decl.c   [plain text]


/* Process declarations and variables for C compiler.
   Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   2001, 2002, 2003  Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com)

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


/* Process declarations and symbol lookup for C front end.
   Also constructs types; the standard scalar types at initialization,
   and structure, union, array and enum types when they are declared.  */

/* ??? not all decl nodes are given the most useful possible
   line numbers.  For example, the CONST_DECLs for enum values.  */

#include "config.h"
#include "system.h"
#include "tree.h"
#include "rtl.h"
#include "expr.h"
#include "flags.h"
#include "cp-tree.h"
#include "tree-inline.h"
#include "decl.h"
#include "lex.h"
#include "output.h"
#include "except.h"
#include "toplev.h"
#include "hashtab.h"
#include "tm_p.h"
#include "target.h"
#include "c-common.h"
#include "c-pragma.h"
#include "diagnostic.h"
#include "debug.h"
#include "timevar.h"

/* APPLE LOCAL indexing dpatel */
#include "genindex.h" 

/* APPLE LOCAL Objective-C++ */
/* 'grokparms' is now extern, prototype moved to cp-tree.h.  */
static const char *redeclaration_error_message	PARAMS ((tree, tree));

static void push_binding_level PARAMS ((struct cp_binding_level *, int,
				      int));
static void pop_binding_level PARAMS ((void));
static void suspend_binding_level PARAMS ((void));
static void resume_binding_level PARAMS ((struct cp_binding_level *));
static struct cp_binding_level *make_binding_level PARAMS ((void));
static void declare_namespace_level PARAMS ((void));
static int decl_jump_unsafe PARAMS ((tree));
static void storedecls PARAMS ((tree));
static void require_complete_types_for_parms PARAMS ((tree));
static int ambi_op_p PARAMS ((enum tree_code));
static int unary_op_p PARAMS ((enum tree_code));
static cxx_saved_binding *store_bindings (tree, cxx_saved_binding *);
static tree lookup_tag_reverse PARAMS ((tree, tree));
static tree lookup_name_real PARAMS ((tree, int, int, int));
static void push_local_name PARAMS ((tree));
static void warn_extern_redeclared_static PARAMS ((tree, tree));
static tree grok_reference_init PARAMS ((tree, tree, tree));
static tree grokfndecl PARAMS ((tree, tree, tree, tree, int,
			      enum overload_flags, tree,
			      tree, int, int, int, int, int, int, tree));
static tree grokvardecl PARAMS ((tree, tree, RID_BIT_TYPE *, int, int, tree));
static tree follow_tag_typedef PARAMS ((tree));
static tree lookup_tag PARAMS ((enum tree_code, tree,
			      struct cp_binding_level *, int));
static void set_identifier_type_value_with_scope
	PARAMS ((tree, tree, struct cp_binding_level *));
static void record_unknown_type PARAMS ((tree, const char *));
static tree builtin_function_1 PARAMS ((const char *, tree, tree, int,
                                      enum built_in_class, const char *,
				      tree));
static tree build_library_fn_1 PARAMS ((tree, enum tree_code, tree));
static int member_function_or_else PARAMS ((tree, tree, enum overload_flags));
static void bad_specifiers PARAMS ((tree, const char *, int, int, int, int,
				  int));
static tree maybe_process_template_type_declaration PARAMS ((tree, int, struct cp_binding_level*));
static void check_for_uninitialized_const_var PARAMS ((tree));
static hashval_t typename_hash PARAMS ((const void *));
static int typename_compare PARAMS ((const void *, const void *));
static void push_binding PARAMS ((tree, tree, struct cp_binding_level*));
static int add_binding PARAMS ((tree, tree));
static void pop_binding PARAMS ((tree, tree));
static tree local_variable_p_walkfn PARAMS ((tree *, int *, void *));
static cxx_binding *find_binding (tree, tree, cxx_binding *);
static tree select_decl (cxx_binding *, int);
static int lookup_flags PARAMS ((int, int));
static tree qualify_lookup PARAMS ((tree, int));
static tree record_builtin_java_type PARAMS ((const char *, int));
static const char *tag_name PARAMS ((enum tag_types code));
static void find_class_binding_level PARAMS ((void));
static struct cp_binding_level *innermost_nonclass_level PARAMS ((void));
static void warn_about_implicit_typename_lookup PARAMS ((tree, tree));
static int walk_namespaces_r PARAMS ((tree, walk_namespaces_fn, void *));
static int walk_globals_r PARAMS ((tree, void *));
static int walk_vtables_r PARAMS ((tree, void*));
static void add_decl_to_level PARAMS ((tree, struct cp_binding_level *));
static tree make_label_decl PARAMS ((tree, int));
static void use_label PARAMS ((tree));
static void check_previous_goto_1 PARAMS ((tree, struct cp_binding_level *, tree,
					   const char *, int));
static void check_previous_goto PARAMS ((struct named_label_use_list *));
static void check_switch_goto PARAMS ((struct cp_binding_level *));
static void check_previous_gotos PARAMS ((tree));
static void pop_label PARAMS ((tree, tree));
static void pop_labels PARAMS ((tree));
static void maybe_deduce_size_from_array_init PARAMS ((tree, tree));
static void layout_var_decl PARAMS ((tree));
static void maybe_commonize_var PARAMS ((tree));
static tree check_initializer (tree, tree, int);
static void make_rtl_for_nonlocal_decl PARAMS ((tree, tree, const char *));
static void save_function_data PARAMS ((tree));
static void check_function_type PARAMS ((tree, tree));
static void begin_constructor_body PARAMS ((void));
static void finish_constructor_body PARAMS ((void));
static void begin_destructor_body PARAMS ((void));
static void finish_destructor_body PARAMS ((void));
static tree create_array_type_for_decl PARAMS ((tree, tree, tree));
static tree get_atexit_node PARAMS ((void));
static tree get_dso_handle_node PARAMS ((void));
static tree start_cleanup_fn PARAMS ((void));
static void end_cleanup_fn PARAMS ((void));
static tree cp_make_fname_decl PARAMS ((tree, int));
static void initialize_predefined_identifiers PARAMS ((void));
static tree check_special_function_return_type
  PARAMS ((special_function_kind, tree, tree));
static tree push_cp_library_fn PARAMS ((enum tree_code, tree));
static tree build_cp_library_fn PARAMS ((tree, enum tree_code, tree));
/* APPLE LOCAL Objective-C++ */
/* 'store_parm_decls' is now extern, prototype moved to cp-tree.h.  */
static int cp_missing_noreturn_ok_p PARAMS ((tree));
static void initialize_local_var (tree, tree);
static void expand_static_init (tree, tree);
static tree next_initializable_field (tree);
static tree reshape_init (tree, tree *);

#if defined (DEBUG_BINDING_LEVELS)
static void indent PARAMS ((void));
#endif

/* Erroneous argument lists can use this *IFF* they do not modify it.  */
tree error_mark_list;

/* The following symbols are subsumed in the cp_global_trees array, and
   listed here individually for documentation purposes.

   C++ extensions
	tree wchar_decl_node;

	tree vtable_entry_type;
	tree delta_type_node;
	tree __t_desc_type_node;
        tree ti_desc_type_node;
	tree bltn_desc_type_node, ptr_desc_type_node;
	tree ary_desc_type_node, func_desc_type_node, enum_desc_type_node;
	tree class_desc_type_node, si_class_desc_type_node, vmi_class_desc_type_node;
	tree ptm_desc_type_node;
	tree base_desc_type_node;

	tree class_type_node, record_type_node, union_type_node, enum_type_node;
	tree unknown_type_node;

   Array type `vtable_entry_type[]'

	tree vtbl_type_node;
	tree vtbl_ptr_type_node;

   Namespaces,

	tree std_node;
	tree abi_node;

   A FUNCTION_DECL which can call `abort'.  Not necessarily the
   one that the user will declare, but sufficient to be called
   by routines that want to abort the program.

	tree abort_fndecl;

   The FUNCTION_DECL for the default `::operator delete'.

	tree global_delete_fndecl;

   Used by RTTI
	tree type_info_type_node, tinfo_decl_id, tinfo_decl_type;
	tree tinfo_var_id;

*/

tree cp_global_trees[CPTI_MAX];

/* Indicates that there is a type value in some namespace, although
   that is not necessarily in scope at the moment.  */

static GTY(()) tree global_type_node;

/* Expect only namespace names now.  */
static int only_namespace_names;

/* Used only for jumps to as-yet undefined labels, since jumps to
   defined labels can have their validity checked immediately.  */

struct named_label_use_list GTY(())
{
  struct cp_binding_level *binding_level;
  tree names_in_scope;
  tree label_decl;
  const char *filename_o_goto;
  int lineno_o_goto;
  struct named_label_use_list *next;
};

#define named_label_uses cp_function_chain->x_named_label_uses

#define local_names cp_function_chain->x_local_names

/* A list of objects which have constructors or destructors
   which reside in the global scope.  The decl is stored in
   the TREE_VALUE slot and the initializer is stored
   in the TREE_PURPOSE slot.  */
tree static_aggregates;

/* -- end of C++ */

/* A node for the integer constants 2, and 3.  */

tree integer_two_node, integer_three_node;

/* Similar, for last_function_parm_tags.  */
tree last_function_parms;

/* A list of all LABEL_DECLs in the function that have names.  Here so
   we can clear out their names' definitions at the end of the
   function, and so we can check the validity of jumps to these labels.  */

struct named_label_list GTY(())
{
  struct cp_binding_level *binding_level;
  tree names_in_scope;
  tree old_value;
  tree label_decl;
  tree bad_decls;
  struct named_label_list *next;
  unsigned int in_try_scope : 1;
  unsigned int in_catch_scope : 1;
};

#define named_labels cp_function_chain->x_named_labels

/* The name of the anonymous namespace, throughout this translation
   unit.  */
tree anonymous_namespace_name;

/* The number of function bodies which we are currently processing.
   (Zero if we are at namespace scope, one inside the body of a
   function, two inside the body of a function in a local class, etc.)  */
int function_depth;

/* States indicating how grokdeclarator() should handle declspecs marked
   with __attribute__((deprecated)).  An object declared as
   __attribute__((deprecated)) suppresses warnings of uses of other
   deprecated items.  */
/* APPLE LOCAL begin unavailable */
/* An object declared as __attribute__((unavailable)) suppresses
   any reports of being declared with unavailable or deprecated
   items.  */
/* APPLE LOCAL end unavailable */
   
enum deprecated_states {
  DEPRECATED_NORMAL,
  DEPRECATED_SUPPRESS
  /* APPLE LOCAL unavailable */
  , DEPRECATED_UNAVAILABLE_SUPPRESS
};

static enum deprecated_states deprecated_state = DEPRECATED_NORMAL;

/* Set by add_implicitly_declared_members() to keep those members from
   being flagged as deprecated or reported as using deprecated
   types.  */
int adding_implicit_members = 0;

/* True if a declaration with an `extern' linkage specifier is being
   processed.  */
bool have_extern_spec;


/* For each binding contour we allocate a binding_level structure
   which records the names defined in that contour.
   Contours include:
    0) the global one
    1) one for each function definition,
       where internal declarations of the parameters appear.
    2) one for each compound statement,
       to record its declarations.

   The current meaning of a name can be found by searching the levels
   from the current one out to the global one.

   Off to the side, may be the class_binding_level.  This exists only
   to catch class-local declarations.  It is otherwise nonexistent.

   Also there may be binding levels that catch cleanups that must be
   run when exceptions occur.  Thus, to see whether a name is bound in
   the current scope, it is not enough to look in the
   CURRENT_BINDING_LEVEL.  You should use lookup_name_current_level
   instead.  */

/* Note that the information in the `names' component of the global contour
   is duplicated in the IDENTIFIER_GLOBAL_VALUEs of all identifiers.  */

struct cp_binding_level GTY(())
  {
    /* A chain of _DECL nodes for all variables, constants, functions,
       and typedef types.  These are in the reverse of the order
       supplied.  There may be OVERLOADs on this list, too, but they
       are wrapped in TREE_LISTs; the TREE_VALUE is the OVERLOAD.  */
    tree names;

    /* Count of elements in names chain.  */
    size_t names_size;

    /* A chain of NAMESPACE_DECL nodes.  */
    tree namespaces;

    /* APPLE LOCAL begin improved wrapup_global_declarations fsf candidate */
    /* An array of static functions and variables (for namespaces only) */
    varray_type static_decls;
    /* APPLE LOCAL end improved wrapup_global_declarations fsf candidate */

    /* A chain of VTABLE_DECL nodes.  */
    tree vtables; 

    /* A list of structure, union and enum definitions, for looking up
       tag names.
       It is a chain of TREE_LIST nodes, each of whose TREE_PURPOSE is a name,
       or NULL_TREE; and whose TREE_VALUE is a RECORD_TYPE, UNION_TYPE,
       or ENUMERAL_TYPE node.

       C++: the TREE_VALUE nodes can be simple types for
       component_bindings.  */
    tree tags;

    /* A list of USING_DECL nodes.  */
    tree usings;

    /* A list of used namespaces. PURPOSE is the namespace,
       VALUE the common ancestor with this binding_level's namespace.  */
    tree using_directives;

    /* If this binding level is the binding level for a class, then
       class_shadowed is a TREE_LIST.  The TREE_PURPOSE of each node
       is the name of an entity bound in the class.  The TREE_TYPE is
       the DECL bound by this name in the class.  */
    tree class_shadowed;

    /* Similar to class_shadowed, but for IDENTIFIER_TYPE_VALUE, and
       is used for all binding levels. In addition the TREE_VALUE is the
       IDENTIFIER_TYPE_VALUE before we entered the class.  */
    tree type_shadowed;

    /* A TREE_LIST.  Each TREE_VALUE is the LABEL_DECL for a local
       label in this scope.  The TREE_PURPOSE is the previous value of
       the IDENTIFIER_LABEL VALUE.  */
    tree shadowed_labels;

    /* For each level (except not the global one),
       a chain of BLOCK nodes for all the levels
       that were entered and exited one level down.  */
    tree blocks;

    /* The _TYPE node for this level, if parm_flag == 2.  */
    tree this_class;

    /* The binding level which this one is contained in (inherits from).  */
    struct cp_binding_level *level_chain;

    /* List of VAR_DECLS saved from a previous for statement.
       These would be dead in ISO-conforming code, but might
       be referenced in ARM-era code.  These are stored in a
       TREE_LIST; the TREE_VALUE is the actual declaration.  */
    tree dead_vars_from_for;

    /* 1 for the level that holds the parameters of a function.
       2 for the level that holds a class declaration.  */
    unsigned parm_flag : 2;

    /* 1 means make a BLOCK for this level regardless of all else.
       2 for temporary binding contours created by the compiler.  */
    unsigned keep : 2;

    /* Nonzero if this level "doesn't exist" for tags.  */
    unsigned tag_transparent : 1;

    /* Nonzero if this level can safely have additional
       cleanup-needing variables added to it.  */
    unsigned more_cleanups_ok : 1;
    unsigned have_cleanups : 1;

    /* Nonzero if this scope is for storing the decls for template
       parameters and generic decls; these decls will be discarded and
       replaced with a TEMPLATE_DECL.  */
    unsigned template_parms_p : 1;

    /* Nonzero if this scope corresponds to the `<>' in a
       `template <>' clause.  Whenever this flag is set,
       TEMPLATE_PARMS_P will be set as well.  */
    unsigned template_spec_p : 1;

    /* This is set for a namespace binding level.  */
    unsigned namespace_p : 1;

    /* True if this level is that of a for-statement where we need to
       worry about ambiguous (ARM or ISO) scope rules.  */
    unsigned is_for_scope : 1;

    /* True if this level corresponds to a TRY block.  Currently this
       information is only available while building the tree structure.  */
    unsigned is_try_scope : 1;

    /* True if this level corresponds to a CATCH block.  Currently this
       information is only available while building the tree structure.  */
    unsigned is_catch_scope : 1;

    /* Three bits left for this word.  */

    /* Binding depth at which this level began.  */
    unsigned binding_depth;
  };

#define NULL_BINDING_LEVEL ((struct cp_binding_level *) NULL)

/* The binding level currently in effect.  */

#define current_binding_level			\
  (cfun && cp_function_chain->bindings		\
   ? cp_function_chain->bindings		\
   : scope_chain->bindings)

/* The binding level of the current class, if any.  */

#define class_binding_level scope_chain->class_bindings

/* A chain of binding_level structures awaiting reuse.  */

static GTY((deletable (""))) struct cp_binding_level *free_binding_level;

/* The outermost binding level, for names of file scope.
   This is created when the compiler is started and exists
   through the entire run.  */

static GTY(()) struct cp_binding_level *global_binding_level;

/* Nonzero means unconditionally make a BLOCK for the next level pushed.  */

static int keep_next_level_flag;

/* A TREE_LIST of VAR_DECLs.  The TREE_PURPOSE is a RECORD_TYPE or
   UNION_TYPE; the TREE_VALUE is a VAR_DECL with that type.  At the
   time the VAR_DECL was declared, the type was incomplete.  */

static GTY(()) tree incomplete_vars;

#if defined(DEBUG_BINDING_LEVELS)
static int binding_depth = 0;
static int is_class_level = 0;

static void
indent ()
{
  register unsigned i;

  for (i = 0; i < binding_depth*2; i++)
    putc (' ', stderr);
}
#endif /* defined(DEBUG_BINDING_LEVELS) */

static tree pushdecl_with_scope	PARAMS ((tree, struct cp_binding_level *));

static void
push_binding_level (newlevel, tag_transparent, keep)
     struct cp_binding_level *newlevel;
     int tag_transparent, keep;
{
  /* Add this level to the front of the chain (stack) of levels that
     are active.  */
  memset ((char*) newlevel, 0, sizeof (struct cp_binding_level));
  newlevel->level_chain = current_binding_level;
  current_binding_level = newlevel;
  newlevel->tag_transparent = tag_transparent;
  newlevel->more_cleanups_ok = 1;

  newlevel->keep = keep;
#if defined(DEBUG_BINDING_LEVELS)
  newlevel->binding_depth = binding_depth;
  indent ();
  fprintf (stderr, "push %s level 0x%08x line %d\n",
	   (is_class_level) ? "class" : "block", newlevel, lineno);
  is_class_level = 0;
  binding_depth++;
#endif /* defined(DEBUG_BINDING_LEVELS) */
}

/* Find the innermost enclosing class scope, and reset
   CLASS_BINDING_LEVEL appropriately.  */

static void
find_class_binding_level ()
{
  struct cp_binding_level *level = current_binding_level;

  while (level && level->parm_flag != 2)
    level = level->level_chain;
  if (level && level->parm_flag == 2)
    class_binding_level = level;
  else
    class_binding_level = 0;
}

static void
pop_binding_level ()
{
  if (global_binding_level)
    {
      /* Cannot pop a level, if there are none left to pop.  */
      if (current_binding_level == global_binding_level)
	abort ();
    }
  /* Pop the current level, and free the structure for reuse.  */
#if defined(DEBUG_BINDING_LEVELS)
  binding_depth--;
  indent ();
  fprintf (stderr, "pop  %s level 0x%08x line %d\n",
	  (is_class_level) ? "class" : "block",
	  current_binding_level, lineno);
  if (is_class_level != (current_binding_level == class_binding_level))
    {
      indent ();
      fprintf (stderr, "XXX is_class_level != (current_binding_level == class_binding_level)\n");
    }
  is_class_level = 0;
#endif /* defined(DEBUG_BINDING_LEVELS) */
  {
    register struct cp_binding_level *level = current_binding_level;
    current_binding_level = current_binding_level->level_chain;
    level->level_chain = free_binding_level;
#if 0 /* defined(DEBUG_BINDING_LEVELS) */
    if (level->binding_depth != binding_depth)
      abort ();
#endif /* defined(DEBUG_BINDING_LEVELS) */
    free_binding_level = level;
    find_class_binding_level ();
  }
}

static void
suspend_binding_level ()
{
  if (class_binding_level)
    current_binding_level = class_binding_level;

  if (global_binding_level)
    {
      /* Cannot suspend a level, if there are none left to suspend.  */
      if (current_binding_level == global_binding_level)
	abort ();
    }
  /* Suspend the current level.  */
#if defined(DEBUG_BINDING_LEVELS)
  binding_depth--;
  indent ();
  fprintf (stderr, "suspend  %s level 0x%08x line %d\n",
	  (is_class_level) ? "class" : "block",
	  current_binding_level, lineno);
  if (is_class_level != (current_binding_level == class_binding_level))
    {
      indent ();
      fprintf (stderr, "XXX is_class_level != (current_binding_level == class_binding_level)\n");
    }
  is_class_level = 0;
#endif /* defined(DEBUG_BINDING_LEVELS) */
  current_binding_level = current_binding_level->level_chain;
  find_class_binding_level ();
}

static void
resume_binding_level (b)
     struct cp_binding_level *b;
{
  /* Resuming binding levels is meant only for namespaces,
     and those cannot nest into classes.  */
  my_friendly_assert(!class_binding_level, 386);
  /* Also, resuming a non-directly nested namespace is a no-no.  */
  my_friendly_assert(b->level_chain == current_binding_level, 386);
  current_binding_level = b;
#if defined(DEBUG_BINDING_LEVELS)
  b->binding_depth = binding_depth;
  indent ();
  fprintf (stderr, "resume %s level 0x%08x line %d\n",
	   (is_class_level) ? "class" : "block", b, lineno);
  is_class_level = 0;
  binding_depth++;
#endif /* defined(DEBUG_BINDING_LEVELS) */
}

/* Create a new `struct cp_binding_level'.  */

static
struct cp_binding_level *
make_binding_level ()
{
  /* NOSTRICT */
  return (struct cp_binding_level *) ggc_alloc (sizeof (struct cp_binding_level));
}

/* APPLE LOCAL begin msg send super */
struct cp_binding_level *
get_current_binding_level ()
{
  return current_binding_level;
}
/* APPLE LOCAL end msg send super */
  
/* APPLE LOCAL begin Panther ObjC enhancements */
void
objc_mark_locals_volatile (enclosing_blk)
     void *enclosing_blk;
{
  struct cp_binding_level *scope;
  
  for (scope = current_binding_level; 
       scope && scope != enclosing_blk && !scope->parm_flag;
       scope = scope->level_chain)
    {
      tree decl;
      
      for (decl = scope->names; decl; decl = TREE_CHAIN (decl))
	{
	  DECL_REGISTER (decl) = 0;
	  TREE_THIS_VOLATILE (decl) = 1;
	}
    }	
}     
/* APPLE LOCAL end Panther ObjC enhancements */
  
/* Nonzero if we are currently in the global binding level.  */

int
global_bindings_p ()
{
  return current_binding_level == global_binding_level;
}

/* Return the innermost binding level that is not for a class scope.  */

static struct cp_binding_level *
innermost_nonclass_level ()
{
  struct cp_binding_level *b;

  b = current_binding_level;
  while (b->parm_flag == 2)
    b = b->level_chain;

  return b;
}

/* Nonzero if we are currently in a toplevel binding level.  This
   means either the global binding level or a namespace in a toplevel
   binding level.  Since there are no non-toplevel namespace levels,
   this really means any namespace or template parameter level.  We
   also include a class whose context is toplevel.  */

int
toplevel_bindings_p ()
{
  struct cp_binding_level *b = innermost_nonclass_level ();

  return b->namespace_p || b->template_parms_p;
}

/* Nonzero if this is a namespace scope, or if we are defining a class
   which is itself at namespace scope, or whose enclosing class is
   such a class, etc.  */

int
namespace_bindings_p ()
{
  struct cp_binding_level *b = innermost_nonclass_level ();

  return b->namespace_p;
}

/* If KEEP is nonzero, make a BLOCK node for the next binding level,
   unconditionally.  Otherwise, use the normal logic to decide whether
   or not to create a BLOCK.  */

void
keep_next_level (keep)
     int keep;
{
  keep_next_level_flag = keep;
}

/* Nonzero if the current level needs to have a BLOCK made.  */

int
kept_level_p ()
{
  return (current_binding_level->blocks != NULL_TREE
	  || current_binding_level->keep
	  || current_binding_level->names != NULL_TREE
	  || (current_binding_level->tags != NULL_TREE
	      && !current_binding_level->tag_transparent));
}

static void
declare_namespace_level ()
{
  current_binding_level->namespace_p = 1;
}

