call.c   [plain text]


/* Functions related to invoking methods and overloaded functions.
   Copyright (C) 1987, 92-97, 1998, 1999 Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com) and
   modified by Brendan Kehoe (brendan@cygnus.com).

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


/* High-level class interface.  */

#include "config.h"
#include "system.h"
#include "tree.h"
#include "cp-tree.h"
#include "output.h"
#include "flags.h"
#include "rtl.h"
#include "toplev.h"

#include "obstack.h"
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free

extern int inhibit_warnings;
extern tree ctor_label, dtor_label;

static tree build_new_method_call PROTO((tree, tree, tree, tree, int));

static tree build_field_call PROTO((tree, tree, tree, tree));
static tree find_scoped_type PROTO((tree, tree, tree));
static struct z_candidate * tourney PROTO((struct z_candidate *));
static int joust PROTO((struct z_candidate *, struct z_candidate *, int));
static int compare_ics PROTO((tree, tree));
static tree build_over_call PROTO((struct z_candidate *, tree, int));
static tree convert_like PROTO((tree, tree));
static void op_error PROTO((enum tree_code, enum tree_code, tree, tree,
			    tree, const char *));
static tree build_object_call PROTO((tree, tree));
static tree resolve_args PROTO((tree));
static struct z_candidate * build_user_type_conversion_1
	PROTO ((tree, tree, int));
static void print_z_candidates PROTO((struct z_candidate *));
static tree build_this PROTO((tree));
static struct z_candidate * splice_viable PROTO((struct z_candidate *));
static int any_viable PROTO((struct z_candidate *));
static struct z_candidate * add_template_candidate
	PROTO((struct z_candidate *, tree, tree, tree, tree, int,
	       unification_kind_t));
static struct z_candidate * add_template_candidate_real
	PROTO((struct z_candidate *, tree, tree, tree, tree, int,
	       tree, unification_kind_t));
static struct z_candidate * add_template_conv_candidate 
        PROTO((struct z_candidate *, tree, tree, tree, tree));
static struct z_candidate * add_builtin_candidates
	PROTO((struct z_candidate *, enum tree_code, enum tree_code,
	       tree, tree *, int));
static struct z_candidate * add_builtin_candidate
	PROTO((struct z_candidate *, enum tree_code, enum tree_code,
	       tree, tree, tree, tree *, tree *, int));
static int is_complete PROTO((tree));
static struct z_candidate * build_builtin_candidate 
	PROTO((struct z_candidate *, tree, tree, tree, tree *, tree *,
	       int));
static struct z_candidate * add_conv_candidate 
	PROTO((struct z_candidate *, tree, tree, tree));
static struct z_candidate * add_function_candidate 
	PROTO((struct z_candidate *, tree, tree, int));
static tree implicit_conversion PROTO((tree, tree, tree, int));
static tree standard_conversion PROTO((tree, tree, tree));
static tree reference_binding PROTO((tree, tree, tree, int));
static tree strip_top_quals PROTO((tree));
static tree non_reference PROTO((tree));
static tree build_conv PROTO((enum tree_code, tree, tree));
static int is_subseq PROTO((tree, tree));
static int maybe_handle_ref_bind PROTO((tree*, tree*));
static void maybe_handle_implicit_object PROTO((tree*));
static struct z_candidate * add_candidate PROTO((struct z_candidate *,
						 tree, tree, int));
static tree source_type PROTO((tree));
static void add_warning PROTO((struct z_candidate *, struct z_candidate *));

tree
build_vfield_ref (datum, type)
     tree datum, type;
{
  tree rval;

  if (datum == error_mark_node)
    return error_mark_node;

  if (TREE_CODE (TREE_TYPE (datum)) == REFERENCE_TYPE)
    datum = convert_from_reference (datum);

  if (! TYPE_USES_COMPLEX_INHERITANCE (type))
    rval = build (COMPONENT_REF, TREE_TYPE (CLASSTYPE_VFIELD (type)),
		  datum, CLASSTYPE_VFIELD (type));
  else
    rval = build_component_ref (datum, DECL_NAME (CLASSTYPE_VFIELD (type)), NULL_TREE, 0);

  return rval;
}

/* Build a call to a member of an object.  I.e., one that overloads
   operator ()(), or is a pointer-to-function or pointer-to-method.  */

static tree
build_field_call (basetype_path, instance_ptr, name, parms)
     tree basetype_path, instance_ptr, name, parms;
{
  tree field, instance;

  if (name == ctor_identifier || name == dtor_identifier)
    return NULL_TREE;

  /* Speed up the common case.  */
  if (instance_ptr == current_class_ptr
      && IDENTIFIER_CLASS_VALUE (name) == NULL_TREE)
    return NULL_TREE;

  field = lookup_field (basetype_path, name, 1, 0);

  if (field == error_mark_node || field == NULL_TREE)
    return field;

  if (TREE_CODE (field) == FIELD_DECL || TREE_CODE (field) == VAR_DECL)
    {
      /* If it's a field, try overloading operator (),
	 or calling if the field is a pointer-to-function.  */
      instance = build_indirect_ref (instance_ptr, NULL_PTR);
      instance = build_component_ref_1 (instance, field, 0);

      if (instance == error_mark_node)
	return error_mark_node;
      if (IS_AGGR_TYPE (TREE_TYPE (instance)))
	return build_opfncall (CALL_EXPR, LOOKUP_NORMAL,
			       instance, parms, NULL_TREE);
      else if (TREE_CODE (TREE_TYPE (instance)) == POINTER_TYPE)
	{
	  if (TREE_CODE (TREE_TYPE (TREE_TYPE (instance))) == FUNCTION_TYPE)
	    return build_function_call (instance, parms);
	  else if (TREE_CODE (TREE_TYPE (TREE_TYPE (instance)))
		   == METHOD_TYPE)
	    return build_function_call
	      (instance, expr_tree_cons (NULL_TREE, instance_ptr, parms));
	}
    }

  return NULL_TREE;
}

static tree
find_scoped_type (type, inner_name, inner_types)
     tree type, inner_name, inner_types;
{
  tree tags = CLASSTYPE_TAGS (type);

  while (tags)
    {
      /* The TREE_PURPOSE of an enum tag (which becomes a member of the
	 enclosing class) is set to the name for the enum type.  So, if
	 inner_name is `bar', and we strike `baz' for `enum bar { baz }',
	 then this test will be true.  */
      if (TREE_PURPOSE (tags) == inner_name)
	{
	  if (inner_types == NULL_TREE)
	    return TYPE_MAIN_DECL (TREE_VALUE (tags));
	  return resolve_scope_to_name (TREE_VALUE (tags), inner_types);
	}
      tags = TREE_CHAIN (tags);
    }

  /* Look for a TYPE_DECL.  */
  for (tags = TYPE_FIELDS (type); tags; tags = TREE_CHAIN (tags))
    if (TREE_CODE (tags) == TYPE_DECL && DECL_NAME (tags) == inner_name)
      {
	/* Code by raeburn.  */
	if (inner_types == NULL_TREE)
	  return tags;
	return resolve_scope_to_name (TREE_TYPE (tags), inner_types);
      }

  return NULL_TREE;
}

/* Resolve an expression NAME1::NAME2::...::NAMEn to
   the name that names the above nested type.  INNER_TYPES
   is a chain of nested type names (held together by SCOPE_REFs);
   OUTER_TYPE is the type we know to enclose INNER_TYPES.
   Returns NULL_TREE if there is an error.  */

tree
resolve_scope_to_name (outer_type, inner_stuff)
     tree outer_type, inner_stuff;
{
  register tree tmp;
  tree inner_name, inner_type;

  if (outer_type == NULL_TREE && current_class_type != NULL_TREE)
    {
      /* We first try to look for a nesting in our current class context,
         then try any enclosing classes.  */
      tree type = current_class_type;
      
      while (type && (TREE_CODE (type) == RECORD_TYPE
		      || TREE_CODE (type) == UNION_TYPE))
        {
          tree rval = resolve_scope_to_name (type, inner_stuff);

	  if (rval != NULL_TREE)
	    return rval;
	  type = DECL_CONTEXT (TYPE_MAIN_DECL (type));
	}
    }

  if (TREE_CODE (inner_stuff) == SCOPE_REF)
    {
      inner_name = TREE_OPERAND (inner_stuff, 0);
      inner_type = TREE_OPERAND (inner_stuff, 1);
    }
  else
    {
      inner_name = inner_stuff;
      inner_type = NULL_TREE;
    }

  if (outer_type == NULL_TREE)
    {
      tree x;
      /* If we have something that's already a type by itself,
	 use that.  */
      if (IDENTIFIER_HAS_TYPE_VALUE (inner_name))
	{
	  if (inner_type)
	    return resolve_scope_to_name (IDENTIFIER_TYPE_VALUE (inner_name),
					  inner_type);
	  return inner_name;
	}
      
      x = lookup_name (inner_name, 0);

      if (x && TREE_CODE (x) == NAMESPACE_DECL)
	{
	  x = lookup_namespace_name (x, inner_type);
	  return x;
	}
      return NULL_TREE;
    }

  if (! IS_AGGR_TYPE (outer_type))
    return NULL_TREE;

  /* Look for member classes or enums.  */
  tmp = find_scoped_type (outer_type, inner_name, inner_type);

  /* If it's not a type in this class, then go down into the
     base classes and search there.  */
  if (! tmp && TYPE_BINFO (outer_type))
    {
      tree binfos = TYPE_BINFO_BASETYPES (outer_type);
      int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;

      for (i = 0; i < n_baselinks; i++)
	{
	  tree base_binfo = TREE_VEC_ELT (binfos, i);
	  tmp = resolve_scope_to_name (BINFO_TYPE (base_binfo), inner_stuff);
	  if (tmp)
	    return tmp;
	}
      tmp = NULL_TREE;
    }

  return tmp;
}

/* Returns nonzero iff the destructor name specified in NAME
   (a BIT_NOT_EXPR) matches BASETYPE.  The operand of NAME can take many
   forms...  */

int
check_dtor_name (basetype, name)
     tree basetype, name;
{
  name = TREE_OPERAND (name, 0);

  /* Just accept something we've already complained about.  */
  if (name == error_mark_node)
    return 1;

  if (TREE_CODE (name) == TYPE_DECL)
    name = TREE_TYPE (name);
  else if (TREE_CODE_CLASS (TREE_CODE (name)) == 't')
    /* OK */;
  else if (TREE_CODE (name) == IDENTIFIER_NODE)
    {
      if ((IS_AGGR_TYPE (basetype) && name == constructor_name (basetype))
	  || (TREE_CODE (basetype) == ENUMERAL_TYPE
	      && name == TYPE_IDENTIFIER (basetype)))
	name = basetype;
      else
	name = get_type_value (name);
    }
  else
    my_friendly_abort (980605);

  if (name && TYPE_MAIN_VARIANT (basetype) == TYPE_MAIN_VARIANT (name))
    return 1;
  return 0;
}

/* Build a method call of the form `EXP->SCOPES::NAME (PARMS)'.
   This is how virtual function calls are avoided.  */

tree
build_scoped_method_call (exp, basetype, name, parms)
     tree exp, basetype, name, parms;
{
  /* Because this syntactic form does not allow
     a pointer to a base class to be `stolen',
     we need not protect the derived->base conversion
     that happens here.
     
     @@ But we do have to check access privileges later.  */
  tree binfo, decl;
  tree type = TREE_TYPE (exp);

  if (type == error_mark_node
      || basetype == error_mark_node)
    return error_mark_node;

  if (processing_template_decl)
    {
      if (TREE_CODE (name) == BIT_NOT_EXPR
	  && TREE_CODE (TREE_OPERAND (name, 0)) == IDENTIFIER_NODE)
	{
	  tree type = get_aggr_from_typedef (TREE_OPERAND (name, 0), 0);
	  if (type)
	    name = build_min_nt (BIT_NOT_EXPR, type);
	}
      name = build_min_nt (SCOPE_REF, basetype, name);
      return build_min_nt (METHOD_CALL_EXPR, name, exp, parms, NULL_TREE);
    }

  if (TREE_CODE (type) == REFERENCE_TYPE)
    type = TREE_TYPE (type);

  if (TREE_CODE (basetype) == TREE_VEC)
    {
      binfo = basetype;
      basetype = BINFO_TYPE (binfo);
    }
  else
    binfo = NULL_TREE;

  /* Check the destructor call syntax.  */
  if (TREE_CODE (name) == BIT_NOT_EXPR)
    {
      /* We can get here if someone writes their destructor call like
	 `obj.NS::~T()'; this isn't really a scoped method call, so hand
	 it off.  */
      if (TREE_CODE (basetype) == NAMESPACE_DECL)
	return build_method_call (exp, name, parms, NULL_TREE, LOOKUP_NORMAL);

      if (! check_dtor_name (basetype, name))
	cp_error ("qualified type `%T' does not match destructor name `~%T'",
		  basetype, TREE_OPERAND (name, 0));

      /* Destructors can be "called" for simple types; see 5.2.4 and 12.4 Note
	 that explicit ~int is caught in the parser; this deals with typedefs
	 and template parms.  */
      if (! IS_AGGR_TYPE (basetype))
	{
	  if (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (basetype))
	    cp_error ("type of `%E' does not match destructor type `%T' (type was `%T')",
		      exp, basetype, type);

	  return cp_convert (void_type_node, exp);
	}
    }

  if (! is_aggr_type (basetype, 1))
    return error_mark_node;

  if (! IS_AGGR_TYPE (type))
    {
      cp_error ("base object `%E' of scoped method call is of non-aggregate type `%T'",
		exp, type);
      return error_mark_node;
    }

  if (! binfo)
    {
      binfo = get_binfo (basetype, type, 1);
      if (binfo == error_mark_node)
	return error_mark_node;
      if (! binfo)
	error_not_base_type (basetype, type);
    }

  if (binfo)
    {
      if (TREE_CODE (exp) == INDIRECT_REF)
	decl = build_indirect_ref
	  (convert_pointer_to_real
	   (binfo, build_unary_op (ADDR_EXPR, exp, 0)), NULL_PTR);
      else
	decl = build_scoped_ref (exp, basetype);

      /* Call to a destructor.  */
      if (TREE_CODE (name) == BIT_NOT_EXPR)
	{
	  if (! TYPE_HAS_DESTRUCTOR (TREE_TYPE (decl)))
	    return cp_convert (void_type_node, exp);
	  
	  return build_delete (TREE_TYPE (decl), decl, integer_two_node,
			       LOOKUP_NORMAL|LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR,
			       0);
	}

      /* Call to a method.  */
      return build_method_call (decl, name, parms, binfo,
				LOOKUP_NORMAL|LOOKUP_NONVIRTUAL);
    }
  return error_mark_node;
}

/* We want the address of a function or method.  We avoid creating a
   pointer-to-member function.  */

tree
build_addr_func (function)
     tree function;
{
  tree type = TREE_TYPE (function);

  /* We have to do these by hand to avoid real pointer to member
     functions.  */
  if (TREE_CODE (type) == METHOD_TYPE)
    {
      tree addr;

      type = build_pointer_type (type);

      if (mark_addressable (function) == 0)
	return error_mark_node;

      addr = build1 (ADDR_EXPR, type, function);

      /* Address of a static or external variable or function counts
	 as a constant */
      if (staticp (function))
	TREE_CONSTANT (addr) = 1;

      function = addr;
    }
  else
    function = default_conversion (function);

  return function;
}

/* Build a CALL_EXPR, we can handle FUNCTION_TYPEs, METHOD_TYPEs, or
   POINTER_TYPE to those.  Note, pointer to member function types
   (TYPE_PTRMEMFUNC_P) must be handled by our callers.  */

tree
build_call (function, result_type, parms)
     tree function, result_type, parms;
{
  int is_constructor = 0;
  tree tmp;
  tree decl;

  function = build_addr_func (function);

  if (TYPE_PTRMEMFUNC_P (TREE_TYPE (function)))
    {
      sorry ("unable to call pointer to member function here");
      return error_mark_node;
    }

  if (TREE_CODE (function) == ADDR_EXPR
      && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
    decl = TREE_OPERAND (function, 0);
  else
    decl = NULL_TREE;

  if (decl && DECL_CONSTRUCTOR_P (decl))
    is_constructor = 1;

  if (decl)
    my_friendly_assert (TREE_USED (decl), 990125);

  /* Don't pass empty class objects by value.  This is useful
     for tags in STL, which are used to control overload resolution.
     We don't need to handle other cases of copying empty classes.  */
  if (! decl || ! DECL_BUILT_IN (decl))
    for (tmp = parms; tmp; tmp = TREE_CHAIN (tmp))
      if (is_empty_class (TREE_TYPE (TREE_VALUE (tmp)))
	  && ! TREE_ADDRESSABLE (TREE_TYPE (TREE_VALUE (tmp))))
	{
	  tree t = make_node (RTL_EXPR);
	  TREE_TYPE (t) = TREE_TYPE (TREE_VALUE (tmp));
	  RTL_EXPR_RTL (t) = const0_rtx;
	  RTL_EXPR_SEQUENCE (t) = NULL_RTX;
	  TREE_VALUE (tmp) = build (COMPOUND_EXPR, TREE_TYPE (t),
				    TREE_VALUE (tmp), t);
	}

  function = build_nt (CALL_EXPR, function, parms, NULL_TREE);
  TREE_HAS_CONSTRUCTOR (function) = is_constructor;
  TREE_TYPE (function) = result_type;
  TREE_SIDE_EFFECTS (function) = 1;

  return function;
}

/* Build something of the form ptr->method (args)
   or object.method (args).  This can also build
   calls to constructors, and find friends.

   Member functions always take their class variable
   as a pointer.

   INSTANCE is a class instance.

   NAME is the name of the method desired, usually an IDENTIFIER_NODE.

   PARMS help to figure out what that NAME really refers to.

   BASETYPE_PATH, if non-NULL, contains a chain from the type of INSTANCE
   down to the real instance type to use for access checking.  We need this
   information to get protected accesses correct.  This parameter is used
   by build_member_call.

   FLAGS is the logical disjunction of zero or more LOOKUP_
   flags.  See cp-tree.h for more info.

   If this is all OK, calls build_function_call with the resolved
   member function.

   This function must also handle being called to perform
   initialization, promotion/coercion of arguments, and
   instantiation of default parameters.

