-- CXG2008.A -- -- Grant of Unlimited Rights -- -- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687, -- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained -- unlimited rights in the software and documentation contained herein. -- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making -- this public release, the Government intends to confer upon all -- recipients unlimited rights equal to those held by the Government. -- These rights include rights to use, duplicate, release or disclose the -- released technical data and computer software in whole or in part, in -- any manner and for any purpose whatsoever, and to have or permit others -- to do so. -- -- DISCLAIMER -- -- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR -- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED -- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE -- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE -- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A -- PARTICULAR PURPOSE OF SAID MATERIAL. --* -- -- OBJECTIVE: -- Check that the complex multiplication and division -- operations return results that are within the allowed -- error bound. -- Check that all the required pure Numerics packages are pure. -- -- TEST DESCRIPTION: -- This test contains three test packages that are almost -- identical. The first two packages differ only in the -- floating point type that is being tested. The first -- and third package differ only in whether the generic -- complex types package or the pre-instantiated -- package is used. -- The test package is not generic so that the arguments -- and expected results for some of the test values -- can be expressed as universal real instead of being -- computed at runtime. -- -- SPECIAL REQUIREMENTS -- The Strict Mode for the numerical accuracy must be -- selected. The method by which this mode is selected -- is implementation dependent. -- -- APPLICABILITY CRITERIA: -- This test applies only to implementations supporting the -- Numerics Annex. -- This test only applies to the Strict Mode for numerical -- accuracy. -- -- -- CHANGE HISTORY: -- 24 FEB 96 SAIC Initial release for 2.1 -- 03 JUN 98 EDS Correct the test program's incorrect assumption -- that Constraint_Error must be raised by complex -- division by zero, which is contrary to the -- allowance given by the Ada 95 standard G.1.1(40). -- 13 MAR 01 RLB Replaced commented out Pure check on non-generic -- packages, as required by Defect Report -- 8652/0020 and as reflected in Technical -- Corrigendum 1. --! ------------------------------------------------------------------------------ -- Check that the required pure packages are pure by withing them from a -- pure package. The non-generic versions of those packages are required to -- be pure by Defect Report 8652/0020, Technical Corrigendum 1 [A.5.1(9/1) and -- G.1.1(25/1)]. with Ada.Numerics.Generic_Elementary_Functions; with Ada.Numerics.Elementary_Functions; with Ada.Numerics.Generic_Complex_Types; with Ada.Numerics.Complex_Types; with Ada.Numerics.Generic_Complex_Elementary_Functions; with Ada.Numerics.Complex_Elementary_Functions; package CXG2008_0 is pragma Pure; -- CRC Standard Mathematical Tables; 23rd Edition; pg 738 Sqrt2 : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695; Sqrt3 : constant := 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039; end CXG2008_0; ------------------------------------------------------------------------------ with System; with Report; with Ada.Numerics.Generic_Complex_Types; with Ada.Numerics.Complex_Types; with CXG2008_0; use CXG2008_0; procedure CXG2008 is Verbose : constant Boolean := False; package Float_Check is subtype Real is Float; procedure Do_Test; end Float_Check; package body Float_Check is package Complex_Types is new Ada.Numerics.Generic_Complex_Types (Real); use Complex_Types; -- keep track if an accuracy failure has occurred so the test -- can be short-circuited to avoid thousands of error messages. Failure_Detected : Boolean := False; Mult_MBE : constant Real := 5.0; Divide_MBE : constant Real := 13.0; procedure Check (Actual, Expected : Complex; Test_Name : String; MBE : Real) is Rel_Error : Real; Abs_Error : Real; Max_Error : Real; begin -- In the case where the expected result is very small or 0 -- we compute the maximum error as a multiple of Model_Epsilon instead -- of Model_Epsilon and Expected. Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon; Abs_Error := MBE * Real'Model_Epsilon; if Rel_Error > Abs_Error then Max_Error := Rel_Error; else Max_Error := Abs_Error; end if; if abs (Actual.Re - Expected.Re) > Max_Error then Failure_Detected := True; Report.Failed (Test_Name & " actual.re: " & Real'Image (Actual.Re) & " expected.re: " & Real'Image (Expected.Re) & " difference.re " & Real'Image (Actual.Re - Expected.Re) & " mre:" & Real'Image (Max_Error) ); elsif Verbose then if Actual = Expected then Report.Comment (Test_Name & " exact result for real part"); else Report.Comment (Test_Name & " passed for real part"); end if; end if; Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon; if Rel_Error > Abs_Error then Max_Error := Rel_Error; else Max_Error := Abs_Error; end if; if abs (Actual.Im - Expected.Im) > Max_Error then Failure_Detected := True; Report.Failed (Test_Name & " actual.im: " & Real'Image (Actual.Im) & " expected.im: " & Real'Image (Expected.Im) & " difference.im " & Real'Image (Actual.Im - Expected.Im) & " mre:" & Real'Image (Max_Error) ); elsif Verbose then if Actual = Expected then Report.Comment (Test_Name & " exact result for imaginary part"); else Report.Comment (Test_Name & " passed for imaginary part"); end if; end if; end Check; procedure Special_Values is begin --- test 1 --- declare T : constant := (Real'Machine_EMax - 1) / 2; Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T); Expected : Complex := (0.0, 0.0); X : Complex := (0.0, 0.0); Y : Complex := (Big, Big); Z : Complex; begin Z := X * Y; Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)", Mult_MBE); Z := Y * X; Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)", Mult_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 1"); when others => Report.Failed ("exception in test 1"); end; --- test 2 --- declare T : constant := Real'Model_EMin + 1; Tiny : constant := (1.0 * Real'Machine_Radix) ** T; U : Complex := (Tiny, Tiny); X : Complex := (0.0, 0.0); Expected : Complex := (0.0, 0.0); Z : Complex; begin Z := U * X; Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)", Mult_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 2"); when others => Report.Failed ("exception in test 2"); end; --- test 3 --- declare T : constant := (Real'Machine_EMax - 1) / 2; Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T); B : Complex := (Big, Big); X : Complex := (0.0, 0.0); Z : Complex; begin if Real'Machine_Overflows then Z := B / X; Report.Failed ("test 3 - Constraint_Error not raised"); Check (Z, Z, "not executed - optimizer thwarting", 0.0); end if; exception when Constraint_Error => null; -- expected when others => Report.Failed ("exception in test 3"); end; --- test 4 --- declare T : constant := Real'Model_EMin + 1; Tiny : constant := (1.0 * Real'Machine_Radix) ** T; U : Complex := (Tiny, Tiny); X : Complex := (0.0, 0.0); Z : Complex; begin if Real'Machine_Overflows then Z := U / X; Report.Failed ("test 4 - Constraint_Error not raised"); Check (Z, Z, "not executed - optimizer thwarting", 0.0); end if; exception when Constraint_Error => null; -- expected when others => Report.Failed ("exception in test 4"); end; --- test 5 --- declare X : Complex := (Sqrt2, Sqrt2); Z : Complex; Expected : constant Complex := (0.0, 4.0); begin Z := X * X; Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)", Mult_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 5"); when others => Report.Failed ("exception in test 5"); end; --- test 6 --- declare X : Complex := Sqrt3 - Sqrt3 * i; Z : Complex; Expected : constant Complex := (0.0, -6.0); begin Z := X * X; Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)", Mult_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 6"); when others => Report.Failed ("exception in test 6"); end; --- test 7 --- declare X : Complex := Sqrt2 + Sqrt2 * i; Y : Complex := Sqrt2 - Sqrt2 * i; Z : Complex; Expected : constant Complex := 0.0 + i; begin Z := X / Y; Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)", Divide_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 7"); when others => Report.Failed ("exception in test 7"); end; end Special_Values; procedure Do_Mult_Div (X, Y : Complex) is Z : Complex; Args : constant String := "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " & "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ; begin Z := (X * X) / X; Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE); Z := (X * Y) / X; Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE); Z := (X * Y) / Y; Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args); when others => Report.Failed ("exception in Do_Mult_Div for " & Args); end Do_Mult_Div; -- select complex values X and Y where the real and imaginary -- parts are selected from the ranges (1/radix..1) and -- (1..radix). This translates into quite a few combinations. procedure Mult_Div_Check is Samples : constant := 17; Radix : constant Real := Real(Real'Machine_Radix); Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix); Low_Sample : Real; -- (1/radix .. 1) High_Sample : Real; -- (1 .. radix) Sample : array (1..2) of Real; X, Y : Complex; begin for I in 1 .. Samples loop Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) + Inv_Radix; Sample (1) := Low_Sample; for J in 1 .. Samples loop High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) + Radix; Sample (2) := High_Sample; for K in 1 .. 