/* Returns nonzero if this scope was created to store template
   parameters.  */

int
template_parm_scope_p ()
{
  return current_binding_level->template_parms_p;
}

/* Returns the kind of template specialization we are currently
   processing, given that it's declaration contained N_CLASS_SCOPES
   explicit scope qualifications.  */

tmpl_spec_kind
current_tmpl_spec_kind (n_class_scopes)
     int n_class_scopes;
{
  int n_template_parm_scopes = 0;
  int seen_specialization_p = 0;
  int innermost_specialization_p = 0;
  struct cp_binding_level *b;

  /* Scan through the template parameter scopes.  */
  for (b = current_binding_level; b->template_parms_p; b = b->level_chain)
    {
      /* If we see a specialization scope inside a parameter scope,
	 then something is wrong.  That corresponds to a declaration
	 like:

	    template <class T> template <> ...

	 which is always invalid since [temp.expl.spec] forbids the
	 specialization of a class member template if the enclosing
	 class templates are not explicitly specialized as well.  */
      if (b->template_spec_p)
	{
	  if (n_template_parm_scopes == 0)
	    innermost_specialization_p = 1;
	  else
	    seen_specialization_p = 1;
	}
      else if (seen_specialization_p == 1)
	return tsk_invalid_member_spec;

      ++n_template_parm_scopes;
    }

  /* Handle explicit instantiations.  */
  if (processing_explicit_instantiation)
    {
      if (n_template_parm_scopes != 0)
	/* We've seen a template parameter list during an explicit
	   instantiation.  For example:

	     template <class T> template void f(int);

	   This is erroneous.  */
	return tsk_invalid_expl_inst;
      else
	return tsk_expl_inst;
    }

  if (n_template_parm_scopes < n_class_scopes)
    /* We've not seen enough template headers to match all the
       specialized classes present.  For example:

         template <class T> void R<T>::S<T>::f(int);

       This is invalid; there needs to be one set of template
       parameters for each class.  */
    return tsk_insufficient_parms;
  else if (n_template_parm_scopes == n_class_scopes)
    /* We're processing a non-template declaration (even though it may
       be a member of a template class.)  For example:

         template <class T> void S<T>::f(int);

       The `class T' maches the `S<T>', leaving no template headers
       corresponding to the `f'.  */
    return tsk_none;
  else if (n_template_parm_scopes > n_class_scopes + 1)
    /* We've got too many template headers.  For example:

         template <> template <class T> void f (T);

       There need to be more enclosing classes.  */
    return tsk_excessive_parms;
  else
    /* This must be a template.  It's of the form:

         template <class T> template <class U> void S<T>::f(U);

       This is a specialization if the innermost level was a
       specialization; otherwise it's just a definition of the
       template.  */
    return innermost_specialization_p ? tsk_expl_spec : tsk_template;
}

void
set_class_shadows (shadows)
     tree shadows;
{
  class_binding_level->class_shadowed = shadows;
}

/* Enter a new binding level.
   If TAG_TRANSPARENT is nonzero, do so only for the name space of variables,
   not for that of tags.  */

void
pushlevel (tag_transparent)
     int tag_transparent;
{
  struct cp_binding_level *newlevel;

  if (cfun && !doing_semantic_analysis_p ())
    return;

  /* Reuse or create a struct for this binding level.  */
#if defined(DEBUG_BINDING_LEVELS)
  if (0)
#else /* !defined(DEBUG_BINDING_LEVELS) */
  if (free_binding_level)
#endif /* !defined(DEBUG_BINDING_LEVELS) */
    {
      newlevel = free_binding_level;
      free_binding_level = free_binding_level->level_chain;
    }
  else
    newlevel = make_binding_level ();

  push_binding_level (newlevel, tag_transparent, keep_next_level_flag);
  keep_next_level_flag = 0;
}

/* We're defining an object of type TYPE.  If it needs a cleanup, but
   we're not allowed to add any more objects with cleanups to the current
   scope, create a new binding level.  */

void
maybe_push_cleanup_level (type)
     tree type;
{
  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
      && current_binding_level->more_cleanups_ok == 0)
    {
      keep_next_level (2);
      pushlevel (1);
      clear_last_expr ();
      add_scope_stmt (/*begin_p=*/1, /*partial_p=*/1);
    }
}
  
/* Enter a new scope.  The KIND indicates what kind of scope is being
   created.  */

void
begin_scope (sk)
     scope_kind sk;
{
  pushlevel (0);

  switch (sk)
    {
    case sk_template_spec:
      current_binding_level->template_spec_p = 1;
      /* Fall through.  */

    case sk_template_parms:
      current_binding_level->template_parms_p = 1;
      break;

    default:
      abort ();
    }
}

/* Exit the current scope.  */

void
finish_scope ()
{
  poplevel (0, 0, 0);
}

void
note_level_for_for ()
{
  current_binding_level->is_for_scope = 1;
}

/* Record that the current binding level represents a try block.  */

void
note_level_for_try ()
{
  current_binding_level->is_try_scope = 1;
}

/* Record that the current binding level represents a catch block.  */

void
note_level_for_catch ()
{
  current_binding_level->is_catch_scope = 1;
}

/* For a binding between a name and an entity at a block scope,
   this is the `struct cp_binding_level' for the block.  */
#define BINDING_LEVEL(NODE) ((NODE)->scope.level)

/* A free list of "cxx_binding"s, connected by their PREVIOUS.  */

static GTY((deletable (""))) cxx_binding *free_bindings;

/* Make DECL the innermost binding for ID.  The LEVEL is the binding
   level at which this declaration is being bound.  */

static void
push_binding (id, decl, level)
     tree id;
     tree decl;
     struct cp_binding_level* level;
{
  cxx_binding *binding;

  if (free_bindings)
    {
      binding = free_bindings;
      free_bindings = binding->previous;
    }
  else
    binding = cxx_binding_make ();

  /* Now, fill in the binding information.  */
  BINDING_VALUE (binding) = decl;
  BINDING_TYPE (binding) = NULL_TREE;
  BINDING_LEVEL (binding) = level;
  INHERITED_VALUE_BINDING_P (binding) = 0;
  LOCAL_BINDING_P (binding) = (level != class_binding_level);
  BINDING_HAS_LEVEL_P (binding) = 1;

  /* And put it on the front of the list of bindings for ID.  */
  binding->previous = IDENTIFIER_BINDING (id);
  IDENTIFIER_BINDING (id) = binding;
}

/* ID is already bound in the current scope.  But, DECL is an
   additional binding for ID in the same scope.  This is the `struct
   stat' hack whereby a non-typedef class-name or enum-name can be
   bound at the same level as some other kind of entity.  It's the
   responsibility of the caller to check that inserting this name is
   valid here.  Returns nonzero if the new binding was successful.  */
static int
add_binding (id, decl)
     tree id;
     tree decl;
{
  cxx_binding *binding = IDENTIFIER_BINDING (id);
  int ok = 1;

  timevar_push (TV_NAME_LOOKUP);
  if (TREE_CODE (decl) == TYPE_DECL && DECL_ARTIFICIAL (decl))
    /* The new name is the type name.  */
    BINDING_TYPE (binding) = decl;
  else if (!BINDING_VALUE (binding))
    /* This situation arises when push_class_level_binding moves an
       inherited type-binding out of the way to make room for a new
       value binding.  */
    BINDING_VALUE (binding) = decl;
  else if (TREE_CODE (BINDING_VALUE (binding)) == TYPE_DECL
	   && DECL_ARTIFICIAL (BINDING_VALUE (binding)))
    {
      /* The old binding was a type name.  It was placed in
	 BINDING_VALUE because it was thought, at the point it was
	 declared, to be the only entity with such a name.  Move the
	 type name into the type slot; it is now hidden by the new
	 binding.  */
      BINDING_TYPE (binding) = BINDING_VALUE (binding);
      BINDING_VALUE (binding) = decl;
      INHERITED_VALUE_BINDING_P (binding) = 0;
    }
  else if (TREE_CODE (BINDING_VALUE (binding)) == TYPE_DECL
	   && TREE_CODE (decl) == TYPE_DECL
	   && DECL_NAME (decl) == DECL_NAME (BINDING_VALUE (binding))
	   && (same_type_p (TREE_TYPE (decl),
			    TREE_TYPE (BINDING_VALUE (binding)))
	       /* If either type involves template parameters, we must
		  wait until instantiation.  */
	       || uses_template_parms (TREE_TYPE (decl))
	       || uses_template_parms (TREE_TYPE (BINDING_VALUE (binding)))))
    /* We have two typedef-names, both naming the same type to have
       the same name.  This is OK because of:

         [dcl.typedef]

	 In a given scope, a typedef specifier can be used to redefine
	 the name of any type declared in that scope to refer to the
	 type to which it already refers.  */
    ok = 0;
  /* There can be two block-scope declarations of the same variable,
     so long as they are `extern' declarations.  */
  else if (TREE_CODE (decl) == VAR_DECL
	   && TREE_CODE (BINDING_VALUE (binding)) == VAR_DECL
	   && DECL_EXTERNAL (decl)
	   && DECL_EXTERNAL (BINDING_VALUE (binding)))
    {
      duplicate_decls (decl, BINDING_VALUE (binding));
      ok = 0;
    }
  else
    {
      error ("declaration of `%#D'", decl);
      cp_error_at ("conflicts with previous declaration `%#D'",
		   BINDING_VALUE (binding));
      ok = 0;
    }

  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, ok);
}

/* Add DECL to the list of things declared in B.  */

static void
add_decl_to_level (decl, b)
     tree decl;
     struct cp_binding_level *b;
{
  if (TREE_CODE (decl) == NAMESPACE_DECL 
      && !DECL_NAMESPACE_ALIAS (decl))
    {
      TREE_CHAIN (decl) = b->namespaces;
      b->namespaces = decl;
    }
  else if (TREE_CODE (decl) == VAR_DECL && DECL_VIRTUAL_P (decl))
    {
      TREE_CHAIN (decl) = b->vtables;
      b->vtables = decl;
    }
  else       
    {
      /* We build up the list in reverse order, and reverse it later if
         necessary.  */
      TREE_CHAIN (decl) = b->names;
      b->names = decl;
      b->names_size++;

      /* APPLE LOCAL begin improved wrapup_global_declarations fsf candidate */
      /* If appropriate, add decl to separate list of statics */
      if (b->namespace_p)
	if ((TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
	    || (TREE_CODE (decl) == FUNCTION_DECL
		&& (!TREE_PUBLIC (decl) || DECL_DECLARED_INLINE_P (decl))))
	  VARRAY_PUSH_TREE (b->static_decls, decl);
      /* APPLE LOCAL end improved wrapup_global_declarations fsf candidate */
    }
}

/* Bind DECL to ID in the current_binding_level, assumed to be a local
   binding level.  If PUSH_USING is set in FLAGS, we know that DECL
   doesn't really belong to this binding level, that it got here
   through a using-declaration.  */

void
push_local_binding (id, decl, flags)
     tree id;
     tree decl;
     int flags;
{
  struct cp_binding_level *b;

  /* Skip over any local classes.  This makes sense if we call
     push_local_binding with a friend decl of a local class.  */
  b = current_binding_level;
  while (b->parm_flag == 2)
    b = b->level_chain;

  if (lookup_name_current_level (id))
    {
      /* Supplement the existing binding.  */
      if (!add_binding (id, decl))
	/* It didn't work.  Something else must be bound at this
	   level.  Do not add DECL to the list of things to pop
	   later.  */
	return;
    }
  else
    /* Create a new binding.  */
    push_binding (id, decl, b);

  if (TREE_CODE (decl) == OVERLOAD || (flags & PUSH_USING))
    /* We must put the OVERLOAD into a TREE_LIST since the
       TREE_CHAIN of an OVERLOAD is already used.  Similarly for
       decls that got here through a using-declaration.  */
    decl = build_tree_list (NULL_TREE, decl);

  /* And put DECL on the list of things declared by the current
     binding level.  */
  add_decl_to_level (decl, b);
}

/* Bind DECL to ID in the class_binding_level.  Returns nonzero if the
   binding was successful.  */

int
push_class_binding (id, decl)
     tree id;
     tree decl;
{
  int result = 1;
  cxx_binding *binding = IDENTIFIER_BINDING (id);
  tree context;

  timevar_push (TV_NAME_LOOKUP);
  /* Note that we declared this value so that we can issue an error if
     this is an invalid redeclaration of a name already used for some
     other purpose.  */
  note_name_declared_in_class (id, decl);

  if (binding && BINDING_LEVEL (binding) == class_binding_level)
    /* Supplement the existing binding.  */
    result = add_binding (id, decl);
  else
    /* Create a new binding.  */
    push_binding (id, decl, class_binding_level);

  /* Update the IDENTIFIER_CLASS_VALUE for this ID to be the
     class-level declaration.  Note that we do not use DECL here
     because of the possibility of the `struct stat' hack; if DECL is
     a class-name or enum-name we might prefer a field-name, or some
     such.  */
  IDENTIFIER_CLASS_VALUE (id) = BINDING_VALUE (IDENTIFIER_BINDING (id));

  /* If this is a binding from a base class, mark it as such.  */
  binding = IDENTIFIER_BINDING (id);
  if (BINDING_VALUE (binding) == decl && TREE_CODE (decl) != TREE_LIST)
    {
      /* Any implicit typename must be from a base-class.  The
	 context for an implicit typename declaration is always
	 the derived class in which the lookup was done, so the checks
	 based on the context of DECL below will not trigger.  */
      if (IMPLICIT_TYPENAME_TYPE_DECL_P (decl))
	INHERITED_VALUE_BINDING_P (binding) = 1;
      else
	{
	  if (TREE_CODE (decl) == OVERLOAD)
	    context = CP_DECL_CONTEXT (OVL_CURRENT (decl));
	  else
	    {
	      my_friendly_assert (DECL_P (decl), 0);
	      context = context_for_name_lookup (decl);
	    }

	  if (is_properly_derived_from (current_class_type, context))
	    INHERITED_VALUE_BINDING_P (binding) = 1;
	  else
	    INHERITED_VALUE_BINDING_P (binding) = 0;
	}
    }
  else if (BINDING_VALUE (binding) == decl)
    /* We only encounter a TREE_LIST when push_class_decls detects an
       ambiguity.  Such an ambiguity can be overridden by a definition
       in this class.  */
    INHERITED_VALUE_BINDING_P (binding) = 1;

  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, result);
}

/* Remove the binding for DECL which should be the innermost binding
   for ID.  */

static void
pop_binding (id, decl)
     tree id;
     tree decl;
{
  cxx_binding *binding;

  if (id == NULL_TREE)
    /* It's easiest to write the loops that call this function without
       checking whether or not the entities involved have names.  We
       get here for such an entity.  */
    return;

  /* Get the innermost binding for ID.  */
  binding = IDENTIFIER_BINDING (id);

  /* The name should be bound.  */
  my_friendly_assert (binding != NULL, 0);

  /* The DECL will be either the ordinary binding or the type
     binding for this identifier.  Remove that binding.  */
  if (BINDING_VALUE (binding) == decl)
    BINDING_VALUE (binding) = NULL_TREE;
  else if (BINDING_TYPE (binding) == decl)
    BINDING_TYPE (binding) = NULL_TREE;
  else
    abort ();

  if (!BINDING_VALUE (binding) && !BINDING_TYPE (binding))
    {
      /* We're completely done with the innermost binding for this
	 identifier.  Unhook it from the list of bindings.  */
      IDENTIFIER_BINDING (id) = binding->previous;

      /* Add it to the free list.  */
      binding->previous = free_bindings;
      free_bindings = binding;

      /* Clear the BINDING_LEVEL so the garbage collector doesn't walk
	 it.  */
      BINDING_LEVEL (binding) = NULL;
    }
}

/* When a label goes out of scope, check to see if that label was used
   in a valid manner, and issue any appropriate warnings or errors.  */

static void
pop_label (label, old_value)
     tree label;
     tree old_value;
{
  if (!processing_template_decl && doing_semantic_analysis_p ())
    {
      if (DECL_INITIAL (label) == NULL_TREE)
	{
	  cp_error_at ("label `%D' used but not defined", label);
	  /* Avoid crashing later.  */
	  define_label (input_filename, 1, DECL_NAME (label));
	}
      else if (warn_unused_label && !TREE_USED (label))
	cp_warning_at ("label `%D' defined but not used", label);
    }

  SET_IDENTIFIER_LABEL_VALUE (DECL_NAME (label), old_value);
}

/* At the end of a function, all labels declared within the function
   go out of scope.  BLOCK is the top-level block for the
   function.  */

static void
pop_labels (block)
     tree block;
{
  struct named_label_list *link;

  /* Clear out the definitions of all label names, since their scopes
     end here.  */
  for (link = named_labels; link; link = link->next)
    {
      pop_label (link->label_decl, link->old_value);
      /* Put the labels into the "variables" of the top-level block,
	 so debugger can see them.  */
      TREE_CHAIN (link->label_decl) = BLOCK_VARS (block);
      BLOCK_VARS (block) = link->label_decl;
    }

  named_labels = NULL;
}

/* Exit a binding level.
   Pop the level off, and restore the state of the identifier-decl mappings
   that were in effect when this level was entered.

   If KEEP == 1, this level had explicit declarations, so
   and create a "block" (a BLOCK node) for the level
   to record its declarations and subblocks for symbol table output.

   If FUNCTIONBODY is nonzero, this level is the body of a function,
   so create a block as if KEEP were set and also clear out all
   label names.

   If REVERSE is nonzero, reverse the order of decls before putting
   them into the BLOCK.  */

tree
poplevel (keep, reverse, functionbody)
     int keep;
     int reverse;
     int functionbody;
{
  register tree link;
  /* The chain of decls was accumulated in reverse order.
     Put it into forward order, just for cleanliness.  */
  tree decls;
  int tmp = functionbody;
  int real_functionbody;
  tree tags;
  tree subblocks;
  tree block = NULL_TREE;
  tree decl;
  int leaving_for_scope;

  timevar_push (TV_NAME_LOOKUP);

  if (cfun && !doing_semantic_analysis_p ())
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);

  my_friendly_assert (current_binding_level->parm_flag != 2,
		      19990916);

  real_functionbody = (current_binding_level->keep == 2
		       ? ((functionbody = 0), tmp) : functionbody);
  tags = functionbody >= 0 ? current_binding_level->tags : 0;
  subblocks = functionbody >= 0 ? current_binding_level->blocks : 0;

  my_friendly_assert (!current_binding_level->class_shadowed,
		      19990414);

  /* We used to use KEEP == 2 to indicate that the new block should go
     at the beginning of the list of blocks at this binding level,
     rather than the end.  This hack is no longer used.  */
  my_friendly_assert (keep == 0 || keep == 1, 0);

  if (current_binding_level->keep == 1)
    keep = 1;

  /* Any uses of undefined labels, and any defined labels, now operate
     under constraints of next binding contour.  */
  if (cfun && !functionbody)
    {
      struct cp_binding_level *level_chain;
      level_chain = current_binding_level->level_chain;
      if (level_chain)
	{
	  struct named_label_use_list *uses;
	  struct named_label_list *labels;
	  for (labels = named_labels; labels; labels = labels->next)
	    if (labels->binding_level == current_binding_level)
	      {
		tree decl;
		if (current_binding_level->is_try_scope)
		  labels->in_try_scope = 1;
		if (current_binding_level->is_catch_scope)
		  labels->in_catch_scope = 1;
		for (decl = labels->names_in_scope; decl;
		     decl = TREE_CHAIN (decl))
		  if (decl_jump_unsafe (decl))
		    labels->bad_decls = tree_cons (NULL_TREE, decl,
						   labels->bad_decls);
		labels->binding_level = level_chain;
		labels->names_in_scope = level_chain->names;
	      }

	  for (uses = named_label_uses; uses; uses = uses->next)
	    if (uses->binding_level == current_binding_level)
	      {
		uses->binding_level = level_chain;
		uses->names_in_scope = level_chain->names;
	      }
	}
    }

  /* Get the decls in the order they were written.
     Usually current_binding_level->names is in reverse order.
     But parameter decls were previously put in forward order.  */

  if (reverse)
    current_binding_level->names
      = decls = nreverse (current_binding_level->names);
  else
    decls = current_binding_level->names;

  /* Output any nested inline functions within this block
     if they weren't already output.  */
  for (decl = decls; decl; decl = TREE_CHAIN (decl))
    if (TREE_CODE (decl) == FUNCTION_DECL
	&& ! TREE_ASM_WRITTEN (decl)
	&& DECL_INITIAL (decl) != NULL_TREE
	&& TREE_ADDRESSABLE (decl)
	&& decl_function_context (decl) == current_function_decl)
      {
	/* If this decl was copied from a file-scope decl
	   on account of a block-scope extern decl,
	   propagate TREE_ADDRESSABLE to the file-scope decl.  */
	if (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE)
	  TREE_ADDRESSABLE (DECL_ABSTRACT_ORIGIN (decl)) = 1;
	else
	  {
	    push_function_context ();
	    output_inline_function (decl);
	    pop_function_context ();
	  }
      }

  /* When not in function-at-a-time mode, expand_end_bindings will
     warn about unused variables.  But, in function-at-a-time mode
     expand_end_bindings is not passed the list of variables in the
     current scope, and therefore no warning is emitted.  So, we
     explicitly warn here.  */
  if (!processing_template_decl)
    warn_about_unused_variables (getdecls ());

  /* If there were any declarations or structure tags in that level,
     or if this level is a function body,
     create a BLOCK to record them for the life of this function.  */
  block = NULL_TREE;
  if (keep == 1 || functionbody)
    block = make_node (BLOCK);
  if (block != NULL_TREE)
    {
      BLOCK_VARS (block) = decls;
      BLOCK_SUBBLOCKS (block) = subblocks;
    }

  /* In each subblock, record that this is its superior.  */
  if (keep >= 0)
    for (link = subblocks; link; link = TREE_CHAIN (link))
      BLOCK_SUPERCONTEXT (link) = block;

  /* We still support the old for-scope rules, whereby the variables
     in a for-init statement were in scope after the for-statement
     ended.  We only use the new rules in flag_new_for_scope is
     nonzero.  */
  leaving_for_scope
    = current_binding_level->is_for_scope && flag_new_for_scope == 1;

  /* Remove declarations for all the DECLs in this level.  */
  for (link = decls; link; link = TREE_CHAIN (link))
    {
      if (leaving_for_scope && TREE_CODE (link) == VAR_DECL
          && DECL_NAME (link))
	{
	  cxx_binding *outer_binding
	    = IDENTIFIER_BINDING (DECL_NAME (link))->previous;
	  tree ns_binding;

	  if (!outer_binding)
	    ns_binding = IDENTIFIER_NAMESPACE_VALUE (DECL_NAME (link));
	  else
	    ns_binding = NULL_TREE;

	  if (outer_binding
	      && (BINDING_LEVEL (outer_binding)
		  == current_binding_level->level_chain))
	    /* We have something like:

	         int i;
	         for (int i; ;);

	       and we are leaving the `for' scope.  There's no reason to
	       keep the binding of the inner `i' in this case.  */
	    pop_binding (DECL_NAME (link), link);
	  else if ((outer_binding
		    && (TREE_CODE (BINDING_VALUE (outer_binding))
			== TYPE_DECL))
		   || (ns_binding
		       && TREE_CODE (ns_binding) == TYPE_DECL))
	    /* Here, we have something like:

		 typedef int I;

		 void f () {
		   for (int I; ;);
		 }

	       We must pop the for-scope binding so we know what's a
	       type and what isn't.  */
	    pop_binding (DECL_NAME (link), link);
	  else
	    {
	      /* Mark this VAR_DECL as dead so that we can tell we left it
		 there only for backward compatibility.  */
	      DECL_DEAD_FOR_LOCAL (link) = 1;