   Note that NAME may refer to an instance variable name.  If
   `operator()()' is defined for the type of that field, then we return
   that result.  */

tree
build_method_call (instance, name, parms, basetype_path, flags)
     tree instance, name, parms, basetype_path;
     int flags;
{
  tree basetype, instance_ptr;

#ifdef GATHER_STATISTICS
  extern int n_build_method_call;
  n_build_method_call++;
#endif

  if (instance == error_mark_node
      || name == error_mark_node
      || parms == error_mark_node
      || (instance != NULL_TREE && TREE_TYPE (instance) == error_mark_node))
    return error_mark_node;

  if (processing_template_decl)
    {
      /* We need to process template parm names here so that tsubst catches
	 them properly.  Other type names can wait.  */
      if (TREE_CODE (name) == BIT_NOT_EXPR)
	{
	  tree type = NULL_TREE;

	  if (TREE_CODE (TREE_OPERAND (name, 0)) == IDENTIFIER_NODE)
	    type = get_aggr_from_typedef (TREE_OPERAND (name, 0), 0);
	  else if (TREE_CODE (TREE_OPERAND (name, 0)) == TYPE_DECL)
	    type = TREE_TYPE (TREE_OPERAND (name, 0));

	  if (type && TREE_CODE (type) == TEMPLATE_TYPE_PARM)
	    name = build_min_nt (BIT_NOT_EXPR, type);
	}

      return build_min_nt (METHOD_CALL_EXPR, name, instance, parms, NULL_TREE);
    }

  if (TREE_CODE (name) == BIT_NOT_EXPR)
    {
      if (parms)
	error ("destructors take no parameters");
      basetype = TREE_TYPE (instance);
      if (TREE_CODE (basetype) == REFERENCE_TYPE)
	basetype = TREE_TYPE (basetype);

      if (! check_dtor_name (basetype, name))
	cp_error
	  ("destructor name `~%T' does not match type `%T' of expression",
	   TREE_OPERAND (name, 0), basetype);

      if (! TYPE_HAS_DESTRUCTOR (complete_type (basetype)))
	return cp_convert (void_type_node, instance);
      instance = default_conversion (instance);
      instance_ptr = build_unary_op (ADDR_EXPR, instance, 0);
      return build_delete (build_pointer_type (basetype),
			   instance_ptr, integer_two_node,
			   LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0);
    }

  return build_new_method_call (instance, name, parms, basetype_path, flags);
}

/* New overloading code.  */

struct z_candidate {
  tree fn;
  tree convs;
  tree second_conv;
  int viable;
  tree basetype_path;
  tree template;
  tree warnings;
  struct z_candidate *next;
};

#define IDENTITY_RANK 0
#define EXACT_RANK 1
#define PROMO_RANK 2
#define STD_RANK 3
#define PBOOL_RANK 4
#define USER_RANK 5
#define ELLIPSIS_RANK 6
#define BAD_RANK 7

#define ICS_RANK(NODE)				\
  (ICS_BAD_FLAG (NODE) ? BAD_RANK   \
   : ICS_ELLIPSIS_FLAG (NODE) ? ELLIPSIS_RANK	\
   : ICS_USER_FLAG (NODE) ? USER_RANK		\
   : ICS_STD_RANK (NODE))

#define ICS_STD_RANK(NODE) TREE_COMPLEXITY (NODE)

#define ICS_USER_FLAG(NODE) TREE_LANG_FLAG_0 (NODE)
#define ICS_ELLIPSIS_FLAG(NODE) TREE_LANG_FLAG_1 (NODE)
#define ICS_THIS_FLAG(NODE) TREE_LANG_FLAG_2 (NODE)
#define ICS_BAD_FLAG(NODE) TREE_LANG_FLAG_3 (NODE)

#define USER_CONV_CAND(NODE) \
  ((struct z_candidate *)WRAPPER_PTR (TREE_OPERAND (NODE, 1)))
#define USER_CONV_FN(NODE) (USER_CONV_CAND (NODE)->fn)

int
null_ptr_cst_p (t)
     tree t;
{
  if (t == null_node
      || (integer_zerop (t) && TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE))
    return 1;
  return 0;
}

static tree
build_conv (code, type, from)
     enum tree_code code;
     tree type, from;
{
  tree t = build1 (code, type, from);
  int rank = ICS_STD_RANK (from);
  switch (code)
    {
    case PTR_CONV:
    case PMEM_CONV:
    case BASE_CONV:
    case STD_CONV:
      if (rank < STD_RANK)
	rank = STD_RANK;
      break;

    case QUAL_CONV:
      if (rank < EXACT_RANK)
	rank = EXACT_RANK;

    default:
      break;
    }
  ICS_STD_RANK (t) = rank;
  ICS_USER_FLAG (t) = ICS_USER_FLAG (from);
  ICS_BAD_FLAG (t) = ICS_BAD_FLAG (from);
  return t;
}

static tree
non_reference (t)
     tree t;
{
  if (TREE_CODE (t) == REFERENCE_TYPE)
    t = TREE_TYPE (t);
  return t;
}

static tree
strip_top_quals (t)
     tree t;
{
  if (TREE_CODE (t) == ARRAY_TYPE)
    return t;
  return TYPE_MAIN_VARIANT (t);
}

/* Returns the standard conversion path (see [conv]) from type FROM to type
   TO, if any.  For proper handling of null pointer constants, you must
   also pass the expression EXPR to convert from.  */

static tree
standard_conversion (to, from, expr)
     tree to, from, expr;
{
  enum tree_code fcode, tcode;
  tree conv;
  int fromref = 0;

  if (TREE_CODE (to) == REFERENCE_TYPE)
    to = TREE_TYPE (to);
  if (TREE_CODE (from) == REFERENCE_TYPE)
    {
      fromref = 1;
      from = TREE_TYPE (from);
    }
  to = strip_top_quals (to);
  from = strip_top_quals (from);

  if ((TYPE_PTRFN_P (to) || TYPE_PTRMEMFUNC_P (to))
      && expr && type_unknown_p (expr))
    {
      expr = instantiate_type (to, expr, 0);
      if (expr == error_mark_node)
	return NULL_TREE;
      from = TREE_TYPE (expr);
    }

  fcode = TREE_CODE (from);
  tcode = TREE_CODE (to);

  conv = build1 (IDENTITY_CONV, from, expr);

  if (fcode == FUNCTION_TYPE)
    {
      from = build_pointer_type (from);
      fcode = TREE_CODE (from);
      conv = build_conv (LVALUE_CONV, from, conv);
    }
  else if (fcode == ARRAY_TYPE)
    {
      from = build_pointer_type (TREE_TYPE (from));
      fcode = TREE_CODE (from);
      conv = build_conv (LVALUE_CONV, from, conv);
    }
  else if (fromref || (expr && real_lvalue_p (expr)))
    conv = build_conv (RVALUE_CONV, from, conv);

  if (from == to)
    return conv;

  if ((tcode == POINTER_TYPE || TYPE_PTRMEMFUNC_P (to))
      && expr && null_ptr_cst_p (expr))
    {
      conv = build_conv (STD_CONV, to, conv);
    }
  else if (tcode == POINTER_TYPE && fcode == POINTER_TYPE)
    {
      enum tree_code ufcode = TREE_CODE (TREE_TYPE (from));
      enum tree_code utcode = TREE_CODE (TREE_TYPE (to));

      if (same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (from)),
		       TYPE_MAIN_VARIANT (TREE_TYPE (to))))
	;
      else if (utcode == VOID_TYPE && ufcode != OFFSET_TYPE
	       && ufcode != FUNCTION_TYPE)
	{
	  from = build_pointer_type
	    (cp_build_qualified_type (void_type_node, 
				      CP_TYPE_QUALS (TREE_TYPE (from))));
	  conv = build_conv (PTR_CONV, from, conv);
	}
      else if (ufcode == OFFSET_TYPE && utcode == OFFSET_TYPE)
	{
	  tree fbase = TYPE_OFFSET_BASETYPE (TREE_TYPE (from));
	  tree tbase = TYPE_OFFSET_BASETYPE (TREE_TYPE (to));

	  if (DERIVED_FROM_P (fbase, tbase)
	      && (same_type_p 
		  (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (from))),
		   TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (to))))))
	    {
	      from = build_offset_type (tbase, TREE_TYPE (TREE_TYPE (from)));
	      from = build_pointer_type (from);
	      conv = build_conv (PMEM_CONV, from, conv);
	    }
	}
      else if (IS_AGGR_TYPE (TREE_TYPE (from))
	       && IS_AGGR_TYPE (TREE_TYPE (to)))
	{
	  if (DERIVED_FROM_P (TREE_TYPE (to), TREE_TYPE (from)))
	    {
	      from = 
		cp_build_qualified_type (TREE_TYPE (to),
					 CP_TYPE_QUALS (TREE_TYPE (from)));
	      from = build_pointer_type (from);
	      conv = build_conv (PTR_CONV, from, conv);
	    }
	}

      if (same_type_p (from, to))
	/* OK */;
      else if (comp_ptr_ttypes (TREE_TYPE (to), TREE_TYPE (from)))
	conv = build_conv (QUAL_CONV, to, conv);
      else if (expr && string_conv_p (to, expr, 0))
	/* converting from string constant to char *.  */
	conv = build_conv (QUAL_CONV, to, conv);
      else if (ptr_reasonably_similar (TREE_TYPE (to), TREE_TYPE (from)))
	{
	  conv = build_conv (PTR_CONV, to, conv);
	  ICS_BAD_FLAG (conv) = 1;
	}
      else
	return 0;

      from = to;
    }
  else if (TYPE_PTRMEMFUNC_P (to) && TYPE_PTRMEMFUNC_P (from))
    {
      tree fromfn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (from));
      tree tofn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (to));
      tree fbase = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (fromfn)));
      tree tbase = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (tofn)));

      if (! DERIVED_FROM_P (fbase, tbase)
	  || ! same_type_p (TREE_TYPE (fromfn), TREE_TYPE (tofn))
	  || ! compparms (TREE_CHAIN (TYPE_ARG_TYPES (fromfn)),
			  TREE_CHAIN (TYPE_ARG_TYPES (tofn)))
	  || CP_TYPE_QUALS (fbase) != CP_TYPE_QUALS (tbase))
	return 0;

      from = cp_build_qualified_type (tbase, CP_TYPE_QUALS (fbase));
      from = build_cplus_method_type (from, TREE_TYPE (fromfn),
				      TREE_CHAIN (TYPE_ARG_TYPES (fromfn)));
      from = build_ptrmemfunc_type (build_pointer_type (from));
      conv = build_conv (PMEM_CONV, from, conv);
    }
  else if (tcode == BOOLEAN_TYPE)
    {
      if (! (INTEGRAL_CODE_P (fcode) || fcode == REAL_TYPE
	     || fcode == POINTER_TYPE || TYPE_PTRMEMFUNC_P (from)))
	return 0;

      conv = build_conv (STD_CONV, to, conv);
      if (fcode == POINTER_TYPE
	  || (TYPE_PTRMEMFUNC_P (from) && ICS_STD_RANK (conv) < PBOOL_RANK))
	ICS_STD_RANK (conv) = PBOOL_RANK;
    }
  /* We don't check for ENUMERAL_TYPE here because there are no standard
     conversions to enum type.  */
  else if (tcode == INTEGER_TYPE || tcode == BOOLEAN_TYPE
	   || tcode == REAL_TYPE)
    {
      if (! (INTEGRAL_CODE_P (fcode) || fcode == REAL_TYPE))
	return 0;
      conv = build_conv (STD_CONV, to, conv);

      /* Give this a better rank if it's a promotion.  */
      if (to == type_promotes_to (from)
	  && ICS_STD_RANK (TREE_OPERAND (conv, 0)) <= PROMO_RANK)
	ICS_STD_RANK (conv) = PROMO_RANK;
    }
  else if (IS_AGGR_TYPE (to) && IS_AGGR_TYPE (from)
	   && DERIVED_FROM_P (to, from))
    {
      if (TREE_CODE (conv) == RVALUE_CONV)
	conv = TREE_OPERAND (conv, 0);
      conv = build_conv (BASE_CONV, to, conv);
    }
  else
    return 0;

  return conv;
}

/* Returns the conversion path from type FROM to reference type TO for
   purposes of reference binding.  For lvalue binding, either pass a
   reference type to FROM or an lvalue expression to EXPR.

   Currently does not distinguish in the generated trees between binding to
   an lvalue and a temporary.  Should it?  */

static tree
reference_binding (rto, rfrom, expr, flags)
     tree rto, rfrom, expr;
     int flags;
{
  tree conv;
  int lvalue = 1;
  tree to = TREE_TYPE (rto);
  tree from = rfrom;
  int related;

  if (TREE_CODE (to) == FUNCTION_TYPE && expr && type_unknown_p (expr))
    {
      expr = instantiate_type (to, expr, 0);
      if (expr == error_mark_node)
	return NULL_TREE;
      from = TREE_TYPE (expr);
    }

  if (TREE_CODE (from) == REFERENCE_TYPE)
    from = TREE_TYPE (from);
  else if (! expr || ! real_lvalue_p (expr))
    lvalue = 0;

  related = (same_type_p (TYPE_MAIN_VARIANT (to),
			  TYPE_MAIN_VARIANT (from))
	     || (IS_AGGR_TYPE (to) && IS_AGGR_TYPE (from)
		 && DERIVED_FROM_P (to, from)));

  if (lvalue && related && at_least_as_qualified_p (to, from))
    {
      conv = build1 (IDENTITY_CONV, from, expr);

      if (same_type_p (TYPE_MAIN_VARIANT (to),
		       TYPE_MAIN_VARIANT (from)))
	conv = build_conv (REF_BIND, rto, conv);
      else
	{
	  conv = build_conv (REF_BIND, rto, conv);
	  ICS_STD_RANK (conv) = STD_RANK;
	}
    }
  else
    conv = NULL_TREE;

  if (! conv)
    {
      conv = standard_conversion (to, rfrom, expr);
      if (conv)
	{
	  conv = build_conv (REF_BIND, rto, conv);

	  /* Bind directly to a base subobject of a class rvalue.  Do it
             after building the conversion for proper handling of ICS_RANK.  */
	  if (TREE_CODE (TREE_OPERAND (conv, 0)) == BASE_CONV)
	    TREE_OPERAND (conv, 0) = TREE_OPERAND (TREE_OPERAND (conv, 0), 0);
	}
      if (conv
	  && ((! (CP_TYPE_CONST_NON_VOLATILE_P (to)
		  && (flags & LOOKUP_NO_TEMP_BIND) == 0))
	      /* If T1 is reference-related to T2, cv1 must be the same
		 cv-qualification as, or greater cv-qualification than,
		 cv2; otherwise, the program is ill-formed.  */
	      || (related && !at_least_as_qualified_p (to, from))))
	ICS_BAD_FLAG (conv) = 1;
    }

  return conv;
}

/* Returns the implicit conversion sequence (see [over.ics]) from type FROM
   to type TO.  The optional expression EXPR may affect the conversion.
   FLAGS are the usual overloading flags.  Only LOOKUP_NO_CONVERSION is
   significant.  */

static tree
implicit_conversion (to, from, expr, flags)
     tree to, from, expr;
     int flags;
{
  tree conv;
  struct z_candidate *cand;

  if (TREE_CODE (to) == REFERENCE_TYPE)
    conv = reference_binding (to, from, expr, flags);
  else
    conv = standard_conversion (to, from, expr);

  if (conv)
    ;
  else if (expr != NULL_TREE
	   && (IS_AGGR_TYPE (non_reference (from))
	       || IS_AGGR_TYPE (non_reference (to)))
	   && (flags & LOOKUP_NO_CONVERSION) == 0)
    {
      cand = build_user_type_conversion_1
	(to, expr, LOOKUP_ONLYCONVERTING);
      if (cand)
	conv = cand->second_conv;
      if ((! conv || ICS_BAD_FLAG (conv))
	  && TREE_CODE (to) == REFERENCE_TYPE
	  && (flags & LOOKUP_NO_TEMP_BIND) == 0)
	{
	  cand = build_user_type_conversion_1
	    (TYPE_MAIN_VARIANT (TREE_TYPE (to)), expr, LOOKUP_ONLYCONVERTING);
	  if (cand)
	    {
	      if (!CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (to)))
		ICS_BAD_FLAG (cand->second_conv) = 1;
	      if (!conv || (ICS_BAD_FLAG (conv)
			    > ICS_BAD_FLAG (cand->second_conv)))
		conv = build_conv (REF_BIND, to, cand->second_conv);
	    }
	}
    }

  return conv;
}

/* Add a new entry to the list of candidates.  Used by the add_*_candidate
   functions.  */

static struct z_candidate *
add_candidate (candidates, fn, convs, viable)
     struct z_candidate *candidates;
     tree fn, convs;
     int viable;
{
  struct z_candidate *cand
    = (struct z_candidate *) scratchalloc (sizeof (struct z_candidate));

  cand->fn = fn;
  cand->convs = convs;
  cand->second_conv = NULL_TREE;
  cand->viable = viable;
  cand->basetype_path = NULL_TREE;
  cand->template = NULL_TREE;
  cand->warnings = NULL_TREE;
  cand->next = candidates;

  return cand;
}

/* Create an overload candidate for the function or method FN called with
   the argument list ARGLIST and add it to CANDIDATES.  FLAGS is passed on
   to implicit_conversion.  */

static struct z_candidate *
add_function_candidate (candidates, fn, arglist, flags)
     struct z_candidate *candidates;
     tree fn, arglist;
     int flags;
{
  tree parmlist = TYPE_ARG_TYPES (TREE_TYPE (fn));
  int i, len;
  tree convs;
  tree parmnode, argnode;
  int viable = 1;

  /* The `this' and `in_chrg' arguments to constructors are not considered
     in overload resolution.  */
  if (DECL_CONSTRUCTOR_P (fn))
    {
      parmlist = TREE_CHAIN (parmlist);
      arglist = TREE_CHAIN (arglist);
      if (TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (fn)))
	{
	  parmlist = TREE_CHAIN (parmlist);
	  arglist = TREE_CHAIN (arglist);
	}
    }

  len = list_length (arglist);
  convs = make_scratch_vec (len);

  /* 13.3.2 - Viable functions [over.match.viable]
     First, to be a viable function, a candidate function shall have enough
     parameters to agree in number with the arguments in the list.

     We need to check this first; otherwise, checking the ICSes might cause
     us to produce an ill-formed template instantiation.  */

  parmnode = parmlist;
  for (i = 0; i < len; ++i)
    {
      if (parmnode == NULL_TREE || parmnode == void_list_node)
	break;
      parmnode = TREE_CHAIN (parmnode);
    }

  if (i < len && parmnode)
    viable = 0;

  /* Make sure there are default args for the rest of the parms.  */
  else for (; parmnode && parmnode != void_list_node;
	    parmnode = TREE_CHAIN (parmnode))
    if (! TREE_PURPOSE (parmnode))
      {
	viable = 0;
	break;
      }

  if (! viable)
    goto out;

  /* Second, for F to be a viable function, there shall exist for each
     argument an implicit conversion sequence that converts that argument
     to the corresponding parameter of F.  */

  parmnode = parmlist;
  argnode = arglist;

  for (i = 0; i < len; ++i)
    {
      tree arg = TREE_VALUE (argnode);
      tree argtype = lvalue_type (arg);
      tree t;

      if (parmnode == void_list_node)
	break;

      if (parmnode)
	{
	  tree parmtype = TREE_VALUE (parmnode);

	  /* [over.match.funcs] For conversion functions, the function is
	     considered to be a member of the class of the implicit object
	     argument for the purpose of defining the type of the implicit
	     object parameter.

