else if (index < TYPE_N_BASECLASSES (type))
	/* We are looking up the name of a base class */
	name = TYPE_FIELD_NAME (type, index);
      else
	{
	  int children[3];
	  cplus_class_num_children(type, children);

	  /* Everything beyond the baseclasses can
	     only be "public", "private", or "protected"

	     The special "fake" children are always output by varobj in
	     this order. So if INDEX == 2, it MUST be "protected". */
	  index -= TYPE_N_BASECLASSES (type);
          switch (index)
            {
	    case 0:
	      if (children[v_public] > 0)
	 	name = "public";
	      else if (children[v_private] > 0)
	 	name = "private";
	      else 
	 	name = "protected";
	      break;
	    case 1:
	      if (children[v_public] > 0)
		{
		  if (children[v_private] > 0)
		    name = "private";
		  else
		    name = "protected";
		}
	      else if (children[v_private] > 0)
	 	name = "protected";
	      break;
	    case 2:
	      /* Must be protected */
	      name = "protected";
	      break;
	    default:
	      /* error! */
	      break;
            }
            if (name == NULL)
              return NULL;
	}
      break;

    default:
      break;
    }

  if (name == NULL)
    return c_make_name_of_child (parent, index);
  else
    {
      if (name != NULL)
	name = savestring (name, strlen (name));
    }

  return name;
}

static char *
cplus_path_expr_of_child (struct varobj *parent, int index)
{
  char *path_expr;
  struct type *type;
  int children[3];
  struct varobj *child = child_exists (parent, index);
  char *parent_expr = path_expr_of_variable (parent);
  int parent_len = strlen (parent_expr);
  int child_len;
  char *child_name;
  int is_ptr;

  if (child == NULL)
    error ("cplus_path_expr_of_child: " 
	   "Tried to get path expression for a null child.");

  /* If the child has a NULL or empty name it must be an anonomyous
     structure or union.  In that case, return the parent's name.  */
  if (name_of_variable (child) == NULL ||
      strlen (name_of_variable (child)) == 0)
    return parent_expr;

  /* The path expression for a fake child is just the parent, 
     that way we can just concatenate the fake child's expr and
     its real children. */
  if (CPLUS_FAKE_CHILD (child))
      return parent_expr;

  if (CPLUS_FAKE_CHILD (parent))
    {
      /* Looking for children of public, private, or protected. */
      type = get_type_deref (parent->parent, &is_ptr);
    }
  else
    type = get_type_deref (parent, &is_ptr);

  /* If the parent belongs to the ObjC runtime, let the c_path_expr_of_child
     do the work.  We don't have an objc language specific vector, since it's
     very little different from the basic C case.  */
  if (TYPE_RUNTIME (type) == OBJC_RUNTIME)
    return c_path_expr_of_child (parent, index);

  path_expr = NULL;
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      cplus_class_num_children (type, children);

      if (CPLUS_FAKE_CHILD (parent))
	{
          int index_in_type;
          enum vsections prot;
	  char *parent_name = name_of_variable (parent);
	  int child_is_ptr;
	  int dynamic_expr_len, join_expr_len;
	  char *dynamic_expr, *join_expr;

	  if (strcmp (parent_name, "private") == 0)
            prot = v_private;
          else if (strcmp (parent_name, "protected") == 0)
            prot = v_protected;
	  else if (strcmp (parent_name, "public") == 0)
            prot = v_public;
          else
            {
              error ("cplus_make_name_of_child got a parent with invalid "
		     "fake child name: \"%s\".", parent_name);
              return NULL;
            }

          index_in_type = 
            cplus_real_type_index_for_fake_child_index (type, prot, index);
          
	  child_name = TYPE_FIELD_NAME (type, index_in_type);
	  child_len = strlen (child_name);
	  
	  /* Here's another tricky point. This child varobj might have a 
	     dynamic type that's different from it's type, and this could be
	     one of the fields from the dynamic type.  If we don't
	     cast it to the dynamic type in this expression, then we won't
	     be able to access those fields.  */
	  
	  if (varobj_use_dynamic_type != 0 
	      && child->dynamic_type != NULL 
	      && child->dynamic_type != child->type)
	    {
	      struct type *child_type = NULL;
	      child_type = get_type_deref (child, &child_is_ptr);
	      if (!child_is_ptr)
		dynamic_expr_len = 0;
	      else
		{
		  dynamic_expr = TYPE_NAME (child_type);
		  dynamic_expr_len = strlen (dynamic_expr);
		}
	    }
	  else
	    {
	      dynamic_expr_len = 0;
	    }
	  