	      /* Keep track of what should of have happenned when we
		 popped the binding.  */
	      if (outer_binding && BINDING_VALUE (outer_binding))
		DECL_SHADOWED_FOR_VAR (link)
		  = BINDING_VALUE (outer_binding);

	      /* Add it to the list of dead variables in the next
		 outermost binding to that we can remove these when we
		 leave that binding.  */
	      current_binding_level->level_chain->dead_vars_from_for
		= tree_cons (NULL_TREE, link,
			     current_binding_level->level_chain->
			     dead_vars_from_for);

	      /* Although we don't pop the cxx_binding, we do clear
		 its BINDING_LEVEL since the level is going away now.  */
	      BINDING_LEVEL (IDENTIFIER_BINDING (DECL_NAME (link)))
		= 0;
	    }
	}
      else
	{
	  /* Remove the binding.  */
	  decl = link;
	  if (TREE_CODE (decl) == TREE_LIST)
	    decl = TREE_VALUE (decl);
	  if (DECL_P (decl))
	    pop_binding (DECL_NAME (decl), decl);
	  else if (TREE_CODE (decl) == OVERLOAD)
	    pop_binding (DECL_NAME (OVL_FUNCTION (decl)), decl);
	  else
	    abort ();
	}
    }

  /* Remove declarations for any `for' variables from inner scopes
     that we kept around.  */
  for (link = current_binding_level->dead_vars_from_for;
       link; link = TREE_CHAIN (link))
    pop_binding (DECL_NAME (TREE_VALUE (link)), TREE_VALUE (link));

  /* Restore the IDENTIFIER_TYPE_VALUEs.  */
  for (link = current_binding_level->type_shadowed;
       link; link = TREE_CHAIN (link))
    SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (link), TREE_VALUE (link));

  /* Restore the IDENTIFIER_LABEL_VALUEs for local labels.  */
  for (link = current_binding_level->shadowed_labels;
       link;
       link = TREE_CHAIN (link))
    pop_label (TREE_VALUE (link), TREE_PURPOSE (link));

  /* There may be OVERLOADs (wrapped in TREE_LISTs) on the BLOCK_VARs
     list if a `using' declaration put them there.  The debugging
     back-ends won't understand OVERLOAD, so we remove them here.
     Because the BLOCK_VARS are (temporarily) shared with
     CURRENT_BINDING_LEVEL->NAMES we must do this fixup after we have
     popped all the bindings.  */
  if (block)
    {
      tree* d;

      for (d = &BLOCK_VARS (block); *d; )
	{
	  if (TREE_CODE (*d) == TREE_LIST)
	    *d = TREE_CHAIN (*d);
	  else
	    d = &TREE_CHAIN (*d);
	}
    }

  /* If the level being exited is the top level of a function,
     check over all the labels.  */
  if (functionbody)
    {
      /* Since this is the top level block of a function, the vars are
	 the function's parameters.  Don't leave them in the BLOCK
	 because they are found in the FUNCTION_DECL instead.  */
      BLOCK_VARS (block) = 0;
      pop_labels (block);
    }

  tmp = current_binding_level->keep;

  pop_binding_level ();
  if (functionbody)
    DECL_INITIAL (current_function_decl) = block;
  else if (block)
    current_binding_level->blocks
      = chainon (current_binding_level->blocks, block);

  /* If we did not make a block for the level just exited,
     any blocks made for inner levels
     (since they cannot be recorded as subblocks in that level)
     must be carried forward so they will later become subblocks
     of something else.  */
  else if (subblocks)
    current_binding_level->blocks
      = chainon (current_binding_level->blocks, subblocks);

  /* Each and every BLOCK node created here in `poplevel' is important
     (e.g. for proper debugging information) so if we created one
     earlier, mark it as "used".  */
  if (block)
    TREE_USED (block) = 1;

  /* Take care of compiler's internal binding structures.  */
  if (tmp == 2)
    {
      tree scope_stmts;
      /* APPLE LOCAL 3090270 dpatel */
      /* FSF Candidate */
      tree saved_block = NULL_TREE;

      scope_stmts
	= add_scope_stmt (/*begin_p=*/0, /*partial_p=*/1);
      if (block)
	{
	  SCOPE_STMT_BLOCK (TREE_PURPOSE (scope_stmts)) = block;
	  SCOPE_STMT_BLOCK (TREE_VALUE (scope_stmts)) = block;
	}

      if (block)
	saved_block = block;
      block = poplevel (keep, reverse, functionbody);

      /* APPLE LOCAL begin 3090270 dpatel */
      /* FSF Candidate */
      /* Collect BLOCK_VARS from tag_transparent binding level so that
	 debug displays all variables in one block.  */
      BLOCK_VARS (block) = chainon (BLOCK_VARS (block), BLOCK_VARS (saved_block));
      BLOCK_VARS (saved_block) = NULL_TREE;
      /* APPLE LOCAL end 3090270 dpatel */
    }

  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, block);
}

/* Delete the node BLOCK from the current binding level.
   This is used for the block inside a stmt expr ({...})
   so that the block can be reinserted where appropriate.  */

void
delete_block (block)
     tree block;
{
  tree t;
  if (current_binding_level->blocks == block)
    current_binding_level->blocks = TREE_CHAIN (block);
  for (t = current_binding_level->blocks; t;)
    {
      if (TREE_CHAIN (t) == block)
	TREE_CHAIN (t) = TREE_CHAIN (block);
      else
	t = TREE_CHAIN (t);
    }
  TREE_CHAIN (block) = NULL_TREE;
  /* Clear TREE_USED which is always set by poplevel.
     The flag is set again if insert_block is called.  */
  TREE_USED (block) = 0;
}

/* Insert BLOCK at the end of the list of subblocks of the
   current binding level.  This is used when a BIND_EXPR is expanded,
   to handle the BLOCK node inside the BIND_EXPR.  */

void
insert_block (block)
     tree block;
{
  TREE_USED (block) = 1;
  current_binding_level->blocks
    = chainon (current_binding_level->blocks, block);
}

/* Set the BLOCK node for the innermost scope
   (the one we are currently in).  */

void
set_block (block)
    tree block ATTRIBUTE_UNUSED;
{
  /* The RTL expansion machinery requires us to provide this callback,
     but it is not applicable in function-at-a-time mode.  */
  my_friendly_assert (cfun && !doing_semantic_analysis_p (), 20000911);
}

/* Do a pushlevel for class declarations.  */

void
pushlevel_class ()
{
  register struct cp_binding_level *newlevel;

  /* Reuse or create a struct for this binding level.  */
#if defined(DEBUG_BINDING_LEVELS)
  if (0)
#else /* !defined(DEBUG_BINDING_LEVELS) */
  if (free_binding_level)
#endif /* !defined(DEBUG_BINDING_LEVELS) */
    {
      newlevel = free_binding_level;
      free_binding_level = free_binding_level->level_chain;
    }
  else
    newlevel = make_binding_level ();

#if defined(DEBUG_BINDING_LEVELS)
  is_class_level = 1;
#endif /* defined(DEBUG_BINDING_LEVELS) */

  push_binding_level (newlevel, 0, 0);

  class_binding_level = current_binding_level;
  class_binding_level->parm_flag = 2;
  class_binding_level->this_class = current_class_type;
}

/* ...and a poplevel for class declarations.  */

void
poplevel_class ()
{
  register struct cp_binding_level *level = class_binding_level;
  tree shadowed;

  timevar_push (TV_NAME_LOOKUP);

  my_friendly_assert (level != 0, 354);

  /* If we're leaving a toplevel class, don't bother to do the setting
     of IDENTIFIER_CLASS_VALUE to NULL_TREE, since first of all this slot
     shouldn't even be used when current_class_type isn't set, and second,
     if we don't touch it here, we're able to use the cache effect if the
     next time we're entering a class scope, it is the same class.  */
  if (current_class_depth != 1)
    {
      struct cp_binding_level* b;

      /* Clear out our IDENTIFIER_CLASS_VALUEs.  */
      for (shadowed = level->class_shadowed;
	   shadowed;
	   shadowed = TREE_CHAIN (shadowed))
	IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (shadowed)) = NULL_TREE;

      /* Find the next enclosing class, and recreate
	 IDENTIFIER_CLASS_VALUEs appropriate for that class.  */
      b = level->level_chain;
      while (b && b->parm_flag != 2)
	b = b->level_chain;

      if (b)
	for (shadowed = b->class_shadowed;
	     shadowed;
	     shadowed = TREE_CHAIN (shadowed))
	  {
	    cxx_binding *binding;

	    binding = IDENTIFIER_BINDING (TREE_PURPOSE (shadowed));
	    while (binding && BINDING_LEVEL (binding) != b)
	      binding = binding->previous;

	    if (binding)
	      IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (shadowed))
		= BINDING_VALUE (binding);
	  }
    }
  else
    /* Remember to save what IDENTIFIER's were bound in this scope so we
       can recover from cache misses.  */
    {
      previous_class_type = current_class_type;
      previous_class_values = class_binding_level->class_shadowed;
    }
  for (shadowed = level->type_shadowed;
       shadowed;
       shadowed = TREE_CHAIN (shadowed))
    SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (shadowed), TREE_VALUE (shadowed));

  /* Remove the bindings for all of the class-level declarations.  */
  for (shadowed = level->class_shadowed;
       shadowed;
       shadowed = TREE_CHAIN (shadowed))
    pop_binding (TREE_PURPOSE (shadowed), TREE_TYPE (shadowed));

  /* Now, pop out of the binding level which we created up in the
     `pushlevel_class' routine.  */
#if defined(DEBUG_BINDING_LEVELS)
  is_class_level = 1;
#endif /* defined(DEBUG_BINDING_LEVELS) */

  pop_binding_level ();

  timevar_pop (TV_NAME_LOOKUP);
}

/* We are entering the scope of a class.  Clear IDENTIFIER_CLASS_VALUE
   for any names in enclosing classes.  */

void
clear_identifier_class_values ()
{
  tree t;

  if (!class_binding_level)
    return;

  for (t = class_binding_level->class_shadowed;
       t;
       t = TREE_CHAIN (t))
    IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (t)) = NULL_TREE;
}

/* Returns nonzero if T is a virtual function table.  */

int
vtable_decl_p (t, data)
     tree t;
     void *data ATTRIBUTE_UNUSED;
{
  return (TREE_CODE (t) == VAR_DECL && DECL_VIRTUAL_P (t));
}

/* Returns nonzero if T is a TYPE_DECL for a type with virtual
   functions.  */

int
vtype_decl_p (t, data)
     tree t;
     void *data ATTRIBUTE_UNUSED;
{
  return (TREE_CODE (t) == TYPE_DECL
	  && TREE_CODE (TREE_TYPE (t)) == RECORD_TYPE
	  && TYPE_POLYMORPHIC_P (TREE_TYPE (t)));
}

/* Return the declarations that are members of the namespace NS.  */

tree
cp_namespace_decls (ns)
     tree ns;
{
  return NAMESPACE_LEVEL (ns)->names;
}

struct walk_globals_data {
  walk_globals_pred p;
  walk_globals_fn f;
  void *data;
};

/* Walk the vtable declarations in NAMESPACE.  Whenever one is found
   for which P returns nonzero, call F with its address.  If any call
   to F returns a nonzero value, return a nonzero value.  */

static int
walk_vtables_r (namespace, data)
     tree namespace;
     void *data;
{
  struct walk_globals_data* wgd = (struct walk_globals_data *) data;
  walk_globals_fn f = wgd->f;
  void *d = wgd->data;
  tree decl = NAMESPACE_LEVEL (namespace)->vtables;
  int result = 0;

  for (; decl ; decl = TREE_CHAIN (decl))
    result |= (*f) (&decl, d);

  return result;
}

/* Walk the vtable declarations.  Whenever one is found for which P
   returns nonzero, call F with its address.  If any call to F
   returns a nonzero value, return a nonzero value.  */
int
walk_vtables (p, f, data)
     walk_globals_pred p;
     walk_globals_fn f;
     void *data;
{    
  struct walk_globals_data wgd;
  wgd.p = p;    
  wgd.f = f;
  wgd.data = data;

  return walk_namespaces (walk_vtables_r, &wgd);
}

/* Walk all the namespaces contained NAMESPACE, including NAMESPACE
   itself, calling F for each.  The DATA is passed to F as well.  */

static int
walk_namespaces_r (namespace, f, data)
     tree namespace;
     walk_namespaces_fn f;
     void *data;
{
  int result = 0;
  tree current = NAMESPACE_LEVEL (namespace)->namespaces;     

  result |= (*f) (namespace, data);

  for (; current; current = TREE_CHAIN (current))
    result |= walk_namespaces_r (current, f, data);

  return result;
}

/* Walk all the namespaces, calling F for each.  The DATA is passed to
   F as well.  */

int
walk_namespaces (f, data)
     walk_namespaces_fn f;
     void *data;
{
  return walk_namespaces_r (global_namespace, f, data);
}

/* Walk the global declarations in NAMESPACE.  Whenever one is found
   for which P returns nonzero, call F with its address.  If any call
   to F returns a nonzero value, return a nonzero value.  */

static int
walk_globals_r (namespace, data)
     tree namespace;
     void *data;
{
  struct walk_globals_data* wgd = (struct walk_globals_data *) data;
  walk_globals_pred p = wgd->p;
  walk_globals_fn f = wgd->f;
  void *d = wgd->data;
  tree *t;
  int result = 0;

  t = &NAMESPACE_LEVEL (namespace)->names;

  while (*t)
    {
      tree glbl = *t;

      if ((*p) (glbl, d))
	result |= (*f) (t, d);

      /* If F changed *T, then *T still points at the next item to
	 examine.  */
      if (*t == glbl)
	t = &TREE_CHAIN (*t);
    }

  return result;
}

/* Walk the global declarations.  Whenever one is found for which P
   returns nonzero, call F with its address.  If any call to F
   returns a nonzero value, return a nonzero value.  */

int
walk_globals (p, f, data)
     walk_globals_pred p;
     walk_globals_fn f;
     void *data;
{
  struct walk_globals_data wgd;
  wgd.p = p;
  wgd.f = f;
  wgd.data = data;

  return walk_namespaces (walk_globals_r, &wgd);
}

/* Call wrapup_globals_declarations for the globals in NAMESPACE.  If
   DATA is non-NULL, this is the last time we will call
   wrapup_global_declarations for this NAMESPACE.  */

int
wrapup_globals_for_namespace (namespace, data)
     tree namespace;
     void *data;
{
  /* APPLE LOCAL begin improved wrapup_global_declarations fsf candidate */
  struct cp_binding_level *level = NAMESPACE_LEVEL (namespace);
  varray_type statics = level->static_decls;
  tree *vec = &VARRAY_TREE (statics, 0);
  int len = VARRAY_ACTIVE_SIZE (statics);
  int last_time = (data != 0);

  if (last_time)
    {
      check_global_declarations (vec, len);
      return 0;
    }

  /* Write out any globals that need to be output.  */
  return wrapup_global_declarations (vec, len);
  /* APPLE LOCAL end improved wrapup_global_declarations fsf candidate */
}


/* For debugging.  */
static int no_print_functions = 0;
static int no_print_builtins = 0;

void
print_binding_level (lvl)
     struct cp_binding_level *lvl;
{
  tree t;
  int i = 0, len;
  fprintf (stderr, " blocks=");
  fprintf (stderr, HOST_PTR_PRINTF, lvl->blocks);
  if (lvl->tag_transparent)
    fprintf (stderr, " tag-transparent");
  if (lvl->more_cleanups_ok)
    fprintf (stderr, " more-cleanups-ok");
  if (lvl->have_cleanups)
    fprintf (stderr, " have-cleanups");
  fprintf (stderr, "\n");
  if (lvl->names)
    {
      fprintf (stderr, " names:\t");
      /* We can probably fit 3 names to a line?  */
      for (t = lvl->names; t; t = TREE_CHAIN (t))
	{
	  if (no_print_functions && (TREE_CODE (t) == FUNCTION_DECL))
	    continue;
	  if (no_print_builtins
	      && (TREE_CODE (t) == TYPE_DECL)
	      && (!strcmp (DECL_SOURCE_FILE (t),"<built-in>")))
	    continue;

	  /* Function decls tend to have longer names.  */
	  if (TREE_CODE (t) == FUNCTION_DECL)
	    len = 3;
	  else
	    len = 2;
	  i += len;
	  if (i > 6)
	    {
	      fprintf (stderr, "\n\t");
	      i = len;
	    }
	  print_node_brief (stderr, "", t, 0);
	  if (t == error_mark_node)
	    break;
	}
      if (i)
        fprintf (stderr, "\n");
    }
  if (lvl->tags)
    {
      fprintf (stderr, " tags:\t");
      i = 0;
      for (t = lvl->tags; t; t = TREE_CHAIN (t))
	{
	  if (TREE_PURPOSE (t) == NULL_TREE)
	    len = 3;
	  else if (TREE_PURPOSE (t) == TYPE_IDENTIFIER (TREE_VALUE (t)))
	    len = 2;
	  else
	    len = 4;
	  i += len;
	  if (i > 5)
	    {
	      fprintf (stderr, "\n\t");
	      i = len;
	    }
	  if (TREE_PURPOSE (t) == NULL_TREE)
	    {
	      print_node_brief (stderr, "<unnamed-typedef", TREE_VALUE (t), 0);
	      fprintf (stderr, ">");
	    }
	  else if (TREE_PURPOSE (t) == TYPE_IDENTIFIER (TREE_VALUE (t)))
	    print_node_brief (stderr, "", TREE_VALUE (t), 0);
	  else
	    {
	      print_node_brief (stderr, "<typedef", TREE_PURPOSE (t), 0);
	      print_node_brief (stderr, "", TREE_VALUE (t), 0);
	      fprintf (stderr, ">");
	    }
	}
      if (i)
	fprintf (stderr, "\n");
    }
  if (lvl->class_shadowed)
    {
      fprintf (stderr, " class-shadowed:");
      for (t = lvl->class_shadowed; t; t = TREE_CHAIN (t))
	{
	  fprintf (stderr, " %s ", IDENTIFIER_POINTER (TREE_PURPOSE (t)));
	}
      fprintf (stderr, "\n");
    }
  if (lvl->type_shadowed)
    {
      fprintf (stderr, " type-shadowed:");
      for (t = lvl->type_shadowed; t; t = TREE_CHAIN (t))
        {
	  fprintf (stderr, " %s ", IDENTIFIER_POINTER (TREE_PURPOSE (t)));
        }
      fprintf (stderr, "\n");
    }
}

void
print_other_binding_stack (stack)
     struct cp_binding_level *stack;
{
  struct cp_binding_level *level;
  for (level = stack; level != global_binding_level; level = level->level_chain)
    {
      fprintf (stderr, "binding level ");
      fprintf (stderr, HOST_PTR_PRINTF, level);
      fprintf (stderr, "\n");
      print_binding_level (level);
    }
}

void
print_binding_stack ()
{
  struct cp_binding_level *b;
  fprintf (stderr, "current_binding_level=");
  fprintf (stderr, HOST_PTR_PRINTF, current_binding_level);
  fprintf (stderr, "\nclass_binding_level=");
  fprintf (stderr, HOST_PTR_PRINTF, class_binding_level);
  fprintf (stderr, "\nglobal_binding_level=");
  fprintf (stderr, HOST_PTR_PRINTF, global_binding_level);
  fprintf (stderr, "\n");
  if (class_binding_level)
    {
      for (b = class_binding_level; b; b = b->level_chain)
	if (b == current_binding_level)
	  break;
      if (b)
	b = class_binding_level;
      else
	b = current_binding_level;
    }
  else
    b = current_binding_level;
  print_other_binding_stack (b);
  fprintf (stderr, "global:\n");
  print_binding_level (global_binding_level);
}

/* Namespace binding access routines.   */

/* Check whether the a binding for the name to scope is known.
   Returns the binding found, or NULL.  */

static inline cxx_binding *
find_binding (tree name, tree scope, cxx_binding *front)
{
  cxx_binding *iter;
  cxx_binding *prev = NULL;

  timevar_push (TV_NAME_LOOKUP);

  for (iter = front; iter; iter = iter->previous)
    {
      if (BINDING_SCOPE (iter) == scope)
	{
	  /* Move binding found to the front of the list, so
             subsequent lookups will find it faster.  */
	  if (prev)
	    {
	      prev->previous = iter->previous;
	      iter->previous = front;
	      IDENTIFIER_NAMESPACE_BINDINGS (name) = iter;
	    }
	  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, iter);
	}
      prev = iter;
    }
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL);
}

/* Return the binding for NAME in SCOPE, if any.  Otherwise, return NULL.  */
cxx_binding *
cxx_scope_find_binding_for_name (tree scope, tree name)
{
  cxx_binding *b = IDENTIFIER_NAMESPACE_BINDINGS (name);
  if (b)
    {
      scope = ORIGINAL_NAMESPACE (scope);
      /* Fold-in case where NAME is used only once.  */
      if (scope == BINDING_SCOPE (b) && b->previous == NULL)
        return b;
      return find_binding (name, scope, b);
    }
  return b;
}


/* Always returns a binding for name in scope.
   If no binding is found, make a new one.  */

cxx_binding *
binding_for_name (tree name, tree scope)
{
  cxx_binding *result;

  scope = ORIGINAL_NAMESPACE (scope);
  result = cxx_scope_find_binding_for_name (scope, name);
  if (result)
    return result;
  /* Not found, make a new one.  */
  result = cxx_binding_make ();
  result->previous = IDENTIFIER_NAMESPACE_BINDINGS (name);
  BINDING_TYPE (result) = NULL_TREE;
  BINDING_VALUE (result) = NULL_TREE;
  BINDING_SCOPE (result) = scope;
  result->is_local = false;
  result->value_is_inherited = false;
  result->has_level = false;
  IDENTIFIER_NAMESPACE_BINDINGS (name) = result;
  return result;
}

/* Return the binding value for name in scope.  */

tree
namespace_binding (tree name, tree scope)
{
  cxx_binding *b =
    cxx_scope_find_binding_for_name (scope ? scope : global_namespace, name);

  return b ? b->value : NULL_TREE;
}

/* Set the binding value for name in scope.  */

void
set_namespace_binding (name, scope, val)
     tree name;
     tree scope;
     tree val;
{
  cxx_binding *b;

  timevar_push (TV_NAME_LOOKUP);
  if (scope == NULL_TREE)
    scope = global_namespace;

  b = binding_for_name (name, scope);
  BINDING_VALUE (b) = val;
  timevar_pop (TV_NAME_LOOKUP);
}