	     Since build_over_call ignores the ICS for the `this' parameter,
	     we can just change the parm type.  */
	  if (DECL_CONV_FN_P (fn) && i == 0)
	    {
	      parmtype
		= build_qualified_type (TREE_TYPE (argtype),
					TYPE_QUALS (TREE_TYPE (parmtype)));
	      parmtype = build_pointer_type (parmtype);
	    }

	  t = implicit_conversion (parmtype, argtype, arg, flags);
	}
      else
	{
	  t = build1 (IDENTITY_CONV, argtype, arg);
	  ICS_ELLIPSIS_FLAG (t) = 1;
	}

      if (i == 0 && t && TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE
	  && ! DECL_CONSTRUCTOR_P (fn))
	ICS_THIS_FLAG (t) = 1;

      TREE_VEC_ELT (convs, i) = t;
      if (! t)
	{
	  viable = 0;
	  break;
	}

      if (ICS_BAD_FLAG (t))
	viable = -1;

      if (parmnode)
	parmnode = TREE_CHAIN (parmnode);
      argnode = TREE_CHAIN (argnode);
    }

 out:
  return add_candidate (candidates, fn, convs, viable);
}

/* Create an overload candidate for the conversion function FN which will
   be invoked for expression OBJ, producing a pointer-to-function which
   will in turn be called with the argument list ARGLIST, and add it to
   CANDIDATES.  FLAGS is passed on to implicit_conversion.

   Actually, we don't really care about FN; we care about the type it
   converts to.  There may be multiple conversion functions that will
   convert to that type, and we rely on build_user_type_conversion_1 to
   choose the best one; so when we create our candidate, we record the type
   instead of the function.  */

static struct z_candidate *
add_conv_candidate (candidates, fn, obj, arglist)
     struct z_candidate *candidates;
     tree fn, obj, arglist;
{
  tree totype = TREE_TYPE (TREE_TYPE (fn));
  tree parmlist = TYPE_ARG_TYPES (TREE_TYPE (totype));
  int i, len = list_length (arglist) + 1;
  tree convs = make_scratch_vec (len);
  tree parmnode = parmlist;
  tree argnode = arglist;
  int viable = 1;
  int flags = LOOKUP_NORMAL;

  /* Don't bother looking up the same type twice.  */
  if (candidates && candidates->fn == totype)
    return candidates;

  for (i = 0; i < len; ++i)
    {
      tree arg = i == 0 ? obj : TREE_VALUE (argnode);
      tree argtype = lvalue_type (arg);
      tree t;

      if (i == 0)
	t = implicit_conversion (totype, argtype, arg, flags);
      else if (parmnode == void_list_node)
	break;
      else if (parmnode)
	t = implicit_conversion (TREE_VALUE (parmnode), argtype, arg, flags);
      else
	{
	  t = build1 (IDENTITY_CONV, argtype, arg);
	  ICS_ELLIPSIS_FLAG (t) = 1;
	}

      TREE_VEC_ELT (convs, i) = t;
      if (! t)
	break;

      if (ICS_BAD_FLAG (t))
	viable = -1;

      if (i == 0)
	continue;

      if (parmnode)
	parmnode = TREE_CHAIN (parmnode);
      argnode = TREE_CHAIN (argnode);
    }

  if (i < len)
    viable = 0;

  for (; parmnode && parmnode != void_list_node;
       parmnode = TREE_CHAIN (parmnode))
    if (! TREE_PURPOSE (parmnode))
      {
	viable = 0;
	break;
      }

  return add_candidate (candidates, totype, convs, viable);
}

static struct z_candidate *
build_builtin_candidate (candidates, fnname, type1, type2,
			 args, argtypes, flags)
     struct z_candidate *candidates;
     tree fnname, type1, type2, *args, *argtypes;
     int flags;

{
  tree t, convs;
  int viable = 1, i;
  tree types[2];

  types[0] = type1;
  types[1] = type2;

  convs = make_scratch_vec (args[2] ? 3 : (args[1] ? 2 : 1));

  for (i = 0; i < 2; ++i)
    {
      if (! args[i])
	break;

      t = implicit_conversion (types[i], argtypes[i], args[i], flags);
      if (! t)
	{
	  viable = 0;
	  /* We need something for printing the candidate.  */
	  t = build1 (IDENTITY_CONV, types[i], NULL_TREE);
	}
      else if (ICS_BAD_FLAG (t))
	viable = 0;
      TREE_VEC_ELT (convs, i) = t;
    }

  /* For COND_EXPR we rearranged the arguments; undo that now.  */
  if (args[2])
    {
      TREE_VEC_ELT (convs, 2) = TREE_VEC_ELT (convs, 1);
      TREE_VEC_ELT (convs, 1) = TREE_VEC_ELT (convs, 0);
      t = implicit_conversion (boolean_type_node, argtypes[2], args[2], flags);
      if (t)
	TREE_VEC_ELT (convs, 0) = t;
      else
	viable = 0;
    }      

  return add_candidate (candidates, fnname, convs, viable);
}

static int
is_complete (t)
     tree t;
{
  return TYPE_SIZE (complete_type (t)) != NULL_TREE;
}

/* Create any builtin operator overload candidates for the operator in
   question given the converted operand types TYPE1 and TYPE2.  The other
   args are passed through from add_builtin_candidates to
   build_builtin_candidate.  */

static struct z_candidate *
add_builtin_candidate (candidates, code, code2, fnname, type1, type2,
		       args, argtypes, flags)
     struct z_candidate *candidates;
     enum tree_code code, code2;
     tree fnname, type1, type2, *args, *argtypes;
     int flags;
{
  switch (code)
    {
    case POSTINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
      args[1] = integer_zero_node;
      type2 = integer_type_node;
      break;
    default:
      break;
    }

  switch (code)
    {

/* 4 For every pair T, VQ), where T is an arithmetic or  enumeration  type,
     and  VQ  is  either  volatile or empty, there exist candidate operator
     functions of the form
	     VQ T&   operator++(VQ T&);
	     T       operator++(VQ T&, int);
   5 For every pair T, VQ), where T is an enumeration type or an arithmetic
     type  other than bool, and VQ is either volatile or empty, there exist
     candidate operator functions of the form
	     VQ T&   operator--(VQ T&);
	     T       operator--(VQ T&, int);
   6 For every pair T, VQ), where T is  a  cv-qualified  or  cv-unqualified
     complete  object type, and VQ is either volatile or empty, there exist
     candidate operator functions of the form
	     T*VQ&   operator++(T*VQ&);
	     T*VQ&   operator--(T*VQ&);
	     T*      operator++(T*VQ&, int);
	     T*      operator--(T*VQ&, int);  */

    case POSTDECREMENT_EXPR:
    case PREDECREMENT_EXPR:
      if (TREE_CODE (type1) == BOOLEAN_TYPE)
	return candidates;
    case POSTINCREMENT_EXPR:
    case PREINCREMENT_EXPR:
      if ((ARITHMETIC_TYPE_P (type1) && TREE_CODE (type1) != ENUMERAL_TYPE)
	  || TYPE_PTROB_P (type1))
	{
	  type1 = build_reference_type (type1);
	  break;
	}
      return candidates;

/* 7 For every cv-qualified or cv-unqualified complete object type T, there
     exist candidate operator functions of the form

	     T&      operator*(T*);

   8 For every function type T, there exist candidate operator functions of
     the form
	     T&      operator*(T*);  */

    case INDIRECT_REF:
      if (TREE_CODE (type1) == POINTER_TYPE
	  && (TYPE_PTROB_P (type1)
	      || TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE))
	break;
      return candidates;

/* 9 For every type T, there exist candidate operator functions of the form
	     T*      operator+(T*);

   10For  every  promoted arithmetic type T, there exist candidate operator
     functions of the form
	     T       operator+(T);
	     T       operator-(T);  */

    case CONVERT_EXPR: /* unary + */
      if (TREE_CODE (type1) == POINTER_TYPE
	  && TREE_CODE (TREE_TYPE (type1)) != OFFSET_TYPE)
	break;
    case NEGATE_EXPR:
      if (ARITHMETIC_TYPE_P (type1))
	break;
      return candidates;

/* 11For every promoted integral type T,  there  exist  candidate  operator
     functions of the form
	     T       operator~(T);  */

    case BIT_NOT_EXPR:
      if (INTEGRAL_TYPE_P (type1))
	break;
      return candidates;

/* 12For every quintuple C1, C2, T, CV1, CV2), where C2 is a class type, C1
     is the same type as C2 or is a derived class of C2, T  is  a  complete
     object type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
     there exist candidate operator functions of the form
	     CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
     where CV12 is the union of CV1 and CV2.  */

    case MEMBER_REF:
      if (TREE_CODE (type1) == POINTER_TYPE
	  && (TYPE_PTRMEMFUNC_P (type2) || TYPE_PTRMEM_P (type2)))
	{
	  tree c1 = TREE_TYPE (type1);
	  tree c2 = (TYPE_PTRMEMFUNC_P (type2)
		     ? TYPE_METHOD_BASETYPE (TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (type2)))
		     : TYPE_OFFSET_BASETYPE (TREE_TYPE (type2)));

	  if (IS_AGGR_TYPE (c1) && DERIVED_FROM_P (c2, c1)
	      && (TYPE_PTRMEMFUNC_P (type2)
		  || is_complete (TREE_TYPE (TREE_TYPE (type2)))))
	    break;
	}
      return candidates;

/* 13For every pair of promoted arithmetic types L and R, there exist  can-
     didate operator functions of the form
	     LR      operator*(L, R);
	     LR      operator/(L, R);
	     LR      operator+(L, R);
	     LR      operator-(L, R);
	     bool    operator<(L, R);
	     bool    operator>(L, R);
	     bool    operator<=(L, R);
	     bool    operator>=(L, R);
	     bool    operator==(L, R);
	     bool    operator!=(L, R);
     where  LR  is  the  result of the usual arithmetic conversions between
     types L and R.

   14For every pair of types T and I, where T  is  a  cv-qualified  or  cv-
     unqualified  complete  object  type and I is a promoted integral type,
     there exist candidate operator functions of the form
	     T*      operator+(T*, I);
	     T&      operator[](T*, I);
	     T*      operator-(T*, I);
	     T*      operator+(I, T*);
	     T&      operator[](I, T*);

   15For every T, where T is a pointer to complete object type, there exist
     candidate operator functions of the form112)
	     ptrdiff_t operator-(T, T);

   16For  every pointer type T, there exist candidate operator functions of
     the form
	     bool    operator<(T, T);
	     bool    operator>(T, T);
	     bool    operator<=(T, T);
	     bool    operator>=(T, T);
	     bool    operator==(T, T);
	     bool    operator!=(T, T);

   17For every pointer to member type T,  there  exist  candidate  operator
     functions of the form
	     bool    operator==(T, T);
	     bool    operator!=(T, T);  */

    case MINUS_EXPR:
      if (TYPE_PTROB_P (type1) && TYPE_PTROB_P (type2))
	break;
      if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
	{
	  type2 = ptrdiff_type_node;
	  break;
	}
    case MULT_EXPR:
    case TRUNC_DIV_EXPR:
      if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
	break;
      return candidates;

    case EQ_EXPR:
    case NE_EXPR:
      if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2))
	  || (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2)))
	break;
      if ((TYPE_PTRMEMFUNC_P (type1) || TYPE_PTRMEM_P (type1))
	  && null_ptr_cst_p (args[1]))
	{
	  type2 = type1;
	  break;
	}
      if ((TYPE_PTRMEMFUNC_P (type2) || TYPE_PTRMEM_P (type2))
	  && null_ptr_cst_p (args[0]))
	{
	  type1 = type2;
	  break;
	}
    case LT_EXPR:
    case GT_EXPR:
    case LE_EXPR:
    case GE_EXPR:
    case MAX_EXPR:
    case MIN_EXPR:
      if ((ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
	  || (TYPE_PTR_P (type1) && TYPE_PTR_P (type2)))
	break;
      if (TYPE_PTR_P (type1) && null_ptr_cst_p (args[1]))
	{
	  type2 = type1;
	  break;
	}
      if (null_ptr_cst_p (args[0]) && TYPE_PTR_P (type2))
	{
	  type1 = type2;
	  break;
	}
      return candidates;

    case PLUS_EXPR:
      if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
	break;
    case ARRAY_REF:
      if (INTEGRAL_TYPE_P (type1) && TYPE_PTROB_P (type2))
	{
	  type1 = ptrdiff_type_node;
	  break;
	}
      if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
	{
	  type2 = ptrdiff_type_node;
	  break;
	}
      return candidates;

/* 18For  every pair of promoted integral types L and R, there exist candi-
     date operator functions of the form
	     LR      operator%(L, R);
	     LR      operator&(L, R);
	     LR      operator^(L, R);
	     LR      operator|(L, R);
	     L       operator<<(L, R);
	     L       operator>>(L, R);
     where LR is the result of the  usual  arithmetic  conversions  between
     types L and R.  */

    case TRUNC_MOD_EXPR:
    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
      if (INTEGRAL_TYPE_P (type1) && INTEGRAL_TYPE_P (type2))
	break;
      return candidates;

/* 19For  every  triple  L, VQ, R), where L is an arithmetic or enumeration
     type, VQ is either volatile or empty, and R is a  promoted  arithmetic
     type, there exist candidate operator functions of the form
	     VQ L&   operator=(VQ L&, R);
	     VQ L&   operator*=(VQ L&, R);
	     VQ L&   operator/=(VQ L&, R);
	     VQ L&   operator+=(VQ L&, R);
	     VQ L&   operator-=(VQ L&, R);

   20For  every  pair T, VQ), where T is any type and VQ is either volatile
     or empty, there exist candidate operator functions of the form
	     T*VQ&   operator=(T*VQ&, T*);

   21For every pair T, VQ), where T is a pointer to member type and  VQ  is
     either  volatile or empty, there exist candidate operator functions of
     the form
	     VQ T&   operator=(VQ T&, T);

   22For every triple  T,  VQ,  I),  where  T  is  a  cv-qualified  or  cv-
     unqualified  complete object type, VQ is either volatile or empty, and
     I is a promoted integral type, there exist  candidate  operator  func-
     tions of the form
	     T*VQ&   operator+=(T*VQ&, I);
	     T*VQ&   operator-=(T*VQ&, I);

   23For  every  triple  L,  VQ,  R), where L is an integral or enumeration
     type, VQ is either volatile or empty, and R  is  a  promoted  integral
     type, there exist candidate operator functions of the form

	     VQ L&   operator%=(VQ L&, R);
	     VQ L&   operator<<=(VQ L&, R);
	     VQ L&   operator>>=(VQ L&, R);
	     VQ L&   operator&=(VQ L&, R);
	     VQ L&   operator^=(VQ L&, R);
	     VQ L&   operator|=(VQ L&, R);  */

    case MODIFY_EXPR:
      switch (code2)
	{
	case PLUS_EXPR:
	case MINUS_EXPR:
	  if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
	    {
	      type2 = ptrdiff_type_node;
	      break;
	    }
	case MULT_EXPR:
	case TRUNC_DIV_EXPR:
	  if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
	    break;
	  return candidates;

	case TRUNC_MOD_EXPR:
	case BIT_AND_EXPR:
	case BIT_IOR_EXPR:
	case BIT_XOR_EXPR:
	case LSHIFT_EXPR:
	case RSHIFT_EXPR:
	  if (INTEGRAL_TYPE_P (type1) && INTEGRAL_TYPE_P (type2))
	    break;
	  return candidates;

	case NOP_EXPR:
	  if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
	    break;
	  if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2))
	      || (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
	      || (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2))
	      || ((TYPE_PTRMEMFUNC_P (type1)
		   || TREE_CODE (type1) == POINTER_TYPE)
		  && null_ptr_cst_p (args[1])))
	    {
	      type2 = type1;
	      break;
	    }
	  return candidates;

	default:
	  my_friendly_abort (367);
	}
      type1 = build_reference_type (type1);
      break;

    case COND_EXPR:
      /* Kludge around broken overloading rules whereby
	 bool ? const char& : enum is ambiguous
	 (between int and const char&).  */
      flags |= LOOKUP_NO_TEMP_BIND;

      /* Extension: Support ?: of enumeral type.  Hopefully this will not
         be an extension for long.  */
      if (TREE_CODE (type1) == ENUMERAL_TYPE && type1 == type2)
	break;
      else if (TREE_CODE (type1) == ENUMERAL_TYPE
	       || TREE_CODE (type2) == ENUMERAL_TYPE)
	return candidates;
      if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
	break;
      if (TREE_CODE (type1) == TREE_CODE (type2)
	  && (TREE_CODE (type1) == REFERENCE_TYPE
	      || TREE_CODE (type1) == POINTER_TYPE
	      || TYPE_PTRMEMFUNC_P (type1)
	      || IS_AGGR_TYPE (type1)))
	break;
      if (TREE_CODE (type1) == REFERENCE_TYPE
	  || TREE_CODE (type2) == REFERENCE_TYPE)
	return candidates;
      if (((TYPE_PTRMEMFUNC_P (type1) || TREE_CODE (type1) == POINTER_TYPE)
	   && null_ptr_cst_p (args[1]))
	  || IS_AGGR_TYPE (type1))
	{
	  type2 = type1;
	  break;
	}
      if (((TYPE_PTRMEMFUNC_P (type2) || TREE_CODE (type2) == POINTER_TYPE)
	   && null_ptr_cst_p (args[0]))
	  || IS_AGGR_TYPE (type2))
	{
	  type1 = type2;
	  break;
	}
      return candidates;

    default:
      my_friendly_abort (367);
    }

  /* If we're dealing with two pointer types, we need candidates
     for both of them.  */
  if (type2 && type1 != type2
      && TREE_CODE (type1) == TREE_CODE (type2)
      && (TREE_CODE (type1) == REFERENCE_TYPE
	  || (TREE_CODE (type1) == POINTER_TYPE
	      && TYPE_PTRMEM_P (type1) == TYPE_PTRMEM_P (type2))
	  || TYPE_PTRMEMFUNC_P (type1)
	  || IS_AGGR_TYPE (type1)))
    {
      candidates = build_builtin_candidate
	(candidates, fnname, type1, type1, args, argtypes, flags);
      return build_builtin_candidate
	(candidates, fnname, type2, type2, args, argtypes, flags);
    }

  return build_builtin_candidate
    (candidates, fnname, type1, type2, args, argtypes, flags);
}

tree
type_decays_to (type)
     tree type;
{
  if (TREE_CODE (type) == ARRAY_TYPE)
    return build_pointer_type (TREE_TYPE (type));
  if (TREE_CODE (type) == FUNCTION_TYPE)
    return build_pointer_type (type);
  return type;
}

/* There are three conditions of builtin candidates:

