; Low level integer divide, multiply, remainder, etc routines for the HPPA. ; Copyright 1995, 2000, 2001 Free Software Foundation, Inc. ; This file is part of GNU CC. ; GNU CC is free software; you can redistribute it and/or modify ; it under the terms of the GNU General Public License as published by ; the Free Software Foundation; either version 2, or (at your option) ; any later version. ; In addition to the permissions in the GNU General Public License, the ; Free Software Foundation gives you unlimited permission to link the ; compiled version of this file with other programs, and to distribute ; those programs without any restriction coming from the use of this ; file. (The General Public License restrictions do apply in other ; respects; for example, they cover modification of the file, and ; distribution when not linked into another program.) ; GNU CC is distributed in the hope that it will be useful, ; but WITHOUT ANY WARRANTY; without even the implied warranty of ; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ; GNU General Public License for more details. ; You should have received a copy of the GNU General Public License ; along with GNU CC; see the file COPYING. If not, write to ; the Free Software Foundation, 59 Temple Place - Suite 330, ; Boston, MA 02111-1307, USA. #ifdef __STDC__ #define CAT(a,b) a##b #else #define CAT(a,b) a/**/b #endif #ifdef ELF #define SPACE \ ! .text! .align 4 #define GSYM(sym) \ ! .export sym,millicode!sym: #define LSYM(sym) \ !CAT(.L,sym:) #define LREF(sym) CAT(.L,sym) #else #define SPACE \ ! .space $TEXT$! .subspa $MILLICODE$,quad=0,align=8,access=0x2c,sort=8! .align 4 #define GSYM(sym) \ ! .export sym,millicode!sym #define LSYM(sym) \ !CAT(L$,sym) #define LREF(sym) CAT(L$,sym) #endif #ifdef L_dyncall SPACE GSYM($$dyncall) .proc .callinfo frame=0,no_calls .entry bb,>=,n %r22,30,LREF(1) ; branch if not plabel address depi 0,31,2,%r22 ; clear the two least significant bits ldw 4(%r22),%r19 ; load new LTP value ldw 0(%r22),%r22 ; load address of target LSYM(1) #ifdef LINUX bv %r0(%r22) ; branch to the real target #else ldsid (%sr0,%r22),%r1 ; get the "space ident" selected by r22 mtsp %r1,%sr0 ; move that space identifier into sr0 be 0(%sr0,%r22) ; branch to the real target #endif stw %r2,-24(%r30) ; save return address into frame marker .exit .procend #endif #ifdef L_multiply #define op0 %r26 #define op1 %r25 #define res %r29 #define ret %r31 #define tmp %r1 SPACE GSYM($$mulU) GSYM($$mulI) .proc .callinfo frame=0,no_calls .entry addi,tr 0,%r0,res ; clear out res, skip next insn LSYM(loop) zdep op1,26,27,op1 ; shift up op1 by 5 LSYM(lo) zdep op0,30,5,tmp ; extract next 5 bits and shift up blr tmp,%r0 extru op0,26,27,op0 ; shift down