/* Push into the scope of the NAME namespace.  If NAME is NULL_TREE, then we
   select a name that is unique to this compilation unit.  */

void
push_namespace (name)
     tree name;
{
  tree d = NULL_TREE;
  int need_new = 1;
  int implicit_use = 0;
  int global = 0;
  
  timevar_push (TV_NAME_LOOKUP);
  
  if (!global_namespace)
    {
      /* This must be ::.  */
      my_friendly_assert (name == get_identifier ("::"), 377);
      global = 1;
    }
  else if (!name)
    {
      /* The name of anonymous namespace is unique for the translation
         unit.  */
      if (!anonymous_namespace_name)
        anonymous_namespace_name = get_file_function_name ('N');
      name = anonymous_namespace_name;
      d = IDENTIFIER_NAMESPACE_VALUE (name);
      if (d)
        /* Reopening anonymous namespace.  */
        need_new = 0;
      implicit_use = 1;
    }
  else
    {
      /* Check whether this is an extended namespace definition.  */
      d = IDENTIFIER_NAMESPACE_VALUE (name);
      if (d != NULL_TREE && TREE_CODE (d) == NAMESPACE_DECL)
        {
          need_new = 0;
          if (DECL_NAMESPACE_ALIAS (d))
            {
              error ("namespace alias `%D' not allowed here, assuming `%D'",
                        d, DECL_NAMESPACE_ALIAS (d));
              d = DECL_NAMESPACE_ALIAS (d);
            }
        }
    }

  if (need_new)
    {
      /* Make a new namespace, binding the name to it.  */
      d = build_lang_decl (NAMESPACE_DECL, name, void_type_node);

      /* APPLE LOCAL begin indexing dpatel */
#if 0
      /* PB does not use namespace symbols.  But it complains about 
	 some namespace symbols.  Disable for now, until PB is ready
	 to accept namespace symbols. */
      if (flag_gen_index)
        gen_indexing_info (INDEX_NAMESPACE_DECL,
                           IDENTIFIER_POINTER (DECL_NAME (d)),
                           DECL_SOURCE_LINE (d));
#endif
      /* APPLE LOCAL end indexing dpatel */

      /* The global namespace is not pushed, and the global binding
	 level is set elsewhere.  */
      if (!global)
	{
	  DECL_CONTEXT (d) = FROB_CONTEXT (current_namespace);
	  d = pushdecl (d);
	  pushlevel (0);
	  declare_namespace_level ();
	  NAMESPACE_LEVEL (d) = current_binding_level;
	  /* APPLE LOCAL begin improved wrapup_global_declarations fsf candidate */
	  VARRAY_TREE_INIT (current_binding_level->static_decls,
			    name != std_identifier ? 10 : 200,
			    "Static declarations");
	  /* APPLE LOCAL end improved wrapup_global_declarations fsf candidate */
	}
    }
  else
    resume_binding_level (NAMESPACE_LEVEL (d));

  if (implicit_use)
    do_using_directive (d);
  /* Enter the name space.  */
  current_namespace = d;

  timevar_pop (TV_NAME_LOOKUP);
}

/* Pop from the scope of the current namespace.  */

void
pop_namespace ()
{
  my_friendly_assert (current_namespace != global_namespace, 20010801);
  current_namespace = CP_DECL_CONTEXT (current_namespace);
  /* The binding level is not popped, as it might be re-opened later.  */
  suspend_binding_level ();
}

/* Push into the scope of the namespace NS, even if it is deeply
   nested within another namespace.  */

void
push_nested_namespace (ns)
     tree ns;
{
  if (ns == global_namespace)
    push_to_top_level ();
  else
    {
      push_nested_namespace (CP_DECL_CONTEXT (ns));
      push_namespace (DECL_NAME (ns));
    }
}

/* Pop back from the scope of the namespace NS, which was previously
   entered with push_nested_namespace.  */

void
pop_nested_namespace (ns)
     tree ns;
{
  timevar_push (TV_NAME_LOOKUP);
  while (ns != global_namespace)
    {
      pop_namespace ();
      ns = CP_DECL_CONTEXT (ns);
    }

  pop_from_top_level ();
  timevar_pop (TV_NAME_LOOKUP);
}


/* Allocate storage for saving a C++ binding.  */
#define cxx_saved_binding_make() \
  (ggc_alloc (sizeof (cxx_saved_binding)))

struct cxx_saved_binding GTY(())
{
  /* Link that chains saved C++ bindings for a given name into a stack.  */
  cxx_saved_binding *previous;
  /* The name of the current binding.  */
  tree identifier;
  /* The binding we're saving.  */
  cxx_binding *binding;
  tree class_value;
  tree real_type_value;
};

/* Subroutines for reverting temporarily to top-level for instantiation
   of templates and such.  We actually need to clear out the class- and
   local-value slots of all identifiers, so that only the global values
   are at all visible.  Simply setting current_binding_level to the global
   scope isn't enough, because more binding levels may be pushed.  */
struct saved_scope *scope_chain;

static cxx_saved_binding *
store_bindings (tree names, cxx_saved_binding *old_bindings)
{
  tree t;
  cxx_saved_binding *search_bindings = old_bindings;

  timevar_push (TV_NAME_LOOKUP);
  for (t = names; t; t = TREE_CHAIN (t))
    {
      tree id;
      cxx_saved_binding *saved;
      cxx_saved_binding *t1;

      if (TREE_CODE (t) == TREE_LIST)
	id = TREE_PURPOSE (t);
      else
	id = DECL_NAME (t);

      if (!id
	  /* Note that we may have an IDENTIFIER_CLASS_VALUE even when
	     we have no IDENTIFIER_BINDING if we have left the class
	     scope, but cached the class-level declarations.  */
	  || !(IDENTIFIER_BINDING (id) || IDENTIFIER_CLASS_VALUE (id)))
	continue;

      for (t1 = search_bindings; t1; t1 = t1->previous)
	if (t1->identifier == id)
	  goto skip_it;

      my_friendly_assert (TREE_CODE (id) == IDENTIFIER_NODE, 135);
      saved = cxx_saved_binding_make ();
      saved->previous = old_bindings;
      saved->identifier = id;
      saved->binding = IDENTIFIER_BINDING (id);
      saved->class_value = IDENTIFIER_CLASS_VALUE (id);;
      saved->real_type_value = REAL_IDENTIFIER_TYPE_VALUE (id);
      IDENTIFIER_BINDING (id) = NULL;
      IDENTIFIER_CLASS_VALUE (id) = NULL_TREE;
      old_bindings = saved;
    skip_it:
      ;
    }
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, old_bindings);
}

void
maybe_push_to_top_level (pseudo)
     int pseudo;
{
  struct saved_scope *s;
  struct cp_binding_level *b;
  cxx_saved_binding *old_bindings;
  int need_pop;

  timevar_push (TV_NAME_LOOKUP);

  s = (struct saved_scope *) ggc_alloc_cleared (sizeof (struct saved_scope));

  b = scope_chain ? current_binding_level : 0;

  /* If we're in the middle of some function, save our state.  */
  if (cfun)
    {
      need_pop = 1;
      push_function_context_to (NULL_TREE);
    }
  else
    need_pop = 0;

  old_bindings = NULL;
  if (scope_chain && previous_class_type)
    old_bindings = store_bindings (previous_class_values, old_bindings);

  /* Have to include global_binding_level, because class-level decls
     aren't listed anywhere useful.  */
  for (; b; b = b->level_chain)
    {
      tree t;

      /* Template IDs are inserted into the global level. If they were
	 inserted into namespace level, finish_file wouldn't find them
	 when doing pending instantiations. Therefore, don't stop at
	 namespace level, but continue until :: .  */
      if (b == global_binding_level || (pseudo && b->template_parms_p))
	break;

      old_bindings = store_bindings (b->names, old_bindings);
      /* We also need to check class_shadowed to save class-level type
	 bindings, since pushclass doesn't fill in b->names.  */
      if (b->parm_flag == 2)
	old_bindings = store_bindings (b->class_shadowed, old_bindings);

      /* Unwind type-value slots back to top level.  */
      for (t = b->type_shadowed; t; t = TREE_CHAIN (t))
	SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (t), TREE_VALUE (t));
    }
  s->prev = scope_chain;
  s->old_bindings = old_bindings;
  s->bindings = b;
  s->need_pop_function_context = need_pop;
  s->function_decl = current_function_decl;
  s->last_parms = last_function_parms;

  scope_chain = s;
  current_function_decl = NULL_TREE;
  VARRAY_TREE_INIT (current_lang_base, 10, "current_lang_base");
  current_lang_name = lang_name_cplusplus;
  current_namespace = global_namespace;
  timevar_pop (TV_NAME_LOOKUP);
}

void
push_to_top_level ()
{
  maybe_push_to_top_level (0);
}

void
pop_from_top_level ()
{
  struct saved_scope *s = scope_chain;
  cxx_saved_binding *saved;

  timevar_push (TV_NAME_LOOKUP);

  /* Clear out class-level bindings cache.  */
  if (previous_class_type)
    invalidate_class_lookup_cache ();

  current_lang_base = 0;

  scope_chain = s->prev;
  for (saved = s->old_bindings; saved; saved = saved->previous)
    {
      tree id = saved->identifier;

      IDENTIFIER_BINDING (id) = saved->binding;
      IDENTIFIER_CLASS_VALUE (id) = saved->class_value;
      SET_IDENTIFIER_TYPE_VALUE (id, saved->real_type_value);
    }

  /* If we were in the middle of compiling a function, restore our
     state.  */
  if (s->need_pop_function_context)
    pop_function_context_from (NULL_TREE);
  current_function_decl = s->function_decl;
  last_function_parms = s->last_parms;

  timevar_pop (TV_NAME_LOOKUP);
}

/* Push a definition of struct, union or enum tag "name".
   into binding_level "b".   "type" should be the type node,
   We assume that the tag "name" is not already defined.

   Note that the definition may really be just a forward reference.
   In that case, the TYPE_SIZE will be a NULL_TREE.

   C++ gratuitously puts all these tags in the name space.  */

/* When setting the IDENTIFIER_TYPE_VALUE field of an identifier ID,
   record the shadowed value for this binding contour.  TYPE is
   the type that ID maps to.  */

static void
set_identifier_type_value_with_scope (id, type, b)
     tree id;
     tree type;
     struct cp_binding_level *b;
{
  if (!b->namespace_p)
    {
      /* Shadow the marker, not the real thing, so that the marker
	 gets restored later.  */
      tree old_type_value = REAL_IDENTIFIER_TYPE_VALUE (id);
      b->type_shadowed
	= tree_cons (id, old_type_value, b->type_shadowed);
    }
  else
    {
      cxx_binding *binding = binding_for_name (id, current_namespace);
      BINDING_TYPE (binding) = type;
      /* Store marker instead of real type.  */
      type = global_type_node;
    }
  SET_IDENTIFIER_TYPE_VALUE (id, type);
}

/* As set_identifier_type_value_with_scope, but using current_binding_level.  */

void
set_identifier_type_value (id, type)
     tree id;
     tree type;
{
  set_identifier_type_value_with_scope (id, type, current_binding_level);
}

/* Return the type associated with id.  */

tree
identifier_type_value (id)
     tree id;
{
  timevar_push (TV_NAME_LOOKUP);
  /* There is no type with that name, anywhere.  */
  if (REAL_IDENTIFIER_TYPE_VALUE (id) == NULL_TREE)
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
  /* This is not the type marker, but the real thing.  */
  if (REAL_IDENTIFIER_TYPE_VALUE (id) != global_type_node)
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, REAL_IDENTIFIER_TYPE_VALUE (id));
  /* Have to search for it. It must be on the global level, now.
     Ask lookup_name not to return non-types.  */
  id = lookup_name_real (id, 2, 1, 0);
  if (id)
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, TREE_TYPE (id));
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
}

/* Pop off extraneous binding levels left over due to syntax errors.

   We don't pop past namespaces, as they might be valid.  */

void
pop_everything ()
{
#ifdef DEBUG_BINDING_LEVELS
  fprintf (stderr, "XXX entering pop_everything ()\n");
#endif
  while (!toplevel_bindings_p ())
    {
      if (current_binding_level->parm_flag == 2)
	pop_nested_class ();
      else
	poplevel (0, 0, 0);
    }
#ifdef DEBUG_BINDING_LEVELS
  fprintf (stderr, "XXX leaving pop_everything ()\n");
#endif
}

/* The type TYPE is being declared.  If it is a class template, or a
   specialization of a class template, do any processing required and
   perform error-checking.  If IS_FRIEND is nonzero, this TYPE is
   being declared a friend.  B is the binding level at which this TYPE
   should be bound.

   Returns the TYPE_DECL for TYPE, which may have been altered by this
   processing.  */

static tree
maybe_process_template_type_declaration (type, globalize, b)
     tree type;
     int globalize;
     struct cp_binding_level* b;
{
  tree decl = TYPE_NAME (type);

  if (processing_template_parmlist)
    /* You can't declare a new template type in a template parameter
       list.  But, you can declare a non-template type:

         template <class A*> struct S;

       is a forward-declaration of `A'.  */
    ;
  else
    {
      maybe_check_template_type (type);

      my_friendly_assert (IS_AGGR_TYPE (type)
			  || TREE_CODE (type) == ENUMERAL_TYPE, 0);


      if (processing_template_decl)
	{
	  /* This may change after the call to
	     push_template_decl_real, but we want the original value.  */
	  tree name = DECL_NAME (decl);

	  decl = push_template_decl_real (decl, globalize);
	  /* If the current binding level is the binding level for the
	     template parameters (see the comment in
	     begin_template_parm_list) and the enclosing level is a class
	     scope, and we're not looking at a friend, push the
	     declaration of the member class into the class scope.  In the
	     friend case, push_template_decl will already have put the
	     friend into global scope, if appropriate.  */
	  if (TREE_CODE (type) != ENUMERAL_TYPE
	      && !globalize && b->template_parms_p
	      && b->level_chain->parm_flag == 2)
	    {
	      finish_member_declaration (CLASSTYPE_TI_TEMPLATE (type));
	      /* Put this tag on the list of tags for the class, since
		 that won't happen below because B is not the class
		 binding level, but is instead the pseudo-global level.  */
	      b->level_chain->tags =
		tree_cons (name, type, b->level_chain->tags);
	      if (!COMPLETE_TYPE_P (current_class_type))
		{
		  maybe_add_class_template_decl_list (current_class_type,
						      type, /*friend_p=*/0);
		  CLASSTYPE_TAGS (current_class_type) = b->level_chain->tags;
		}
	    }
	}
    }

  return decl;
}

/* In C++, you don't have to write `struct S' to refer to `S'; you
   can just use `S'.  We accomplish this by creating a TYPE_DECL as
   if the user had written `typedef struct S S'.  Create and return
   the TYPE_DECL for TYPE.  */

tree
create_implicit_typedef (name, type)
     tree name;
     tree type;
{
  tree decl;

  decl = build_decl (TYPE_DECL, name, type);
  DECL_ARTIFICIAL (decl) = 1;
  /* There are other implicit type declarations, like the one *within*
     a class that allows you to write `S::S'.  We must distinguish
     amongst these.  */
  SET_DECL_IMPLICIT_TYPEDEF_P (decl);
  TYPE_NAME (type) = decl;

  return decl;
}

/* Remember a local name for name-mangling purposes.  */

static void
push_local_name (decl)
     tree decl;
{
  size_t i, nelts;
  tree t, name;

  timevar_push (TV_NAME_LOOKUP);

  if (!local_names)
    VARRAY_TREE_INIT (local_names, 8, "local_names");

  name = DECL_NAME (decl);

  nelts = VARRAY_ACTIVE_SIZE (local_names);
  for (i = 0; i < nelts; i++)
    {
      t = VARRAY_TREE (local_names, i);
      if (DECL_NAME (t) == name)
	{
	  if (!DECL_LANG_SPECIFIC (decl))
	    retrofit_lang_decl (decl);
	  DECL_LANG_SPECIFIC (decl)->decl_flags.u2sel = 1;
	  if (DECL_LANG_SPECIFIC (t))
	    DECL_DISCRIMINATOR (decl) = DECL_DISCRIMINATOR (t) + 1;
	  else
	    DECL_DISCRIMINATOR (decl) = 1;

	  VARRAY_TREE (local_names, i) = decl;
	  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, (void)0);
	}
    }

  VARRAY_PUSH_TREE (local_names, decl);
  timevar_pop (TV_NAME_LOOKUP);
}

/* Push a tag name NAME for struct/class/union/enum type TYPE.
   Normally put it into the inner-most non-tag-transparent scope,
   but if GLOBALIZE is true, put it in the inner-most non-class scope.
   The latter is needed for implicit declarations.  */

void
pushtag (name, type, globalize)
     tree name, type;
     int globalize;
{
  register struct cp_binding_level *b;

  timevar_push (TV_NAME_LOOKUP);

  b = current_binding_level;
  while (b->tag_transparent
	 || (b->parm_flag == 2
	     && (globalize
		 /* We may be defining a new type in the initializer
		    of a static member variable. We allow this when
		    not pedantic, and it is particularly useful for
		    type punning via an anonymous union.  */
		 || COMPLETE_TYPE_P (b->this_class))))
    b = b->level_chain;

  b->tags = tree_cons (name, type, b->tags);

  if (name)
    {
      /* Do C++ gratuitous typedefing.  */
      if (IDENTIFIER_TYPE_VALUE (name) != type)
        {
          register tree d = NULL_TREE;
	  int in_class = 0;
	  tree context = TYPE_CONTEXT (type);

	  if (! context)
	    {
	      tree cs = current_scope ();

	      if (! globalize)
		context = cs;
	      else if (cs != NULL_TREE && TYPE_P (cs))
		/* When declaring a friend class of a local class, we want
		   to inject the newly named class into the scope
		   containing the local class, not the namespace scope.  */
		context = decl_function_context (get_type_decl (cs));
	    }
	  if (!context)
	    context = current_namespace;

	  if ((b->template_parms_p && b->level_chain->parm_flag == 2)
	      || b->parm_flag == 2)
	    in_class = 1;

	  if (current_lang_name == lang_name_java)
	    TYPE_FOR_JAVA (type) = 1;

	  d = create_implicit_typedef (name, type);
	  DECL_CONTEXT (d) = FROB_CONTEXT (context);
	  if (! in_class)
	    set_identifier_type_value_with_scope (name, type, b);

	  d = maybe_process_template_type_declaration (type,
						       globalize, b);

	  if (b->parm_flag == 2)
	    {
	      if (!PROCESSING_REAL_TEMPLATE_DECL_P ())
		/* Put this TYPE_DECL on the TYPE_FIELDS list for the
		   class.  But if it's a member template class, we
		   want the TEMPLATE_DECL, not the TYPE_DECL, so this
		   is done later.  */
		finish_member_declaration (d);
	      else
		pushdecl_class_level (d);
	    }
	  else
	    d = pushdecl_with_scope (d, b);

	  /* FIXME what if it gets a name from typedef?  */
	  if (ANON_AGGRNAME_P (name))
	    DECL_IGNORED_P (d) = 1;

	  TYPE_CONTEXT (type) = DECL_CONTEXT (d);

	  /* If this is a local class, keep track of it.  We need this
	     information for name-mangling, and so that it is possible to find
	     all function definitions in a translation unit in a convenient
	     way.  (It's otherwise tricky to find a member function definition
	     it's only pointed to from within a local class.)  */
	  if (TYPE_CONTEXT (type)
	      && TREE_CODE (TYPE_CONTEXT (type)) == FUNCTION_DECL
	      && !processing_template_decl)
	    VARRAY_PUSH_TREE (local_classes, type);
        }
      if (b->parm_flag == 2)
	{
	  if (!COMPLETE_TYPE_P (current_class_type))
	    {
	      maybe_add_class_template_decl_list (current_class_type,
						  type, /*friend_p=*/0);
	      CLASSTYPE_TAGS (current_class_type) = b->tags;
	    }
	}
    }

  if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL)
    /* Use the canonical TYPE_DECL for this node.  */
    TYPE_STUB_DECL (type) = TYPE_NAME (type);
  else
    {
      /* Create a fake NULL-named TYPE_DECL node whose TREE_TYPE
	 will be the tagged type we just added to the current
	 binding level.  This fake NULL-named TYPE_DECL node helps
	 dwarfout.c to know when it needs to output a
	 representation of a tagged type, and it also gives us a
	 convenient place to record the "scope start" address for
	 the tagged type.  */

      tree d = build_decl (TYPE_DECL, NULL_TREE, type);
      TYPE_STUB_DECL (type) = pushdecl_with_scope (d, b);
    }

  timevar_pop (TV_NAME_LOOKUP);
}

/* Counter used to create anonymous type names.  */

static GTY(()) int anon_cnt;

/* Return an IDENTIFIER which can be used as a name for
   anonymous structs and unions.  */

tree
make_anon_name ()
{
  char buf[32];

  sprintf (buf, ANON_AGGRNAME_FORMAT, anon_cnt++);
  return get_identifier (buf);
}

/* Clear the TREE_PURPOSE slot of tags which have anonymous typenames.
   This keeps dbxout from getting confused.  */

void
clear_anon_tags ()
{
  register struct cp_binding_level *b;
  register tree tags;
  static int last_cnt = 0;

  /* Fast out if no new anon names were declared.  */
  if (last_cnt == anon_cnt)
    return;

  b = current_binding_level;
  while (b->tag_transparent)
    b = b->level_chain;
  tags = b->tags;
  while (tags)
    {
      /* A NULL purpose means we have already processed all tags
	 from here to the end of the list.  */
      if (TREE_PURPOSE (tags) == NULL_TREE)
	break;
      if (ANON_AGGRNAME_P (TREE_PURPOSE (tags)))
	TREE_PURPOSE (tags) = NULL_TREE;
      tags = TREE_CHAIN (tags);
    }
  last_cnt = anon_cnt;
}

/* Subroutine of duplicate_decls: return truthvalue of whether
   or not types of these decls match.

   For C++, we must compare the parameter list so that `int' can match
   `int&' in a parameter position, but `int&' is not confused with
   `const int&'.  */

int
decls_match (newdecl, olddecl)
     tree newdecl, olddecl;
{
  int types_match;

  if (newdecl == olddecl)
    return 1;

  if (TREE_CODE (newdecl) != TREE_CODE (olddecl))
    /* If the two DECLs are not even the same kind of thing, we're not
       interested in their types.  */
    return 0;

  if (TREE_CODE (newdecl) == FUNCTION_DECL)
    {
      tree f1 = TREE_TYPE (newdecl);
      tree f2 = TREE_TYPE (olddecl);
      tree p1 = TYPE_ARG_TYPES (f1);
      tree p2 = TYPE_ARG_TYPES (f2);

      if (CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl)
	  && ! (DECL_EXTERN_C_P (newdecl)
		&& DECL_EXTERN_C_P (olddecl)))
	return 0;

      if (TREE_CODE (f1) != TREE_CODE (f2))
        return 0;

      if (same_type_p (TREE_TYPE (f1), TREE_TYPE (f2)))
	{
	  if (p2 == NULL_TREE && DECL_EXTERN_C_P (olddecl)
	      && (DECL_BUILT_IN (olddecl)
#ifndef NO_IMPLICIT_EXTERN_C
	          || (DECL_IN_SYSTEM_HEADER (newdecl) && !DECL_CLASS_SCOPE_P (newdecl))
	          || (DECL_IN_SYSTEM_HEADER (olddecl) && !DECL_CLASS_SCOPE_P (olddecl))
#endif
	      ))
	    {
	      types_match = self_promoting_args_p (p1);
	      if (p1 == void_list_node)
		TREE_TYPE (newdecl) = TREE_TYPE (olddecl);
	    }
#ifndef NO_IMPLICIT_EXTERN_C
	  else if (p1 == NULL_TREE
		   && (DECL_EXTERN_C_P (olddecl)
	               && DECL_IN_SYSTEM_HEADER (olddecl)
	               && !DECL_CLASS_SCOPE_P (olddecl))
		   && (DECL_EXTERN_C_P (newdecl)
	               && DECL_IN_SYSTEM_HEADER (newdecl)
	               && !DECL_CLASS_SCOPE_P (newdecl)))
	    {
	      types_match = self_promoting_args_p (p2);
	      TREE_TYPE (newdecl) = TREE_TYPE (olddecl);
	    }
#endif
	  else
	    types_match = compparms (p1, p2);
	}
      else
	types_match = 0;
    }
  else if (TREE_CODE (newdecl) == TEMPLATE_DECL)
    {
      if (!comp_template_parms (DECL_TEMPLATE_PARMS (newdecl),
				DECL_TEMPLATE_PARMS (olddecl)))
	return 0;

      if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl))
	  != TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)))
	return 0;

      if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL)
	types_match = 1;
      else
	types_match = decls_match (DECL_TEMPLATE_RESULT (olddecl),
				   DECL_TEMPLATE_RESULT (newdecl));
    }
  else
    {
      if (TREE_TYPE (newdecl) == error_mark_node)
	types_match = TREE_TYPE (olddecl) == error_mark_node;
      else if (TREE_TYPE (olddecl) == NULL_TREE)
	types_match = TREE_TYPE (newdecl) == NULL_TREE;
      else if (TREE_TYPE (newdecl) == NULL_TREE)
	types_match = 0;
      else
	types_match = comptypes (TREE_TYPE (newdecl),
				 TREE_TYPE (olddecl),
				 COMPARE_REDECLARATION);
    }

  return types_match;
}

/* If NEWDECL is `static' and an `extern' was seen previously,
   warn about it.  OLDDECL is the previous declaration.