   1) bool-taking candidates.  These are the same regardless of the input.
   2) pointer-pair taking candidates.  These are generated for each type
      one of the input types converts to.
   3) arithmetic candidates.  According to the WP, we should generate
      all of these, but I'm trying not to... */

static struct z_candidate *
add_builtin_candidates (candidates, code, code2, fnname, args, flags)
     struct z_candidate *candidates;
     enum tree_code code, code2;
     tree fnname, *args;
     int flags;
{
  int ref1, i;
  tree type, argtypes[3], types[2];

  for (i = 0; i < 3; ++i)
    {
      if (args[i])
	argtypes[i]  = lvalue_type (args[i]);
      else
	argtypes[i] = NULL_TREE;
    }

  switch (code)
    {
/* 4 For every pair T, VQ), where T is an arithmetic or  enumeration  type,
     and  VQ  is  either  volatile or empty, there exist candidate operator
     functions of the form
		 VQ T&   operator++(VQ T&);  */

    case POSTINCREMENT_EXPR:
    case PREINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case MODIFY_EXPR:
      ref1 = 1;
      break;

/* 24There also exist candidate operator functions of the form
	     bool    operator!(bool);
	     bool    operator&&(bool, bool);
	     bool    operator||(bool, bool);  */

    case TRUTH_NOT_EXPR:
      return build_builtin_candidate
	(candidates, fnname, boolean_type_node,
	 NULL_TREE, args, argtypes, flags);

    case TRUTH_ORIF_EXPR:
    case TRUTH_ANDIF_EXPR:
      return build_builtin_candidate
	(candidates, fnname, boolean_type_node,
	 boolean_type_node, args, argtypes, flags);

    case ADDR_EXPR:
    case COMPOUND_EXPR:
    case COMPONENT_REF:
      return candidates;

    default:
      ref1 = 0;
    }

  types[0] = types[1] = NULL_TREE;

  for (i = 0; i < 2; ++i)
    {
      if (! args[i])
	;
      else if (IS_AGGR_TYPE (argtypes[i]))
	{
	  tree convs;

	  if (i == 0 && code == MODIFY_EXPR && code2 == NOP_EXPR)
	    return candidates;

	  convs = lookup_conversions (argtypes[i]);

	  if (code == COND_EXPR)
	    {
	      if (real_lvalue_p (args[i]))
		types[i] = scratch_tree_cons
		  (NULL_TREE, build_reference_type (argtypes[i]), types[i]);

	      types[i] = scratch_tree_cons
		(NULL_TREE, TYPE_MAIN_VARIANT (argtypes[i]), types[i]);
	    }

	  else if (! convs)
	    return candidates;

	  for (; convs; convs = TREE_CHAIN (convs))
	    {
	      type = TREE_TYPE (TREE_TYPE (OVL_CURRENT (TREE_VALUE (convs))));

	      if (i == 0 && ref1
		  && (TREE_CODE (type) != REFERENCE_TYPE
		      || CP_TYPE_CONST_P (TREE_TYPE (type))))
		continue;

	      if (code == COND_EXPR && TREE_CODE (type) == REFERENCE_TYPE)
		types[i] = scratch_tree_cons (NULL_TREE, type, types[i]);

	      type = non_reference (type);
	      if (i != 0 || ! ref1)
		{
		  type = TYPE_MAIN_VARIANT (type_decays_to (type));
		  if (code == COND_EXPR && TREE_CODE (type) == ENUMERAL_TYPE)
		    types[i] = scratch_tree_cons (NULL_TREE, type, types[i]);
		  if (INTEGRAL_TYPE_P (type))
		    type = type_promotes_to (type);
		}

	      if (! value_member (type, types[i]))
		types[i] = scratch_tree_cons (NULL_TREE, type, types[i]);
	    }
	}
      else
	{
	  if (code == COND_EXPR && real_lvalue_p (args[i]))
	    types[i] = scratch_tree_cons
	      (NULL_TREE, build_reference_type (argtypes[i]), types[i]);
	  type = non_reference (argtypes[i]);
	  if (i != 0 || ! ref1)
	    {
	      type = TYPE_MAIN_VARIANT (type_decays_to (type));
	      if (code == COND_EXPR && TREE_CODE (type) == ENUMERAL_TYPE)
		types[i] = scratch_tree_cons (NULL_TREE, type, types[i]);
	      if (INTEGRAL_TYPE_P (type))
		type = type_promotes_to (type);
	    }
	  types[i] = scratch_tree_cons (NULL_TREE, type, types[i]);
	}
    }

  for (; types[0]; types[0] = TREE_CHAIN (types[0]))
    {
      if (types[1])
	for (type = types[1]; type; type = TREE_CHAIN (type))
	  candidates = add_builtin_candidate
	    (candidates, code, code2, fnname, TREE_VALUE (types[0]),
	     TREE_VALUE (type), args, argtypes, flags);
      else
	candidates = add_builtin_candidate
	  (candidates, code, code2, fnname, TREE_VALUE (types[0]),
	   NULL_TREE, args, argtypes, flags);
    }

  return candidates;
}


/* If TMPL can be successfully instantiated as indicated by
   EXPLICIT_TARGS and ARGLIST, adds the instantiation to CANDIDATES.

   TMPL is the template.  EXPLICIT_TARGS are any explicit template
   arguments.  ARGLIST is the arguments provided at the call-site.
   The RETURN_TYPE is the desired type for conversion operators.  If
   OBJ is NULL_TREE, FLAGS are as for add_function_candidate.  If an
   OBJ is supplied, FLAGS are ignored, and OBJ is as for
   add_conv_candidate.  */

static struct z_candidate*
add_template_candidate_real (candidates, tmpl, explicit_targs,
			     arglist, return_type, flags,
			     obj, strict)
     struct z_candidate *candidates;
     tree tmpl, explicit_targs, arglist, return_type;
     int flags;
     tree obj;
     unification_kind_t strict;
{
  int ntparms = DECL_NTPARMS (tmpl);
  tree targs = make_scratch_vec (ntparms);
  struct z_candidate *cand;
  int i;
  tree fn;

  i = fn_type_unification (tmpl, explicit_targs, targs, arglist,
			   return_type, strict);

  if (i != 0)
    return candidates;

  fn = instantiate_template (tmpl, targs);
  if (fn == error_mark_node)
    return candidates;

  if (obj != NULL_TREE)
    /* Aha, this is a conversion function.  */
    cand = add_conv_candidate (candidates, fn, obj, arglist);
  else
    cand = add_function_candidate (candidates, fn, arglist, flags);
  if (DECL_TI_TEMPLATE (fn) != tmpl)
    /* This situation can occur if a member template of a template
       class is specialized.  Then, instantiate_template might return
       an instantiation of the specialization, in which case the
       DECL_TI_TEMPLATE field will point at the original
       specialization.  For example:

	 template <class T> struct S { template <class U> void f(U);
				       template <> void f(int) {}; };
	 S<double> sd;
	 sd.f(3);

       Here, TMPL will be template <class U> S<double>::f(U).
       And, instantiate template will give us the specialization
       template <> S<double>::f(int).  But, the DECL_TI_TEMPLATE field
       for this will point at template <class T> template <> S<T>::f(int),
       so that we can find the definition.  For the purposes of
       overload resolution, however, we want the original TMPL.  */
    cand->template = tree_cons (tmpl, targs, NULL_TREE);
  else
    cand->template = DECL_TEMPLATE_INFO (fn);

  return cand;
}


static struct z_candidate *
add_template_candidate (candidates, tmpl, explicit_targs, 
			arglist, return_type, flags, strict)
     struct z_candidate *candidates;
     tree tmpl, explicit_targs, arglist, return_type;
     int flags;
     unification_kind_t strict;
{
  return 
    add_template_candidate_real (candidates, tmpl, explicit_targs,
				 arglist, return_type, flags,
				 NULL_TREE, strict);
}


static struct z_candidate *
add_template_conv_candidate (candidates, tmpl, obj, arglist, return_type)
     struct z_candidate *candidates;
     tree tmpl, obj, arglist, return_type;
{
  return 
    add_template_candidate_real (candidates, tmpl, NULL_TREE, arglist,
				 return_type, 0, obj, DEDUCE_CONV);
}


static int
any_viable (cands)
     struct z_candidate *cands;
{
  for (; cands; cands = cands->next)
    if (pedantic ? cands->viable == 1 : cands->viable)
      return 1;
  return 0;
}

static struct z_candidate *
splice_viable (cands)
     struct z_candidate *cands;
{
  struct z_candidate **p = &cands;

  for (; *p; )
    {
      if (pedantic ? (*p)->viable == 1 : (*p)->viable)
	p = &((*p)->next);
      else
	*p = (*p)->next;
    }

  return cands;
}

static tree
build_this (obj)
     tree obj;
{
  /* Fix this to work on non-lvalues.  */
  if (IS_SIGNATURE_POINTER (TREE_TYPE (obj))
      || IS_SIGNATURE_REFERENCE (TREE_TYPE (obj)))
    return obj;
  else
    return build_unary_op (ADDR_EXPR, obj, 0);
}

static void
print_z_candidates (candidates)
     struct z_candidate *candidates;
{
  const char *str = "candidates are:";
  for (; candidates; candidates = candidates->next)
    {
      if (TREE_CODE (candidates->fn) == IDENTIFIER_NODE)
	{
	  if (candidates->fn == ansi_opname [COND_EXPR])
	    cp_error ("%s %D(%T, %T, %T) <builtin>", str, candidates->fn,
		      TREE_TYPE (TREE_VEC_ELT (candidates->convs, 0)),
		      TREE_TYPE (TREE_VEC_ELT (candidates->convs, 1)),
		      TREE_TYPE (TREE_VEC_ELT (candidates->convs, 2)));
	  else if (TREE_VEC_LENGTH (candidates->convs) == 2)
	    cp_error ("%s %D(%T, %T) <builtin>", str, candidates->fn,
		      TREE_TYPE (TREE_VEC_ELT (candidates->convs, 0)),
		      TREE_TYPE (TREE_VEC_ELT (candidates->convs, 1)));
	  else
	    cp_error ("%s %D(%T) <builtin>", str, candidates->fn,
		      TREE_TYPE (TREE_VEC_ELT (candidates->convs, 0)));
	}
      else if (TYPE_P (candidates->fn))
	cp_error ("%s %T <conversion>", str, candidates->fn);
      else
	cp_error_at ("%s %+#D%s", str, candidates->fn,
		     candidates->viable == -1 ? " <near match>" : "");
      str = "               "; 
    }
}

/* Returns the best overload candidate to perform the requested
   conversion.  This function is used for three the overloading situations
   described in [over.match.copy], [over.match.conv], and [over.match.ref].
   If TOTYPE is a REFERENCE_TYPE, we're trying to find an lvalue binding as
   per [dcl.init.ref], so we ignore temporary bindings.  */

static struct z_candidate *
build_user_type_conversion_1 (totype, expr, flags)
     tree totype, expr;
     int flags;
{
  struct z_candidate *candidates, *cand;
  tree fromtype = TREE_TYPE (expr);
  tree ctors = NULL_TREE, convs = NULL_TREE, *p;
  tree args = NULL_TREE;
  tree templates = NULL_TREE;

  if (IS_AGGR_TYPE (totype))
    ctors = lookup_fnfields (TYPE_BINFO (totype), ctor_identifier, 0);
  if (IS_AGGR_TYPE (fromtype)
      && (! IS_AGGR_TYPE (totype) || ! DERIVED_FROM_P (totype, fromtype)))
    convs = lookup_conversions (fromtype);

  candidates = 0;
  flags |= LOOKUP_NO_CONVERSION;

  if (ctors)
    {
      tree t = build_int_2 (0, 0);
      TREE_TYPE (t) = build_pointer_type (totype);
      args = build_scratch_list (NULL_TREE, expr);
      if (TYPE_USES_VIRTUAL_BASECLASSES (totype))
	args = scratch_tree_cons (NULL_TREE, integer_one_node, args);
      args = scratch_tree_cons (NULL_TREE, t, args);

      ctors = TREE_VALUE (ctors);
    }
  for (; ctors; ctors = OVL_NEXT (ctors))
    {
      tree ctor = OVL_CURRENT (ctors);
      if (DECL_NONCONVERTING_P (ctor))
	continue;

      if (TREE_CODE (ctor) == TEMPLATE_DECL) 
	{
	  templates = scratch_tree_cons (NULL_TREE, ctor, templates);
	  candidates = 
	    add_template_candidate (candidates, ctor,
				    NULL_TREE, args, NULL_TREE, flags,
				    DEDUCE_CALL);
	} 
      else 
	candidates = add_function_candidate (candidates, ctor,
					     args, flags); 

      if (candidates) 
	{
	  candidates->second_conv = build1 (IDENTITY_CONV, totype, NULL_TREE);
	  candidates->basetype_path = TYPE_BINFO (totype);
	} 
    }

  if (convs)
    args = build_scratch_list (NULL_TREE, build_this (expr));

  for (; convs; convs = TREE_CHAIN (convs))
    {
      tree fns = TREE_VALUE (convs);
      int convflags = LOOKUP_NO_CONVERSION;
      tree ics;

      /* If we are called to convert to a reference type, we are trying to
	 find an lvalue binding, so don't even consider temporaries.  If
	 we don't find an lvalue binding, the caller will try again to
	 look for a temporary binding.  */
      if (TREE_CODE (totype) == REFERENCE_TYPE)
	convflags |= LOOKUP_NO_TEMP_BIND;

      if (TREE_CODE (OVL_CURRENT (fns)) != TEMPLATE_DECL)
	ics = implicit_conversion
	  (totype, TREE_TYPE (TREE_TYPE (OVL_CURRENT (fns))), 0, convflags);
      else
	/* We can't compute this yet.  */
	ics = error_mark_node;

      if (TREE_CODE (totype) == REFERENCE_TYPE && ics && ICS_BAD_FLAG (ics))
	/* ignore the near match.  */;
      else if (ics)
	for (; fns; fns = OVL_NEXT (fns))
	  {
	    tree fn = OVL_CURRENT (fns);
	    struct z_candidate *old_candidates = candidates;

	    if (TREE_CODE (fn) == TEMPLATE_DECL)
	      {
		templates = scratch_tree_cons (NULL_TREE, fn, templates);
		candidates = 
		  add_template_candidate (candidates, fn, NULL_TREE,
					  args, totype, flags,
					  DEDUCE_CONV);
	      } 
	    else 
	      candidates = add_function_candidate (candidates, fn,
						   args, flags); 

	    if (candidates != old_candidates)
	      {
		if (TREE_CODE (fn) == TEMPLATE_DECL)
		  ics = implicit_conversion
		    (totype, TREE_TYPE (TREE_TYPE (candidates->fn)),
		     0, convflags);

		candidates->second_conv = ics;
		candidates->basetype_path = TREE_PURPOSE (convs);

		if (ics == NULL_TREE)
		  candidates->viable = 0;
		else if (candidates->viable == 1 && ICS_BAD_FLAG (ics))
		  candidates->viable = -1;
	      }
	  }
    }

  if (! any_viable (candidates))
    {
#if 0
      if (flags & LOOKUP_COMPLAIN)
	{
	  if (candidates && ! candidates->next)
	    /* say why this one won't work or try to be loose */;
	  else
	    cp_error ("no viable candidates");
	}
#endif

      return 0;
    }

  candidates = splice_viable (candidates);
  cand = tourney (candidates);

  if (cand == 0)
    {
      if (flags & LOOKUP_COMPLAIN)
	{
	  cp_error ("conversion from `%T' to `%T' is ambiguous",
		    fromtype, totype);
	  print_z_candidates (candidates);
	}

      cand = candidates;	/* any one will do */
      cand->second_conv = build1 (AMBIG_CONV, totype, expr);
      ICS_USER_FLAG (cand->second_conv) = 1;
      ICS_BAD_FLAG (cand->second_conv) = 1;

      return cand;
    }

  for (p = &(cand->second_conv); TREE_CODE (*p) != IDENTITY_CONV; )
    p = &(TREE_OPERAND (*p, 0));

  /* Pedantically, normal function declarations are never considered
     to refer to template instantiations, so we only do this with
     -fguiding-decls.  */ 
  if (flag_guiding_decls && templates && ! cand->template 
      && !DECL_INITIAL (cand->fn) 
      && TREE_CODE (TREE_TYPE (cand->fn)) != METHOD_TYPE)
    add_maybe_template (cand->fn, templates);

  *p = build
    (USER_CONV,
     (DECL_CONSTRUCTOR_P (cand->fn)
      ? totype : non_reference (TREE_TYPE (TREE_TYPE (cand->fn)))),
     expr, build_expr_ptr_wrapper (cand));
  ICS_USER_FLAG (cand->second_conv) = 1;
  if (cand->viable == -1)
    ICS_BAD_FLAG (cand->second_conv) = 1;

  return cand;
}

tree
build_user_type_conversion (totype, expr, flags)
     tree totype, expr;
     int flags;
{
  struct z_candidate *cand
    = build_user_type_conversion_1 (totype, expr, flags);

  if (cand)
    {
      if (TREE_CODE (cand->second_conv) == AMBIG_CONV)
	return error_mark_node;
      return convert_from_reference (convert_like (cand->second_conv, expr));
    }
  return NULL_TREE;
}

/* Do any initial processing on the arguments to a function call.  */

static tree
resolve_args (args)
     tree args;
{
  tree t;
  for (t = args; t; t = TREE_CHAIN (t))
    {
      if (TREE_VALUE (t) == error_mark_node)
	return error_mark_node;
      else if (TREE_CODE (TREE_TYPE (TREE_VALUE (t))) == VOID_TYPE)
	{
	  error ("invalid use of void expression");
	  return error_mark_node;
	}
      else if (TREE_CODE (TREE_VALUE (t)) == OFFSET_REF)
	TREE_VALUE (t) = resolve_offset_ref (TREE_VALUE (t));
    }
  return args;
}
      
tree
build_new_function_call (fn, args)
     tree fn, args;
{
  struct z_candidate *candidates = 0, *cand;
  tree explicit_targs = NULL_TREE;
  int template_only = 0;

  if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
    {
      explicit_targs = TREE_OPERAND (fn, 1);
      fn = TREE_OPERAND (fn, 0);
      template_only = 1;
    }

  if (really_overloaded_fn (fn))
    {
      tree t1;
      tree templates = NULL_TREE;

      args = resolve_args (args);

      if (args == error_mark_node)
	return error_mark_node;

      for (t1 = fn; t1; t1 = OVL_CHAIN (t1))
	{
	  tree t = OVL_FUNCTION (t1);
	  struct z_candidate *old_candidates = candidates;

	  if (TREE_CODE (t) == TEMPLATE_DECL)
	    {
	      templates = scratch_tree_cons (NULL_TREE, t, templates);
	      candidates = add_template_candidate
		(candidates, t, explicit_targs, args, NULL_TREE,
		 LOOKUP_NORMAL, DEDUCE_CALL);  
	    }
	  else if (! template_only)
	    candidates = add_function_candidate
	      (candidates, t, args, LOOKUP_NORMAL);

	  if (candidates != old_candidates)
	    candidates->basetype_path = DECL_REAL_CONTEXT (t);
	}

      if (! any_viable (candidates))
	{
	  if (candidates && ! candidates->next)
	    return build_function_call (candidates->fn, args);
	  cp_error ("no matching function for call to `%D (%A)'",
		    DECL_NAME (OVL_FUNCTION (fn)), args);
	  if (candidates)
	    print_z_candidates (candidates);
	  return error_mark_node;
	}
      candidates = splice_viable (candidates);
      cand = tourney (candidates);

      if (cand == 0)
	{
	  cp_error ("call of overloaded `%D (%A)' is ambiguous",
		    DECL_NAME (OVL_FUNCTION (fn)), args);
	  print_z_candidates (candidates);
	  return error_mark_node;
	}