2 loop for L in 1 .. 2 loop X := Complex'(Sample (K), Sample (L)); Y := Complex'(Sample (L), Sample (K)); Do_Mult_Div (X, Y); if Failure_Detected then return; -- minimize flood of error messages end if; end loop; end loop; end loop; -- J end loop; -- I end Mult_Div_Check; procedure Do_Test is begin Special_Values; Mult_Div_Check; end Do_Test; end Float_Check; ----------------------------------------------------------------------- ----------------------------------------------------------------------- -- check the floating point type with the most digits package A_Long_Float_Check is type A_Long_Float is digits System.Max_Digits; subtype Real is A_Long_Float; procedure Do_Test; end A_Long_Float_Check; package body A_Long_Float_Check is package Complex_Types is new Ada.Numerics.Generic_Complex_Types (Real); use Complex_Types; -- keep track if an accuracy failure has occurred so the test -- can be short-circuited to avoid thousands of error messages. Failure_Detected : Boolean := False; Mult_MBE : constant Real := 5.0; Divide_MBE : constant Real := 13.0; procedure Check (Actual, Expected : Complex; Test_Name : String; MBE : Real) is Rel_Error : Real; Abs_Error : Real; Max_Error : Real; begin -- In the case where the expected result is very small or 0 -- we compute the maximum error as a multiple of Model_Epsilon instead -- of Model_Epsilon and Expected. Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon; Abs_Error := MBE * Real'Model_Epsilon; if Rel_Error > Abs_Error then Max_Error := Rel_Error; else Max_Error := Abs_Error; end if; if abs (Actual.Re - Expected.Re) > Max_Error then Failure_Detected := True; Report.Failed (Test_Name & " actual.re: " & Real'Image (Actual.Re) & " expected.re: " & Real'Image (Expected.Re) & " difference.re " & Real'Image (Actual.Re - Expected.Re) & " mre:" & Real'Image (Max_Error) ); elsif Verbose then if Actual = Expected then Report.Comment (Test_Name & " exact result for real part"); else Report.Comment (Test_Name & " passed for real part"); end if; end if; Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon; if Rel_Error > Abs_Error then Max_Error := Rel_Error; else Max_Error := Abs_Error; end if; if abs (Actual.Im - Expected.Im) > Max_Error then Failure_Detected := True; Report.Failed (Test_Name & " actual.im: " & Real'Image (Actual.Im) & " expected.im: " & Real'Image (Expected.Im) & " difference.im " & Real'Image (Actual.Im - Expected.Im) & " mre:" & Real'Image (Max_Error) ); elsif Verbose then if Actual = Expected then Report.Comment (Test_Name & " exact result for imaginary part"); else Report.Comment (Test_Name & " passed for imaginary part"); end if; end if; end Check; procedure Special_Values is begin --- test 1 --- declare T : constant := (Real'Machine_EMax - 1) / 2; Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T); Expected : Complex := (0.0, 0.0); X : Complex := (0.0, 0.0); Y : Complex := (Big, Big); Z : Complex; begin Z := X * Y; Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)", Mult_MBE); Z := Y * X; Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)", Mult_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 1"); when others => Report.Failed ("exception in test 1"); end; --- test 2 --- declare T : constant := Real'Model_EMin + 1; Tiny : constant := (1.0 * Real'Machine_Radix) ** T; U : Complex := (Tiny, Tiny); X : Complex := (0.0, 0.0); Expected : Complex := (0.0, 0.0); Z : Complex; begin Z := U * X; Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)", Mult_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 2"); when others => Report.Failed ("exception in test 2"); end; --- test 3 --- declare T : constant := (Real'Machine_EMax - 1) / 2; Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T); B : Complex := (Big, Big); X : Complex := (0.0, 0.0); Z : Complex; begin if Real'Machine_Overflows then Z := B / X; Report.Failed ("test 3 - Constraint_Error not raised"); Check (Z, Z, "not executed - optimizer thwarting", 0.0); end if; exception when Constraint_Error => null; -- expected when others => Report.Failed ("exception in test 3"); end; --- test 4 --- declare T : constant := Real'Model_EMin + 1; Tiny : constant := (1.0 * Real'Machine_Radix) ** T; U : Complex := (Tiny, Tiny); X : Complex := (0.0, 0.0); Z : Complex; begin if Real'Machine_Overflows then Z := U / X; Report.Failed ("test 4 - Constraint_Error not raised"); Check (Z, Z, "not executed - optimizer thwarting", 0.0); end if; exception when Constraint_Error => null; -- expected when others => Report.Failed ("exception in test 4"); end; --- test 5 --- declare X : Complex := (Sqrt2, Sqrt2); Z : Complex; Expected : constant Complex := (0.0, 4.0); begin Z := X * X; Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)", Mult_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 