   Note that this does not apply to the C++ case of declaring
   a variable `extern const' and then later `const'.

   Don't complain about built-in functions, since they are beyond
   the user's control.  */

static void
warn_extern_redeclared_static (newdecl, olddecl)
     tree newdecl, olddecl;
{
  static const char *const explicit_extern_static_warning
    = "`%D' was declared `extern' and later `static'";
  static const char *const implicit_extern_static_warning
    = "`%D' was declared implicitly `extern' and later `static'";

  tree name;

  if (TREE_CODE (newdecl) == TYPE_DECL
      /* APPLE LOCAL begin Objective-C++ */
      /* Some ObjC++ metadata is fwd-declared as 'extern', only to be
	 made 'static' later; we need to tolerate this, at least for
	 now.  */
      || (flag_objc && DECL_ARTIFICIAL (olddecl))
      /* APPLE LOCAL end Objective-C++ */
      || TREE_CODE (newdecl) == TEMPLATE_DECL
      || TREE_CODE (newdecl) == CONST_DECL)
    return;

  /* Don't get confused by static member functions; that's a different
     use of `static'.  */
  if (TREE_CODE (newdecl) == FUNCTION_DECL
      && DECL_STATIC_FUNCTION_P (newdecl))
    return;

  /* If the old declaration was `static', or the new one isn't, then
     then everything is OK.  */
  if (DECL_THIS_STATIC (olddecl) || !DECL_THIS_STATIC (newdecl))
    return;

  /* It's OK to declare a builtin function as `static'.  */
  if (TREE_CODE (olddecl) == FUNCTION_DECL
      && DECL_ARTIFICIAL (olddecl))
    return;

  name = DECL_ASSEMBLER_NAME (newdecl);
  pedwarn (IDENTIFIER_IMPLICIT_DECL (name)
	      ? implicit_extern_static_warning
	      : explicit_extern_static_warning, newdecl);
  cp_pedwarn_at ("previous declaration of `%D'", olddecl);
}

/* Handle when a new declaration NEWDECL has the same name as an old
   one OLDDECL in the same binding contour.  Prints an error message
   if appropriate.

   If safely possible, alter OLDDECL to look like NEWDECL, and return 1.
   Otherwise, return 0.  */

int
duplicate_decls (newdecl, olddecl)
     tree newdecl, olddecl;
{
  unsigned olddecl_uid = DECL_UID (olddecl);
  int olddecl_friend = 0, types_match = 0;
  int new_defines_function = 0;

  if (newdecl == olddecl)
    return 1;

  types_match = decls_match (newdecl, olddecl);

  /* If either the type of the new decl or the type of the old decl is an
     error_mark_node, then that implies that we have already issued an
     error (earlier) for some bogus type specification, and in that case,
     it is rather pointless to harass the user with yet more error message
     about the same declaration, so just pretend the types match here.  */
  if (TREE_TYPE (newdecl) == error_mark_node
      || TREE_TYPE (olddecl) == error_mark_node)
    types_match = 1;

  if (DECL_P (olddecl)
      && TREE_CODE (newdecl) == FUNCTION_DECL
      && TREE_CODE (olddecl) == FUNCTION_DECL
      && (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl)))
    {
      if (DECL_DECLARED_INLINE_P (newdecl)
	  && DECL_UNINLINABLE (newdecl)
	  && lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl)))
	/* Already warned elsewhere.  */;
      else if (DECL_DECLARED_INLINE_P (olddecl)
	       && DECL_UNINLINABLE (olddecl)
	       && lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl)))
	/* Already warned.  */;
      else if (DECL_DECLARED_INLINE_P (newdecl)
	       && DECL_UNINLINABLE (olddecl)
	       && lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl)))
	{
	  warning_with_decl (newdecl,
			     "function `%s' redeclared as inline");
	  warning_with_decl (olddecl,
			     "previous declaration of function `%s' with attribute noinline");
	}
      else if (DECL_DECLARED_INLINE_P (olddecl)
	       && DECL_UNINLINABLE (newdecl)
	       && lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl)))
	{
	  warning_with_decl (newdecl,
			     "function `%s' redeclared with attribute noinline");
	  warning_with_decl (olddecl,
			     "previous declaration of function `%s' was inline");
	}
    }

  /* Check for redeclaration and other discrepancies.  */
  if (TREE_CODE (olddecl) == FUNCTION_DECL
      && DECL_ARTIFICIAL (olddecl))
    {
      if (TREE_CODE (newdecl) != FUNCTION_DECL)
	{
          /* Avoid warnings redeclaring anticipated built-ins.  */
          if (DECL_ANTICIPATED (olddecl))
            return 0;

	  /* If you declare a built-in or predefined function name as static,
	     the old definition is overridden, but optionally warn this was a
	     bad choice of name.  */
	  if (! TREE_PUBLIC (newdecl))
	    {
	      if (warn_shadow)
		warning ("shadowing %s function `%#D'",
			    DECL_BUILT_IN (olddecl) ? "built-in" : "library",
			    olddecl);
	      /* Discard the old built-in function.  */
	      return 0;
	    }
	  /* If the built-in is not ansi, then programs can override
	     it even globally without an error.  */
	  else if (! DECL_BUILT_IN (olddecl))
	    warning ("library function `%#D' redeclared as non-function `%#D'",
			olddecl, newdecl);
	  else
	    {
	      error ("declaration of `%#D'", newdecl);
	      error ("conflicts with built-in declaration `%#D'",
			olddecl);
	    }
	  return 0;
	}
      else if (!types_match)
	{
          /* Avoid warnings redeclaring anticipated built-ins.  */
          if (DECL_ANTICIPATED (olddecl))
            ;  /* Do nothing yet.  */
	  else if ((DECL_EXTERN_C_P (newdecl)
	       && DECL_EXTERN_C_P (olddecl))
	      || compparms (TYPE_ARG_TYPES (TREE_TYPE (newdecl)),
			    TYPE_ARG_TYPES (TREE_TYPE (olddecl))))
	    {
	      /* A near match; override the builtin.  */

	      if (TREE_PUBLIC (newdecl))
		{
		  warning ("new declaration `%#D'", newdecl);
		  warning ("ambiguates built-in declaration `%#D'",
			      olddecl);
		}
	      else if (warn_shadow)
		warning ("shadowing %s function `%#D'",
			    DECL_BUILT_IN (olddecl) ? "built-in" : "library",
			    olddecl);
	    }
	  else
	    /* Discard the old built-in function.  */
	    return 0;

	  /* Replace the old RTL to avoid problems with inlining.  */
	  SET_DECL_RTL (olddecl, DECL_RTL (newdecl));
	}

      if (DECL_THIS_STATIC (newdecl) && !DECL_THIS_STATIC (olddecl))
	{
	  /* If a builtin function is redeclared as `static', merge
	     the declarations, but make the original one static.  */
	  DECL_THIS_STATIC (olddecl) = 1;
	  TREE_PUBLIC (olddecl) = 0;

	  /* Make the old declaration consistent with the new one so
	     that all remnants of the builtin-ness of this function
	     will be banished.  */
	  SET_DECL_LANGUAGE (olddecl, DECL_LANGUAGE (newdecl));
	  SET_DECL_RTL (olddecl, DECL_RTL (newdecl));
	}
    }
  else if (TREE_CODE (olddecl) != TREE_CODE (newdecl))
    {
      if ((TREE_CODE (olddecl) == TYPE_DECL && DECL_ARTIFICIAL (olddecl)
	   && TREE_CODE (newdecl) != TYPE_DECL
	   && ! (TREE_CODE (newdecl) == TEMPLATE_DECL
		 && TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL))
	  || (TREE_CODE (newdecl) == TYPE_DECL && DECL_ARTIFICIAL (newdecl)
	      && TREE_CODE (olddecl) != TYPE_DECL
	      && ! (TREE_CODE (olddecl) == TEMPLATE_DECL
		    && (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl))
			== TYPE_DECL))))
	{
	  /* We do nothing special here, because C++ does such nasty
	     things with TYPE_DECLs.  Instead, just let the TYPE_DECL
	     get shadowed, and know that if we need to find a TYPE_DECL
	     for a given name, we can look in the IDENTIFIER_TYPE_VALUE
	     slot of the identifier.  */
	  return 0;
	}

      if ((TREE_CODE (newdecl) == FUNCTION_DECL
	   && DECL_FUNCTION_TEMPLATE_P (olddecl))
	  || (TREE_CODE (olddecl) == FUNCTION_DECL
	      && DECL_FUNCTION_TEMPLATE_P (newdecl)))
	return 0;

      error ("`%#D' redeclared as different kind of symbol", newdecl);
      if (TREE_CODE (olddecl) == TREE_LIST)
	olddecl = TREE_VALUE (olddecl);
      cp_error_at ("previous declaration of `%#D'", olddecl);

      /* New decl is completely inconsistent with the old one =>
	 tell caller to replace the old one.  */

      return 0;
    }
  else if (!types_match)
    {
      if (CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl))
	/* These are certainly not duplicate declarations; they're
	   from different scopes.  */
	return 0;

      if (TREE_CODE (newdecl) == TEMPLATE_DECL)
	{
	  /* The name of a class template may not be declared to refer to
	     any other template, class, function, object, namespace, value,
	     or type in the same scope.  */
	  if (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) == TYPE_DECL
	      || TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL)
	    {
	      error ("declaration of template `%#D'", newdecl);
	      cp_error_at ("conflicts with previous declaration `%#D'",
			   olddecl);
	    }
	  else if (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) == FUNCTION_DECL
		   && TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == FUNCTION_DECL
		   && compparms (TYPE_ARG_TYPES (TREE_TYPE (DECL_TEMPLATE_RESULT (olddecl))),
				 TYPE_ARG_TYPES (TREE_TYPE (DECL_TEMPLATE_RESULT (newdecl))))
		   && comp_template_parms (DECL_TEMPLATE_PARMS (newdecl),
					   DECL_TEMPLATE_PARMS (olddecl))
		   /* Template functions can be disambiguated by
		      return type.  */
		   && same_type_p (TREE_TYPE (TREE_TYPE (newdecl)),
				   TREE_TYPE (TREE_TYPE (olddecl))))
	    {
	      error ("new declaration `%#D'", newdecl);
	      cp_error_at ("ambiguates old declaration `%#D'", olddecl);
	    }
	  return 0;
	}
      if (TREE_CODE (newdecl) == FUNCTION_DECL)
	{
	  if (DECL_EXTERN_C_P (newdecl) && DECL_EXTERN_C_P (olddecl))
	    {
	      error ("declaration of C function `%#D' conflicts with",
			newdecl);
	      cp_error_at ("previous declaration `%#D' here", olddecl);
	    }
	  else if (compparms (TYPE_ARG_TYPES (TREE_TYPE (newdecl)),
			      TYPE_ARG_TYPES (TREE_TYPE (olddecl))))
	    {
	      error ("new declaration `%#D'", newdecl);
	      cp_error_at ("ambiguates old declaration `%#D'", olddecl);
	    }
	  else
	    return 0;
	}

      /* Already complained about this, so don't do so again.  */
      else if (current_class_type == NULL_TREE
	  || IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (newdecl)) != current_class_type)
	{
	  error ("conflicting types for `%#D'", newdecl);
	  cp_error_at ("previous declaration as `%#D'", olddecl);
	}
    }
  else if (TREE_CODE (newdecl) == FUNCTION_DECL
	    && ((DECL_TEMPLATE_SPECIALIZATION (olddecl)
		 && (!DECL_TEMPLATE_INFO (newdecl)
		     || (DECL_TI_TEMPLATE (newdecl)
			 != DECL_TI_TEMPLATE (olddecl))))
		|| (DECL_TEMPLATE_SPECIALIZATION (newdecl)
		    && (!DECL_TEMPLATE_INFO (olddecl)
			|| (DECL_TI_TEMPLATE (olddecl)
			    != DECL_TI_TEMPLATE (newdecl))))))
    /* It's OK to have a template specialization and a non-template
       with the same type, or to have specializations of two
       different templates with the same type.  Note that if one is a
       specialization, and the other is an instantiation of the same
       template, that we do not exit at this point.  That situation
       can occur if we instantiate a template class, and then
       specialize one of its methods.  This situation is valid, but
       the declarations must be merged in the usual way.  */
    return 0;
  else if (TREE_CODE (newdecl) == FUNCTION_DECL
	   && ((DECL_TEMPLATE_INSTANTIATION (olddecl)
		&& !DECL_USE_TEMPLATE (newdecl))
	       || (DECL_TEMPLATE_INSTANTIATION (newdecl)
		   && !DECL_USE_TEMPLATE (olddecl))))
    /* One of the declarations is a template instantiation, and the
       other is not a template at all.  That's OK.  */
    return 0;
  else if (TREE_CODE (newdecl) == NAMESPACE_DECL
           && DECL_NAMESPACE_ALIAS (newdecl)
           && DECL_NAMESPACE_ALIAS (newdecl) == DECL_NAMESPACE_ALIAS (olddecl))
    /* Redeclaration of namespace alias, ignore it.  */
    return 1;
  else
    {
      const char *errmsg = redeclaration_error_message (newdecl, olddecl);
      if (errmsg)
	{
	  error (errmsg, newdecl);
	  if (DECL_NAME (olddecl) != NULL_TREE)
	    cp_error_at ((DECL_INITIAL (olddecl)
			  && namespace_bindings_p ())
			 ? "`%#D' previously defined here"
			 : "`%#D' previously declared here", olddecl);
	  return 0;
	}
      else if (TREE_CODE (olddecl) == FUNCTION_DECL
	       && DECL_INITIAL (olddecl) != NULL_TREE
	       && TYPE_ARG_TYPES (TREE_TYPE (olddecl)) == NULL_TREE
	       && TYPE_ARG_TYPES (TREE_TYPE (newdecl)) != NULL_TREE)
	{
	  /* Prototype decl follows defn w/o prototype.  */
	  cp_warning_at ("prototype for `%#D'", newdecl);
	  cp_warning_at ("follows non-prototype definition here", olddecl);
	}
      else if (TREE_CODE (olddecl) == FUNCTION_DECL
	       && DECL_LANGUAGE (newdecl) != DECL_LANGUAGE (olddecl))
	{
	  /* extern "C" int foo ();
	     int foo () { bar (); }
	     is OK.  */
	  if (current_lang_depth () == 0)
	    SET_DECL_LANGUAGE (newdecl, DECL_LANGUAGE (olddecl));
	  else
	    {
	      cp_error_at ("previous declaration of `%#D' with %L linkage",
			   olddecl, DECL_LANGUAGE (olddecl));
	      error ("conflicts with new declaration with %L linkage",
			DECL_LANGUAGE (newdecl));
	    }
	}

      if (DECL_LANG_SPECIFIC (olddecl) && DECL_USE_TEMPLATE (olddecl))
	;
      else if (TREE_CODE (olddecl) == FUNCTION_DECL)
	{
	  tree t1 = TYPE_ARG_TYPES (TREE_TYPE (olddecl));
	  tree t2 = TYPE_ARG_TYPES (TREE_TYPE (newdecl));
	  int i = 1;

	  if (TREE_CODE (TREE_TYPE (newdecl)) == METHOD_TYPE)
	    t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2);

	  for (; t1 && t1 != void_list_node;
	       t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2), i++)
	    if (TREE_PURPOSE (t1) && TREE_PURPOSE (t2))
	      {
		if (1 == simple_cst_equal (TREE_PURPOSE (t1),
					   TREE_PURPOSE (t2)))
		  {
		    pedwarn ("default argument given for parameter %d of `%#D'",
			     i, newdecl);
		    cp_pedwarn_at ("after previous specification in `%#D'",
			           olddecl);
		  }
		else
		  {
		    error ("default argument given for parameter %d of `%#D'",
			      i, newdecl);
		    cp_error_at ("after previous specification in `%#D'",
				 olddecl);
		  }
	      }

	  if (DECL_DECLARED_INLINE_P (newdecl) 
	      && ! DECL_DECLARED_INLINE_P (olddecl)
	      && TREE_ADDRESSABLE (olddecl) && warn_inline)
	    {
	      warning ("`%#D' was used before it was declared inline",
			  newdecl);
	      cp_warning_at ("previous non-inline declaration here",
			     olddecl);
	    }
	}
    }

  /* Do not merge an implicit typedef with an explicit one.  In:

       class A;
       ...
       typedef class A A __attribute__ ((foo));

     the attribute should apply only to the typedef.  */
  if (TREE_CODE (olddecl) == TYPE_DECL
      && (DECL_IMPLICIT_TYPEDEF_P (olddecl)
	  || DECL_IMPLICIT_TYPEDEF_P (newdecl)))
    return 0;

  /* If new decl is `static' and an `extern' was seen previously,
     warn about it.  */
  warn_extern_redeclared_static (newdecl, olddecl);

  /* We have committed to returning 1 at this point.  */
  if (TREE_CODE (newdecl) == FUNCTION_DECL)
    {
      /* Now that functions must hold information normally held
	 by field decls, there is extra work to do so that
	 declaration information does not get destroyed during
	 definition.  */
      if (DECL_VINDEX (olddecl))
	DECL_VINDEX (newdecl) = DECL_VINDEX (olddecl);
      if (DECL_CONTEXT (olddecl))
	DECL_CONTEXT (newdecl) = DECL_CONTEXT (olddecl);
      DECL_STATIC_CONSTRUCTOR (newdecl) |= DECL_STATIC_CONSTRUCTOR (olddecl);
      DECL_STATIC_DESTRUCTOR (newdecl) |= DECL_STATIC_DESTRUCTOR (olddecl);
      DECL_PURE_VIRTUAL_P (newdecl) |= DECL_PURE_VIRTUAL_P (olddecl);
      DECL_VIRTUAL_P (newdecl) |= DECL_VIRTUAL_P (olddecl);
      DECL_NEEDS_FINAL_OVERRIDER_P (newdecl) |= DECL_NEEDS_FINAL_OVERRIDER_P (olddecl);
      DECL_THIS_STATIC (newdecl) |= DECL_THIS_STATIC (olddecl);
      if (DECL_OVERLOADED_OPERATOR_P (olddecl) != ERROR_MARK)
	SET_OVERLOADED_OPERATOR_CODE
	  (newdecl, DECL_OVERLOADED_OPERATOR_P (olddecl));
      new_defines_function = DECL_INITIAL (newdecl) != NULL_TREE;

      /* Optionally warn about more than one declaration for the same
         name, but don't warn about a function declaration followed by a
         definition.  */
      if (warn_redundant_decls && ! DECL_ARTIFICIAL (olddecl)
	  && !(new_defines_function && DECL_INITIAL (olddecl) == NULL_TREE)
	  /* Don't warn about extern decl followed by definition.  */
	  && !(DECL_EXTERNAL (olddecl) && ! DECL_EXTERNAL (newdecl))
	  /* Don't warn about friends, let add_friend take care of it.  */
	  && ! (DECL_FRIEND_P (newdecl) || DECL_FRIEND_P (olddecl)))
	{
	  warning ("redundant redeclaration of `%D' in same scope", newdecl);
	  cp_warning_at ("previous declaration of `%D'", olddecl);
	}
    }

  /* Deal with C++: must preserve virtual function table size.  */
  if (TREE_CODE (olddecl) == TYPE_DECL)
    {
      register tree newtype = TREE_TYPE (newdecl);
      register tree oldtype = TREE_TYPE (olddecl);

      if (newtype != error_mark_node && oldtype != error_mark_node
	  && TYPE_LANG_SPECIFIC (newtype) && TYPE_LANG_SPECIFIC (oldtype))
	CLASSTYPE_FRIEND_CLASSES (newtype)
	  = CLASSTYPE_FRIEND_CLASSES (oldtype);
\
      DECL_ORIGINAL_TYPE (newdecl) = DECL_ORIGINAL_TYPE (olddecl);
    }
    
  /* APPLE LOCAL begin weak_import (Radar 2809704) ilr */
  if (types_match 
      && DECL_WEAK_IMPORT (olddecl) != DECL_WEAK_IMPORT (newdecl)
      && ! DECL_EXTERNAL (olddecl)
      && ! DECL_EXTERNAL (newdecl))
    warning_with_decl (newdecl,
      "inconsistent weak_import attribute with declaration of `%s'");
  /* APPLE LOCAL end weak_import ilr */

  /* Copy all the DECL_... slots specified in the new decl
     except for any that we copy here from the old type.  */
  DECL_ATTRIBUTES (newdecl)
    = (*targetm.merge_decl_attributes) (olddecl, newdecl);

  if (TREE_CODE (newdecl) == TEMPLATE_DECL)
    {
      TREE_TYPE (olddecl) = TREE_TYPE (DECL_TEMPLATE_RESULT (olddecl));
      DECL_TEMPLATE_SPECIALIZATIONS (olddecl)
	= chainon (DECL_TEMPLATE_SPECIALIZATIONS (olddecl),
		   DECL_TEMPLATE_SPECIALIZATIONS (newdecl));

      /* If the new declaration is a definition, update the file and
	 line information on the declaration.  */
      if (DECL_INITIAL (DECL_TEMPLATE_RESULT (olddecl)) == NULL_TREE
	  && DECL_INITIAL (DECL_TEMPLATE_RESULT (newdecl)) != NULL_TREE)
	{
	  DECL_SOURCE_LOCATION (olddecl) 
	    = DECL_SOURCE_LOCATION (DECL_TEMPLATE_RESULT (olddecl))
	    = DECL_SOURCE_LOCATION (newdecl);
	}

      return 1;
    }

  if (types_match)
    {
      /* Automatically handles default parameters.  */
      tree oldtype = TREE_TYPE (olddecl);
      tree newtype;

      /* Merge the data types specified in the two decls.  */
      newtype = merge_types (TREE_TYPE (newdecl), TREE_TYPE (olddecl));

      /* If merge_types produces a non-typedef type, just use the old type.  */
      if (TREE_CODE (newdecl) == TYPE_DECL
	  && newtype == DECL_ORIGINAL_TYPE (newdecl))
	newtype = oldtype;

      if (TREE_CODE (newdecl) == VAR_DECL)
	{
	  DECL_THIS_EXTERN (newdecl) |= DECL_THIS_EXTERN (olddecl);
	  DECL_INITIALIZED_P (newdecl) |= DECL_INITIALIZED_P (olddecl);
	}