      /* Pedantically, normal function declarations are never considered
	 to refer to template instantiations, so we only do this with
	 -fguiding-decls.  */
      if (flag_guiding_decls && templates && ! cand->template 
	  && ! DECL_INITIAL (cand->fn))
	add_maybe_template (cand->fn, templates);

      return build_over_call (cand, args, LOOKUP_NORMAL);
    }

  /* This is not really overloaded. */
  fn = OVL_CURRENT (fn);

  return build_function_call (fn, args);
}

static tree
build_object_call (obj, args)
     tree obj, args;
{
  struct z_candidate *candidates = 0, *cand;
  tree fns, convs, mem_args = NULL_TREE;
  tree type = TREE_TYPE (obj);

  if (TYPE_PTRMEMFUNC_P (type))
    {
      /* It's no good looking for an overloaded operator() on a
	 pointer-to-member-function.  */
      cp_error ("pointer-to-member function %E cannot be called", obj);
      cp_error ("without an object; consider using .* or ->*");
      return error_mark_node;
    }

  fns = lookup_fnfields (TYPE_BINFO (type), ansi_opname [CALL_EXPR], 1);
  if (fns == error_mark_node)
    return error_mark_node;

  args = resolve_args (args);

  if (args == error_mark_node)
    return error_mark_node;

  if (fns)
    {
      tree base = TREE_PURPOSE (fns);
      mem_args = scratch_tree_cons (NULL_TREE, build_this (obj), args);

      for (fns = TREE_VALUE (fns); fns; fns = OVL_NEXT (fns))
	{
	  tree fn = OVL_CURRENT (fns);
	  if (TREE_CODE (fn) == TEMPLATE_DECL)
	    {
	      candidates 
		= add_template_candidate (candidates, fn, NULL_TREE,
					  mem_args, NULL_TREE, 
					  LOOKUP_NORMAL, DEDUCE_CALL);
	    }
	  else
	    candidates = add_function_candidate
	      (candidates, fn, mem_args, LOOKUP_NORMAL);

	  if (candidates)
	    candidates->basetype_path = base;
	}
    }

  convs = lookup_conversions (type);

  for (; convs; convs = TREE_CHAIN (convs))
    {
      tree fns = TREE_VALUE (convs);
      tree totype = TREE_TYPE (TREE_TYPE (OVL_CURRENT (fns)));

      if ((TREE_CODE (totype) == POINTER_TYPE
	   || TREE_CODE (totype) == REFERENCE_TYPE)
	  && TREE_CODE (TREE_TYPE (totype)) == FUNCTION_TYPE)
	for (; fns; fns = OVL_NEXT (fns))
	  {
	    tree fn = OVL_CURRENT (fns);
	    if (TREE_CODE (fn) == TEMPLATE_DECL) 
	      {
		candidates = add_template_conv_candidate (candidates,
							  fn,
							  obj,
							  args,
							  totype);
	      }
	    else
	      candidates = add_conv_candidate (candidates, fn, obj, args);

	    if (candidates)
	      candidates->basetype_path = TREE_PURPOSE (convs);
	  }
    }

  if (! any_viable (candidates))
    {
      cp_error ("no match for call to `(%T) (%A)'", TREE_TYPE (obj), args);
      print_z_candidates (candidates);
      return error_mark_node;
    }

  candidates = splice_viable (candidates);
  cand = tourney (candidates);

  if (cand == 0)
    {
      cp_error ("call of `(%T) (%A)' is ambiguous", TREE_TYPE (obj), args);
      print_z_candidates (candidates);
      return error_mark_node;
    }

  /* Since cand->fn will be a type, not a function, for a conversion
     function, we must be careful not to unconditionally look at
     DECL_NAME here.  */
  if (TREE_CODE (cand->fn) == FUNCTION_DECL
      && DECL_NAME (cand->fn) == ansi_opname [CALL_EXPR])
    return build_over_call (cand, mem_args, LOOKUP_NORMAL);

  obj = convert_like (TREE_VEC_ELT (cand->convs, 0), obj);

  /* FIXME */
  return build_function_call (obj, args);
}

static void
op_error (code, code2, arg1, arg2, arg3, problem)
     enum tree_code code, code2;
     tree arg1, arg2, arg3;
     const char *problem;
{
  const char * opname
    = (code == MODIFY_EXPR ? assignop_tab [code2] : opname_tab [code]);

  switch (code)
    {
    case COND_EXPR:
      cp_error ("%s for `%T ? %T : %T'", problem,
		error_type (arg1), error_type (arg2), error_type (arg3));
      break;
    case POSTINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
      cp_error ("%s for `%T%s'", problem, error_type (arg1), opname);
      break;
    case ARRAY_REF:
      cp_error ("%s for `%T[%T]'", problem,
		error_type (arg1), error_type (arg2));
      break;
    default:
      if (arg2)
	cp_error ("%s for `%T %s %T'", problem,
		  error_type (arg1), opname, error_type (arg2));
      else
	cp_error ("%s for `%s%T'", problem, opname, error_type (arg1));
    }
}

tree
build_new_op (code, flags, arg1, arg2, arg3)
     enum tree_code code;
     int flags;
     tree arg1, arg2, arg3;
{
  struct z_candidate *candidates = 0, *cand;
  tree fns, mem_arglist = NULL_TREE, arglist, fnname;
  enum tree_code code2 = NOP_EXPR;
  tree templates = NULL_TREE;
  tree conv;

  if (arg1 == error_mark_node
      || arg2 == error_mark_node
      || arg3 == error_mark_node)
    return error_mark_node;

  /* This can happen if a template takes all non-type parameters, e.g.
     undeclared_template<1, 5, 72>a;  */
  if (code == LT_EXPR && TREE_CODE (arg1) == TEMPLATE_DECL)
    {
      cp_error ("`%D' must be declared before use", arg1);
      return error_mark_node;
    }

  if (code == MODIFY_EXPR)
    {
      code2 = TREE_CODE (arg3);
      arg3 = NULL_TREE;
      fnname = ansi_assopname[code2];
    }
  else
    fnname = ansi_opname[code];

  switch (code)
    {
    case NEW_EXPR:
    case VEC_NEW_EXPR:
    case VEC_DELETE_EXPR:
    case DELETE_EXPR:
      /* Use build_op_new_call and build_op_delete_call instead. */
      my_friendly_abort (981018);

    case CALL_EXPR:
      return build_object_call (arg1, arg2);

    default:
      break;
    }

  /* The comma operator can have void args.  */
  if (TREE_CODE (arg1) == OFFSET_REF)
    arg1 = resolve_offset_ref (arg1);
  if (arg2 && TREE_CODE (arg2) == OFFSET_REF)
    arg2 = resolve_offset_ref (arg2);
  if (arg3 && TREE_CODE (arg3) == OFFSET_REF)
    arg3 = resolve_offset_ref (arg3);

  if (code == COND_EXPR)
    {
      if (arg2 == NULL_TREE
	  || TREE_CODE (TREE_TYPE (arg2)) == VOID_TYPE
	  || TREE_CODE (TREE_TYPE (arg3)) == VOID_TYPE
	  || (! IS_OVERLOAD_TYPE (TREE_TYPE (arg2))
	      && ! IS_OVERLOAD_TYPE (TREE_TYPE (arg3))))
	goto builtin;
    }
  else if (! IS_OVERLOAD_TYPE (TREE_TYPE (arg1))
	   && (! arg2 || ! IS_OVERLOAD_TYPE (TREE_TYPE (arg2))))
    goto builtin;

  if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR)
    arg2 = integer_zero_node;

  if (arg2 && arg3)
    arglist = scratch_tree_cons (NULL_TREE, arg1, scratch_tree_cons
		      (NULL_TREE, arg2, build_scratch_list (NULL_TREE, arg3)));
  else if (arg2)
    arglist = scratch_tree_cons (NULL_TREE, arg1, build_scratch_list (NULL_TREE, arg2));
  else
    arglist = build_scratch_list (NULL_TREE, arg1);

  fns = lookup_function_nonclass (fnname, arglist);

  if (fns && TREE_CODE (fns) == TREE_LIST)
    fns = TREE_VALUE (fns);
  for (; fns; fns = OVL_NEXT (fns))
    {
      tree fn = OVL_CURRENT (fns);
      if (TREE_CODE (fn) == TEMPLATE_DECL)
	{
	  templates = scratch_tree_cons (NULL_TREE, fn, templates);
	  candidates 
	    = add_template_candidate (candidates, fn, NULL_TREE,
				      arglist, TREE_TYPE (fnname),
				      flags, DEDUCE_CALL); 
	}
      else
	candidates = add_function_candidate (candidates, fn, arglist, flags);
    }

  if (IS_AGGR_TYPE (TREE_TYPE (arg1)))
    {
      fns = lookup_fnfields (TYPE_BINFO (TREE_TYPE (arg1)), fnname, 1);
      if (fns == error_mark_node)
	return fns;
    }
  else
    fns = NULL_TREE;

  if (fns)
    {
      tree basetype = TREE_PURPOSE (fns);
      mem_arglist = scratch_tree_cons (NULL_TREE, build_this (arg1), TREE_CHAIN (arglist));
      for (fns = TREE_VALUE (fns); fns; fns = OVL_NEXT (fns))
	{
	  tree fn = OVL_CURRENT (fns);
	  tree this_arglist;

	  if (TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
	    this_arglist = mem_arglist;
	  else
	    this_arglist = arglist;

	  if (TREE_CODE (fn) == TEMPLATE_DECL)
	    {
	      /* A member template. */
	      templates = scratch_tree_cons (NULL_TREE, fn, templates);
	      candidates 
		= add_template_candidate (candidates, fn, NULL_TREE,
					  this_arglist,  TREE_TYPE (fnname),
					  flags, DEDUCE_CALL); 
	    }
	  else
	    candidates = add_function_candidate
	      (candidates, fn, this_arglist, flags);

	  if (candidates) 
	    candidates->basetype_path = basetype;
	}
    }

  {
    tree args[3];

    /* Rearrange the arguments for ?: so that add_builtin_candidate only has
       to know about two args; a builtin candidate will always have a first
       parameter of type bool.  We'll handle that in
       build_builtin_candidate.  */
    if (code == COND_EXPR)
      {
	args[0] = arg2;
	args[1] = arg3;
	args[2] = arg1;
      }
    else
      {
	args[0] = arg1;
	args[1] = arg2;
	args[2] = NULL_TREE;
      }

    candidates = add_builtin_candidates
      (candidates, code, code2, fnname, args, flags);
  }

  if (! any_viable (candidates))
    {
      switch (code)
	{
	case POSTINCREMENT_EXPR:
	case POSTDECREMENT_EXPR:
	  /* Look for an `operator++ (int)'.  If they didn't have
	     one, then we fall back to the old way of doing things.  */
	  if (flags & LOOKUP_COMPLAIN)
	    cp_pedwarn ("no `%D (int)' declared for postfix `%s', trying prefix operator instead",
			fnname, opname_tab [code]);
	  if (code == POSTINCREMENT_EXPR)
	    code = PREINCREMENT_EXPR;
	  else
	    code = PREDECREMENT_EXPR;	
	  return build_new_op (code, flags, arg1, NULL_TREE, NULL_TREE);
	  
	  /* The caller will deal with these.  */
	case ADDR_EXPR:
	case COMPOUND_EXPR:
	case COMPONENT_REF:
	  return NULL_TREE;

	default:
	  break;
	}
      if (flags & LOOKUP_COMPLAIN)
	{
	  op_error (code, code2, arg1, arg2, arg3, "no match");
	  print_z_candidates (candidates);
	}
      return error_mark_node;
    }
  candidates = splice_viable (candidates);
  cand = tourney (candidates);

  if (cand == 0)
    {
      if (flags & LOOKUP_COMPLAIN)
	{
	  op_error (code, code2, arg1, arg2, arg3, "ambiguous overload");
	  print_z_candidates (candidates);
	}
      return error_mark_node;
    }

  if (TREE_CODE (cand->fn) == FUNCTION_DECL)
    {
      extern int warn_synth;
      if (warn_synth
	  && fnname == ansi_opname[MODIFY_EXPR]
	  && DECL_ARTIFICIAL (cand->fn)
	  && candidates->next
	  && ! candidates->next->next)
	{
	  cp_warning ("using synthesized `%#D' for copy assignment",
		      cand->fn);
	  cp_warning_at ("  where cfront would use `%#D'",
			 cand == candidates
			 ? candidates->next->fn
			 : candidates->fn);
	}

      /* Pedantically, normal function declarations are never considered
	 to refer to template instantiations, so we only do this with
	 -fguiding-decls.  */ 
      if (flag_guiding_decls && templates && ! cand->template 
	  && ! DECL_INITIAL (cand->fn)
	  && TREE_CODE (TREE_TYPE (cand->fn)) != METHOD_TYPE)
	add_maybe_template (cand->fn, templates);

      return build_over_call
	(cand,
	 TREE_CODE (TREE_TYPE (cand->fn)) == METHOD_TYPE
	 ? mem_arglist : arglist,
	 LOOKUP_NORMAL);
    }

  /* Check for comparison of different enum types.  */
  switch (code)
    {
    case GT_EXPR:
    case LT_EXPR:
    case GE_EXPR:
    case LE_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
      if (TREE_CODE (TREE_TYPE (arg1)) == ENUMERAL_TYPE 
	  && TREE_CODE (TREE_TYPE (arg2)) == ENUMERAL_TYPE 
	  && (TYPE_MAIN_VARIANT (TREE_TYPE (arg1))
	      != TYPE_MAIN_VARIANT (TREE_TYPE (arg2))))
	{
	  cp_warning ("comparison between `%#T' and `%#T'", 
		      TREE_TYPE (arg1), TREE_TYPE (arg2));
	}
      break;
    default:
      break;
    }

  /* We need to strip any leading REF_BIND so that bitfields don't cause
     errors.  This should not remove any important conversions, because
     builtins don't apply to class objects directly.  */
  conv = TREE_VEC_ELT (cand->convs, 0);
  if (TREE_CODE (conv) == REF_BIND)
    conv = TREE_OPERAND (conv, 0);
  arg1 = convert_like (conv, arg1);
  if (arg2)
    {
      conv = TREE_VEC_ELT (cand->convs, 1);
      if (TREE_CODE (conv) == REF_BIND)
        conv = TREE_OPERAND (conv, 0);
      arg2 = convert_like (conv, arg2);
    }
  if (arg3)
    {
      conv = TREE_VEC_ELT (cand->convs, 2);
      if (TREE_CODE (conv) == REF_BIND)
        conv = TREE_OPERAND (conv, 0);
      arg3 = convert_like (conv, arg3);
    }

builtin:
  switch (code)
    {
    case MODIFY_EXPR:
      return build_modify_expr (arg1, code2, arg2);

    case INDIRECT_REF:
      return build_indirect_ref (arg1, "unary *");

    case PLUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
    case TRUNC_DIV_EXPR:
    case GT_EXPR:
    case LT_EXPR:
    case GE_EXPR:
    case LE_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case MAX_EXPR:
    case MIN_EXPR:
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case TRUNC_MOD_EXPR:
    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
      return build_binary_op_nodefault (code, arg1, arg2, code);

    case CONVERT_EXPR:
    case NEGATE_EXPR:
    case BIT_NOT_EXPR:
    case TRUTH_NOT_EXPR:
    case PREINCREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case REALPART_EXPR:
    case IMAGPART_EXPR:
      return build_unary_op (code, arg1, candidates != 0);

    case ARRAY_REF:
      return build_array_ref (arg1, arg2);

    case COND_EXPR:
      return build_conditional_expr (arg1, arg2, arg3);

    case MEMBER_REF:
      return build_m_component_ref
	(build_indirect_ref (arg1, NULL_PTR), arg2);

      /* The caller will deal with these.  */
    case ADDR_EXPR:
    case COMPONENT_REF:
    case COMPOUND_EXPR:
      return NULL_TREE;

    default:
      my_friendly_abort (367);
      return NULL_TREE;
    }
}

/* Build up a call to operator new.  This has to be handled differently
   from other operators in the way lookup is handled; first members are
   considered, then globals.  CODE is either NEW_EXPR or VEC_NEW_EXPR.
   TYPE is the type to be created.  ARGS are any new-placement args.
   FLAGS are the usual overloading flags.  */

tree
build_op_new_call (code, type, args, flags)
     enum tree_code code;
     tree type, args;
     int flags;
{
  tree fnname = ansi_opname[code];

  if (IS_AGGR_TYPE (type) && ! (flags & LOOKUP_GLOBAL)
      && (TYPE_GETS_NEW (type) & (1 << (code == VEC_NEW_EXPR))))
    {
      return build_method_call (build_dummy_object (type),
				fnname, args, NULL_TREE, flags);
    }
  else
    return build_new_function_call 
      (lookup_function_nonclass (fnname, args), args);
}

/* Build a call to operator delete.  This has to be handled very specially,
   because the restrictions on what signatures match are different from all
   other call instances.  For a normal delete, only a delete taking (void *)
   or (void *, size_t) is accepted.  For a placement delete, only an exact
   match with the placement new is accepted.

   CODE is either DELETE_EXPR or VEC_DELETE_EXPR.
   ADDR is the pointer to be deleted.  For placement delete, it is also
     used to determine what the corresponding new looked like.
   SIZE is the size of the memory block to be deleted.
   FLAGS are the usual overloading flags.
   PLACEMENT is the corresponding placement new call, or 0.  */

tree
build_op_delete_call (code, addr, size, flags, placement)
     enum tree_code code;
     tree addr, size, placement;
     int flags;
{
  tree fn, fns, fnname, fntype, argtypes, args, type;

  if (addr == error_mark_node)
    return error_mark_node;

  type = TREE_TYPE (TREE_TYPE (addr));
  fnname = ansi_opname[code];

  if (IS_AGGR_TYPE (type) && ! (flags & LOOKUP_GLOBAL))
    /* In [class.free]

       If the result of the lookup is ambiguous or inaccessible, or if
       the lookup selects a placement deallocation function, the
       program is ill-formed.
  
