@c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. @c This is part of the GCC manual. @c For copying conditions, see the file install.texi. @ifnothtml @comment node-name, next, previous, up @node Old, GNU Free Documentation License, Specific, Top @end ifnothtml @html

Old installation documentation

@end html @ifnothtml @chapter Old installation documentation @end ifnothtml Note most of this information is out of date and superseded by the previous chapters of this manual. It is provided for historical reference only, because of a lack of volunteers to merge it into the main manual. @ifnothtml @menu * Configurations:: Configurations Supported by GNU CC. * Cross-Compiler:: Building and installing a cross-compiler. * VMS Install:: See below for installation on VMS. @end menu @end ifnothtml Here is the procedure for installing GNU CC on a GNU or Unix system. See @ref{VMS Install}, for VMS systems. @enumerate @item If you have chosen a configuration for GNU CC which requires other GNU tools (such as GAS or the GNU linker) instead of the standard system tools, install the required tools in the build directory under the names @file{as}, @file{ld} or whatever is appropriate. Alternatively, you can do subsequent compilation using a value of the @code{PATH} environment variable such that the necessary GNU tools come before the standard system tools. @item Specify the host, build and target machine configurations. You do this when you run the @file{configure} script. The @dfn{build} machine is the system which you are using, the @dfn{host} machine is the system where you want to run the resulting compiler (normally the build machine), and the @dfn{target} machine is the system for which you want the compiler to generate code. If you are building a compiler to produce code for the machine it runs on (a native compiler), you normally do not need to specify any operands to @file{configure}; it will try to guess the type of machine you are on and use that as the build, host and target machines. So you don't need to specify a configuration when building a native compiler unless @file{configure} cannot figure out what your configuration is or guesses wrong. In those cases, specify the build machine's @dfn{configuration name} with the @option{--host} option; the host and target will default to be the same as the host machine. (If you are building a cross-compiler, see @ref{Cross-Compiler}.) Here is an example: @smallexample ./configure --host=sparc-sun-sunos4.1 @end smallexample A configuration name may be canonical or it may be more or less abbreviated. A canonical configuration name has three parts, separated by dashes. It looks like this: @samp{@var{cpu}-@var{company}-@var{system}}. (The three parts may themselves contain dashes; @file{configure} can figure out which dashes serve which purpose.) For example, @samp{m68k-sun-sunos4.1} specifies a Sun 3. You can also replace parts of the configuration by nicknames or aliases. For example, @samp{sun3} stands for @samp{m68k-sun}, so @samp{sun3-sunos4.1} is another way to specify a Sun 3. You can specify a version number after any of the system types, and some of the CPU types. In most cases, the version is irrelevant, and will be ignored. So you might as well specify the version if you know it. See @ref{Configurations}, for a list of supported configuration names and notes on many of the configurations. You should check the notes in that section before proceeding any further with the installation of GNU CC@. @end enumerate @ifnothtml @node Configurations, Cross-Compiler, , Old @section Configurations Supported by GNU CC @end ifnothtml @html