      /* Do this after calling `merge_types' so that default
	 parameters don't confuse us.  */
      else if (TREE_CODE (newdecl) == FUNCTION_DECL
	  && (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (newdecl))
	      != TYPE_RAISES_EXCEPTIONS (TREE_TYPE (olddecl))))
	{
	  TREE_TYPE (newdecl) = build_exception_variant (newtype,
							 TYPE_RAISES_EXCEPTIONS (TREE_TYPE (newdecl)));
	  TREE_TYPE (olddecl) = build_exception_variant (newtype,
							 TYPE_RAISES_EXCEPTIONS (oldtype));

	  if ((pedantic || ! DECL_IN_SYSTEM_HEADER (olddecl))
	      && DECL_SOURCE_LINE (olddecl) != 0
	      && flag_exceptions
	      && !comp_except_specs (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (newdecl)),
	                             TYPE_RAISES_EXCEPTIONS (TREE_TYPE (olddecl)), 1))
	    {
	      error ("declaration of `%F' throws different exceptions",
			newdecl);
	      cp_error_at ("than previous declaration `%F'", olddecl);
	    }
	}
      TREE_TYPE (newdecl) = TREE_TYPE (olddecl) = newtype;

      /* Lay the type out, unless already done.  */
      if (! same_type_p (newtype, oldtype)
	  && TREE_TYPE (newdecl) != error_mark_node
	  && !(processing_template_decl && uses_template_parms (newdecl)))
	layout_type (TREE_TYPE (newdecl));

      if ((TREE_CODE (newdecl) == VAR_DECL
	   || TREE_CODE (newdecl) == PARM_DECL
	   || TREE_CODE (newdecl) == RESULT_DECL
	   || TREE_CODE (newdecl) == FIELD_DECL
	   || TREE_CODE (newdecl) == TYPE_DECL)
	  && !(processing_template_decl && uses_template_parms (newdecl)))
	layout_decl (newdecl, 0);

      /* Merge the type qualifiers.  */
      if (TREE_READONLY (newdecl))
	TREE_READONLY (olddecl) = 1;
      if (TREE_THIS_VOLATILE (newdecl))
	TREE_THIS_VOLATILE (olddecl) = 1;

      /* Merge the initialization information.  */
      if (DECL_INITIAL (newdecl) == NULL_TREE
	  && DECL_INITIAL (olddecl) != NULL_TREE)
	{
	  DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl);
	  DECL_SOURCE_LOCATION (newdecl) = DECL_SOURCE_LOCATION (olddecl);
	  if (CAN_HAVE_FULL_LANG_DECL_P (newdecl)
	      && DECL_LANG_SPECIFIC (newdecl)
	      && DECL_LANG_SPECIFIC (olddecl))
	    DECL_SAVED_TREE (newdecl) = DECL_SAVED_TREE (olddecl);
	}

      /* Merge the section attribute.
         We want to issue an error if the sections conflict but that must be
	 done later in decl_attributes since we are called before attributes
	 are assigned.  */
      if (DECL_SECTION_NAME (newdecl) == NULL_TREE)
	DECL_SECTION_NAME (newdecl) = DECL_SECTION_NAME (olddecl);

      if (TREE_CODE (newdecl) == FUNCTION_DECL)
	{
	  DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (newdecl)
	    |= DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (olddecl);
	  DECL_NO_LIMIT_STACK (newdecl)
	    |= DECL_NO_LIMIT_STACK (olddecl);
	  /* Keep the old RTL.  */
	  COPY_DECL_RTL (olddecl, newdecl);
	}
      else if (TREE_CODE (newdecl) == VAR_DECL 
	       && (DECL_SIZE (olddecl) || !DECL_SIZE (newdecl)))
	{
	  /* Keep the old RTL.  We cannot keep the old RTL if the old
	     declaration was for an incomplete object and the new
	     declaration is not since many attributes of the RTL will
	     change.  */
	  COPY_DECL_RTL (olddecl, newdecl);
	}
    }
  /* If cannot merge, then use the new type and qualifiers,
     and don't preserve the old rtl.  */
  else
    {
      /* Clean out any memory we had of the old declaration.  */
      tree oldstatic = value_member (olddecl, static_aggregates);
      if (oldstatic)
	TREE_VALUE (oldstatic) = error_mark_node;

      TREE_TYPE (olddecl) = TREE_TYPE (newdecl);
      TREE_READONLY (olddecl) = TREE_READONLY (newdecl);
      TREE_THIS_VOLATILE (olddecl) = TREE_THIS_VOLATILE (newdecl);
      TREE_SIDE_EFFECTS (olddecl) = TREE_SIDE_EFFECTS (newdecl);
    }

  /* Merge the storage class information.  */
  merge_weak (newdecl, olddecl);

  DECL_ONE_ONLY (newdecl) |= DECL_ONE_ONLY (olddecl);
  DECL_DEFER_OUTPUT (newdecl) |= DECL_DEFER_OUTPUT (olddecl);
  TREE_PUBLIC (newdecl) = TREE_PUBLIC (olddecl);
  TREE_STATIC (olddecl) = TREE_STATIC (newdecl) |= TREE_STATIC (olddecl);
  if (! DECL_EXTERNAL (olddecl))
    DECL_EXTERNAL (newdecl) = 0;

  if (DECL_LANG_SPECIFIC (newdecl) && DECL_LANG_SPECIFIC (olddecl))
    {
      DECL_INTERFACE_KNOWN (newdecl) |= DECL_INTERFACE_KNOWN (olddecl);
      DECL_NOT_REALLY_EXTERN (newdecl) |= DECL_NOT_REALLY_EXTERN (olddecl);
      DECL_COMDAT (newdecl) |= DECL_COMDAT (olddecl);
      DECL_TEMPLATE_INSTANTIATED (newdecl)
	|= DECL_TEMPLATE_INSTANTIATED (olddecl);
      /* Don't really know how much of the language-specific
	 values we should copy from old to new.  */
      DECL_IN_AGGR_P (newdecl) = DECL_IN_AGGR_P (olddecl);
      DECL_LANG_SPECIFIC (newdecl)->decl_flags.u2 = 
	DECL_LANG_SPECIFIC (olddecl)->decl_flags.u2;
      DECL_NONCONVERTING_P (newdecl) = DECL_NONCONVERTING_P (olddecl);
      DECL_TEMPLATE_INFO (newdecl) = DECL_TEMPLATE_INFO (olddecl);
      DECL_INITIALIZED_IN_CLASS_P (newdecl)
        |= DECL_INITIALIZED_IN_CLASS_P (olddecl);
      olddecl_friend = DECL_FRIEND_P (olddecl);

      /* Only functions have DECL_BEFRIENDING_CLASSES.  */
      if (TREE_CODE (newdecl) == FUNCTION_DECL
	  || DECL_FUNCTION_TEMPLATE_P (newdecl))
	{
	  DECL_BEFRIENDING_CLASSES (newdecl)
	    = chainon (DECL_BEFRIENDING_CLASSES (newdecl),
		       DECL_BEFRIENDING_CLASSES (olddecl));
	  DECL_THUNKS (newdecl) = DECL_THUNKS (olddecl);
	}
    }

  if (TREE_CODE (newdecl) == FUNCTION_DECL)
    {
      if (DECL_TEMPLATE_INSTANTIATION (olddecl)
	  && !DECL_TEMPLATE_INSTANTIATION (newdecl))
	{
	  /* If newdecl is not a specialization, then it is not a
	     template-related function at all.  And that means that we
	     shoud have exited above, returning 0.  */
	  my_friendly_assert (DECL_TEMPLATE_SPECIALIZATION (newdecl),
			      0);

	  if (TREE_USED (olddecl))
	    /* From [temp.expl.spec]:

	       If a template, a member template or the member of a class
	       template is explicitly specialized then that
	       specialization shall be declared before the first use of
	       that specialization that would cause an implicit
	       instantiation to take place, in every translation unit in
	       which such a use occurs.  */
	    error ("explicit specialization of %D after first use",
		      olddecl);

	  SET_DECL_TEMPLATE_SPECIALIZATION (olddecl);

	  /* [temp.expl.spec/14] We don't inline explicit specialization
	     just because the primary template says so.  */
	}
      else
	{
	  if (DECL_PENDING_INLINE_INFO (newdecl) == 0)
	    DECL_PENDING_INLINE_INFO (newdecl) = DECL_PENDING_INLINE_INFO (olddecl);

	  DECL_DECLARED_INLINE_P (newdecl) |= DECL_DECLARED_INLINE_P (olddecl);

	  /* If either decl says `inline', this fn is inline, unless 
	     its definition was passed already.  */
	  if (DECL_INLINE (newdecl) && DECL_INITIAL (olddecl) == NULL_TREE)
	    DECL_INLINE (olddecl) = 1;
	  DECL_INLINE (newdecl) = DECL_INLINE (olddecl);

	  DECL_UNINLINABLE (newdecl) = DECL_UNINLINABLE (olddecl)
	    = (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl));
	}

      /* Preserve abstractness on cloned [cd]tors.  */
      DECL_ABSTRACT (newdecl) = DECL_ABSTRACT (olddecl);

      if (! types_match)
	{
	  SET_DECL_LANGUAGE (olddecl, DECL_LANGUAGE (newdecl));
	  COPY_DECL_ASSEMBLER_NAME (newdecl, olddecl);
	  SET_DECL_RTL (olddecl, DECL_RTL (newdecl));
	}
      if (! types_match || new_defines_function)
	{
	  /* These need to be copied so that the names are available.
	     Note that if the types do match, we'll preserve inline
	     info and other bits, but if not, we won't.  */
	  DECL_ARGUMENTS (olddecl) = DECL_ARGUMENTS (newdecl);
	  DECL_RESULT (olddecl) = DECL_RESULT (newdecl);
	}
      if (new_defines_function)
	/* If defining a function declared with other language
	   linkage, use the previously declared language linkage.  */
	SET_DECL_LANGUAGE (newdecl, DECL_LANGUAGE (olddecl));
      else if (types_match)
	{
	  /* If redeclaring a builtin function, and not a definition,
	     it stays built in.  */
	  if (DECL_BUILT_IN (olddecl))
	    {
	      DECL_BUILT_IN_CLASS (newdecl) = DECL_BUILT_IN_CLASS (olddecl);
	      DECL_FUNCTION_CODE (newdecl) = DECL_FUNCTION_CODE (olddecl);
	      /* If we're keeping the built-in definition, keep the rtl,
		 regardless of declaration matches.  */
	      SET_DECL_RTL (newdecl, DECL_RTL (olddecl));
	    }
	  else
	    DECL_NUM_STMTS (newdecl) = DECL_NUM_STMTS (olddecl);

	  DECL_RESULT (newdecl) = DECL_RESULT (olddecl);
	  /* Don't clear out the arguments if we're redefining a function.  */
	  if (DECL_ARGUMENTS (olddecl))
	    DECL_ARGUMENTS (newdecl) = DECL_ARGUMENTS (olddecl);
	}
    }
  else if (TREE_CODE (newdecl) == NAMESPACE_DECL)
    NAMESPACE_LEVEL (newdecl) = NAMESPACE_LEVEL (olddecl);

  /* Now preserve various other info from the definition.  */
  TREE_ADDRESSABLE (newdecl) = TREE_ADDRESSABLE (olddecl);
  TREE_ASM_WRITTEN (newdecl) = TREE_ASM_WRITTEN (olddecl);
  DECL_COMMON (newdecl) = DECL_COMMON (olddecl);
  /* APPLE LOCAL private extern */
  DECL_PRIVATE_EXTERN (newdecl) = DECL_PRIVATE_EXTERN (olddecl);
  /* APPLE LOCAL coalescing */
  DECL_COALESCED (newdecl) = DECL_COALESCED (olddecl);

  COPY_DECL_ASSEMBLER_NAME (olddecl, newdecl);

  if (TREE_CODE (newdecl) == FUNCTION_DECL)
    {
      int function_size;

      function_size = sizeof (struct tree_decl);

      memcpy ((char *) olddecl + sizeof (struct tree_common),
	      (char *) newdecl + sizeof (struct tree_common),
	      function_size - sizeof (struct tree_common));

      if (DECL_TEMPLATE_INSTANTIATION (newdecl))
	{
	  /* If newdecl is a template instantiation, it is possible that
	     the following sequence of events has occurred:

	     o A friend function was declared in a class template.  The
	     class template was instantiated.

	     o The instantiation of the friend declaration was
	     recorded on the instantiation list, and is newdecl.

	     o Later, however, instantiate_class_template called pushdecl
	     on the newdecl to perform name injection.  But, pushdecl in
	     turn called duplicate_decls when it discovered that another
	     declaration of a global function with the same name already
	     existed.

	     o Here, in duplicate_decls, we decided to clobber newdecl.

	     If we're going to do that, we'd better make sure that
	     olddecl, and not newdecl, is on the list of
	     instantiations so that if we try to do the instantiation
	     again we won't get the clobbered declaration.  */

	  tree tmpl = DECL_TI_TEMPLATE (newdecl);
	  tree decls = DECL_TEMPLATE_SPECIALIZATIONS (tmpl);

	  for (; decls; decls = TREE_CHAIN (decls))
	    if (TREE_VALUE (decls) == newdecl)
	      TREE_VALUE (decls) = olddecl;
	}
    }
  else
    {
      memcpy ((char *) olddecl + sizeof (struct tree_common),
	      (char *) newdecl + sizeof (struct tree_common),
	      sizeof (struct tree_decl) - sizeof (struct tree_common)
	      + TREE_CODE_LENGTH (TREE_CODE (newdecl)) * sizeof (char *));
    }

  DECL_UID (olddecl) = olddecl_uid;
  if (olddecl_friend)
    DECL_FRIEND_P (olddecl) = 1;

  /* NEWDECL contains the merged attribute lists.
     Update OLDDECL to be the same.  */
  DECL_ATTRIBUTES (olddecl) = DECL_ATTRIBUTES (newdecl);

  return 1;
}

/* Record a decl-node X as belonging to the current lexical scope.
   Check for errors (such as an incompatible declaration for the same
   name already seen in the same scope).

   Returns either X or an old decl for the same name.
   If an old decl is returned, it may have been smashed
   to agree with what X says.  */

tree
pushdecl (x)
     tree x;
{
  register tree t;
  register tree name;
  int need_new_binding;

  timevar_push (TV_NAME_LOOKUP);

  /* We shouldn't be calling pushdecl when we're generating RTL for a
     function that we already did semantic analysis on previously.  */
  my_friendly_assert (!cfun || doing_semantic_analysis_p (),
		      19990913);

  need_new_binding = 1;

  if (DECL_TEMPLATE_PARM_P (x))
    /* Template parameters have no context; they are not X::T even
       when declared within a class or namespace.  */
    ;
  else
    {
      if (current_function_decl && x != current_function_decl
	  /* A local declaration for a function doesn't constitute
             nesting.  */
	  && !(TREE_CODE (x) == FUNCTION_DECL && !DECL_INITIAL (x))
	  /* A local declaration for an `extern' variable is in the
	     scope of the current namespace, not the current
	     function.  */
	  && !(TREE_CODE (x) == VAR_DECL && DECL_EXTERNAL (x))
	  && !DECL_CONTEXT (x))
	DECL_CONTEXT (x) = current_function_decl;

      /* If this is the declaration for a namespace-scope function,
	 but the declaration itself is in a local scope, mark the
	 declaration.  */
      if (TREE_CODE (x) == FUNCTION_DECL
	  && DECL_NAMESPACE_SCOPE_P (x)
	  && current_function_decl
	  && x != current_function_decl)
	DECL_LOCAL_FUNCTION_P (x) = 1;
    }

  name = DECL_NAME (x);
  if (name)
    {
      int different_binding_level = 0;

      if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
	name = TREE_OPERAND (name, 0);

      /* In case this decl was explicitly namespace-qualified, look it
	 up in its namespace context.  */
      if (TREE_CODE (x) == VAR_DECL && DECL_NAMESPACE_SCOPE_P (x)
	  && namespace_bindings_p ())
	t = namespace_binding (name, DECL_CONTEXT (x));
      else
	t = lookup_name_current_level (name);

      /* [basic.link] If there is a visible declaration of an entity
	 with linkage having the same name and type, ignoring entities
	 declared outside the innermost enclosing namespace scope, the
	 block scope declaration declares that same entity and
	 receives the linkage of the previous declaration.  */
      if (! t && current_function_decl && x != current_function_decl
	  && (TREE_CODE (x) == FUNCTION_DECL || TREE_CODE (x) == VAR_DECL)
	  && DECL_EXTERNAL (x))
	{
	  /* Look in block scope.  */
	  t = IDENTIFIER_VALUE (name);
	  /* Or in the innermost namespace.  */
	  if (! t)
	    t = namespace_binding (name, DECL_CONTEXT (x));
	  /* Does it have linkage?  Note that if this isn't a DECL, it's an
	     OVERLOAD, which is OK.  */
	  if (t && DECL_P (t) && ! (TREE_STATIC (t) || DECL_EXTERNAL (t)))
	    t = NULL_TREE;
	  if (t)
	    different_binding_level = 1;
	}

      /* If we are declaring a function, and the result of name-lookup
	 was an OVERLOAD, look for an overloaded instance that is
	 actually the same as the function we are declaring.  (If
	 there is one, we have to merge our declaration with the
	 previous declaration.)  */
      if (t && TREE_CODE (t) == OVERLOAD)
	{
	  tree match;

	  if (TREE_CODE (x) == FUNCTION_DECL)
	    for (match = t; match; match = OVL_NEXT (match))
	      {
		if (decls_match (OVL_CURRENT (match), x))
		  break;
	      }
	  else
	    /* Just choose one.  */
	    match = t;

	  if (match)
	    t = OVL_CURRENT (match);
	  else
	    t = NULL_TREE;
	}

      if (t == error_mark_node)
	{
	  /* error_mark_node is 0 for a while during initialization!  */
	  t = NULL_TREE;
	  cp_error_at ("`%#D' used prior to declaration", x);
	}
      else if (t != NULL_TREE)
	{
	  if (different_binding_level)
	    {
	      if (decls_match (x, t))
		/* The standard only says that the local extern
		   inherits linkage from the previous decl; in
		   particular, default args are not shared.  It would
		   be nice to propagate inlining info, though.  FIXME.  */
		TREE_PUBLIC (x) = TREE_PUBLIC (t);
	    }
	  else if (TREE_CODE (t) == PARM_DECL)
	    {
	      if (DECL_CONTEXT (t) == NULL_TREE)
		/* This is probaby caused by too many errors, but calling
		   abort will say that if errors have occurred.  */
		abort ();

	      /* Check for duplicate params.  */
	      if (duplicate_decls (x, t))
		POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
	    }
	  else if ((DECL_EXTERN_C_FUNCTION_P (x)
		    || DECL_FUNCTION_TEMPLATE_P (x))
		   && is_overloaded_fn (t))
	    /* Don't do anything just yet.  */;
	  else if (t == wchar_decl_node)
	    {
	      if (pedantic && ! DECL_IN_SYSTEM_HEADER (x))
		pedwarn ("redeclaration of `wchar_t' as `%T'",
			    TREE_TYPE (x));

	      /* Throw away the redeclaration.  */
	      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
	    }
	  else if (TREE_CODE (t) != TREE_CODE (x))
	    {
	      if (duplicate_decls (x, t))
		POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
	    }
	  else if (duplicate_decls (x, t))
	    {
	      if (TREE_CODE (t) == TYPE_DECL)
		SET_IDENTIFIER_TYPE_VALUE (name, TREE_TYPE (t));
	      else if (TREE_CODE (t) == FUNCTION_DECL)
		check_default_args (t);

	      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
	    }
	  else if (DECL_MAIN_P (x))
	    {
	      /* A redeclaration of main, but not a duplicate of the
		 previous one.

		 [basic.start.main]

	         This function shall not be overloaded.  */
	      cp_error_at ("invalid redeclaration of `%D'", t);
	      error ("as `%D'", x);
	      /* We don't try to push this declaration since that
		 causes a crash.  */
	      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, x);
	    }
	}

      check_template_shadow (x);

      /* If this is a function conjured up by the backend, massage it
	 so it looks friendly.  */
      if (DECL_NON_THUNK_FUNCTION_P (x) && ! DECL_LANG_SPECIFIC (x))
	{
	  retrofit_lang_decl (x);
	  SET_DECL_LANGUAGE (x, lang_c);
	}

      if (DECL_NON_THUNK_FUNCTION_P (x) && ! DECL_FUNCTION_MEMBER_P (x))
	{
	  t = push_overloaded_decl (x, PUSH_LOCAL);
	  if (t != x)
	    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
	  if (!namespace_bindings_p ())
	    /* We do not need to create a binding for this name;
	       push_overloaded_decl will have already done so if
	       necessary.  */
	    need_new_binding = 0;
	}
      else if (DECL_FUNCTION_TEMPLATE_P (x) && DECL_NAMESPACE_SCOPE_P (x))
	{
	  t = push_overloaded_decl (x, PUSH_GLOBAL);
	  if (t == x)
	    add_decl_to_level (x, NAMESPACE_LEVEL (CP_DECL_CONTEXT (t)));
	  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
	}

      /* If declaring a type as a typedef, copy the type (unless we're
	 at line 0), and install this TYPE_DECL as the new type's typedef
	 name.  See the extensive comment in ../c-decl.c (pushdecl).  */
      if (TREE_CODE (x) == TYPE_DECL)
	{
	  tree type = TREE_TYPE (x);
	  if (DECL_SOURCE_LINE (x) == 0)
            {
	      if (TYPE_NAME (type) == 0)
	        TYPE_NAME (type) = x;
            }
          else if (type != error_mark_node && TYPE_NAME (type) != x
		   /* We don't want to copy the type when all we're
		      doing is making a TYPE_DECL for the purposes of
		      inlining.  */
		   && (!TYPE_NAME (type)
		       || TYPE_NAME (type) != DECL_ABSTRACT_ORIGIN (x)))
            {
	      DECL_ORIGINAL_TYPE (x) = type;
              type = build_type_copy (type);
	      TYPE_STUB_DECL (type) = TYPE_STUB_DECL (DECL_ORIGINAL_TYPE (x));
              TYPE_NAME (type) = x;
              TREE_TYPE (x) = type;
            }

	  if (type != error_mark_node
	      && TYPE_NAME (type)
	      && TYPE_IDENTIFIER (type))
            set_identifier_type_value_with_scope (DECL_NAME (x), type,
						  current_binding_level);

	}

      /* Multiple external decls of the same identifier ought to match.

	 We get warnings about inline functions where they are defined.
	 We get warnings about other functions from push_overloaded_decl.