       Therefore, we ask lookup_fnfields to complain ambout ambiguity.  */
    {
      fns = lookup_fnfields (TYPE_BINFO (type), fnname, 1);
      if (fns == error_mark_node)
	return error_mark_node;
    }
  else
    fns = NULL_TREE;

  if (fns == NULL_TREE)
    fns = lookup_name_nonclass (fnname);

  if (placement)
    {
      /* placement is a CALL_EXPR around an ADDR_EXPR around a function.  */

      /* Extract the function.  */
      argtypes = TREE_OPERAND (TREE_OPERAND (placement, 0), 0);
      /* Then the second parm type.  */
      argtypes = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (argtypes)));

      /* Also the second argument.  */
      args = TREE_CHAIN (TREE_OPERAND (placement, 1));
    }
  else
    {
      /* First try it without the size argument.  */
      argtypes = void_list_node;
      args = NULL_TREE;
    }

  argtypes = tree_cons (NULL_TREE, ptr_type_node, argtypes);
  fntype = build_function_type (void_type_node, argtypes);

  /* Strip const and volatile from addr.  */
  if (type != TYPE_MAIN_VARIANT (type))
    addr = cp_convert (build_pointer_type (TYPE_MAIN_VARIANT (type)), addr);

  fn = instantiate_type (fntype, fns, 2);

  if (fn != error_mark_node)
    {
      if (TREE_CODE (fns) == TREE_LIST)
	/* Member functions.  */
	enforce_access (TREE_PURPOSE (fns), fn);
      return build_function_call (fn, expr_tree_cons (NULL_TREE, addr, args));
    }

  /* If we are doing placement delete we do nothing if we don't find a
     matching op delete.  */
  if (placement)
    return NULL_TREE;

  /* Normal delete; now try to find a match including the size argument.  */
  argtypes = tree_cons (NULL_TREE, ptr_type_node,
			tree_cons (NULL_TREE, sizetype, void_list_node));
  fntype = build_function_type (void_type_node, argtypes);

  fn = instantiate_type (fntype, fns, 2);

  if (fn != error_mark_node)
    {
      if (BASELINK_P (fns))
	/* Member functions.  */
	enforce_access (TREE_PURPOSE (fns), fn);
      return build_function_call
	(fn, expr_tree_cons (NULL_TREE, addr,
			     build_expr_list (NULL_TREE, size)));
    }

  /* finish_function passes LOOKUP_SPECULATIVELY if we're in a
     destructor, in which case the error should be deferred
     until someone actually tries to delete one of these.  */
  if (flags & LOOKUP_SPECULATIVELY)
    return NULL_TREE;

  cp_error ("no suitable operator delete for `%T'", type);
  return error_mark_node;
}

/* If the current scope isn't allowed to access DECL along
   BASETYPE_PATH, give an error.  The most derived class in
   BASETYPE_PATH is the one used to qualify DECL.  */

int
enforce_access (basetype_path, decl)
     tree basetype_path;
     tree decl;
{
  int accessible;

  accessible = accessible_p (basetype_path, decl);
  if (!accessible)
    {
      if (TREE_PRIVATE (decl))
	cp_error_at ("`%+#D' is private", decl);
      else if (TREE_PROTECTED (decl))
	cp_error_at ("`%+#D' is protected", decl);
      else
	cp_error_at ("`%+#D' is inaccessible", decl);
      cp_error ("within this context");
      return 0;
    }

  return 1;
}

/* Perform the conversions in CONVS on the expression EXPR.  */

static tree
convert_like (convs, expr)
     tree convs, expr;
{
  if (ICS_BAD_FLAG (convs)
      && TREE_CODE (convs) != USER_CONV
      && TREE_CODE (convs) != AMBIG_CONV)
    {
      tree t = convs; 
      for (; t; t = TREE_OPERAND (t, 0))
	{
	  if (TREE_CODE (t) == USER_CONV)
	    {
	      expr = convert_like (t, expr);
	      break;
	    }
	  else if (TREE_CODE (t) == AMBIG_CONV)
	    return convert_like (t, expr);
	  else if (TREE_CODE (t) == IDENTITY_CONV)
	    break;
	}
      return convert_for_initialization
	(NULL_TREE, TREE_TYPE (convs), expr, LOOKUP_NORMAL,
	 "conversion", NULL_TREE, 0);
    }

  switch (TREE_CODE (convs))
    {
    case USER_CONV:
      {
	struct z_candidate *cand
	  = WRAPPER_PTR (TREE_OPERAND (convs, 1));
	tree fn = cand->fn;
	tree args;

	if (DECL_CONSTRUCTOR_P (fn))
	  {
	    tree t = build_int_2 (0, 0);
	    TREE_TYPE (t) = build_pointer_type (DECL_CONTEXT (fn));

	    args = build_scratch_list (NULL_TREE, expr);
	    if (TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (fn)))
	      args = scratch_tree_cons (NULL_TREE, integer_one_node, args);
	    args = scratch_tree_cons (NULL_TREE, t, args);
	  }
	else
	  args = build_this (expr);
	expr = build_over_call (cand, args, LOOKUP_NORMAL);

	/* If this is a constructor or a function returning an aggr type,
	   we need to build up a TARGET_EXPR.  */
	if (DECL_CONSTRUCTOR_P (fn))
	  expr = build_cplus_new (TREE_TYPE (convs), expr);

	return expr;
      }
    case IDENTITY_CONV:
      if (type_unknown_p (expr))
	expr = instantiate_type (TREE_TYPE (convs), expr, 1);
      if (TREE_READONLY_DECL_P (expr))
	expr = decl_constant_value (expr);
      return expr;
    case AMBIG_CONV:
      /* Call build_user_type_conversion again for the error.  */
      return build_user_type_conversion
	(TREE_TYPE (convs), TREE_OPERAND (convs, 0), LOOKUP_NORMAL);

    default:
      break;
    };

  expr = convert_like (TREE_OPERAND (convs, 0), expr);
  if (expr == error_mark_node)
    return error_mark_node;

  switch (TREE_CODE (convs))
    {
    case RVALUE_CONV:
      if (! IS_AGGR_TYPE (TREE_TYPE (convs)))
	return expr;
      /* else fall through */
    case BASE_CONV:
      {
	tree cvt_expr = build_user_type_conversion
	  (TREE_TYPE (convs), expr, LOOKUP_NORMAL);
	if (!cvt_expr) 
	  {
	    /* This can occur if, for example, the EXPR has incomplete
	       type.  We can't check for that before attempting the
	       conversion because the type might be an incomplete
	       array type, which is OK if some constructor for the
	       destination type takes a pointer argument.  */
	    if (TYPE_SIZE (TREE_TYPE (expr)) == 0)
	      {
		if (same_type_p (TREE_TYPE (expr), TREE_TYPE (convs)))
		  incomplete_type_error (expr, TREE_TYPE (expr));
		else
		  cp_error ("could not convert `%E' (with incomplete type `%T') to `%T'",
			    expr, TREE_TYPE (expr), TREE_TYPE (convs));
	      }
	    else
	      cp_error ("could not convert `%E' to `%T'",
			expr, TREE_TYPE (convs));
	    return error_mark_node;
	  }
	return cvt_expr;
      }

    case REF_BIND:
      return convert_to_reference
	(TREE_TYPE (convs), expr,
	 CONV_IMPLICIT, LOOKUP_NORMAL|LOOKUP_NO_CONVERSION,
	 error_mark_node);
    case LVALUE_CONV:
      return decay_conversion (expr);

    case QUAL_CONV:
      /* Warn about deprecated conversion if appropriate.  */
      string_conv_p (TREE_TYPE (convs), expr, 1);
      break;
      
    default:
      break;
    }
  return ocp_convert (TREE_TYPE (convs), expr, CONV_IMPLICIT,
		      LOOKUP_NORMAL|LOOKUP_NO_CONVERSION);
}

/* ARG is being passed to a varargs function.  Perform any conversions
   required.  Return the converted value.  */

tree
convert_arg_to_ellipsis (arg)
     tree arg;
{
  if (TREE_CODE (TREE_TYPE (arg)) == REAL_TYPE
      && (TYPE_PRECISION (TREE_TYPE (arg))
	  < TYPE_PRECISION (double_type_node)))
    /* Convert `float' to `double'.  */
    arg = cp_convert (double_type_node, arg);
  else if (IS_AGGR_TYPE (TREE_TYPE (arg))
	   && ! TYPE_HAS_TRIVIAL_INIT_REF (TREE_TYPE (arg)))
    cp_warning ("cannot pass objects of type `%T' through `...'",
		TREE_TYPE (arg));
  else
    /* Convert `short' and `char' to full-size `int'.  */
    arg = default_conversion (arg);

  arg = require_complete_type (arg);
  
  return arg;
}

/* ARG is a default argument expression being passed to a parameter of
   the indicated TYPE, which is a parameter to FN.  Do any required
   conversions.  Return the converted value.  */

tree
convert_default_arg (type, arg, fn)
     tree type;
     tree arg;
     tree fn;
{
  if (fn && DECL_TEMPLATE_INFO (fn))
    {
      /* This default argument came from a template.  Instantiate the
	 default argument here, not in tsubst.  In the case of
	 something like: 

	   template <class T>
	   struct S {
	     static T t();
	     void f(T = t());
	   };

	 we must be careful to do name lookup in the scope of S<T>,
	 rather than in the current class.  */
      if (DECL_CLASS_SCOPE_P (fn))
	pushclass (DECL_REAL_CONTEXT (fn), 2);

      arg = tsubst_expr (arg, DECL_TI_ARGS (fn), /*complain=*/1, NULL_TREE);

      if (DECL_CLASS_SCOPE_P (fn))
	popclass ();

      /* Make sure the default argument is reasonable.  */
      arg = check_default_argument (type, arg);
    }

  arg = break_out_target_exprs (arg);

  if (TREE_CODE (arg) == CONSTRUCTOR)
    {
      arg = digest_init (type, arg, 0);
      arg = convert_for_initialization (0, type, arg, LOOKUP_NORMAL,
					"default argument", 0, 0);
    }
  else
    {
      /* This could get clobbered by the following call.  */
      if (TREE_HAS_CONSTRUCTOR (arg))
	arg = copy_node (arg);

      arg = convert_for_initialization (0, type, arg, LOOKUP_NORMAL,
					"default argument", 0, 0);
#ifdef PROMOTE_PROTOTYPES
      if ((TREE_CODE (type) == INTEGER_TYPE
	   || TREE_CODE (type) == ENUMERAL_TYPE)
	  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
	arg = default_conversion (arg);
#endif
    }

  return arg;
}

static tree
build_over_call (cand, args, flags)
     struct z_candidate *cand;
     tree args;
     int flags;
{
  tree fn = cand->fn;
  tree convs = cand->convs;
  tree converted_args = NULL_TREE;
  tree parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
  tree conv, arg, val;
  int i = 0;
  int is_method = 0;

  /* Give any warnings we noticed during overload resolution.  */
  if (cand->warnings)
    for (val = cand->warnings; val; val = TREE_CHAIN (val))
      joust (cand, WRAPPER_PTR (TREE_VALUE (val)), 1);

  if (DECL_FUNCTION_MEMBER_P (fn))
    enforce_access (cand->basetype_path, fn);

  if (args && TREE_CODE (args) != TREE_LIST)
    args = build_scratch_list (NULL_TREE, args);
  arg = args;

  /* The implicit parameters to a constructor are not considered by overload
     resolution, and must be of the proper type.  */
  if (DECL_CONSTRUCTOR_P (fn))
    {
      converted_args = expr_tree_cons (NULL_TREE, TREE_VALUE (arg), converted_args);
      arg = TREE_CHAIN (arg);
      parm = TREE_CHAIN (parm);
      if (TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (fn)))
	{
	  converted_args = expr_tree_cons
	    (NULL_TREE, TREE_VALUE (arg), converted_args);
	  arg = TREE_CHAIN (arg);
	  parm = TREE_CHAIN (parm);
	}
    }      
  /* Bypass access control for 'this' parameter.  */
  else if (TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
    {
      tree parmtype = TREE_VALUE (parm);
      tree argtype = TREE_TYPE (TREE_VALUE (arg));
      tree t;
      if (ICS_BAD_FLAG (TREE_VEC_ELT (convs, i)))
	cp_pedwarn ("passing `%T' as `this' argument of `%#D' discards qualifiers",
		    TREE_TYPE (argtype), fn);

      /* [class.mfct.nonstatic]: If a nonstatic member function of a class
	 X is called for an object that is not of type X, or of a type
	 derived from X, the behavior is undefined.

         So we can assume that anything passed as 'this' is non-null, and
	 optimize accordingly.  */
      if (TREE_CODE (parmtype) == POINTER_TYPE)
	t = convert_pointer_to_real (TREE_TYPE (parmtype), TREE_VALUE (arg));
      else
	/* This happens with signatures.  */
	t = convert_force (parmtype, TREE_VALUE (arg), CONV_C_CAST);
      converted_args = expr_tree_cons (NULL_TREE, t, converted_args);
      parm = TREE_CHAIN (parm);
      arg = TREE_CHAIN (arg);
      ++i;
      is_method = 1;
    }

  for (; arg && parm;
       parm = TREE_CHAIN (parm), arg = TREE_CHAIN (arg), ++i)
    {
      tree type = TREE_VALUE (parm);

      conv = TREE_VEC_ELT (convs, i);
      if (ICS_BAD_FLAG (conv))
	{
	  tree t = conv;
	  val = TREE_VALUE (arg);

	  for (; t; t = TREE_OPERAND (t, 0))
	    {
	      if (TREE_CODE (t) == USER_CONV
		  || TREE_CODE (t) == AMBIG_CONV)
		{
		  val = convert_like (t, val);
		  break;
		}
	      else if (TREE_CODE (t) == IDENTITY_CONV)
		break;
	    }
	  val = convert_for_initialization
	    (NULL_TREE, type, val, LOOKUP_NORMAL,
	     "argument passing", fn, i - is_method);
	}
      else
	{
	  /* Issue warnings about peculiar, but legal, uses of NULL.  */
	  if (ARITHMETIC_TYPE_P (TREE_VALUE (parm))
	      && TREE_VALUE (arg) == null_node)
	    cp_warning ("converting NULL to non-pointer type");
	    
	  val = convert_like (conv, TREE_VALUE (arg));
	}

#ifdef PROMOTE_PROTOTYPES
      if ((TREE_CODE (type) == INTEGER_TYPE
	   || TREE_CODE (type) == ENUMERAL_TYPE)
	  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
	val = default_conversion (val);
#endif
      converted_args = expr_tree_cons (NULL_TREE, val, converted_args);
    }

  /* Default arguments */
  for (; parm && parm != void_list_node; parm = TREE_CHAIN (parm))
    converted_args 
      = expr_tree_cons (NULL_TREE, 
			convert_default_arg (TREE_VALUE (parm), 
					     TREE_PURPOSE (parm),
					     fn),
			converted_args);

  /* Ellipsis */
  for (; arg; arg = TREE_CHAIN (arg))
    converted_args 
      = expr_tree_cons (NULL_TREE,
			convert_arg_to_ellipsis (TREE_VALUE (arg)),
			converted_args);

  converted_args = nreverse (converted_args);

  if (warn_format && (DECL_NAME (fn) || DECL_ASSEMBLER_NAME (fn)))
    check_function_format (DECL_NAME (fn), DECL_ASSEMBLER_NAME (fn),
			   converted_args); 

  /* Avoid actually calling copy constructors and copy assignment operators,
     if possible.  */

  if (! flag_elide_constructors)
    /* Do things the hard way.  */;
  else if (DECL_CONSTRUCTOR_P (fn)
	   && TREE_VEC_LENGTH (convs) == 1
      && copy_args_p (fn))
    {
      tree targ;
      arg = TREE_CHAIN (converted_args);
      if (TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (fn)))
	arg = TREE_CHAIN (arg);
      arg = TREE_VALUE (arg);

      /* Pull out the real argument, disregarding const-correctness.  */
      targ = arg;
      while (TREE_CODE (targ) == NOP_EXPR
	     || TREE_CODE (targ) == NON_LVALUE_EXPR
	     || TREE_CODE (targ) == CONVERT_EXPR)
	targ = TREE_OPERAND (targ, 0);
      if (TREE_CODE (targ) == ADDR_EXPR)
	{
	  targ = TREE_OPERAND (targ, 0);
	  if (!same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (arg))),
			    TYPE_MAIN_VARIANT (TREE_TYPE (targ))))
	    targ = NULL_TREE;
	}
      else
	targ = NULL_TREE;

      if (targ)
	arg = targ;
      else
	arg = build_indirect_ref (arg, 0);

      /* [class.copy]: the copy constructor is implicitly defined even if
	 the implementation elided its use.  */
      if (TYPE_HAS_COMPLEX_INIT_REF (DECL_CONTEXT (fn)))
	mark_used (fn);

      /* If we're creating a temp and we already have one, don't create a
         new one.  If we're not creating a temp but we get one, use
         INIT_EXPR to collapse the temp into our target.  Otherwise, if the
         ctor is trivial, do a bitwise copy with a simple TARGET_EXPR for a
         temp or an INIT_EXPR otherwise.  */
      if (integer_zerop (TREE_VALUE (args)))
	{
	  if (! real_lvalue_p (arg))
	    return arg;
	  else if (TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn)))
	    {
	      val = build_decl (VAR_DECL, NULL_TREE, DECL_CONTEXT (fn));
	      val = build (TARGET_EXPR, DECL_CONTEXT (fn), val, arg, 0, 0);
	      TREE_SIDE_EFFECTS (val) = 1;
	      return val;
	    }
	}
      else if (! real_lvalue_p (arg)
	       || TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn)))
	{
	  tree address;
	  tree to = stabilize_reference
	    (build_indirect_ref (TREE_VALUE (args), 0));

	  /* If we're initializing an empty class, then we actually
	     have to use a MODIFY_EXPR rather than an INIT_EXPR.  The
	     reason is that the dummy padding member in the target may
	     not actually be allocated if TO is a base class
	     subobject.  Since we've set TYPE_NONCOPIED_PARTS on the
	     padding, a MODIFY_EXPR will preserve its value, which is
	     the right thing to do if it's not really padding at all.
	  