5"); when others => Report.Failed ("exception in test 5"); end; --- test 6 --- declare X : Complex := Sqrt3 - Sqrt3 * i; Z : Complex; Expected : constant Complex := (0.0, -6.0); begin Z := X * X; Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)", Mult_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 6"); when others => Report.Failed ("exception in test 6"); end; --- test 7 --- declare X : Complex := Sqrt2 + Sqrt2 * i; Y : Complex := Sqrt2 - Sqrt2 * i; Z : Complex; Expected : constant Complex := 0.0 + i; begin Z := X / Y; Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)", Divide_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 7"); when others => Report.Failed ("exception in test 7"); end; end Special_Values; procedure Do_Mult_Div (X, Y : Complex) is Z : Complex; Args : constant String := "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " & "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ; begin Z := (X * X) / X; Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE); Z := (X * Y) / X; Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE); Z := (X * Y) / Y; Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args); when others => Report.Failed ("exception in Do_Mult_Div for " & Args); end Do_Mult_Div; -- select complex values X and Y where the real and imaginary -- parts are selected from the ranges (1/radix..1) and -- (1..radix). This translates into quite a few combinations. procedure Mult_Div_Check is Samples : constant := 17; Radix : constant Real := Real(Real'Machine_Radix); Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix); Low_Sample : Real; -- (1/radix .. 1) High_Sample : Real; -- (1 .. radix) Sample : array (1..2) of Real; X, Y : Complex; begin for I in 1 .. Samples loop Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) + Inv_Radix; Sample (1) := Low_Sample; for J in 1 .. Samples loop High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) + Radix; Sample (2) := High_Sample; for K in 1 .. 2 loop for L in 1 .. 2 loop X := Complex'(Sample (K), Sample (L)); Y := Complex'(Sample (L), Sample (K)); Do_Mult_Div (X, Y); if Failure_Detected then return; -- minimize flood of error messages end if; end loop; end loop; end loop; -- J end loop; -- I end Mult_Div_Check; procedure Do_Test is begin Special_Values; Mult_Div_Check; end Do_Test; end A_Long_Float_Check; ----------------------------------------------------------------------- ----------------------------------------------------------------------- package Non_Generic_Check is subtype Real is Float; procedure Do_Test; end Non_Generic_Check; package body Non_Generic_Check is use Ada.Numerics.Complex_Types; -- keep track if an accuracy failure has occurred so the test -- can be short-circuited to avoid thousands of error messages. Failure_Detected : Boolean := False; Mult_MBE : constant Real := 5.0; Divide_MBE : constant Real := 13.0; procedure Check (Actual, Expected : Complex; Test_Name : String; MBE : Real) is Rel_Error : Real; Abs_Error : Real; Max_Error : Real; begin -- In the case where the expected result is very small or 0 -- we compute the maximum error as a multiple of Model_Epsilon instead -- of Model_Epsilon and Expected. Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon; Abs_Error := MBE * Real'Model_Epsilon; if Rel_Error > Abs_Error then Max_Error := Rel_Error; else Max_Error := Abs_Error; end if; if abs (Actual.Re - Expected.Re) > Max_Error then Failure_Detected := True; Report.Failed (Test_Name & " actual.re: " & Real'Image (Actual.Re) & " expected.re: " & Real'Image (Expected.Re) & " difference.re " & Real'Image (Actual.Re - Expected.Re) & " mre:" & Real'Image (Max_Error) ); elsif Verbose then if Actual = Expected then Report.Comment (Test_Name & " exact result for real part"); else Report.Comment (Test_Name & " passed for real part"); end if; end if; Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon; if Rel_Error > Abs_Error then Max_Error := Rel_Error; else Max_Error := Abs_Error; end if; if abs (Actual.Im - Expected.Im) > Max_Error then Failure_Detected := True; Report.Failed (Test_Name & " actual.im: " & Real'Image (Actual.Im) & " expected.im: " & Real'Image (Expected.Im) & " difference.im " & Real'Image (Actual.Im - Expected.Im) & " mre:" & Real'Image (Max_Error) ); elsif Verbose then if Actual = Expected then Report.Comment (Test_Name & " exact result for imaginary part"); else Report.Comment (Test_Name & " passed for imaginary part"); end if; end if; end Check; procedure Special_Values is begin --- test 1 --- declare T : constant := (Real'Machine_EMax - 1) / 2; Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T); Expected : Complex := (0.0, 0.0); X : Complex := (0.0, 0.0); Y : Complex := (Big, Big); Z : Complex; begin Z := X * Y; Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)", Mult_MBE); Z := Y * X; Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)", Mult_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 1"); when others => Report.Failed ("exception in test 1"); end; --- test 2 --- declare T : constant := Real'Model_EMin + 1; Tiny : constant := (1.0 * Real'Machine_Radix) ** T; U : Complex := (Tiny, Tiny); X : Complex := (0.0, 0.0); Expected : Complex := (0.0, 0.0); Z : Complex; begin Z := U * X; Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)", Mult_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 2"); when others => Report.Failed ("exception in test 2"); end; --- test 3 --- declare T : constant := (Real'Machine_EMax - 1) / 2; Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T); B : Complex := (Big, Big); X : Complex := (0.0, 0.0); Z : Complex; begin if Real'Machine_Overflows then Z := B / X; Report.Failed ("test 3 - Constraint_Error not raised"); Check (Z, Z, "not executed - optimizer thwarting", 0.0); end if; exception when Constraint_Error => null; -- expected when others => Report.Failed ("exception in test 3"); end; --- test 4 --- declare T : constant := Real'Model_EMin + 1; Tiny : constant := (1.0 * Real'Machine_Radix) ** T; U : Complex := (Tiny, Tiny); X : Complex := (0.0, 0.0); Z : Complex; begin if Real'Machine_Overflows then Z := U / X; Report.Failed ("test 4 - Constraint_Error not raised"); Check (Z, Z, "not executed - optimizer thwarting", 0.0); end if; exception when Constraint_Error => null; -- expected when others => Report.Failed ("exception in test 4"); end; --- test 5 --- declare X : Complex := (Sqrt2, Sqrt2); Z : Complex; Expected : constant Complex := (0.0, 4.0); begin Z := X * X; Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)", Mult_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 5"); when others => Report.Failed ("exception in test 5"); end; --- test 6 --- declare X : Complex := Sqrt3 - Sqrt3 * i; Z : Complex; Expected : constant Complex := (0.0, -6.0); begin Z := X * X; Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)", Mult_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 6"); when others => Report.Failed ("exception in test 6"); end; --- test 7 --- declare X : Complex := Sqrt2 + Sqrt2 * i; Y : Complex := Sqrt2 - Sqrt2 * i; Z : Complex; Expected : constant Complex := 0.0 + i; begin Z := X / Y; Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)", Divide_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error raised in test 7"); when others => Report.Failed ("exception in test 7"); end; end Special_Values; procedure Do_Mult_Div (X, Y : Complex) is Z : Complex; Args : constant String := "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " & "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ; begin Z := (X * X) / X; Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE); Z := (X * Y) / X; Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE); Z := (X * Y) / Y; Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE); exception when Constraint_Error => Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args); when others => Report.Failed ("exception in Do_Mult_Div for " & Args); end Do_Mult_Div; -- select complex values X and Y where the real and imaginary -- parts are selected from the ranges (1/radix..1) and -- (1..radix). This translates into quite a few combinations. procedure Mult_Div_Check is Samples : constant := 17; Radix : constant Real := Real(Real'Machine_Radix); Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix); Low_Sample : Real; -- (1/radix .. 1) High_Sample : Real; -- (1 .. radix) Sample : array (1..2) of Real; X, Y : Complex; begin for I in 1 .. Samples loop Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) + Inv_Radix; Sample (1) := Low_Sample; for J in 1 .. Samples loop High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) + Radix; Sample (2) := High_Sample; for K in 1 .. 2 loop for L in 1 .. 2 loop X := Complex'(Sample (K), Sample (L)); Y := Complex'(Sample (L), Sample (K)); Do_Mult_Div (X, Y); if Failure_Detected then return; -- minimize flood of error messages end if; end loop; end loop; end loop; -- J end loop; -- I end Mult_Div_Check; procedure Do_Test is begin Special_Values; Mult_Div_Check; end Do_Test; end Non_Generic_Check; ----------------------------------------------------------------------- ----------------------------------------------------------------------- begin Report.Test ("CXG2008", "Check the accuracy of the complex multiplication and" & " division operators"); if Verbose then Report.Comment ("checking Standard.Float"); end if; Float_Check.Do_Test; if Verbose then Report.Comment ("checking a digits" & Integer'Image (System.Max_Digits) & " floating point type"); end if; A_Long_Float_Check.Do_Test; if Verbose then Report.Comment ("checking non-generic package"); end if; Non_Generic_Check.Do_Test; Report.Result; end CXG2008;