op0 by 5 LSYM(0) comib,<> 0,op0,LREF(lo) zdep op1,26,27,op1 ; shift up op1 by 5 bv %r0(ret) nop LSYM(1) b LREF(loop) addl op1,res,res nop nop LSYM(2) b LREF(loop) sh1addl op1,res,res nop nop LSYM(3) sh1addl op1,op1,tmp ; 3x b LREF(loop) addl tmp,res,res nop LSYM(4) b LREF(loop) sh2addl op1,res,res nop nop LSYM(5) sh2addl op1,op1,tmp ; 5x b LREF(loop) addl tmp,res,res nop LSYM(6) sh1addl op1,op1,tmp ; 3x b LREF(loop) sh1addl tmp,res,res nop LSYM(7) zdep op1,28,29,tmp ; 8x sub tmp,op1,tmp ; 7x b LREF(loop) addl tmp,res,res LSYM(8) b LREF(loop) sh3addl op1,res,res nop nop LSYM(9) sh3addl op1,op1,tmp ; 9x b LREF(loop) addl tmp,res,res nop LSYM(10) sh2addl op1,op1,tmp ; 5x b LREF(loop) sh1addl tmp,res,res nop LSYM(11) sh2addl op1,op1,tmp ; 5x sh1addl tmp,op1,tmp ; 11x b LREF(loop) addl tmp,res,res LSYM(12) sh1addl op1,op1,tmp ; 3x b LREF(loop) sh2addl tmp,res,res nop LSYM(13) sh1addl op1,op1,tmp ; 3x sh2addl tmp,op1,tmp ; 13x b LREF(loop) addl tmp,res,res LSYM(14) zdep op1,28,29,tmp ; 8x sub tmp,op1,tmp ; 7x b LREF(loop) sh1addl tmp,res,res LSYM(15) zdep op1,27,28,tmp ; 16x sub tmp,op1,tmp ; 15x b LREF(loop) addl tmp,res,res LSYM(16) zdep op1,27,28,tmp ; 16x b LREF(loop) addl tmp,res,res nop LSYM(17) zdep op1,27,28,tmp ; 16x addl tmp,op1,tmp ; 17x b LREF(loop) addl tmp,res,res LSYM(18) sh3addl op1,op1,tmp ; 9x b LREF(loop) sh1addl tmp,res,res nop LSYM(19) sh3addl op1,op1,tmp ; 9x sh1addl tmp,op1,tmp ; 19x b LREF(loop) addl tmp,res,res LSYM(20) sh2addl op1,op1,tmp ; 5x b LREF(loop) sh2addl tmp,res,res nop LSYM(21) sh2addl op1,op1,tmp ; 5x sh2addl tmp,op1,tmp ; 21x b LREF(loop) addl tmp,res,res LSYM(22) sh2addl op1,op1,tmp ; 5x sh1addl tmp,op1,tmp ; 11x b LREF(loop) sh1addl tmp,res,res LSYM(23) sh1addl op1,op1,tmp ; 3x sh3addl tmp,res,res ; += 8x3 b LREF(loop) sub res,op1,res ; -= x LSYM(24) sh1addl op1,op1,tmp ; 3x b LREF(loop) sh3addl tmp,res,res ; += 8x3 nop LSYM(25) sh2addl op1,op1,tmp ; 5x sh2addl tmp,tmp,tmp ; 25x b LREF(loop) addl tmp,res,res LSYM(26) sh1addl op1,op1,tmp ; 3x sh2addl tmp,op1,tmp ; 13x b LREF(loop) sh1addl tmp,res,res ; += 2x13 LSYM(27) sh1addl op1,op1,tmp ; 3x sh3addl tmp,tmp,tmp ; 27x b LREF(loop) addl tmp,res,res LSYM(28) zdep op1,28,29,tmp ; 8x sub tmp,op1,tmp ; 7x b LREF(loop) sh2addl tmp,res,res ; += 4x7 LSYM(29) sh1addl op1,op1,tmp ; 3x sub res,tmp,res ; -= 3x b LREF(foo) zdep op1,26,27,tmp ; 32x LSYM(30) zdep op1,27,28,tmp ; 16x sub tmp,op1,tmp ; 15x b LREF(loop) sh1addl tmp,res,res ; += 2x15 LSYM(31) zdep op1,26,27,tmp ; 32x sub tmp,op1,tmp ; 31x LSYM(foo) b LREF(loop) addl tmp,res,res .exit .procend #endif #ifdef L_divU #define dividend %r26 #define divisor %r25 #define tmp %r1 #define quotient %r29 #define ret %r31 SPACE GSYM($$divU) .proc .callinfo