	     It's not safe to just throw away the ARG if we're looking
	     at an empty class because the ARG might contain a
	     TARGET_EXPR which wants to be bound to TO.  If it is not,
	     expand_expr will assign a dummy slot for the TARGET_EXPR,
	     and we will call a destructor for it, which is wrong,
	     because we will also destroy TO, but will never have
	     constructed it.  */
	  val = build (is_empty_class (DECL_CLASS_CONTEXT (fn))
		       ? MODIFY_EXPR : INIT_EXPR, 
		       DECL_CONTEXT (fn), to, arg);
	  TREE_SIDE_EFFECTS (val) = 1;
	  address = build_unary_op (ADDR_EXPR, val, 0);
	  /* Avoid a warning about this expression, if the address is
	     never used.  */
	  TREE_USED (address) = 1;
	  return address;
	}
    }
  else if (DECL_NAME (fn) == ansi_opname[MODIFY_EXPR]
	   && copy_args_p (fn)
	   && TYPE_HAS_TRIVIAL_ASSIGN_REF (DECL_CLASS_CONTEXT (fn)))
    {
      tree to = stabilize_reference
	(build_indirect_ref (TREE_VALUE (converted_args), 0));

      arg = build_indirect_ref (TREE_VALUE (TREE_CHAIN (converted_args)), 0);

      val = build (MODIFY_EXPR, TREE_TYPE (to), to, arg);
      TREE_SIDE_EFFECTS (val) = 1;
      return val;
    }

  mark_used (fn);

  if (DECL_CLASS_SCOPE_P (fn) && IS_SIGNATURE (DECL_CONTEXT (fn)))
    return build_signature_method_call (fn, converted_args);
  else if (DECL_VINDEX (fn)
	   && (flag_indirect_virtual_calls 
	       || (flags & LOOKUP_NONVIRTUAL) == 0))
    {
      tree t, *p = &TREE_VALUE (converted_args);
      tree binfo = get_binfo
	(DECL_CONTEXT (fn), TREE_TYPE (TREE_TYPE (*p)), 0);
      *p = convert_pointer_to_real (binfo, *p);
      if (TREE_SIDE_EFFECTS (*p))
	*p = save_expr (*p);
      t = build_pointer_type (TREE_TYPE (fn));
      /* If this is not really supposed to be a virtual call, find the
	 vtable corresponding to the correct type, and use it.  */
      if (flags & LOOKUP_NONVIRTUAL)
	fn = (build_vfn_ref_using_vtable 
	      (DECL_CLASS_CONTEXT (fn),
	       BINFO_VTABLE (TYPE_BINFO (DECL_CLASS_CONTEXT (fn))),
	       DECL_VINDEX (fn)));
      else
	fn = build_vfn_ref (p, build_indirect_ref (*p, 0), DECL_VINDEX (fn));
      TREE_TYPE (fn) = t;
    }
  else if (DECL_INLINE (fn))
    fn = inline_conversion (fn);
  else
    fn = build_addr_func (fn);

  /* Recognize certain built-in functions so we can make tree-codes
     other than CALL_EXPR.  We do this when it enables fold-const.c
     to do something useful.  */

  if (TREE_CODE (fn) == ADDR_EXPR
      && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
      && DECL_BUILT_IN (TREE_OPERAND (fn, 0)))
    switch (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0)))
      {
      case BUILT_IN_ABS:
      case BUILT_IN_LABS:
      case BUILT_IN_FABS:
	if (converted_args == 0)
	  return integer_zero_node;
	return build_unary_op (ABS_EXPR, TREE_VALUE (converted_args), 0);
      default:
        break;
      }

  fn = build_call (fn, TREE_TYPE (TREE_TYPE (TREE_TYPE (fn))), converted_args);
  if (TREE_CODE (TREE_TYPE (fn)) == VOID_TYPE)
    return fn;
  fn = require_complete_type (fn);
  if (IS_AGGR_TYPE (TREE_TYPE (fn)))
    fn = build_cplus_new (TREE_TYPE (fn), fn);
  return convert_from_reference (fn);
}

static tree
build_new_method_call (instance, name, args, basetype_path, flags)
     tree instance, name, args, basetype_path;
     int flags;
{
  struct z_candidate *candidates = 0, *cand;
  tree explicit_targs = NULL_TREE;
  tree basetype, mem_args = NULL_TREE, fns, instance_ptr;
  tree pretty_name;
  tree user_args = args;
  tree templates = NULL_TREE;
  int template_only = 0;

  if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
    {
      explicit_targs = TREE_OPERAND (name, 1);
      name = TREE_OPERAND (name, 0);
      if (TREE_CODE_CLASS (TREE_CODE (name)) == 'd')
	name = DECL_NAME (name);
      else 
	{
	  if (TREE_CODE (name) == COMPONENT_REF)
	    name = TREE_OPERAND (name, 1);
	  if (TREE_CODE (name) == OVERLOAD)
	    name = DECL_NAME (OVL_CURRENT (name));
	}

      template_only = 1;
    }

  /* If there is an extra argument for controlling virtual bases,
     remove it for error reporting.  */
  if (flags & LOOKUP_HAS_IN_CHARGE)
    user_args = TREE_CHAIN (args);

  args = resolve_args (args);

  if (args == error_mark_node)
    return error_mark_node;

  if (instance == NULL_TREE)
    basetype = BINFO_TYPE (basetype_path);
  else
    {
      if (TREE_CODE (instance) == OFFSET_REF)
	instance = resolve_offset_ref (instance);
      if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
	instance = convert_from_reference (instance);
      basetype = TYPE_MAIN_VARIANT (TREE_TYPE (instance));

      /* XXX this should be handled before we get here.  */
      if (! IS_AGGR_TYPE (basetype)
	  && ! (TYPE_LANG_SPECIFIC (basetype)
		&& (IS_SIGNATURE_POINTER (basetype)
		    || IS_SIGNATURE_REFERENCE (basetype))))
	{
	  if ((flags & LOOKUP_COMPLAIN) && basetype != error_mark_node)
	    cp_error ("request for member `%D' in `%E', which is of non-aggregate type `%T'",
		      name, instance, basetype);

	  return error_mark_node;
	}

      /* If `instance' is a signature pointer/reference and `name' is
	 not a constructor, we are calling a signature member function.
	 In that case set the `basetype' to the signature type.  */
      if ((IS_SIGNATURE_POINTER (basetype)
	   || IS_SIGNATURE_REFERENCE (basetype))
	  && TYPE_IDENTIFIER (basetype) != name)
	basetype = SIGNATURE_TYPE (basetype);
    }

  if (basetype_path == NULL_TREE)
    basetype_path = TYPE_BINFO (basetype);

  if (instance)
    {
      instance_ptr = build_this (instance);

      if (! template_only)
	{
	  /* XXX this should be handled before we get here.  */
	  fns = build_field_call (basetype_path, instance_ptr, name, args);
	  if (fns)
	    return fns;
	}
    }
  else
    {
      instance_ptr = build_int_2 (0, 0);
      TREE_TYPE (instance_ptr) = build_pointer_type (basetype);
    }

  pretty_name
    = (name == ctor_identifier ? constructor_name (basetype) : name);

  fns = lookup_fnfields (basetype_path, name, 1);

  if (fns == error_mark_node)
    return error_mark_node;
  if (fns)
    {
      tree fn = TREE_VALUE (fns);
      if (name == ctor_identifier && TYPE_USES_VIRTUAL_BASECLASSES (basetype)
	  && ! (flags & LOOKUP_HAS_IN_CHARGE))
	{
	  flags |= LOOKUP_HAS_IN_CHARGE;
	  args = scratch_tree_cons (NULL_TREE, integer_one_node, args);
	}
      mem_args = scratch_tree_cons (NULL_TREE, instance_ptr, args);
      for (; fn; fn = OVL_NEXT (fn))
	{
	  tree t = OVL_CURRENT (fn);
	  tree this_arglist;

	  /* We can end up here for copy-init of same or base class.  */
	  if (name == ctor_identifier
	      && (flags & LOOKUP_ONLYCONVERTING)
	      && DECL_NONCONVERTING_P (t))
	    continue;
	  if (TREE_CODE (TREE_TYPE (t)) == METHOD_TYPE)
	    this_arglist = mem_args;
	  else
	    this_arglist = args;

	  if (TREE_CODE (t) == TEMPLATE_DECL)
	    {
	      /* A member template. */
	      templates = scratch_tree_cons (NULL_TREE, t, templates);
	      candidates = 
		add_template_candidate (candidates, t, explicit_targs,
					this_arglist,
					TREE_TYPE (name), flags, DEDUCE_CALL); 
	    }
	  else if (! template_only)
	    candidates = add_function_candidate (candidates, t,
						 this_arglist, flags);

	  if (candidates)
	    candidates->basetype_path = TREE_PURPOSE (fns);
	}
    }

  if (! any_viable (candidates))
    {
      /* XXX will LOOKUP_SPECULATIVELY be needed when this is done?  */
      if (flags & LOOKUP_SPECULATIVELY)
	return NULL_TREE;
      if (TYPE_SIZE (basetype) == 0)
	incomplete_type_error (instance_ptr, basetype);
      else
	cp_error ("no matching function for call to `%T::%D (%A)%V'",
		  basetype, pretty_name, user_args,
		  TREE_TYPE (TREE_TYPE (instance_ptr)));
      print_z_candidates (candidates);
      return error_mark_node;
    }
  candidates = splice_viable (candidates);
  cand = tourney (candidates);

  if (cand == 0)
    {
      cp_error ("call of overloaded `%D(%A)' is ambiguous", pretty_name,
		user_args);
      print_z_candidates (candidates);
      return error_mark_node;
    }

  if (DECL_ABSTRACT_VIRTUAL_P (cand->fn)
      && instance == current_class_ref
      && DECL_CONSTRUCTOR_P (current_function_decl)
      && ! (flags & LOOKUP_NONVIRTUAL)
      && value_member (cand->fn, CLASSTYPE_ABSTRACT_VIRTUALS (basetype)))
    cp_error ("abstract virtual `%#D' called from constructor", cand->fn);
  if (TREE_CODE (TREE_TYPE (cand->fn)) == METHOD_TYPE
      && is_dummy_object (instance_ptr))
    {
      cp_error ("cannot call member function `%D' without object", cand->fn);
      return error_mark_node;
    }

  if (DECL_VINDEX (cand->fn) && ! (flags & LOOKUP_NONVIRTUAL)
      && ((instance == current_class_ref && (dtor_label || ctor_label))
	  || resolves_to_fixed_type_p (instance, 0)))
    flags |= LOOKUP_NONVIRTUAL;

  /* Pedantically, normal function declarations are never considered
     to refer to template instantiations, so we only do this with
     -fguiding-decls.  */ 
  if (flag_guiding_decls && templates && ! cand->template 
      && ! DECL_INITIAL (cand->fn))
    add_maybe_template (cand->fn, templates);

  return build_over_call
    (cand,
     TREE_CODE (TREE_TYPE (cand->fn)) == METHOD_TYPE ? mem_args : args,
     flags);
}

/* Returns non-zero iff standard conversion sequence ICS1 is a proper
   subsequence of ICS2.  */

static int
is_subseq (ics1, ics2)
     tree ics1, ics2;
{
  /* We can assume that a conversion of the same code
     between the same types indicates a subsequence since we only get
     here if the types we are converting from are the same.  */

  while (TREE_CODE (ics1) == RVALUE_CONV
	 || TREE_CODE (ics1) == LVALUE_CONV)
    ics1 = TREE_OPERAND (ics1, 0);

  while (1)
    {
      while (TREE_CODE (ics2) == RVALUE_CONV
	  || TREE_CODE (ics2) == LVALUE_CONV)
	ics2 = TREE_OPERAND (ics2, 0);

      if (TREE_CODE (ics2) == USER_CONV
	  || TREE_CODE (ics2) == AMBIG_CONV
	  || TREE_CODE (ics2) == IDENTITY_CONV)
	/* At this point, ICS1 cannot be a proper subsequence of
	   ICS2.  We can get a USER_CONV when we are comparing the
	   second standard conversion sequence of two user conversion
	   sequences.  */
	return 0;

      ics2 = TREE_OPERAND (ics2, 0);

      if (TREE_CODE (ics2) == TREE_CODE (ics1)
	  && same_type_p (TREE_TYPE (ics2), TREE_TYPE (ics1))
	  && same_type_p (TREE_TYPE (TREE_OPERAND (ics2, 0)),
			     TREE_TYPE (TREE_OPERAND (ics1, 0))))
	return 1;
    }
}

/* Returns non-zero iff DERIVED is derived from BASE.  The inputs may
   be any _TYPE nodes.  */

int
is_properly_derived_from (derived, base)
     tree derived;
     tree base;
{
  if (!IS_AGGR_TYPE_CODE (TREE_CODE (derived))
      || !IS_AGGR_TYPE_CODE (TREE_CODE (base)))
    return 0;

  /* We only allow proper derivation here.  The DERIVED_FROM_P macro
     considers every class derived from itself.  */
  return (!same_type_p (TYPE_MAIN_VARIANT (derived),
			TYPE_MAIN_VARIANT (base))
	  && DERIVED_FROM_P (base, derived));
}

/* We build the ICS for an implicit object parameter as a pointer
   conversion sequence.  However, such a sequence should be compared
   as if it were a reference conversion sequence.  If ICS is the
   implicit conversion sequence for an implicit object parameter,
   modify it accordingly.  */

static void
maybe_handle_implicit_object (ics)
     tree* ics;
{
  if (ICS_THIS_FLAG (*ics))
    {
      /* [over.match.funcs]
	 
	 For non-static member functions, the type of the
	 implicit object parameter is "reference to cv X"
	 where X is the class of which the function is a
	 member and cv is the cv-qualification on the member
	 function declaration.  */
      tree t = *ics;
      if (TREE_CODE (t) == QUAL_CONV)
	t = TREE_OPERAND (t, 0);
      if (TREE_CODE (t) == PTR_CONV)
	t = TREE_OPERAND (t, 0);
      t = build1 (IDENTITY_CONV, TREE_TYPE (TREE_TYPE (t)), NULL_TREE);
      t = build_conv (REF_BIND, 
		      build_reference_type (TREE_TYPE (TREE_TYPE (*ics))), 
		      t);
      ICS_STD_RANK (t) = ICS_STD_RANK (*ics);
      *ics = t;
    }
}

/* If ICS is a REF_BIND, modify it appropriately, set TARGET_TYPE
   to the type the reference originally referred to, and return 1.
   Otherwise, return 0.  */

static int
maybe_handle_ref_bind (ics, target_type)
     tree* ics;
     tree* target_type;
{
  if (TREE_CODE (*ics) == REF_BIND)
    {
      /* [over.ics.rank] 
	 
	 When a parameter of reference type binds directly
	 (_dcl.init.ref_) to an argument expression, the implicit
	 conversion sequence is the identity conversion, unless the
	 argument expression has a type that is a derived class of the
	 parameter type, in which case the implicit conversion
	 sequence is a derived-to-base Conversion.
	 
	 If the parameter binds directly to the result of applying a
	 conversion function to the argument expression, the implicit
	 conversion sequence is a user-defined conversion sequence
	 (_over.ics.user_), with the second standard conversion
	 sequence either an identity conversion or, if the conversion
	 function returns an entity of a type that is a derived class
	 of the parameter type, a derived-to-base Conversion.
	 
	 When a parameter of reference type is not bound directly to
	 an argument expression, the conversion sequence is the one
	 required to convert the argument expression to the underlying
	 type of the reference according to _over.best.ics_.
	 Conceptually, this conversion sequence corresponds to
	 copy-initializing a temporary of the underlying type with the
	 argument expression.  Any difference in top-level
	 cv-qualification is subsumed by the initialization itself and
	 does not constitute a conversion.  */

      tree old_ics = *ics;

      *target_type = TREE_TYPE (TREE_TYPE (*ics));
      *ics = TREE_OPERAND (*ics, 0);
      if (TREE_CODE (*ics) == IDENTITY_CONV
	  && is_properly_derived_from (TREE_TYPE (*ics), *target_type))
	*ics = build_conv (BASE_CONV, *target_type, *ics);
      ICS_USER_FLAG (*ics) = ICS_USER_FLAG (old_ics);
      ICS_BAD_FLAG (*ics) = ICS_BAD_FLAG (old_ics);
      
      return 1;
    }
  
  return 0;
}

/* Compare two implicit conversion sequences according to the rules set out in
   [over.ics.rank].  Return values:

      1: ics1 is better than ics2
     -1: ics2 is better than ics1
      0: ics1 and ics2 are indistinguishable */

static int
compare_ics (ics1, ics2)
     tree ics1, ics2;
{
  tree from_type1;
  tree from_type2;
  tree to_type1;
  tree to_type2;
  tree deref_from_type1 = NULL_TREE;
  tree deref_from_type2 = NULL_TREE;
  tree deref_to_type1 = NULL_TREE;
  tree deref_to_type2 = NULL_TREE;

  /* REF_BINDING is non-zero if the result of the conversion sequence
     is a reference type.   In that case TARGET_TYPE is the
     type referred to by the reference.  */
  int ref_binding1;
  int ref_binding2;
  tree target_type1;
  tree target_type2;

  /* Handle implicit object parameters.  */
  maybe_handle_implicit_object (&ics1);
  maybe_handle_implicit_object (&ics2);

  /* Handle reference parameters.  */
  ref_binding1 = maybe_handle_ref_bind (&ics1, &target_type1);
  ref_binding2 = maybe_handle_ref_bind (&ics2, &target_type2);

  /* [over.ics.rank]

     When  comparing  the  basic forms of implicit conversion sequences (as
     defined in _over.best.ics_)

     --a standard conversion sequence (_over.ics.scs_) is a better
       conversion sequence than a user-defined conversion sequence
       or an ellipsis conversion sequence, and
     
     --a user-defined conversion sequence (_over.ics.user_) is a
       better conversion sequence than an ellipsis conversion sequence
       (_over.ics.ellipsis_).  */
  if (ICS_RANK (ics1) > ICS_RANK (ics2))
    return -1;
  else if (ICS_RANK (ics1) < ICS_RANK (ics2))
    return 1;

  if (ICS_RANK (ics1) == BAD_RANK)
    {
      /* Both ICS are bad.  We try to make a decision based on what
	 would have happenned if they'd been good.  */
      if (ICS_USER_FLAG (ics1) > ICS_USER_FLAG (ics2)
	  || ICS_STD_RANK (ics1) > ICS_STD_RANK (ics2))
	return -1;
      else if (ICS_USER_FLAG (ics1) < ICS_USER_FLAG (ics2)
	       || ICS_STD_RANK (ics1) < ICS_STD_RANK (ics2))
	return 1;

      /* We couldn't make up our minds; try to figure it out below.  */
    }

  if (ICS_ELLIPSIS_FLAG (ics1))
    /* Both conversions are ellipsis conversions.  */
    return 0;

  /* User-defined  conversion sequence U1 is a better conversion sequence
     than another user-defined conversion sequence U2 if they contain the
     same user-defined conversion operator or constructor and if the sec-
     ond standard conversion sequence of U1 is  better  than  the  second
     standard conversion sequence of U2.  */

  if (ICS_USER_FLAG (ics1))
    {
      tree t1, t2;

      for (t1 = ics1; TREE_CODE (t1) != USER_CONV; t1 = TREE_OPERAND (t1, 0))
	if (TREE_CODE (t1) == AMBIG_CONV)
	  return 0;
      for (t2 = ics2; TREE_CODE (t2) != USER_CONV; t2 = TREE_OPERAND (t2, 0))
	if (TREE_CODE (t2) == AMBIG_CONV)
	  return 0;

      if (USER_CONV_FN (t1) != USER_CONV_FN (t2))
	return 0;

      /* We can just fall through here, after setting up
	 FROM_TYPE1 and FROM_TYPE2.  */
      from_type1 = TREE_TYPE (t1);
      from_type2 = TREE_TYPE (t2);
    }
  else
    {
      /* We're dealing with two standard conversion sequences. 