	 Avoid duplicate warnings where they are used.  */
      if (TREE_PUBLIC (x) && TREE_CODE (x) != FUNCTION_DECL)
	{
	  tree decl;

	  decl = IDENTIFIER_NAMESPACE_VALUE (name);
	  if (decl && TREE_CODE (decl) == OVERLOAD)
	    decl = OVL_FUNCTION (decl);

	  if (decl && decl != error_mark_node
	      && (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
	      /* If different sort of thing, we already gave an error.  */
	      && TREE_CODE (decl) == TREE_CODE (x)
	      && !same_type_p (TREE_TYPE (x), TREE_TYPE (decl)))
	    {
	      pedwarn ("type mismatch with previous external decl", x);
	      cp_pedwarn_at ("previous external decl of `%#D'", decl);
	    }
	}

      /* This name is new in its binding level.
	 Install the new declaration and return it.  */
      if (namespace_bindings_p ())
	{
	  /* Install a global value.  */

	  /* If the first global decl has external linkage,
	     warn if we later see static one.  */
	  if (IDENTIFIER_GLOBAL_VALUE (name) == NULL_TREE && TREE_PUBLIC (x))
	    TREE_PUBLIC (name) = 1;

 	  /* Bind the name for the entity.  */
 	  if (!(TREE_CODE (x) == TYPE_DECL && DECL_ARTIFICIAL (x)
  		&& t != NULL_TREE)
 	      && (TREE_CODE (x) == TYPE_DECL
 		  || TREE_CODE (x) == VAR_DECL
 		  || TREE_CODE (x) == NAMESPACE_DECL
 		  || TREE_CODE (x) == CONST_DECL
 		  || TREE_CODE (x) == TEMPLATE_DECL))
 	    SET_IDENTIFIER_NAMESPACE_VALUE (name, x);

	  /* Don't forget if the function was used via an implicit decl.  */
	  if (IDENTIFIER_IMPLICIT_DECL (name)
	      && TREE_USED (IDENTIFIER_IMPLICIT_DECL (name)))
	    TREE_USED (x) = 1;

	  /* Don't forget if its address was taken in that way.  */
	  if (IDENTIFIER_IMPLICIT_DECL (name)
	      && TREE_ADDRESSABLE (IDENTIFIER_IMPLICIT_DECL (name)))
	    TREE_ADDRESSABLE (x) = 1;

	  /* Warn about mismatches against previous implicit decl.  */
	  if (IDENTIFIER_IMPLICIT_DECL (name) != NULL_TREE
	      /* If this real decl matches the implicit, don't complain.  */
	      && ! (TREE_CODE (x) == FUNCTION_DECL
		    && TREE_TYPE (TREE_TYPE (x)) == integer_type_node))
	    warning
	      ("`%D' was previously implicitly declared to return `int'", x);

	  /* If new decl is `static' and an `extern' was seen previously,
	     warn about it.  */
	  if (x != NULL_TREE && t != NULL_TREE && decls_match (x, t))
	    warn_extern_redeclared_static (x, t);
	}
      else
	{
	  /* Here to install a non-global value.  */
	  tree oldlocal = IDENTIFIER_VALUE (name);
	  tree oldglobal = IDENTIFIER_NAMESPACE_VALUE (name);

	  if (need_new_binding)
	    {
	      push_local_binding (name, x, 0);
	      /* Because push_local_binding will hook X on to the
		 current_binding_level's name list, we don't want to
		 do that again below.  */
	      need_new_binding = 0;
	    }

	  /* If this is a TYPE_DECL, push it into the type value slot.  */
	  if (TREE_CODE (x) == TYPE_DECL)
	    set_identifier_type_value_with_scope (name, TREE_TYPE (x),
						  current_binding_level);

	  /* Clear out any TYPE_DECL shadowed by a namespace so that
	     we won't think this is a type.  The C struct hack doesn't
	     go through namespaces.  */
	  if (TREE_CODE (x) == NAMESPACE_DECL)
	    set_identifier_type_value_with_scope (name, NULL_TREE,
						  current_binding_level);

	  if (oldlocal)
	    {
	      tree d = oldlocal;

	      while (oldlocal
		     && TREE_CODE (oldlocal) == VAR_DECL
		     && DECL_DEAD_FOR_LOCAL (oldlocal))
		oldlocal = DECL_SHADOWED_FOR_VAR (oldlocal);

	      if (oldlocal == NULL_TREE)
		oldlocal = IDENTIFIER_NAMESPACE_VALUE (DECL_NAME (d));
	    }

	  /* If this is an extern function declaration, see if we
	     have a global definition or declaration for the function.  */
	  if (oldlocal == NULL_TREE
	      && DECL_EXTERNAL (x)
	      && oldglobal != NULL_TREE
	      && TREE_CODE (x) == FUNCTION_DECL
	      && TREE_CODE (oldglobal) == FUNCTION_DECL)
	    {
	      /* We have one.  Their types must agree.  */
	      if (decls_match (x, oldglobal))
		/* OK */;
	      else
		{
		  warning ("extern declaration of `%#D' doesn't match", x);
		  cp_warning_at ("global declaration `%#D'", oldglobal);
		}
	    }
	  /* If we have a local external declaration,
	     and no file-scope declaration has yet been seen,
	     then if we later have a file-scope decl it must not be static.  */
	  if (oldlocal == NULL_TREE
	      && oldglobal == NULL_TREE
	      && DECL_EXTERNAL (x)
	      && TREE_PUBLIC (x))
	    TREE_PUBLIC (name) = 1;

	  /* Warn if shadowing an argument at the top level of the body.  */
	  if (oldlocal != NULL_TREE && !DECL_EXTERNAL (x)
	      /* Inline decls shadow nothing.  */
	      && !DECL_FROM_INLINE (x)
	      && TREE_CODE (oldlocal) == PARM_DECL)
	    {
	      bool err = false;

	      /* Don't complain if it's from an enclosing function.  */
	      if (DECL_CONTEXT (oldlocal) == current_function_decl
		  && TREE_CODE (x) != PARM_DECL)
		{
		  /* Go to where the parms should be and see if we find
		     them there.  */
		  struct cp_binding_level *b = current_binding_level->level_chain;

		  /* ARM $8.3 */
		  if (b->parm_flag == 1)
		    {
		      error ("declaration of `%#D' shadows a parameter",
				name);
		      err = true;
		    }
		}

	      if (warn_shadow && !err)
		shadow_warning ("a parameter", name, oldlocal);
	    }

	  /* Maybe warn if shadowing something else.  */
	  else if (warn_shadow && !DECL_EXTERNAL (x)
	      /* No shadow warnings for internally generated vars.  */
	      && ! DECL_ARTIFICIAL (x)
	      /* No shadow warnings for vars made for inlining.  */
	      && ! DECL_FROM_INLINE (x))
	    {
	      if (IDENTIFIER_CLASS_VALUE (name) != NULL_TREE
		       && current_class_ptr
		       && !TREE_STATIC (name))
		warning ("declaration of `%s' shadows a member of `this'",
			    IDENTIFIER_POINTER (name));
	      else if (oldlocal != NULL_TREE
		       && TREE_CODE (oldlocal) == VAR_DECL)
		shadow_warning ("a previous local", name, oldlocal);
	      else if (oldglobal != NULL_TREE
		       && TREE_CODE (oldglobal) == VAR_DECL)
		/* XXX shadow warnings in outer-more namespaces */
		shadow_warning ("a global declaration", name, oldglobal);
	    }
	}

      if (TREE_CODE (x) == FUNCTION_DECL)
	check_default_args (x);

      if (TREE_CODE (x) == VAR_DECL)
	maybe_register_incomplete_var (x);
    }

  if (need_new_binding)
    add_decl_to_level (x,
		       DECL_NAMESPACE_SCOPE_P (x)
		       ? NAMESPACE_LEVEL (CP_DECL_CONTEXT (x))
		       : current_binding_level);

  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, x);
}

/* Same as pushdecl, but define X in binding-level LEVEL.  We rely on the
   caller to set DECL_CONTEXT properly.  */

static tree
pushdecl_with_scope (x, level)
     tree x;
     struct cp_binding_level *level;
{
  register struct cp_binding_level *b;
  tree function_decl = current_function_decl;

  timevar_push (TV_NAME_LOOKUP);

  current_function_decl = NULL_TREE;
  if (level->parm_flag == 2)
    {
      b = class_binding_level;
      class_binding_level = level;
      pushdecl_class_level (x);
      class_binding_level = b;
    }
  else
    {
      b = current_binding_level;
      current_binding_level = level;
      x = pushdecl (x);
      current_binding_level = b;
    }
  current_function_decl = function_decl;
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, x);
}

/* Like pushdecl, only it places X in the current namespace,
   if appropriate.  */

tree
pushdecl_namespace_level (x)
     tree x;
{
  register struct cp_binding_level *b = current_binding_level;
  register tree t;

  timevar_push (TV_NAME_LOOKUP);
  t = pushdecl_with_scope (x, NAMESPACE_LEVEL (current_namespace));

  /* Now, the type_shadowed stack may screw us.  Munge it so it does
     what we want.  */
  if (TREE_CODE (x) == TYPE_DECL)
    {
      tree name = DECL_NAME (x);
      tree newval;
      tree *ptr = (tree *)0;
      for (; b != global_binding_level; b = b->level_chain)
        {
          tree shadowed = b->type_shadowed;
          for (; shadowed; shadowed = TREE_CHAIN (shadowed))
            if (TREE_PURPOSE (shadowed) == name)
              {
		ptr = &TREE_VALUE (shadowed);
		/* Can't break out of the loop here because sometimes
		   a binding level will have duplicate bindings for
		   PT names.  It's gross, but I haven't time to fix it.  */
              }
        }
      newval = TREE_TYPE (x);
      if (ptr == (tree *)0)
        {
          /* @@ This shouldn't be needed.  My test case "zstring.cc" trips
             up here if this is changed to an assertion.  --KR  */
	  SET_IDENTIFIER_TYPE_VALUE (name, newval);
	}
      else
        {
	  *ptr = newval;
        }
    }
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
}

/* Like pushdecl, only it places X in GLOBAL_BINDING_LEVEL,
   if appropriate.  */

tree
pushdecl_top_level (x)
     tree x;
{
  timevar_push (TV_NAME_LOOKUP);
  push_to_top_level ();
  x = pushdecl_namespace_level (x);
  pop_from_top_level ();
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, x);
}

/* Make the declaration of X appear in CLASS scope.  */

void
pushdecl_class_level (x)
     tree x;
{
  tree name;

  timevar_push (TV_NAME_LOOKUP);
  /* Get the name of X.  */
  if (TREE_CODE (x) == OVERLOAD)
    name = DECL_NAME (get_first_fn (x));
  else
    name = DECL_NAME (x);

  if (name)
    {
      push_class_level_binding (name, x);
      if (TREE_CODE (x) == TYPE_DECL)
	set_identifier_type_value (name, TREE_TYPE (x));
    }
  else if (ANON_AGGR_TYPE_P (TREE_TYPE (x)))
    {
      /* If X is an anonymous aggregate, all of its members are
	 treated as if they were members of the class containing the
	 aggregate, for naming purposes.  */
      tree f;

      for (f = TYPE_FIELDS (TREE_TYPE (x)); f; f = TREE_CHAIN (f))
	pushdecl_class_level (f);
    }
  timevar_pop (TV_NAME_LOOKUP);
}

/* Enter DECL into the symbol table, if that's appropriate.  Returns
   DECL, or a modified version thereof.  */

tree
maybe_push_decl (decl)
     tree decl;
{
  tree type = TREE_TYPE (decl);

  /* Add this decl to the current binding level, but not if it comes
     from another scope, e.g. a static member variable.  TEM may equal
     DECL or it may be a previous decl of the same name.  */
  if (decl == error_mark_node
      || (TREE_CODE (decl) != PARM_DECL
	  && DECL_CONTEXT (decl) != NULL_TREE
	  /* Definitions of namespace members outside their namespace are
	     possible.  */
	  && TREE_CODE (DECL_CONTEXT (decl)) != NAMESPACE_DECL)
      || (TREE_CODE (decl) == TEMPLATE_DECL && !namespace_bindings_p ())
      || TREE_CODE (type) == UNKNOWN_TYPE
      /* The declaration of a template specialization does not affect
	 the functions available for overload resolution, so we do not
	 call pushdecl.  */
      || (TREE_CODE (decl) == FUNCTION_DECL
	  && DECL_TEMPLATE_SPECIALIZATION (decl)))
    return decl;
  else
    return pushdecl (decl);
}

/* Make the declaration(s) of X appear in CLASS scope
   under the name NAME.  */

void
push_class_level_binding (name, x)
     tree name;
     tree x;
{
  cxx_binding *binding;
  
  timevar_push (TV_NAME_LOOKUP);
  /* The class_binding_level will be NULL if x is a template
     parameter name in a member template.  */
  if (!class_binding_level)
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, (void)0);

  /* Make sure that this new member does not have the same name
     as a template parameter.  */
  if (TYPE_BEING_DEFINED (current_class_type))
    check_template_shadow (x);

  /* If this declaration shadows a declaration from an enclosing
     class, then we will need to restore IDENTIFIER_CLASS_VALUE when
     we leave this class.  Record the shadowed declaration here.  */
  binding = IDENTIFIER_BINDING (name);
  if (binding
      && ((TREE_CODE (x) == OVERLOAD
	   && BINDING_VALUE (binding)
	   && is_overloaded_fn (BINDING_VALUE (binding)))
	  || INHERITED_VALUE_BINDING_P (binding)))
    {
      tree shadow;
      tree old_decl;

      /* If the old binding was from a base class, and was for a tag
	 name, slide it over to make room for the new binding.  The
	 old binding is still visible if explicitly qualified with a
	 class-key.  */
      if (INHERITED_VALUE_BINDING_P (binding)
	  && BINDING_VALUE (binding)
	  && TREE_CODE (BINDING_VALUE (binding)) == TYPE_DECL
	  && DECL_ARTIFICIAL (BINDING_VALUE (binding))
	  && !(TREE_CODE (x) == TYPE_DECL && DECL_ARTIFICIAL (x)))
	{
	  old_decl = BINDING_TYPE (binding);
	  BINDING_TYPE (binding) = BINDING_VALUE (binding);
	  BINDING_VALUE (binding) = NULL_TREE;
	  INHERITED_VALUE_BINDING_P (binding) = 0;
	}
      else
	old_decl = BINDING_VALUE (binding);

      /* Find the previous binding of name on the class-shadowed
         list, and update it.  */
      for (shadow = class_binding_level->class_shadowed;
	   shadow;
	   shadow = TREE_CHAIN (shadow))
	if (TREE_PURPOSE (shadow) == name
	    && TREE_TYPE (shadow) == old_decl)
	  {
	    BINDING_VALUE (binding) = x;
	    INHERITED_VALUE_BINDING_P (binding) = 0;
	    TREE_TYPE (shadow) = x;
	    IDENTIFIER_CLASS_VALUE (name) = x;
	    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, (void)0);
	  }
    }

  /* If we didn't replace an existing binding, put the binding on the
     stack of bindings for the identifier, and update the shadowed list.  */
  if (push_class_binding (name, x))
    {
      class_binding_level->class_shadowed
	= tree_cons (name, NULL,
		     class_binding_level->class_shadowed);
      /* Record the value we are binding NAME to so that we can know
	 what to pop later.  */
      TREE_TYPE (class_binding_level->class_shadowed) = x;
    }
  timevar_pop (TV_NAME_LOOKUP);
}

/* Insert another USING_DECL into the current binding level, returning
   this declaration. If this is a redeclaration, do nothing, and
   return NULL_TREE if this not in namespace scope (in namespace
   scope, a using decl might extend any previous bindings).  */

tree
push_using_decl (scope, name)
     tree scope;
     tree name;
{
  tree decl;

  timevar_push (TV_NAME_LOOKUP);

  my_friendly_assert (TREE_CODE (scope) == NAMESPACE_DECL, 383);
  my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 384);
  for (decl = current_binding_level->usings; decl; decl = TREE_CHAIN (decl))
    if (DECL_INITIAL (decl) == scope && DECL_NAME (decl) == name)
      break;
  if (decl)
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP,
			    namespace_bindings_p () ? decl : NULL_TREE);
  decl = build_lang_decl (USING_DECL, name, void_type_node);
  DECL_INITIAL (decl) = scope;
  TREE_CHAIN (decl) = current_binding_level->usings;
  current_binding_level->usings = decl;
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
}

/* Add namespace to using_directives. Return NULL_TREE if nothing was
   changed (i.e. there was already a directive), or the fresh
   TREE_LIST otherwise.  */

tree
push_using_directive (used)
     tree used;
{
  tree ud = current_binding_level->using_directives;
  tree iter, ancestor;

  timevar_push (TV_NAME_LOOKUP);

  /* Check if we already have this.  */
  if (purpose_member (used, ud) != NULL_TREE)
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);

  /* Recursively add all namespaces used.  */
  for (iter = DECL_NAMESPACE_USING (used); iter; iter = TREE_CHAIN (iter))
    push_using_directive (TREE_PURPOSE (iter));

  ancestor = namespace_ancestor (current_decl_namespace (), used);
  ud = current_binding_level->using_directives;
  ud = tree_cons (used, ancestor, ud);
  current_binding_level->using_directives = ud;
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, ud);
}

/* DECL is a FUNCTION_DECL for a non-member function, which may have
   other definitions already in place.  We get around this by making
   the value of the identifier point to a list of all the things that
   want to be referenced by that name.  It is then up to the users of
   that name to decide what to do with that list.

   DECL may also be a TEMPLATE_DECL, with a FUNCTION_DECL in its
   DECL_TEMPLATE_RESULT.  It is dealt with the same way.

   FLAGS is a bitwise-or of the following values:
     PUSH_LOCAL: Bind DECL in the current scope, rather than at
                 namespace scope.
     PUSH_USING: DECL is being pushed as the result of a using
                 declaration.

   The value returned may be a previous declaration if we guessed wrong
   about what language DECL should belong to (C or C++).  Otherwise,
   it's always DECL (and never something that's not a _DECL).  */

tree
push_overloaded_decl (decl, flags)
     tree decl;
     int flags;
{
  tree name = DECL_NAME (decl);
  tree old;
  tree new_binding;
  int doing_global = (namespace_bindings_p () || !(flags & PUSH_LOCAL));

  timevar_push (TV_NAME_LOOKUP);

  if (doing_global)
    old = namespace_binding (name, DECL_CONTEXT (decl));
  else
    old = lookup_name_current_level (name);

  if (old)
    {
      if (TREE_CODE (old) == TYPE_DECL && DECL_ARTIFICIAL (old))
	{
	  tree t = TREE_TYPE (old);
	  if (IS_AGGR_TYPE (t) && warn_shadow
	      && (! DECL_IN_SYSTEM_HEADER (decl)
		  || ! DECL_IN_SYSTEM_HEADER (old)))
	    warning ("`%#D' hides constructor for `%#T'", decl, t);
	  old = NULL_TREE;
	}
      else if (is_overloaded_fn (old))
        {
          tree tmp;

	  for (tmp = old; tmp; tmp = OVL_NEXT (tmp))
	    {
	      tree fn = OVL_CURRENT (tmp);

	      if (TREE_CODE (tmp) == OVERLOAD && OVL_USED (tmp)
		  && !(flags & PUSH_USING)
		  && compparms (TYPE_ARG_TYPES (TREE_TYPE (fn)),
				TYPE_ARG_TYPES (TREE_TYPE (decl))))
		error ("`%#D' conflicts with previous using declaration `%#D'",
			  decl, fn);

	      if (duplicate_decls (decl, fn))
		POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, fn);
	    }
	}
      else if (old == error_mark_node)
	/* Ignore the undefined symbol marker.  */
	old = NULL_TREE;
      else
	{
	  cp_error_at ("previous non-function declaration `%#D'", old);
	  error ("conflicts with function declaration `%#D'", decl);
	  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
	}
    }

  if (old || TREE_CODE (decl) == TEMPLATE_DECL)
    {
      if (old && TREE_CODE (old) != OVERLOAD)
	new_binding = ovl_cons (decl, ovl_cons (old, NULL_TREE));
      else
	new_binding = ovl_cons (decl, old);
      if (flags & PUSH_USING)
	OVL_USED (new_binding) = 1;
    }
  else
    /* NAME is not ambiguous.  */
    new_binding = decl;

  if (doing_global)
    set_namespace_binding (name, current_namespace, new_binding);
  else
    {
      /* We only create an OVERLOAD if there was a previous binding at
	 this level, or if decl is a template. In the former case, we
	 need to remove the old binding and replace it with the new
	 binding.  We must also run through the NAMES on the binding
	 level where the name was bound to update the chain.  */

      if (TREE_CODE (new_binding) == OVERLOAD && old)
	{
	  tree *d;

	  for (d = &BINDING_LEVEL (IDENTIFIER_BINDING (name))->names;
	       *d;
	       d = &TREE_CHAIN (*d))
	    if (*d == old
		|| (TREE_CODE (*d) == TREE_LIST
		    && TREE_VALUE (*d) == old))
	      {
		if (TREE_CODE (*d) == TREE_LIST)
		  /* Just replace the old binding with the new.  */
		  TREE_VALUE (*d) = new_binding;
		else
		  /* Build a TREE_LIST to wrap the OVERLOAD.  */
		  *d = tree_cons (NULL_TREE, new_binding,
				  TREE_CHAIN (*d));

		/* And update the cxx_binding node.  */
		BINDING_VALUE (IDENTIFIER_BINDING (name))
		  = new_binding;
		POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
	      }

	  /* We should always find a previous binding in this case.  */
	  abort ();
	}

      /* Install the new binding.  */
      push_local_binding (name, new_binding, flags);
    }

  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
}

/* Generate an implicit declaration for identifier FUNCTIONID
   as a function of type int ().  Print a warning if appropriate.  */

tree
implicitly_declare (functionid)
     tree functionid;
{
  register tree decl;

  /* We used to reuse an old implicit decl here,
     but this loses with inline functions because it can clobber
     the saved decl chains.  */
  decl = build_lang_decl (FUNCTION_DECL, functionid, default_function_type);

  DECL_EXTERNAL (decl) = 1;
  TREE_PUBLIC (decl) = 1;

  /* ISO standard says implicit declarations are in the innermost block.
     So we record the decl in the standard fashion.  */
  pushdecl (decl);
  rest_of_decl_compilation (decl, NULL, 0, 0);

  if (warn_implicit
      /* Only one warning per identifier.  */
      && IDENTIFIER_IMPLICIT_DECL (functionid) == NULL_TREE)
    {
      pedwarn ("implicit declaration of function `%#D'", decl);
    }

  SET_IDENTIFIER_IMPLICIT_DECL (functionid, decl);

  return decl;
}

/* Return zero if the declaration NEWDECL is valid
   when the declaration OLDDECL (assumed to be for the same name)
   has already been seen.
   Otherwise return an error message format string with a %s
   where the identifier should go.  */

static const char *
redeclaration_error_message (newdecl, olddecl)
     tree newdecl, olddecl;
{
  if (TREE_CODE (newdecl) == TYPE_DECL)
    {
      /* Because C++ can put things into name space for free,
	 constructs like "typedef struct foo { ... } foo"
	 would look like an erroneous redeclaration.  */
      if (same_type_p (TREE_TYPE (newdecl), TREE_TYPE (olddecl)))
	return 0;
      else
	return "redefinition of `%#D'";
    }
  else if (TREE_CODE (newdecl) == FUNCTION_DECL)
    {
      /* If this is a pure function, its olddecl will actually be
	 the original initialization to `0' (which we force to call
	 abort()).  Don't complain about redefinition in this case.  */
      if (DECL_LANG_SPECIFIC (olddecl) && DECL_PURE_VIRTUAL_P (olddecl))
	return 0;

      /* If both functions come from different namespaces, this is not
	 a redeclaration - this is a conflict with a used function.  */
      if (DECL_NAMESPACE_SCOPE_P (olddecl)
	  && DECL_CONTEXT (olddecl) != DECL_CONTEXT (newdecl))
	return "`%D' conflicts with used function";

      /* We'll complain about linkage mismatches in
         warn_extern_redeclared_static.  */

      /* Defining the same name twice is no good.  */
      if (DECL_INITIAL (olddecl) != NULL_TREE
	  && DECL_INITIAL (newdecl) != NULL_TREE)
	{
	  if (DECL_NAME (olddecl) == NULL_TREE)
	    return "`%#D' not declared in class";
	  else
	    return "redefinition of `%#D'";
	}
      return 0;
    }
  else if (TREE_CODE (newdecl) == TEMPLATE_DECL)
    {
      if ((TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == FUNCTION_DECL
	   && (DECL_TEMPLATE_RESULT (newdecl)
	       != DECL_TEMPLATE_RESULT (olddecl))
	   && DECL_INITIAL (DECL_TEMPLATE_RESULT (newdecl))
	   && DECL_INITIAL (DECL_TEMPLATE_RESULT (olddecl)))
	  || (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL
	      && COMPLETE_TYPE_P (TREE_TYPE (newdecl))
	      && COMPLETE_TYPE_P (TREE_TYPE (olddecl))))
	return "redefinition of `%#D'";
      return 0;
    }
  else if (toplevel_bindings_p () || DECL_NAMESPACE_SCOPE_P (newdecl))
    {
      /* Objects declared at top level:  */
      /* If at least one is a reference, it's ok.  */
      if (DECL_EXTERNAL (newdecl) || DECL_EXTERNAL (olddecl))
	return 0;
      /* Reject two definitions.  */
      return "redefinition of `%#D'";
    }
  else
    {
      /* Objects declared with block scope:  */
      /* Reject two definitions, and reject a definition
	 together with an external reference.  */
      if (!(DECL_EXTERNAL (newdecl) && DECL_EXTERNAL (olddecl)))
	return "redeclaration of `%#D'";
      return 0;
    }
}