frame=0,no_calls .entry comb,< divisor,0,LREF(largedivisor) sub %r0,divisor,%r1 ; clear cy as side-effect ds %r0,%r1,%r0 addc dividend,dividend,dividend ds %r0,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,quotient ds %r1,divisor,%r1 bv %r0(ret) addc quotient,quotient,quotient LSYM(largedivisor) comclr,<< dividend,divisor,quotient ldi 1,quotient bv,n %r0(ret) .exit .procend #endif #ifdef L_remU #define dividend %r26 #define divisor %r25 #define quotient %r29 #define tmp %r1 #define ret %r31 SPACE GSYM($$remU) .proc .callinfo frame=0,no_calls .entry comb,< divisor,0,LREF(largedivisor) sub %r0,divisor,%r1 ; clear cy as side-effect ds %r0,%r1,%r0 addc dividend,dividend,dividend ds %r0,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,quotient ds %r1,divisor,%r1 comclr,>= %r1,%r0,%r0 addl %r1,divisor,%r1 bv %r0(ret) copy %r1,quotient LSYM(largedivisor) sub,>>= dividend,divisor,quotient copy dividend,quotient bv,n %r0(ret) .exit .procend #endif #ifdef L_divI #define dividend %r26 #define divisor %r25 #define quotient %r29 #define tmp %r1 #define ret %r31 SPACE GSYM($$divI) .proc .callinfo frame=0,no_calls .entry xor dividend,divisor,quotient ; result sign comclr,>= divisor,%r0,%r0 ; get absolute values sub %r0,divisor,divisor comclr,>= dividend,%r0,%r0 sub %r0,dividend,dividend comb,< divisor,0,LREF(largedivisor) sub %r0,divisor,%r1 ; clear cy as side-effect ds %r0,%r1,%r0 addc dividend,dividend,dividend ds %r0,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend comclr,>= %r1,%r0,%r0 addl %r1,divisor,%r1 comclr,>= quotient,%r0,%r0 ; skip of no need to negate sub %r0,dividend,dividend bv %r0(ret) copy dividend,quotient LSYM(largedivisor) comclr,<< dividend,divisor,quotient ldi 1,quotient bv,n %r0(ret) .exit .procend #endif #ifdef L_remI #define dividend %r26 #define divisor %r25 #define quotient %r29 #define tmp %r1 #define ret %r31 SPACE GSYM($$remI) .proc .callinfo frame=0,no_calls .entry xor dividend,%r0,quotient ; result sign comclr,>= divisor,%r0,%r0 ; get absolute values sub %r0,divisor,divisor comclr,>= dividend,%r0,%r0 sub %r0,dividend,dividend comb,< divisor,0,LREF(largedivisor) sub %r0,divisor,%r1 ; clear cy as side-effect ds %r0,%r1,%r0 addc dividend,dividend,dividend ds %r0,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend ds %r1,divisor,%r1 addc dividend,dividend,dividend comclr,>= %r1,%r0,%r0 addl %r1,divisor,%r1 comclr,>= quotient,%r0,%r0 ; skip of no need to negate sub %r0,%r1,%r1 bv %r0(ret) copy %r1,quotient LSYM(largedivisor) sub,>>= dividend,divisor,quotient copy dividend,quotient bv,n %r0(ret) .exit .procend #endif #if defined (L_divU_3) && !defined (SMALL_LIB) #undef L_divU_3 #define dividend %r26 #define divisor %r25 #define tmp %r1 #define