	 [over.ics.rank]
	 
	 Standard conversion sequence S1 is a better conversion
	 sequence than standard conversion sequence S2 if
     
	 --S1 is a proper subsequence of S2 (comparing the conversion
	   sequences in the canonical form defined by _over.ics.scs_,
	   excluding any Lvalue Transformation; the identity
	   conversion sequence is considered to be a subsequence of
	   any non-identity conversion sequence */
      
      from_type1 = ics1;
      while (TREE_CODE (from_type1) != IDENTITY_CONV)
	from_type1 = TREE_OPERAND (from_type1, 0);
      from_type1 = TREE_TYPE (from_type1);
      
      from_type2 = ics2;
      while (TREE_CODE (from_type2) != IDENTITY_CONV)
	from_type2 = TREE_OPERAND (from_type2, 0);
      from_type2 = TREE_TYPE (from_type2);
    }

  if (same_type_p (from_type1, from_type2))
    {
      if (is_subseq (ics1, ics2))
	return 1;
      if (is_subseq (ics2, ics1))
	return -1;
    }
  /* Otherwise, one sequence cannot be a subsequence of the other; they
     don't start with the same type.  This can happen when comparing the
     second standard conversion sequence in two user-defined conversion
     sequences.  */

  /* [over.ics.rank]

     Or, if not that,

     --the rank of S1 is better than the rank of S2 (by the rules
       defined below):

    Standard conversion sequences are ordered by their ranks: an Exact
    Match is a better conversion than a Promotion, which is a better
    conversion than a Conversion.

    Two conversion sequences with the same rank are indistinguishable
    unless one of the following rules applies:

    --A conversion that is not a conversion of a pointer, or pointer
      to member, to bool is better than another conversion that is such
      a conversion.  

    The ICS_STD_RANK automatically handles the pointer-to-bool rule,
    so that we do not have to check it explicitly.  */
  if (ICS_STD_RANK (ics1) < ICS_STD_RANK (ics2))
    return 1;
  else if (ICS_STD_RANK (ics2) < ICS_STD_RANK (ics1))
    return -1;

  to_type1 = TREE_TYPE (ics1);
  to_type2 = TREE_TYPE (ics2);

  if (TYPE_PTR_P (from_type1)
      && TYPE_PTR_P (from_type2)
      && TYPE_PTR_P (to_type1)
      && TYPE_PTR_P (to_type2))
    {
      deref_from_type1 = TREE_TYPE (from_type1);
      deref_from_type2 = TREE_TYPE (from_type2);
      deref_to_type1 = TREE_TYPE (to_type1);
      deref_to_type2 = TREE_TYPE (to_type2);
    }
  /* The rules for pointers to members A::* are just like the rules
     for pointers A*, except opposite: if B is derived from A then
     A::* converts to B::*, not vice versa.  For that reason, we
     switch the from_ and to_ variables here.  */
  else if (TYPE_PTRMEM_P (from_type1)
	   && TYPE_PTRMEM_P (from_type2)
	   && TYPE_PTRMEM_P (to_type1)
	   && TYPE_PTRMEM_P (to_type2))
    {
      deref_to_type1 = TYPE_OFFSET_BASETYPE (TREE_TYPE (from_type1));
      deref_to_type2 = TYPE_OFFSET_BASETYPE (TREE_TYPE (from_type2));
      deref_from_type1 = TYPE_OFFSET_BASETYPE (TREE_TYPE (to_type1));
      deref_from_type2 = TYPE_OFFSET_BASETYPE (TREE_TYPE (to_type2));
    }
  else if (TYPE_PTRMEMFUNC_P (from_type1)
	   && TYPE_PTRMEMFUNC_P (from_type2)
	   && TYPE_PTRMEMFUNC_P (to_type1)
	   && TYPE_PTRMEMFUNC_P (to_type2))
    {
      deref_to_type1 = TYPE_PTRMEMFUNC_OBJECT_TYPE (from_type1);
      deref_to_type2 = TYPE_PTRMEMFUNC_OBJECT_TYPE (from_type2);
      deref_from_type1 = TYPE_PTRMEMFUNC_OBJECT_TYPE (to_type1);
      deref_from_type2 = TYPE_PTRMEMFUNC_OBJECT_TYPE (to_type2);
    }

  if (deref_from_type1 != NULL_TREE
      && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type1))
      && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type2)))
    {
      /* This was one of the pointer or pointer-like conversions.  

	 [over.ics.rank]
	 
	 --If class B is derived directly or indirectly from class A,
	   conversion of B* to A* is better than conversion of B* to
	   void*, and conversion of A* to void* is better than
	   conversion of B* to void*.  */
      if (TREE_CODE (deref_to_type1) == VOID_TYPE
	  && TREE_CODE (deref_to_type2) == VOID_TYPE)
	{
	  if (is_properly_derived_from (deref_from_type1,
					deref_from_type2))
	    return -1;
	  else if (is_properly_derived_from (deref_from_type2,
					     deref_from_type1))
	    return 1;
	}
      else if (TREE_CODE (deref_to_type1) == VOID_TYPE
	       || TREE_CODE (deref_to_type2) == VOID_TYPE)
	{
	  if (same_type_p (deref_from_type1, deref_from_type2))
	    {
	      if (TREE_CODE (deref_to_type2) == VOID_TYPE)
		{
		  if (is_properly_derived_from (deref_from_type1,
						deref_to_type1))
		    return 1;
		}
	      /* We know that DEREF_TO_TYPE1 is `void' here.  */
	      else if (is_properly_derived_from (deref_from_type1,
						 deref_to_type2))
		return -1;
	    }
	}
      else if (IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type1))
	       && IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type2)))
	{
	  /* [over.ics.rank]

	     --If class B is derived directly or indirectly from class A
	       and class C is derived directly or indirectly from B,
	     
	     --conversion of C* to B* is better than conversion of C* to
	       A*, 
	     
	     --conversion of B* to A* is better than conversion of C* to
	       A*  */
	  if (same_type_p (deref_from_type1, deref_from_type2))
	    {
	      if (is_properly_derived_from (deref_to_type1,
					    deref_to_type2))
		return 1;
	      else if (is_properly_derived_from (deref_to_type2,
						 deref_to_type1))
		return -1;
	    }
	  else if (same_type_p (deref_to_type1, deref_to_type2))
	    {
	      if (is_properly_derived_from (deref_from_type2,
					    deref_from_type1))
		return 1;
	      else if (is_properly_derived_from (deref_from_type1,
						 deref_from_type2))
		return -1;
	    }
	}
    }
  else if (IS_AGGR_TYPE_CODE (TREE_CODE (from_type1))
	   && same_type_p (from_type1, from_type2))
    {
      /* [over.ics.rank]
	 
	 --binding of an expression of type C to a reference of type
	   B& is better than binding an expression of type C to a
	   reference of type A&

	 --conversion of C to B is better than conversion of C to A,  */
      if (is_properly_derived_from (from_type1, to_type1)
	  && is_properly_derived_from (from_type1, to_type2))
	{
	  if (is_properly_derived_from (to_type1, to_type2))
	    return 1;
	  else if (is_properly_derived_from (to_type2, to_type1))
	    return -1;
	}
    }
  else if (IS_AGGR_TYPE_CODE (TREE_CODE (to_type1))
	   && same_type_p (to_type1, to_type2))
    {
      /* [over.ics.rank]

	 --binding of an expression of type B to a reference of type
	   A& is better than binding an expression of type C to a
	   reference of type A&, 

	 --onversion of B to A is better than conversion of C to A  */
      if (is_properly_derived_from (from_type1, to_type1)
	  && is_properly_derived_from (from_type2, to_type1))
	{
	  if (is_properly_derived_from (from_type2, from_type1))
	    return 1;
	  else if (is_properly_derived_from (from_type1, from_type2))
	    return -1;
	}
    }

  /* [over.ics.rank]

     --S1 and S2 differ only in their qualification conversion and  yield
       similar  types  T1 and T2 (_conv.qual_), respectively, and the cv-
       qualification signature of type T1 is a proper subset of  the  cv-
       qualification signature of type T2  */
  if (TREE_CODE (ics1) == QUAL_CONV 
      && TREE_CODE (ics2) == QUAL_CONV
      && same_type_p (from_type1, from_type2))
    return comp_cv_qual_signature (to_type1, to_type2);

  /* [over.ics.rank]
     
     --S1 and S2 are reference bindings (_dcl.init.ref_), and the
     types to which the references refer are the same type except for
     top-level cv-qualifiers, and the type to which the reference
     initialized by S2 refers is more cv-qualified than the type to
     which the reference initialized by S1 refers */
      
  if (ref_binding1 && ref_binding2
      && same_type_p (TYPE_MAIN_VARIANT (to_type1),
		      TYPE_MAIN_VARIANT (to_type2)))
    return comp_cv_qualification (target_type2, target_type1);

  /* Neither conversion sequence is better than the other.  */
  return 0;
}

/* The source type for this standard conversion sequence.  */

static tree
source_type (t)
     tree t;
{
  for (;; t = TREE_OPERAND (t, 0))
    {
      if (TREE_CODE (t) == USER_CONV
	  || TREE_CODE (t) == AMBIG_CONV
	  || TREE_CODE (t) == IDENTITY_CONV)
	return TREE_TYPE (t);
    }
  my_friendly_abort (1823);
}

/* Note a warning about preferring WINNER to LOSER.  We do this by storing
   a pointer to LOSER and re-running joust to produce the warning if WINNER
   is actually used.  */

static void
add_warning (winner, loser)
     struct z_candidate *winner, *loser;
{
  winner->warnings = expr_tree_cons (NULL_PTR,
				     build_expr_ptr_wrapper (loser),
				     winner->warnings);
}

/* Compare two candidates for overloading as described in
   [over.match.best].  Return values:

      1: cand1 is better than cand2
     -1: cand2 is better than cand1
      0: cand1 and cand2 are indistinguishable */

static int
joust (cand1, cand2, warn)
     struct z_candidate *cand1, *cand2;
     int warn;
{
  int winner = 0;
  int i, off1 = 0, off2 = 0, len;

  /* Candidates that involve bad conversions are always worse than those
     that don't.  */
  if (cand1->viable > cand2->viable)
    return 1;
  if (cand1->viable < cand2->viable)
    return -1;

  /* If we have two pseudo-candidates for conversions to the same type,
     arbitrarily pick one.  */
  if (TYPE_P (cand1->fn) && cand1->fn == cand2->fn)
    return 1;

  /* a viable function F1
     is defined to be a better function than another viable function F2  if
     for  all arguments i, ICSi(F1) is not a worse conversion sequence than
     ICSi(F2), and then */

  /* for some argument j, ICSj(F1) is a better conversion  sequence  than
     ICSj(F2) */

  /* For comparing static and non-static member functions, we ignore the
     implicit object parameter of the non-static function.  The WP says to
     pretend that the static function has an object parm, but that won't
     work with operator overloading.  */
  len = TREE_VEC_LENGTH (cand1->convs);
  if (len != TREE_VEC_LENGTH (cand2->convs))
    {
      if (DECL_STATIC_FUNCTION_P (cand1->fn)
	  && ! DECL_STATIC_FUNCTION_P (cand2->fn))
	off2 = 1;
      else if (! DECL_STATIC_FUNCTION_P (cand1->fn)
	       && DECL_STATIC_FUNCTION_P (cand2->fn))
	{
	  off1 = 1;
	  --len;
	}
      else
	my_friendly_abort (42);
    }

  for (i = 0; i < len; ++i)
    {
      tree t1 = TREE_VEC_ELT (cand1->convs, i+off1);
      tree t2 = TREE_VEC_ELT (cand2->convs, i+off2);
      int comp = compare_ics (t1, t2);

      if (comp != 0)
	{
	  if (warn_sign_promo
	      && ICS_RANK (t1) + ICS_RANK (t2) == STD_RANK + PROMO_RANK
	      && TREE_CODE (t1) == STD_CONV
	      && TREE_CODE (t2) == STD_CONV
	      && TREE_CODE (TREE_TYPE (t1)) == INTEGER_TYPE
	      && TREE_CODE (TREE_TYPE (t2)) == INTEGER_TYPE
	      && (TYPE_PRECISION (TREE_TYPE (t1))
		  == TYPE_PRECISION (TREE_TYPE (t2)))
	      && (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (t1, 0)))
		  || (TREE_CODE (TREE_TYPE (TREE_OPERAND (t1, 0)))
		      == ENUMERAL_TYPE)))
	    {
	      tree type = TREE_TYPE (TREE_OPERAND (t1, 0));
	      tree type1, type2;
	      struct z_candidate *w, *l;
	      if (comp > 0)
		type1 = TREE_TYPE (t1), type2 = TREE_TYPE (t2),
		  w = cand1, l = cand2;
	      else
		type1 = TREE_TYPE (t2), type2 = TREE_TYPE (t1),
		  w = cand2, l = cand1;

	      if (warn)
		{
		  cp_warning ("passing `%T' chooses `%T' over `%T'",
			      type, type1, type2);
		  cp_warning ("  in call to `%D'", w->fn);
		}
	      else
		add_warning (w, l);
	    }

	  if (winner && comp != winner)
	    {
	      winner = 0;
	      goto tweak;
	    }
	  winner = comp;
	}
    }

  /* warn about confusing overload resolution for user-defined conversions,
     either between a constructor and a conversion op, or between two
     conversion ops.  */
  if (winner && cand1->second_conv
      && ((DECL_CONSTRUCTOR_P (cand1->fn)
	   != DECL_CONSTRUCTOR_P (cand2->fn))
	  /* Don't warn if the two conv ops convert to the same type...  */
	  || (! DECL_CONSTRUCTOR_P (cand1->fn)
	      && ! same_type_p (TREE_TYPE (TREE_TYPE (cand1->fn)),
				TREE_TYPE (TREE_TYPE (cand2->fn))))))
    {
      int comp = compare_ics (cand1->second_conv, cand2->second_conv);
      if (comp != winner)
	{
	  struct z_candidate *w, *l;
	  if (winner == 1)
	    w = cand1, l = cand2;
	  else
	    w = cand2, l = cand1;
	  if (warn)
	    {
	      tree source = source_type (TREE_VEC_ELT (w->convs, 0));
	      if (! DECL_CONSTRUCTOR_P (w->fn))
		source = TREE_TYPE (source);
	      cp_warning ("choosing `%D' over `%D'", w->fn, l->fn);
	      cp_warning ("  for conversion from `%T' to `%T'",
			  source, TREE_TYPE (w->second_conv));
	      cp_warning ("  because conversion sequence for the argument is better");
	    }
	  else
	    add_warning (w, l);
	}
    }

  if (winner)
    return winner;

  /* or, if not that,
     F1 is a non-template function and F2 is a template function */

  if (! cand1->template && cand2->template)
    return 1;
  else if (cand1->template && ! cand2->template)
    return -1;
  else if (cand1->template && cand2->template)
    winner = more_specialized
      (TI_TEMPLATE (cand1->template), TI_TEMPLATE (cand2->template),
       NULL_TREE);

  /* or, if not that,
     the  context  is  an  initialization by user-defined conversion (see
     _dcl.init_  and  _over.match.user_)  and  the  standard   conversion
     sequence  from  the return type of F1 to the destination type (i.e.,
     the type of the entity being initialized)  is  a  better  conversion
     sequence  than the standard conversion sequence from the return type
     of F2 to the destination type.  */

  if (! winner && cand1->second_conv)
    winner = compare_ics (cand1->second_conv, cand2->second_conv);

  /* If the built-in candidates are the same, arbitrarily pick one.  */
  if (! winner && cand1->fn == cand2->fn
      && TREE_CODE (cand1->fn) == IDENTIFIER_NODE)
    {
      for (i = 0; i < len; ++i)
	if (!same_type_p (TREE_TYPE (TREE_VEC_ELT (cand1->convs, i)),
			  TREE_TYPE (TREE_VEC_ELT (cand2->convs, i))))
	  break;
      if (i == TREE_VEC_LENGTH (cand1->convs))
	return 1;

      /* Kludge around broken overloading rules whereby
	 Integer a, b; test ? a : b; is ambiguous, since there's a builtin
	 that takes references and another that takes values.  */
      if (cand1->fn == ansi_opname[COND_EXPR])
	{
	  tree c1 = TREE_VEC_ELT (cand1->convs, 1);
	  tree c2 = TREE_VEC_ELT (cand2->convs, 1);
	  tree t1 = strip_top_quals (non_reference (TREE_TYPE (c1)));
	  tree t2 = strip_top_quals (non_reference (TREE_TYPE (c2)));

	  if (same_type_p (t1, t2))
	    {
	      if (TREE_CODE (c1) == REF_BIND && TREE_CODE (c2) != REF_BIND)
		return 1;
	      if (TREE_CODE (c1) != REF_BIND && TREE_CODE (c2) == REF_BIND)
		return -1;
	    }
	}
    }

tweak:

  /* Extension: If the worst conversion for one candidate is worse than the
     worst conversion for the other, take the first.  */
  if (! winner && ! pedantic)
    {
      int rank1 = IDENTITY_RANK, rank2 = IDENTITY_RANK;

      for (i = 0; i < len; ++i)
	{
	  if (ICS_RANK (TREE_VEC_ELT (cand1->convs, i+off1)) > rank1)
	    rank1 = ICS_RANK (TREE_VEC_ELT (cand1->convs, i+off1));
	  if (ICS_RANK (TREE_VEC_ELT (cand2->convs, i+off2)) > rank2)
	    rank2 = ICS_RANK (TREE_VEC_ELT (cand2->convs, i+off2));
	}

      if (rank1 < rank2)
	return 1;
      if (rank1 > rank2)
	return -1;
    }

  return winner;
}

/* Given a list of candidates for overloading, find the best one, if any.
   This algorithm has a worst case of O(2n) (winner is last), and a best
   case of O(n/2) (totally ambiguous); much better than a sorting
   algorithm.  */

static struct z_candidate *
tourney (candidates)
     struct z_candidate *candidates;
{
  struct z_candidate *champ = candidates, *challenger;
  int fate;
  int champ_compared_to_predecessor = 0;

  /* Walk through the list once, comparing each current champ to the next
     candidate, knocking out a candidate or two with each comparison.  */

  for (challenger = champ->next; challenger; )
    {
      fate = joust (champ, challenger, 0);
      if (fate == 1)
	challenger = challenger->next;
      else
	{
	  if (fate == 0)
	    {
	      champ = challenger->next;
	      if (champ == 0)
		return 0;
	      champ_compared_to_predecessor = 0;
	    }
	  else
	    {
	      champ = challenger;
	      champ_compared_to_predecessor = 1;
	    }

	  challenger = champ->next;
	}
    }

  /* Make sure the champ is better than all the candidates it hasn't yet
     been compared to.  */

  for (challenger = candidates; 
       challenger != champ 
	 && !(champ_compared_to_predecessor && challenger->next == champ);
       challenger = challenger->next)
    {
      fate = joust (champ, challenger, 0);
      if (fate != 1)
	return 0;
    }

  return champ;
}

int
can_convert (to, from)
     tree to, from;
{
  tree t = implicit_conversion (to, from, NULL_TREE, LOOKUP_NORMAL);
  return (t && ! ICS_BAD_FLAG (t));
}

int
can_convert_arg (to, from, arg)
     tree to, from, arg;
{
  tree t = implicit_conversion (to, from, arg, LOOKUP_NORMAL);
  return (t && ! ICS_BAD_FLAG (t));
}