@anchor{Configurations}Configurations Supported by GNU CC

@end html @cindex configurations supported by GNU CC Here are the possible CPU types: @quotation @c gmicro, fx80, spur and tahoe omitted since they don't work. 1750a, a29k, alpha, arm, avr, c@var{n}, clipper, dsp16xx, elxsi, fr30, h8300, hppa1.0, hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, ip2k, m32r, m68000, m68k, m6811, m6812, m88k, mcore, mips, mipsel, mips64, mips64el, mn10200, mn10300, ns32k, pdp11, powerpc, powerpcle, romp, rs6000, sh, sparc, sparclite, sparc64, v850, vax, we32k. @end quotation Here are the recognized company names. As you can see, customary abbreviations are used rather than the longer official names. @c What should be done about merlin, tek*, dolphin? @quotation acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, convex, crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron, plexus, sequent, sgi, sony, sun, tti, unicom, wrs. @end quotation The company name is meaningful only to disambiguate when the rest of the information supplied is insufficient. You can omit it, writing just @samp{@var{cpu}-@var{system}}, if it is not needed. For example, @samp{vax-ultrix4.2} is equivalent to @samp{vax-dec-ultrix4.2}. Here is a list of system types: @quotation 386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, coff, ctix, cxux, dgux, dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix, gnu, linux, linux-gnu, hiux, hpux, iris, irix, isc, luna, lynxos, mach, minix, msdos, mvs, netbsd, newsos, nindy, ns, osf, osfrose, ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv, udi, ultrix, unicos, uniplus, unos, vms, vsta, vxworks, winnt, xenix. @end quotation @noindent You can omit the system type; then @file{configure} guesses the operating system from the CPU and company. You can add a version number to the system type; this may or may not make a difference. For example, you can write @samp{bsd4.3} or @samp{bsd4.4} to distinguish versions of BSD@. In practice, the version number is most needed for @samp{sysv3} and @samp{sysv4}, which are often treated differently. @samp{linux-gnu} is the canonical name for the GNU/Linux target; however GNU CC will also accept @samp{linux}. The version of the kernel in use is not relevant on these systems. A suffix such as @samp{libc1} or @samp{aout} distinguishes major versions of the C library; all of the suffixed versions are obsolete. If you specify an impossible combination such as @samp{i860-dg-vms}, then you may get an error message from @file{configure}, or it may ignore part of the information and do the best it can with the rest. @file{configure} always prints the canonical name for the alternative that it used. GNU CC does not support all possible alternatives. Often a particular model of machine has a name. Many machine names are recognized as aliases for CPU/company combinations. Thus, the machine name @samp{sun3}, mentioned above, is an alias for @samp{m68k-sun}. Sometimes we accept a company name as a machine name, when the name is popularly used for a particular machine. Here is a table of the known machine names: @quotation 3300, 3b1, 3b@var{n}, 7300, altos3068, altos, apollo68, att-7300, balance, convex-c@var{n}, crds, decstation-3100, decstation, delta, encore, fx2800, gmicro, hp7@var{nn}, hp8@var{nn}, hp9k2@var{nn}, hp9k3@var{nn}, hp9k7@var{nn}, hp9k8@var{nn}, iris4d, iris, isi68, m3230, magnum, merlin, miniframe, mmax, news-3600, news800, news, next, pbd, pc532, pmax, powerpc, powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, sun4, symmetry, tower-32, tower. @end quotation @noindent Remember that a machine name specifies both the cpu type and the company name. If you want to install your own homemade configuration files, you can use @samp{local} as the company name to access them. If you use configuration @samp{@var{cpu}-local}, the configuration name without the cpu prefix is used to form the configuration file names. Thus, if you specify @samp{m68k-local}, configuration uses files @file{m68k.md}, @file{local.h}, @file{m68k.c}, @file{xm-local.h}, @file{t-local}, and @file{x-local}, all in the directory @file{config/m68k}. Here is a list of configurations that have special treatment or special things you must know: @table @samp @item vax-dec-vms See @ref{VMS Install}, for details on how to install GNU CC on VMS@. @end table @ifnothtml @node Cross-Compiler, VMS Install, Configurations, Old @section Building and Installing a Cross-Compiler @end ifnothtml @html