	  if (is_ptr)
	    {
	      join_expr = "->";
	      join_expr_len = 2;
	    }
	  else
	    {
	      join_expr = ".";
	      join_expr_len = 1;
	    }
	  if (dynamic_expr_len > 0)
		{
		  const char *format = "(('%s' *) ((%s)%s%s))";
		  path_expr = (char *) xmalloc (dynamic_expr_len + parent_len
						+ join_expr_len + child_len + strlen (format) - 6 + 1);
		  sprintf (path_expr, format, dynamic_expr, parent_expr, join_expr, child_name);
		}
	  else
	    {
	      const char *format = "((%s)%s%s)";
	      path_expr = (char *) xmalloc (parent_len + join_expr_len
					    + child_len + strlen (format) - 4 + 1);
	      sprintf (path_expr, format, parent_expr, join_expr, child_name);
	    }
	}
      else if (index < TYPE_N_BASECLASSES (type))
	{
	  child_name = TYPE_FIELD_NAME (type, index);
	  child_len = strlen (child_name);

	  if (is_ptr)
	    {
	      path_expr = (char *) xmalloc (parent_len + child_len + 9 + 1);
	      sprintf (path_expr, "(('%s' *) %s)", child_name, parent_expr);
	    }
	  else
	    {
	      path_expr = (char *) xmalloc (parent_len + child_len + 5 + 1);
	      sprintf (path_expr, "(('%s') %s)", child_name, parent_expr);
	    }
	}
      else
	{
	  /* Everything beyond the baseclasses can
	     only be "public", "private", or "protected" */
	  index -= TYPE_N_BASECLASSES (type);
	  switch (index)
	    {
	    case 0:
	      if (children[v_public] != 0)
		{
		  path_expr = "public";
		  break;
		}
	    case 1:
	      if (children[v_private] != 0)
		{
		  path_expr = "private";
		  break;
		}
	    case 2:
	      if (children[v_protected] != 0)
		{
		  path_expr = "protected";
		  break;
		}
	    default:
	      /* error! */
	      break;
	    }
	}
      break;

    default:
      break;
    }

  if (path_expr == NULL)
    return c_path_expr_of_child (parent, index);
  else
    {
      child->path_expr = path_expr;
    }

  return path_expr;
}

static struct value *
cplus_value_of_root (struct varobj **var_handle, enum varobj_type_change *type_changed)
{
  return c_value_of_root (var_handle, type_changed);
}
static struct value *
cplus_value_of_child (struct varobj *parent, int index, int *lookup_dynamic_type)
{
  struct type *type;
  struct value *value;
  int is_ptr;

  if (CPLUS_FAKE_CHILD (parent))
    type = get_type_deref (parent->parent, &is_ptr);
  else
    type = get_type_deref (parent, &is_ptr);

  if (lookup_dynamic_type != NULL)
    *lookup_dynamic_type = 1;

  value = NULL;

  if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
      ((TYPE_CODE (type)) == TYPE_CODE_UNION))
    {
      if (CPLUS_FAKE_CHILD (parent))
	{
	  enum gdb_rc ret_val;
	  struct varobj *child;
	  struct value *temp = parent->parent->value;

	  if (temp == NULL)
	    return NULL;

	  child = child_exists (parent, index);
          if (!child)
            error ("cplus_value_of_child: "
                   "Tried to get the value of a null child.");
	  /* APPLE LOCAL: Can't use the value_struct_elt, since that
	     looks up by name which doesn't work for anonymous unions
	     & structures.  */
	  ret_val = varobj_value_struct_elt_by_index (parent, index, &value);
	  if (!ret_val)
	    return NULL;

	  if (value != NULL)
	    release_value (value);
	  /* END APPLE LOCAL */
	}
      else if (index >= TYPE_N_BASECLASSES (type))
	{
	  /* public, private, or protected */
	  if (lookup_dynamic_type != NULL)
	    *lookup_dynamic_type = 0;

	  return NULL;
	}
      else
	{
	  /* Baseclass */

	  /* Don't lookup the dynamic type of base classes.  */
	  
	  if (lookup_dynamic_type != NULL)
	    *lookup_dynamic_type = 0;
	  if (parent->value != NULL)
	    {
	      /* APPLE LOCAL: The FSF code here was much more complicated than
		 it needed to be, and actually didn't handle the base classes
		 of pointers to base classes properly.  value_cast is actually
		 pretty smart about casting a class to a base class, and gets
		 the offset into the cast right.  So all we have to do is 
		 make sure if the parent was pointer we cast it back to the
		 pointer to the base class.  */
	      
	      struct type *cast_type;
	      enum type_code code;

	      cast_type = TYPE_FIELD_TYPE (type, index);

	      code = TYPE_CODE (value_type (parent->value)); 
	      if (code == TYPE_CODE_PTR)
		{
		  cast_type = lookup_pointer_type (cast_type);
		}
	      else if (code == TYPE_CODE_REF)
		{
		  cast_type = lookup_reference_type (cast_type);
		}