result %r29 #define ret %r31 SPACE GSYM($$divU_3) .proc .callinfo frame=0,no_calls .entry sh2add %r26,%r26,%r29 ; r29 = lo(101 x r) shd %r0,%r26,30,%r1 ; r1 = hi(100 x r) addc %r1,%r0,%r1 ; r1 = hi(101 x r) ; r in r1,,r29 zdep %r29,27,28,%r25 ; r25 = lo(10000 x r) add %r25,%r29,%r25 ; r25 = lo(10001 x r) shd %r1,%r29,28,%r29 ; r29 = hi(10000 x r) addc %r29,%r1,%r29 ; r29 = hi(10001 x r) ; r in r29,,r25 zdep %r25,23,24,%r1 ; r1 = lo(100000000 x r) add %r1,%r25,%r1 ; r1 = lo(100000001 x r) shd %r29,%r25,24,%r25 ; r25 = hi(100000000 x r) addc %r25,%r29,%r25 ; r25 = hi(100000001 x r) ; r in r25,,r1 zdep %r1,15,16,%r29 add %r29,%r1,%r29 shd %r25,%r1,16,%r1 addc %r1,%r25,%r1 ; r in r1,,r29 sh1add %r29,%r26,%r0 ; r0 = lo(10 x r) + dividend shd %r1,%r29,31,%r29 ; r29 = hi(10 x r) addc %r29,%r0,%r29 bv %r0(ret) extru %r29,30,31,result .exit .procend #endif #if defined (L_divU_5) && !defined (SMALL_LIB) #undef L_divU_5 #define dividend %r26 #define divisor %r25 #define tmp %r1 #define result %r29 #define ret %r31 SPACE GSYM($$divU_5) .proc .callinfo frame=0,no_calls .entry sh1add %r26,%r26,%r29 ; r29 = lo(11 x r) shd %r0,%r26,31,%r1 ; r1 = hi(10 x r) addc %r1,%r0,%r1 ; r1 = hi(11 x r) ; r in r1,,r29 zdep %r29,27,28,%r25 ; r25 = lo(10000 x r) add %r25,%r29,%r25 ; r25 = lo(10001 x r) shd %r1,%r29,28,%r29 ; r29 = hi(10000 x r) addc %r29,%r1,%r29 ; r29 = hi(10001 x r) ; r in r29,,r25 zdep %r25,23,24,%r1 ; r1 = lo(100000000 x r) add %r1,%r25,%r1 ; r1 = lo(100000001 x r) shd %r29,%r25,24,%r25 ; r25 = hi(100000000 x r) addc %r25,%r29,%r25 ; r25 = hi(100000001 x r) ; r in r25,,r1 zdep %r1,15,16,%r29 add %r29,%r1,%r29 shd %r25,%r1,16,%r1 addc %r1,%r25,%r1 ; r in r1,,r29 sh2add %r29,%r26,%r0 ; r0 = lo(1000 x r) + dividend shd %r1,%r29,30,%r29 ; r29 = hi(1000 x r) addc %r29,%r0,%r29 bv %r0(ret) extru %r29,29,30,result .exit .procend #endif #if defined (L_divU_6) && !defined (SMALL_LIB) #undef L_divU_6 #define dividend %r26 #define divisor %r25 #define tmp %r1 #define result %r29 #define ret %r31 SPACE GSYM($$divU_6) .proc .callinfo frame=0,no_calls .entry sh2add %r26,%r26,%r29 ; r29 = lo(101 x r) shd %r0,%r26,30,%r1 ; r1 = hi(100 x r) addc %r1,%r0,%r1 ; r1 = hi(101 x r) ; r in r1,,r29 zdep %r29,27,28,%r25 ; r25 = lo(10000 x r) add %r25,%r29,%r25 ; r25 = lo(10001 x r) shd %r1,%r29,28,%r29 ; r29 = hi(10000 x r) addc %r29,%r1,%r29 ; r29 = hi(10001 x r) ; r in r29,,r25 zdep %r25,23,24,%r1 ; r1 = lo(100000000 x r) add %r1,%r25,%r1 ; r1 = lo(100000001 x r) shd %r29,%r25,24,%r25 ; r25 = hi(100000000 x r) addc %r25,%r29,%r25 ; r25 = hi(100000001 x r) ; r in r25,,r1 zdep %r1,15,16,%r29 add %r29,%r1,%r29 shd %r25,%r1,16,%r1 addc %r1,%r25,%r1 ; r in r1,,r29 sh1add %r29,%r26,%r0 ; r0 = lo(10 x r) + dividend shd %r1,%r29,31,%r29 ; r29 = hi(10 x r) addc %r29,%r0,%r29 bv %r0(ret) extru %r29,29,30,result .exit .procend #endif #if defined (L_divU_9) && !defined (SMALL_LIB) #undef L_divU_9 #define dividend %r26 #define divisor %r25 #define tmp %r1 #define result %r29 #define ret %r31 SPACE GSYM($$divU_9) .proc .callinfo frame=0,no_calls .entry zdep %r26,28,29,%r29 sub %r29,%r26,%r29 shd 0,%r26,29,%r1 subb %r1,0,%r1 /* 111 */ zdep %r29,25,26,%r25 add %r25,%r29,%r25 shd %r1,%r29,26,%r29 addc %r29,%r1,%r29 /* 111000111 */ sh3add %r25,%r26,%r1 shd %r29,%r25,29,%r25 addc %r25,0,%r25 /* 111000111001 */ zdep %r1,16,17,%r29 sub %r29,%r1,%r29 shd %r25,%r1,17,%r1 subb %r1,%r25,%r1 /* 111000111000111000111000111 */ sh3add %r29,%r26,%r0 shd %r1,%r29,29,%r29 addc %r29,0,%r29 /* 111000111000111000111000111001 */ bv %r0(ret) extru %r29,30,31,result .exit .procend #endif #if defined (L_divU_10) && !defined (SMALL_LIB) #undef L_divU_10 #define dividend %r26 #define divisor %r25 #define tmp %r1 #define result %r29 #define ret %r31 SPACE GSYM($$divU_10) .proc .callinfo frame=0,no_calls .entry sh1add %r26,%r26,%r29 ; r29 = lo(11 x r) shd %r0,%r26,31,%r1 ; r1 = hi(10 x r) addc %r1,%r0,%r1 ; r1 = hi(11 x r) ; r in r1,,r29 zdep %r29,27,28,%r25 ; r25 = lo(10000 x r) add %r25,%r29,%r25 ; r25 = lo(10001 x r) shd %r1,%r29,28,%r29 ; r29 = hi(10000 x r) addc %r29,%r1,%r29 ; r29 = hi(10001 x r) ; r in r29,,r25 zdep %r25,23,24,%r1 ; r1 = lo(100000000 x r) add %r1,%r25,%r1 ; r1 = lo(100000001 x r) shd %r29,%r25,24,%r25 ; r25 = hi(100000000 x r) addc %r25,%r29,%r25 ; r25 = hi(100000001 x r) ; r in r25,,r1 zdep %r1,15,16,%r29 add %r29,%r1,%r29 shd %r25,%r1,16,%r1 addc %r1,%r25,%r1 ; r in r1,,r29 sh2add %r29,%r26,%r0 ; r0 = lo(1000 x r) + dividend shd %r1,%r29,30,%r29 ; r29 = hi(1000 x r) addc %r29,%r0,%r29 bv %r0(ret) extru %r29,28,29,result .exit .procend #endif #if defined (L_divU_12) && !defined (SMALL_LIB) #undef L_divU_12 #define dividend %r26 #define divisor %r25 #define tmp %r1 #define result %r29 #define ret %r31 SPACE GSYM($$divU_12) .proc .callinfo frame=0,no_calls .entry sh2add %r26,%r26,%r29 ; r29 = lo(101 x r) shd %r0,%r26,30,%r1 ; r1 = hi(100 x r) addc %r1,%r0,%r1 ; r1 = hi(101 x r) ; r in r1,,r29 zdep %r29,27,28,%r25 ; r25 = lo(10000 x r) add %r25,%r29,%r25 ; r25 = lo(10001 x r) shd %r1,%r29,28,%r29 ; r29 = hi(10000 x r) addc %r29,%r1,%r29 ; r29 = hi(10001 x r) ; r in r29,,r25 zdep %r25,23,24,%r1 ; r1 = lo(100000000 x r) add %r1,%r25,%r1 ; r1 = lo(100000001 x r) shd %r29,%r25,24,%r25 ; r25 = hi(100000000 x r) addc %r25,%r29,%r25 ; r25 = hi(100000001 x r) ; r in r25,,r1 zdep %r1,15,16,%r29 add %r29,%r1,%r29 shd %r25,%r1,16,%r1 addc %r1,%r25,%r1 ; r in r1,,r29 sh1add %r29,%r26,%r0 ; r0 = lo(10 x r) + dividend shd %r1,%r29,31,%r29 ; r29 = hi(10 x r) addc %r29,%r0,%r29 bv %r0(ret) extru %r29,28,29,result .exit .procend #endif #ifdef L_divU_3 SPACE GSYM($$divU_3) .proc .callinfo frame=0,no_calls .entry b $$divU ldi 3,%r25 .exit .procend .import $$divU,MILLICODE #endif #ifdef L_divU_5 SPACE GSYM($$divU_5) .proc .callinfo frame=0,no_calls .entry b $$divU ldi 5,%r25 .exit .procend .import $$divU,MILLICODE #endif #ifdef L_divU_6 SPACE GSYM($$divU_6) .proc .callinfo frame=0,no_calls .entry b $$divU ldi 6,%r25 .exit .procend .import $$divU,MILLICODE #endif #ifdef L_divU_7 SPACE GSYM($$divU_7) .proc .callinfo frame=0,no_calls .entry b $$divU ldi 7,%r25 .exit .procend .import $$divU,MILLICODE #endif #ifdef L_divU_9 SPACE GSYM($$divU_9) .proc .callinfo frame=0,no_calls .entry b $$divU ldi 9,%r25 .exit .procend .import $$divU,MILLICODE #endif #ifdef L_divU_10 SPACE GSYM($$divU_10) .proc .callinfo frame=0,no_calls .entry b $$divU ldi 10,%r25 .exit .procend .import $$divU,MILLICODE #endif #ifdef L_divU_12 SPACE GSYM($$divU_12) .proc .callinfo frame=0,no_calls .entry b $$divU ldi 12,%r25 .exit .procend .import $$divU,MILLICODE #endif #ifdef L_divU_14 SPACE GSYM($$divU_14) .proc .callinfo frame=0,no_calls .entry b $$divU ldi 14,%r25 .exit .procend .import $$divU,MILLICODE #endif #ifdef L_divU_15 SPACE GSYM($$divU_15) .proc .callinfo frame=0,no_calls .entry b $$divU ldi 15,%r25 .exit .procend .import $$divU,MILLICODE #endif #ifdef L_divI_3 SPACE GSYM($$divI_3) .proc .callinfo frame=0,no_calls .entry b $$divI ldi 3,%r25 .exit .procend .import $$divI,MILLICODE #endif #ifdef L_divI_5 SPACE GSYM($$divI_5) .proc .callinfo frame=0,no_calls .entry b $$divI ldi 5,%r25 .exit .procend .import $$divI,MILLICODE #endif #ifdef L_divI_6 SPACE GSYM($$divI_6) .proc .callinfo frame=0,no_calls .entry b $$divI ldi 6,%r25 .exit .procend .import $$divI,MILLICODE #endif #ifdef L_divI_7 SPACE GSYM($$divI_7) .proc .callinfo frame=0,no_calls .entry b $$divI ldi 7,%r25 .exit .procend .import $$divI,MILLICODE #endif #ifdef L_divI_9 SPACE GSYM($$divI_9) .proc .callinfo frame=0,no_calls .entry b $$divI ldi 9,%r25 .exit .procend .import $$divI,MILLICODE #endif #ifdef L_divI_10 SPACE GSYM($$divI_10) .proc .callinfo frame=0,no_calls .entry b $$divI ldi 10,%r25 .exit .procend .import $$divI,MILLICODE #endif #ifdef L_divI_12 SPACE GSYM($$divI_12) .proc .callinfo frame=0,no_calls .entry b $$divI ldi 12,%r25 .exit .procend .import $$divI,MILLICODE #endif #ifdef L_divI_14 SPACE GSYM($$divI_14) .proc .callinfo frame=0,no_calls .entry b $$divI ldi 14,%r25 .exit .procend .import $$divI,MILLICODE #endif #ifdef L_divI_15 SPACE GSYM($$divI_15) .proc .callinfo frame=0,no_calls .entry b $$divI ldi 15,%r25 .exit .procend .import $$divI,MILLICODE #endif