@anchor{Cross-Compiler}Building and Installing a Cross-Compiler

@end html @cindex cross-compiler, installation GNU CC can function as a cross-compiler for many machines, but not all. @itemize @bullet @item Cross-compilers for the Mips as target using the Mips assembler currently do not work, because the auxiliary programs @file{mips-tdump.c} and @file{mips-tfile.c} can't be compiled on anything but a Mips. It does work to cross compile for a Mips if you use the GNU assembler and linker. @item Cross-compilers between machines with different floating point formats have not all been made to work. GNU CC now has a floating point emulator with which these can work, but each target machine description needs to be updated to take advantage of it. @item Cross-compilation between machines of different word sizes is somewhat problematic and sometimes does not work. @end itemize Since GNU CC generates assembler code, you probably need a cross-assembler that GNU CC can run, in order to produce object files. If you want to link on other than the target machine, you need a cross-linker as well. You also need header files and libraries suitable for the target machine that you can install on the host machine. @ifnothtml @menu * Steps of Cross:: Using a cross-compiler involves several steps that may be carried out on different machines. * Configure Cross:: Configuring a cross-compiler. * Tools and Libraries:: Where to put the linker and assembler, and the C library. * Cross Headers:: Finding and installing header files for a cross-compiler. * Build Cross:: Actually compiling the cross-compiler. @end menu @end ifnothtml @ifnothtml @node Steps of Cross, Configure Cross, , Cross-Compiler @subsection Steps of Cross-Compilation @end ifnothtml @html

Steps of Cross-Compilation

@end html To compile and run a program using a cross-compiler involves several steps: @itemize @bullet @item Run the cross-compiler on the host machine to produce assembler files for the target machine. This requires header files for the target machine. @item Assemble the files produced by the cross-compiler. You can do this either with an assembler on the target machine, or with a cross-assembler on the host machine. @item Link those files to make an executable. You can do this either with a linker on the target machine, or with a cross-linker on the host machine. Whichever machine you use, you need libraries and certain startup files (typically @file{crt@dots{}.o}) for the target machine. @end itemize It is most convenient to do all of these steps on the same host machine, since then you can do it all with a single invocation of GNU CC@. This requires a suitable cross-assembler and cross-linker. For some targets, the GNU assembler and linker are available. @ifnothtml @node Configure Cross, Tools and Libraries, Steps of Cross, Cross-Compiler @subsection Configuring a Cross-Compiler @end ifnothtml @html

Configuring a Cross-Compiler

@end html To build GNU CC as a cross-compiler, you start out by running @file{configure}. Use the @option{--target=@var{target}} to specify the target type. If @file{configure} was unable to correctly identify the system you are running on, also specify the @option{--build=@var{build}} option. For example, here is how to configure for a cross-compiler that produces code for an HP 68030 system running BSD on a system that @file{configure} can correctly identify: @smallexample ./configure --target=m68k-hp-bsd4.3 @end smallexample @ifnothtml @node Tools and Libraries, Cross Headers, Configure Cross, Cross-Compiler @subsection Tools and Libraries for a Cross-Compiler @end ifnothtml @html

Tools and Libraries for a Cross-Compiler

@end html If you have a cross-assembler and cross-linker available, you should install them now. Put them in the directory @file{/usr/local/@var{target}/bin}. Here is a table of the tools you should put in this directory: @table @file @item as This should be the cross-assembler. @item ld This should be the cross-linker. @item ar This should be the cross-archiver: a program which can manipulate archive files (linker libraries) in the target machine's format. @item ranlib This should be a program to construct a symbol table in an archive file. @end table The installation of GNU CC will find these programs in that directory, and copy or link them to the proper place to for the cross-compiler to find them when run later. The easiest way to provide these files is to build the Binutils package and GAS@. Configure them with the same @option{--host} and @option{--target} options that you use for configuring GNU CC, then build and install them. They install their executables automatically into the proper directory. Alas, they do not support all the targets that GNU CC supports. If you want to install libraries to use with the cross-compiler, such as a standard C library, put them in the directory @file{/usr/local/@var{target}/lib}; installation of GNU CC copies all the files in that subdirectory into the proper place for GNU CC to find them and link with them. Here's an example of copying some libraries from a target machine: @example ftp @var{target-machine} lcd /usr/local/@var{target}/lib cd /lib get libc.a cd /usr/lib get libg.a get libm.a quit @end example @noindent The precise set of libraries you'll need, and their locations on the target machine, vary depending on its operating system. @cindex start files Many targets require ``start files'' such as @file{crt0.o} and @file{crtn.o} which are linked into each executable; these too should be placed in @file{/usr/local/@var{target}/lib}. There may be several alternatives for @file{crt0.o}, for use with profiling or other compilation options. Check your target's definition of @code{STARTFILE_SPEC} to find out what start files it uses. Here's an example of copying these files from a target machine: @example ftp @var{target-machine} lcd /usr/local/@var{target}/lib prompt cd /lib mget *crt*.o cd /usr/lib mget *crt*.o quit @end example @ifnothtml @node Cross Headers, Build Cross, Tools and Libraries, Cross-Compiler @subsection Cross-Compilers and Header Files @end ifnothtml @html