	      if (cast_type != NULL)
		{
		  /* APPLE LOCAL: value_cast sometimes operates in place
		     on the value passed in, and then return that.  
		     However, it's important that we store a different
		     struct value in the child and the parent, or we will
		     over-free the value.  */
		  struct value *copy = value_copy (parent->value);
		     
		  value = value_cast (cast_type, copy);
		  if (copy != value)
		    {
		      release_value (copy);
		      value_free (copy);
		    }
		  release_value (value);
		}
	      else
		{
		  /* We can't figure out what to cast the child to, so don't
		     bother trying to print it...  */
		  return NULL;
		}
	      /* END APPLE LOCAL  */
	    }
	}
    }
  
  if (value == NULL)
    return c_value_of_child (parent, index, lookup_dynamic_type);

  return value;
}

static struct type *
cplus_type_of_child (struct varobj *parent, int index)
{
  struct type *type, *t;
  int is_ptr; 

  if (CPLUS_FAKE_CHILD (parent))
    t = get_type_deref (parent->parent, &is_ptr);
  else
    t = get_type_deref (parent, &is_ptr);

  type = NULL;
  switch (TYPE_CODE (t))
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      if (CPLUS_FAKE_CHILD (parent))
	{
	  /* APPLE LOCAL: Can't use the lookup_struct_elt_type, since
	     that looks up by name which doesn't work for anonymous
	     unions & structures.  */
	  type = varobj_lookup_struct_elt_type_by_index (parent, index);
	  /* END APPLE LOCAL */
	}
      else if (index < TYPE_N_BASECLASSES (t))
	{
	  type = TYPE_FIELD_TYPE (t, index);

	  /* APPLE LOCAL: If the original parent type was a pointer or
	     reference type, then we need to record the base class
	     types as pointer or reference to base class, not base
	     class.  */
	  if (is_ptr == 1)
	    {
	      type = lookup_pointer_type (type);
	    }
	  else if (is_ptr == 2)
	    {
	      type = lookup_reference_type (type);
	    }
	}
      else
	{
	  /* special */
	  return NULL;
	}
      break;

    default:
      break;
    }

  if (type == NULL)
    return c_type_of_child (parent, index);

  return type;
}

static int
cplus_variable_editable (struct varobj *var)
{
  if (CPLUS_FAKE_CHILD (var))
    return 0;

  return c_variable_editable (var);
}

static char *
cplus_value_of_variable (struct varobj *var)
{

  /* If we have one of our special types, don't print out
     any value. */
  if (CPLUS_FAKE_CHILD (var))
    return xstrdup ("");

  return c_value_of_variable (var);
}

/* Java */

static int
java_number_of_children (struct varobj *var)
{
  return cplus_number_of_children (var);
}

static char *
java_make_name_of_child (struct varobj *parent, int index)
{
  char *name, *p;

  name = cplus_make_name_of_child (parent, index);
  /* Escape any periods in the name... */
  p = name;

  while (*p != '\000')
    {
      if (*p == '.')
	*p = '-';
      p++;
    }

  return name;
}

static struct value *
java_value_of_root (struct varobj **var_handle, enum varobj_type_change *type_changed)
{
  return cplus_value_of_root (var_handle, type_changed);
}

static struct value *
java_value_of_child (struct varobj *parent, int index, int *lookup_dynamic_type)
{
  return cplus_value_of_child (parent, index, lookup_dynamic_type);
}

static struct type *
java_type_of_child (struct varobj *parent, int index)
{
  return cplus_type_of_child (parent, index);
}

static int
java_variable_editable (struct varobj *var)
{
  return cplus_variable_editable (var);
}

static char *
java_value_of_variable (struct varobj *var)
{
  return cplus_value_of_variable (var);
}
static char *
java_path_expr_of_child (struct varobj *parent, int index)
{
  return cplus_path_expr_of_child (parent, index);
}

extern void _initialize_varobj (void);
void
_initialize_varobj (void)
{
  int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;

  varobj_table = xmalloc (sizeof_table);
  memset (varobj_table, 0, sizeof_table);

  /* APPLE LOCAL begin varobj */
  add_setshow_boolean_cmd ("varobj-print-object", class_obscure,
			   &varobj_use_dynamic_type, _("\
Set varobj to construct children using the most specific class type."), _("\
abc"), NULL,
			   NULL, NULL,
			   &setlist, &showlist);

  add_setshow_boolean_cmd ("varobj-runs-all-threads", class_obscure,
			   &varobj_runs_all_threads, _("\
Set to run all threads when evaluating varobjs."), _("\
Set to run all threads when evaluating varobjs."), NULL,
			   NULL, NULL,
			   &setlist, &showlist);
  /* APPLE LOCAL end varobj */

  add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
			    &varobjdebug, _("\
Set varobj debugging."), _("\
Show varobj debugging."), _("\
When non-zero, varobj debugging is enabled."),
			    NULL,
			    show_varobjdebug,
			    &setlist, &showlist);
}