Cross-Compilers and Header Files

@end html If you are cross-compiling a standalone program or a program for an embedded system, then you may not need any header files except the few that are part of GNU CC (and those of your program). However, if you intend to link your program with a standard C library such as @file{libc.a}, then you probably need to compile with the header files that go with the library you use. The GNU C compiler does not come with these files, because (1) they are system-specific, and (2) they belong in a C library, not in a compiler. If the GNU C library supports your target machine, then you can get the header files from there (assuming you actually use the GNU library when you link your program). If your target machine comes with a C compiler, it probably comes with suitable header files also. If you make these files accessible from the host machine, the cross-compiler can use them also. Otherwise, you're on your own in finding header files to use when cross-compiling. When you have found suitable header files, you should put them in the directory @file{/usr/local/@var{target}/include}, before building the cross compiler. Then installation will run fixincludes properly and install the corrected versions of the header files where the compiler will use them. Provide the header files before you build the cross-compiler, because the build stage actually runs the cross-compiler to produce parts of @file{libgcc.a}. (These are the parts that @emph{can} be compiled with GNU CC@.) Some of them need suitable header files. Here's an example showing how to copy the header files from a target machine. On the target machine, do this: @example (cd /usr/include; tar cf - .) > tarfile @end example Then, on the host machine, do this: @example ftp @var{target-machine} lcd /usr/local/@var{target}/include get tarfile quit tar xf tarfile @end example @ifnothtml @node Build Cross, , Cross Headers, Cross-Compiler @subsection Actually Building the Cross-Compiler @end ifnothtml @html

Actually Building the Cross-Compiler

@end html Now you can proceed just as for compiling a single-machine compiler through the step of building stage 1. Do not try to build stage 2 for a cross-compiler. It doesn't work to rebuild GNU CC as a cross-compiler using the cross-compiler, because that would produce a program that runs on the target machine, not on the host. For example, if you compile a 386-to-68030 cross-compiler with itself, the result will not be right either for the 386 (because it was compiled into 68030 code) or for the 68030 (because it was configured for a 386 as the host). If you want to compile GNU CC into 68030 code, whether you compile it on a 68030 or with a cross-compiler on a 386, you must specify a 68030 as the host when you configure it. To install the cross-compiler, use @samp{make install}, as usual. @ifnothtml @node VMS Install, , Cross-Compiler, Old @section Installing GNU CC on VMS @end ifnothtml @html

@anchor{VMS Install}Installing GNU CC on VMS

@end html @cindex VMS installation @cindex installing GNU CC on VMS The VMS version of GNU CC is distributed in a backup saveset containing both source code and precompiled binaries. To install the @file{gcc} command so you can use the compiler easily, in the same manner as you use the VMS C compiler, you must install the VMS CLD file for GNU CC as follows: @enumerate @item Define the VMS logical names @samp{GNU_CC} and @samp{GNU_CC_INCLUDE} to point to the directories where the GNU CC executables (@file{gcc-cpp.exe}, @file{gcc-cc1.exe}, etc.) and the C include files are kept respectively. This should be done with the commands: @smallexample $ assign /system /translation=concealed - disk:[gcc.] gnu_cc $ assign /system /translation=concealed - disk:[gcc.include.] gnu_cc_include @end smallexample @noindent with the appropriate disk and directory names. These commands can be placed in your system startup file so they will be executed whenever the machine is rebooted. You may, if you choose, do this via the @file{GCC_INSTALL.COM} script in the @file{[GCC]} directory. @item Install the @file{GCC} command with the command line: @smallexample $ set command /table=sys$common:[syslib]dcltables - /output=sys$common:[syslib]dcltables gnu_cc:[000000]gcc $ install replace sys$common:[syslib]dcltables @end smallexample @item To install the help file, do the following: @smallexample $ library/help sys$library:helplib.hlb gcc.hlp @end smallexample @noindent Now you can invoke the compiler with a command like @samp{gcc /verbose file.c}, which is equivalent to the command @samp{gcc -v -c file.c} in Unix. @end enumerate If you wish to use GNU C++ you must first install GNU CC, and then perform the following steps: @enumerate @item Define the VMS logical name @samp{GNU_GXX_INCLUDE} to point to the directory where the preprocessor will search for the C++ header files. This can be done with the command: @smallexample $ assign /system /translation=concealed - disk:[gcc.gxx_include.] gnu_gxx_include @end smallexample @noindent with the appropriate disk and directory name. If you are going to be using a C++ runtime library, this is where its install procedure will install its header files. @item Obtain the file @file{gcc-cc1plus.exe}, and place this in the same directory that @file{gcc-cc1.exe} is kept. The GNU C++ compiler can be invoked with a command like @samp{gcc /plus /verbose file.cc}, which is equivalent to the command @samp{g++ -v -c file.cc} in Unix. @end enumerate We try to put corresponding binaries and sources on the VMS distribution tape. But sometimes the binaries will be from an older version than the sources, because we don't always have time to update them. (Use the @samp{/version} option to determine the version number of the binaries and compare it with the source file @file{version.c} to tell whether this is so.) In this case, you should use the binaries you get to recompile the sources. If you must recompile, here is how: @enumerate @item Execute the command procedure @file{vmsconfig.com} to set up the files @file{tm.h}, @file{config.h}, @file{aux-output.c}, and @file{md.}, and to create files @file{tconfig.h} and @file{hconfig.h}. This procedure also creates several linker option files used by @file{make-cc1.com} and a data file used by @file{make-l2.com}. @smallexample $ @@vmsconfig.com @end smallexample @item Setup the logical names and command tables as defined above. In addition, define the VMS logical name @samp{GNU_BISON} to point at the to the directories where the Bison executable is kept. This should be done with the command: @smallexample $ assign /system /translation=concealed - disk:[bison.] gnu_bison @end smallexample You may, if you choose, use the @file{INSTALL_BISON.COM} script in the @file{[BISON]} directory. @item Install the @samp{BISON} command with the command line: @smallexample $ set command /table=sys$common:[syslib]dcltables - /output=sys$common:[syslib]dcltables - gnu_bison:[000000]bison $ install replace sys$common:[syslib]dcltables @end smallexample @item Type @samp{@@make-gcc} to recompile everything, or submit the file @file{make-gcc.com} to a batch queue. If you wish to build the GNU C++ compiler as well as the GNU CC compiler, you must first edit @file{make-gcc.com} and follow the instructions that appear in the comments. @item In order to use GCC, you need a library of functions which GCC compiled code will call to perform certain tasks, and these functions are defined in the file @file{libgcc2.c}. To compile this you should use the command procedure @file{make-l2.com}, which will generate the library @file{libgcc2.olb}. @file{libgcc2.olb} should be built using the compiler built from the same distribution that @file{libgcc2.c} came from, and @file{make-gcc.com} will automatically do all of this for you. To install the library, use the following commands: @smallexample $ library gnu_cc:[000000]gcclib/delete=(new,eprintf) $ library gnu_cc:[000000]gcclib/delete=L_* $ library libgcc2/extract=*/output=libgcc2.obj $ library gnu_cc:[000000]gcclib libgcc2.obj @end smallexample The first command simply removes old modules that will be replaced with modules from @file{libgcc2} under different module names. The modules @code{new} and @code{eprintf} may not actually be present in your @file{gcclib.olb}---if the VMS librarian complains about those modules not being present, simply ignore the message and continue on with the next command. The second command removes the modules that came from the previous version of the library @file{libgcc2.c}. Whenever you update the compiler on your system, you should also update the library with the above procedure. @item You may wish to build GCC in such a way that no files are written to the directory where the source files reside. An example would be the when the source files are on a read-only disk. In these cases, execute the following DCL commands (substituting your actual path names): @smallexample $ assign dua0:[gcc.build_dir.]/translation=concealed, - dua1:[gcc.source_dir.]/translation=concealed gcc_build $ set default gcc_build:[000000] @end smallexample @noindent where the directory @file{dua1:[gcc.source_dir]} contains the source code, and the directory @file{dua0:[gcc.build_dir]} is meant to contain all of the generated object files and executables. Once you have done this, you can proceed building GCC as described above. (Keep in mind that @file{gcc_build} is a rooted logical name, and thus the device names in each element of the search list must be an actual physical device name rather than another rooted logical name). @item @strong{If you are building GNU CC with a previous version of GNU CC, you also should check to see that you have the newest version of the assembler}. In particular, GNU CC version 2 treats global constant variables slightly differently from GNU CC version 1, and GAS version 1.38.1 does not have the patches required to work with GCC version 2. If you use GAS 1.38.1, then @code{extern const} variables will not have the read-only bit set, and the linker will generate warning messages about mismatched psect attributes for these variables. These warning messages are merely a nuisance, and can safely be ignored. @item If you want to build GNU CC with the VAX C compiler, you will need to make minor changes in @file{make-cccp.com} and @file{make-cc1.com} to choose alternate definitions of @code{CC}, @code{CFLAGS}, and @code{LIBS}. See comments in those files. However, you must also have a working version of the GNU assembler (GNU as, aka GAS) as it is used as the back end for GNU CC to produce binary object modules and is not included in the GNU CC sources. GAS is also needed to compile @file{libgcc2} in order to build @file{gcclib} (see above); @file{make-l2.com} expects to be able to find it operational in @file{gnu_cc:[000000]gnu-as.exe}. To use GNU CC on VMS, you need the VMS driver programs @file{gcc.exe}, @file{gcc.com}, and @file{gcc.cld}. They are distributed with the VMS binaries (@file{gcc-vms}) rather than the GNU CC sources. GAS is also included in @file{gcc-vms}, as is Bison. Once you have successfully built GNU CC with VAX C, you should use the resulting compiler to rebuild itself. Before doing this, be sure to restore the @code{CC}, @code{CFLAGS}, and @code{LIBS} definitions in @file{make-cccp.com} and @file{make-cc1.com}. The second generation compiler will be able to take advantage of many optimizations that must be suppressed when building with other compilers. @end enumerate Under previous versions of GNU CC, the generated code would occasionally give strange results when linked with the sharable @file{VAXCRTL} library. Now this should work. Even with this version, however, GNU CC itself should not be linked with the sharable @file{VAXCRTL}. The version of @code{qsort} in @file{VAXCRTL} has a bug (known to be present in VMS versions V4.6 through V5.5) which causes the compiler to fail. The executables are generated by @file{make-cc1.com} and @file{make-cccp.com} use the object library version of @file{VAXCRTL} in order to make use of the @code{qsort} routine in @file{gcclib.olb}. If you wish to link the compiler executables with the shareable image version of @file{VAXCRTL}, you should edit the file @file{tm.h} (created by @file{vmsconfig.com}) to define the macro @code{QSORT_WORKAROUND}. @code{QSORT_WORKAROUND} is always defined when GNU CC is compiled with VAX C, to avoid a problem in case @file{gcclib.olb} is not yet available.