/* Create a new label, named ID.  */

static tree
make_label_decl (id, local_p)
     tree id;
     int local_p;
{
  tree decl;

  decl = build_decl (LABEL_DECL, id, void_type_node);
  if (expanding_p)
    /* Make sure every label has an rtx.  */
    label_rtx (decl);

  DECL_CONTEXT (decl) = current_function_decl;
  DECL_MODE (decl) = VOIDmode;
  C_DECLARED_LABEL_FLAG (decl) = local_p;

  /* Say where one reference is to the label, for the sake of the
     error if it is not defined.  */
  DECL_SOURCE_LINE (decl) = lineno;
  DECL_SOURCE_FILE (decl) = input_filename;

  /* Record the fact that this identifier is bound to this label.  */
  SET_IDENTIFIER_LABEL_VALUE (id, decl);

  return decl;
}

/* Record this label on the list of used labels so that we can check
   at the end of the function to see whether or not the label was
   actually defined, and so we can check when the label is defined whether
   this use is valid.  */

static void
use_label (decl)
     tree decl;
{
  if (named_label_uses == NULL
      || named_label_uses->names_in_scope != current_binding_level->names
      || named_label_uses->label_decl != decl)
    {
      struct named_label_use_list *new_ent;
      new_ent = ((struct named_label_use_list *)
		 ggc_alloc (sizeof (struct named_label_use_list)));
      new_ent->label_decl = decl;
      new_ent->names_in_scope = current_binding_level->names;
      new_ent->binding_level = current_binding_level;
      new_ent->lineno_o_goto = lineno;
      new_ent->filename_o_goto = input_filename;
      new_ent->next = named_label_uses;
      named_label_uses = new_ent;
    }
}

/* Look for a label named ID in the current function.  If one cannot
   be found, create one.  (We keep track of used, but undefined,
   labels, and complain about them at the end of a function.)  */

tree
lookup_label (id)
     tree id;
{
  tree decl;
  struct named_label_list *ent;

  timevar_push (TV_NAME_LOOKUP);

  /* You can't use labels at global scope.  */
  if (current_function_decl == NULL_TREE)
    {
      error ("label `%s' referenced outside of any function",
	     IDENTIFIER_POINTER (id));
      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
    }

  /* See if we've already got this label.  */
  decl = IDENTIFIER_LABEL_VALUE (id);
  if (decl != NULL_TREE && DECL_CONTEXT (decl) == current_function_decl)
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);

  /* Record this label on the list of labels used in this function.
     We do this before calling make_label_decl so that we get the
     IDENTIFIER_LABEL_VALUE before the new label is declared.  */
  ent = ((struct named_label_list *)
	 ggc_alloc_cleared (sizeof (struct named_label_list)));
  ent->old_value = IDENTIFIER_LABEL_VALUE (id);
  ent->next = named_labels;
  named_labels = ent;

  /* We need a new label.  */
  decl = make_label_decl (id, /*local_p=*/0);

  /* Now fill in the information we didn't have before.  */
  ent->label_decl = decl;

  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
}

/* Declare a local label named ID.  */

tree
declare_local_label (id)
     tree id;
{
  tree decl;

  /* Add a new entry to the SHADOWED_LABELS list so that when we leave
     this scope we can restore the old value of
     IDENTIFIER_TYPE_VALUE.  */
  current_binding_level->shadowed_labels
    = tree_cons (IDENTIFIER_LABEL_VALUE (id), NULL_TREE,
		 current_binding_level->shadowed_labels);
  /* Look for the label.  */
  decl = make_label_decl (id, /*local_p=*/1);
  /* Now fill in the information we didn't have before.  */
  TREE_VALUE (current_binding_level->shadowed_labels) = decl;

  return decl;
}

/* Returns nonzero if it is ill-formed to jump past the declaration of
   DECL.  Returns 2 if it's also a real problem.  */

static int
decl_jump_unsafe (decl)
     tree decl;
{
  if (TREE_CODE (decl) != VAR_DECL || TREE_STATIC (decl))
    return 0;

  if (DECL_INITIAL (decl) == NULL_TREE
      && pod_type_p (TREE_TYPE (decl)))
    return 0;

  /* This is really only important if we're crossing an initialization.
     The POD stuff is just pedantry; why should it matter if the class
     contains a field of pointer to member type?  */
  if (DECL_INITIAL (decl)
      || (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl))))
    return 2;
  return 1;
}

/* Check that a single previously seen jump to a newly defined label
   is OK.  DECL is the LABEL_DECL or 0; LEVEL is the binding_level for
   the jump context; NAMES are the names in scope in LEVEL at the jump
   context; FILE and LINE are the source position of the jump or 0.  */

static void
check_previous_goto_1 (decl, level, names, file, line)
     tree decl;
     struct cp_binding_level *level;
     tree names;
     const char *file;
     int line;
{
  int identified = 0;
  int saw_eh = 0;
  struct cp_binding_level *b = current_binding_level;
  for (; b; b = b->level_chain)
    {
      tree new_decls = b->names;
      tree old_decls = (b == level ? names : NULL_TREE);
      for (; new_decls != old_decls;
	   new_decls = TREE_CHAIN (new_decls))
	{
	  int problem = decl_jump_unsafe (new_decls);
	  if (! problem)
	    continue;

	  if (! identified)
	    {
	      if (decl)
		pedwarn ("jump to label `%D'", decl);
	      else
		pedwarn ("jump to case label");

	      if (file)
		pedwarn_with_file_and_line (file, line, "  from here");
	      identified = 1;
	    }

	  if (problem > 1)
	    cp_error_at ("  crosses initialization of `%#D'",
			 new_decls);
	  else
	    cp_pedwarn_at ("  enters scope of non-POD `%#D'",
			   new_decls);
	}

      if (b == level)
	break;
      if ((b->is_try_scope || b->is_catch_scope) && ! saw_eh)
	{
	  if (! identified)
	    {
	      if (decl)
		pedwarn ("jump to label `%D'", decl);
	      else
		pedwarn ("jump to case label");

	      if (file)
		pedwarn_with_file_and_line (file, line, "  from here");
	      identified = 1;
	    }
	  if (b->is_try_scope)
	    error ("  enters try block");
	  else
	    error ("  enters catch block");
	  saw_eh = 1;
	}
    }
}

static void
check_previous_goto (use)
     struct named_label_use_list *use;
{
  check_previous_goto_1 (use->label_decl, use->binding_level,
			 use->names_in_scope, use->filename_o_goto,
			 use->lineno_o_goto);
}

static void
check_switch_goto (level)
     struct cp_binding_level *level;
{
  check_previous_goto_1 (NULL_TREE, level, level->names, NULL, 0);
}

/* Check that any previously seen jumps to a newly defined label DECL
   are OK.  Called by define_label.  */

static void
check_previous_gotos (decl)
     tree decl;
{
  struct named_label_use_list **usep;

  if (! TREE_USED (decl))
    return;

  for (usep = &named_label_uses; *usep; )
    {
      struct named_label_use_list *use = *usep;
      if (use->label_decl == decl)
	{
	  check_previous_goto (use);
	  *usep = use->next;
	}
      else
	usep = &(use->next);
    }
}

/* Check that a new jump to a label DECL is OK.  Called by
   finish_goto_stmt.  */

void
check_goto (decl)
     tree decl;
{
  int identified = 0;
  tree bad;
  struct named_label_list *lab;

  /* We can't know where a computed goto is jumping.  So we assume
     that it's OK.  */
  if (! DECL_P (decl))
    return;

  /* If the label hasn't been defined yet, defer checking.  */
  if (! DECL_INITIAL (decl))
    {
      use_label (decl);
      return;
    }

  for (lab = named_labels; lab; lab = lab->next)
    if (decl == lab->label_decl)
      break;

  /* If the label is not on named_labels it's a gcc local label, so
     it must be in an outer scope, so jumping to it is always OK.  */
  if (lab == 0)
    return;

  if ((lab->in_try_scope || lab->in_catch_scope || lab->bad_decls)
      && !identified)
    {
      cp_pedwarn_at ("jump to label `%D'", decl);
      pedwarn ("  from here");
      identified = 1;
    }

  for (bad = lab->bad_decls; bad; bad = TREE_CHAIN (bad))
    {
      tree b = TREE_VALUE (bad);
      int u = decl_jump_unsafe (b);

      if (u > 1 && DECL_ARTIFICIAL (b))
	/* Can't skip init of __exception_info.  */
	cp_error_at ("  enters catch block", b);
      else if (u > 1)
	cp_error_at ("  skips initialization of `%#D'", b);
      else
	cp_pedwarn_at ("  enters scope of non-POD `%#D'", b);
    }

  if (lab->in_try_scope)
    error ("  enters try block");
  else if (lab->in_catch_scope)
    error ("  enters catch block");
}

/* Define a label, specifying the location in the source file.
   Return the LABEL_DECL node for the label, if the definition is valid.
   Otherwise return 0.  */

tree
define_label (filename, line, name)
     const char *filename;
     int line;
     tree name;
{
  tree decl = lookup_label (name);
  struct named_label_list *ent;
  register struct cp_binding_level *p;

  timevar_push (TV_NAME_LOOKUP);

  for (ent = named_labels; ent; ent = ent->next)
    if (ent->label_decl == decl)
      break;

  /* After labels, make any new cleanups in the function go into their
     own new (temporary) binding contour.  */
  for (p = current_binding_level; !(p->parm_flag); p = p->level_chain)
    p->more_cleanups_ok = 0;

  if (name == get_identifier ("wchar_t"))
    pedwarn ("label named wchar_t");

  if (DECL_INITIAL (decl) != NULL_TREE)
    {
      error ("duplicate label `%D'", decl);
      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
    }
  else
    {
      /* Mark label as having been defined.  */
      DECL_INITIAL (decl) = error_mark_node;
      /* Say where in the source.  */
      DECL_SOURCE_FILE (decl) = filename;
      DECL_SOURCE_LINE (decl) = line;
      if (ent)
	{
	  ent->names_in_scope = current_binding_level->names;
	  ent->binding_level = current_binding_level;
	}
      check_previous_gotos (decl);
      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
    }
  timevar_pop (TV_NAME_LOOKUP);
}

struct cp_switch
{
  struct cp_binding_level *level;
  struct cp_switch *next;
  /* The SWITCH_STMT being built.  */
  tree switch_stmt;
  /* A splay-tree mapping the low element of a case range to the high
     element, or NULL_TREE if there is no high element.  Used to
     determine whether or not a new case label duplicates an old case
     label.  We need a tree, rather than simply a hash table, because
     of the GNU case range extension.  */
  splay_tree cases;
};

/* A stack of the currently active switch statements.  The innermost
   switch statement is on the top of the stack.  There is no need to
   mark the stack for garbage collection because it is only active
   during the processing of the body of a function, and we never
   collect at that point.  */

static struct cp_switch *switch_stack;

/* Called right after a switch-statement condition is parsed.
   SWITCH_STMT is the switch statement being parsed.  */

void
push_switch (switch_stmt)
     tree switch_stmt;
{
  struct cp_switch *p
    = (struct cp_switch *) xmalloc (sizeof (struct cp_switch));
  p->level = current_binding_level;
  p->next = switch_stack;
  p->switch_stmt = switch_stmt;
  p->cases = splay_tree_new (case_compare, NULL, NULL);
  switch_stack = p;
}

void
pop_switch ()
{
  struct cp_switch *cs;

  cs = switch_stack;
  splay_tree_delete (cs->cases);
  switch_stack = switch_stack->next;
  free (cs);
}

/* Note that we've seen a definition of a case label, and complain if this
   is a bad place for one.  */

tree
finish_case_label (low_value, high_value)
     tree low_value;
     tree high_value;
{
  tree cond, r;
  register struct cp_binding_level *p;

  if (! switch_stack)
    {
      if (high_value)
	error ("case label not within a switch statement");
      else if (low_value)
	error ("case label `%E' not within a switch statement",
		  low_value);
      else
	error ("`default' label not within a switch statement");
      return NULL_TREE;
    }

  if (processing_template_decl)
    {
      tree label;

      /* For templates, just add the case label; we'll do semantic
	 analysis at instantiation-time.  */
      label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
      return add_stmt (build_case_label (low_value, high_value, label));
    }

  /* Find the condition on which this switch statement depends.  */
  cond = SWITCH_COND (switch_stack->switch_stmt);
  if (cond && TREE_CODE (cond) == TREE_LIST)
    cond = TREE_VALUE (cond);

  r = c_add_case_label (switch_stack->cases, cond, low_value, high_value);
  if (r == error_mark_node)
    r = NULL_TREE;

  check_switch_goto (switch_stack->level);

  /* After labels, make any new cleanups in the function go into their
     own new (temporary) binding contour.  */
  for (p = current_binding_level; !(p->parm_flag); p = p->level_chain)
    p->more_cleanups_ok = 0;

  return r;
}

/* Return the list of declarations of the current level.
   Note that this list is in reverse order unless/until
   you nreverse it; and when you do nreverse it, you must
   store the result back using `storedecls' or you will lose.  */

tree
getdecls ()
{
  return current_binding_level->names;
}

/* Return the list of type-tags (for structs, etc) of the current level.  */

tree
gettags ()
{
  return current_binding_level->tags;
}

/* Store the list of declarations of the current level.
   This is done for the parameter declarations of a function being defined,
   after they are modified in the light of any missing parameters.  */

static void
storedecls (decls)
     tree decls;
{
  current_binding_level->names = decls;
}

/* Similarly, store the list of tags of the current level.  */

void
storetags (tags)
     tree tags;
{
  current_binding_level->tags = tags;
}

/* Return the type that should be used when TYPE's name is preceded
   by a tag such as 'struct' or 'union', or null if the name cannot
   be used in this way.

   For example, when processing the third line of:

	struct A;
	typedef struct A A;
	struct A;

   lookup of A will find the typedef.  Given A's typedef, this function
   will return the type associated with "struct A".  For the tag to be
   anything other than TYPE, TYPE must be a typedef whose original type
   has the same name and context as TYPE itself.

   It is not valid for a typedef of an anonymous type to be used with
   an explicit tag:

       typedef struct { ... } B;
       struct B;

   Return null for this case.  */

static tree
follow_tag_typedef (type)
     tree type;
{
  tree original;

  original = original_type (type);
  if (! TYPE_NAME (original))
    return NULL_TREE;
  if (TYPE_IDENTIFIER (original) == TYPE_IDENTIFIER (type)
      && (CP_DECL_CONTEXT (TYPE_NAME (original))
	  == CP_DECL_CONTEXT (TYPE_NAME (type)))
      && !(CLASS_TYPE_P (original) && TYPE_WAS_ANONYMOUS (original)))
    return original;
  else
    return NULL_TREE;
}

/* Given NAME, an IDENTIFIER_NODE,
   return the structure (or union or enum) definition for that name.
   Searches binding levels from BINDING_LEVEL up to the global level.
   If THISLEVEL_ONLY is nonzero, searches only the specified context
   (but skips any tag-transparent contexts to find one that is
   meaningful for tags).
   FORM says which kind of type the caller wants;
   it is RECORD_TYPE or UNION_TYPE or ENUMERAL_TYPE.
   If the wrong kind of type is found, and it's not a template, an error is
   reported.  */

static tree
lookup_tag (form, name, binding_level, thislevel_only)
     enum tree_code form;
     tree name;
     struct cp_binding_level *binding_level;
     int thislevel_only;
{
  register struct cp_binding_level *level;
  /* Nonzero if, we should look past a template parameter level, even
     if THISLEVEL_ONLY.  */
  int allow_template_parms_p = 1;

  timevar_push (TV_NAME_LOOKUP);

  for (level = binding_level; level; level = level->level_chain)
    {
      register tree tail;
      if (ANON_AGGRNAME_P (name))
	for (tail = level->tags; tail; tail = TREE_CHAIN (tail))
	  {
	    /* There's no need for error checking here, because
	       anon names are unique throughout the compilation.  */
	    if (TYPE_IDENTIFIER (TREE_VALUE (tail)) == name)
	      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, TREE_VALUE (tail));
	  }
      else if (level->namespace_p)
	/* Do namespace lookup.  */
	for (tail = current_namespace; 1; tail = CP_DECL_CONTEXT (tail))
	  {
	    cxx_binding *binding =
              cxx_scope_find_binding_for_name (tail, name);
            tree old;

	    /* If we just skipped past a template parameter level,
	       even though THISLEVEL_ONLY, and we find a template
	       class declaration, then we use the _TYPE node for the
	       template.  See the example below.  */
	    if (thislevel_only && !allow_template_parms_p
		&& binding && BINDING_VALUE (binding)
		&& DECL_CLASS_TEMPLATE_P (BINDING_VALUE (binding)))
	      old = TREE_TYPE (BINDING_VALUE (binding));
	    else if (binding)
	      old = BINDING_TYPE (binding);
            else
              old = NULL;

	    if (old)
	      {
		/* We've found something at this binding level.  If it is
		   a typedef, extract the tag it refers to.  Lookup fails
		   if the typedef doesn't refer to a taggable type.  */
		old = follow_tag_typedef (old);
		if (!old)
		  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
		if (TREE_CODE (old) != form
		    && (form == ENUMERAL_TYPE
			|| TREE_CODE (old) == ENUMERAL_TYPE))
		  {
		    error ("`%#D' redeclared as %C", old, form);
		    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
		  }
		POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, old);
	      }
	    if (thislevel_only || tail == global_namespace)
	      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
	  }
      else
	for (tail = level->tags; tail; tail = TREE_CHAIN (tail))
	  {
	    if (TREE_PURPOSE (tail) == name)
	      {
		enum tree_code code = TREE_CODE (TREE_VALUE (tail));
		
		if (code != form
		    && (form == ENUMERAL_TYPE || code == ENUMERAL_TYPE))
		  {
		    /* Definition isn't the kind we were looking for.  */
		    error ("`%#D' redeclared as %C", TREE_VALUE (tail), form);
		    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
		  }
		POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, TREE_VALUE (tail));
	      }
	  }
      if (thislevel_only && ! level->tag_transparent)
	{
	  if (level->template_parms_p && allow_template_parms_p)
	    {
	      /* We must deal with cases like this:

	           template <class T> struct S;
		   template <class T> struct S {};

		 When looking up `S', for the second declaration, we
		 would like to find the first declaration.  But, we
		 are in the pseudo-global level created for the
		 template parameters, rather than the (surrounding)
		 namespace level.  Thus, we keep going one more level,
		 even though THISLEVEL_ONLY is nonzero.  */
	      allow_template_parms_p = 0;
	      continue;
	    }
	  else
	    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
	}
    }
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
}

#if 0
void
set_current_level_tags_transparency (tags_transparent)
     int tags_transparent;
{
  current_binding_level->tag_transparent = tags_transparent;
}
#endif

/* Given a type, find the tag that was defined for it and return the tag name.
   Otherwise return 0.  However, the value can never be 0
   in the cases in which this is used.

   C++: If NAME is nonzero, this is the new name to install.  This is
   done when replacing anonymous tags with real tag names.  */

static tree
lookup_tag_reverse (type, name)
     tree type;
     tree name;
{
  register struct cp_binding_level *level;

  timevar_push (TV_NAME_LOOKUP);

  for (level = current_binding_level; level; level = level->level_chain)
    {
      register tree tail;
      for (tail = level->tags; tail; tail = TREE_CHAIN (tail))
	{
	  if (TREE_VALUE (tail) == type)
	    {
	      if (name)
		TREE_PURPOSE (tail) = name;
	      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, TREE_PURPOSE (tail));
	    }
	}
    }
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
}

/* Look up NAME in the NAMESPACE.  */

tree
lookup_namespace_name (namespace, name)
     tree namespace, name;
{
  tree val;
  tree template_id = NULL_TREE;
  cxx_binding binding;

  timevar_push (TV_NAME_LOOKUP);

  my_friendly_assert (TREE_CODE (namespace) == NAMESPACE_DECL, 370);

  if (TREE_CODE (name) == NAMESPACE_DECL)
    /* This happens for A::B<int> when B is a namespace.  */
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, name);
  else if (TREE_CODE (name) == TEMPLATE_DECL)
    {
      /* This happens for A::B where B is a template, and there are no
	 template arguments.  */
      error ("invalid use of `%D'", name);
      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
    }

  namespace = ORIGINAL_NAMESPACE (namespace);

  if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
    {
      template_id = name;
      name = TREE_OPERAND (name, 0);
      if (TREE_CODE (name) == OVERLOAD)
	name = DECL_NAME (OVL_CURRENT (name));
      else if (DECL_P (name))
	name = DECL_NAME (name);
    }

  my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 373);

  cxx_binding_clear (&binding);
  if (!qualified_lookup_using_namespace (name, namespace, &binding, 0))
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);

  if (binding.value)
    {
      val = binding.value;

      if (template_id)
	{
	  if (DECL_CLASS_TEMPLATE_P (val))
	    val = lookup_template_class (val,
					 TREE_OPERAND (template_id, 1),
					 /*in_decl=*/NULL_TREE,
					 /*context=*/NULL_TREE,
					 /*entering_scope=*/0,
	                                 tf_error | tf_warning);
	  else if (DECL_FUNCTION_TEMPLATE_P (val)
		   || TREE_CODE (val) == OVERLOAD)
	    val = lookup_template_function (val,
					    TREE_OPERAND (template_id, 1));
	  else
	    {
	      error ("`%D::%D' is not a template",
			namespace, name);
	      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
	    }
	}

      /* If we have a single function from a using decl, pull it out.  */
      if (TREE_CODE (val) == OVERLOAD && ! really_overloaded_fn (val))
	val = OVL_FUNCTION (val);

      /* Ignore built-in functions that haven't been prototyped yet.  */
      if (!val || !DECL_P(val)
          || !DECL_LANG_SPECIFIC(val)
          || !DECL_ANTICIPATED (val))
        POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, val);
    }

  error ("`%D' undeclared in namespace `%D'", name, namespace);
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
}

/* Hash a TYPENAME_TYPE.  K is really of type `tree'.  */

static hashval_t
typename_hash (k)
     const void * k;
{
  hashval_t hash;
  tree t = (tree) k;

  hash = (htab_hash_pointer (TYPE_CONTEXT (t))
	  ^ htab_hash_pointer (DECL_NAME (TYPE_NAME (t))));

  return hash;
}

/* Compare two TYPENAME_TYPEs.  K1 and K2 are really of type `tree'.  */

static int
typename_compare (k1, k2)
     const void * k1;
     const void * k2;
{
  tree t1;
  tree t2;
  tree d1;
  tree d2;

  t1 = (tree) k1;
  t2 = (tree) k2;
  d1 = TYPE_NAME (t1);
  d2 = TYPE_NAME (t2);

  return (DECL_NAME (d1) == DECL_NAME (d2)
	  && TYPE_CONTEXT (t1) == TYPE_CONTEXT (t2)
	  && ((TREE_TYPE (t1) != NULL_TREE)
	      == (TREE_TYPE (t2) != NULL_TREE))
	  && same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
	  && TYPENAME_TYPE_FULLNAME (t1) == TYPENAME_TYPE_FULLNAME (t2));
}

/* Build a TYPENAME_TYPE.  If the type is `typename T::t', CONTEXT is
   the type of `T', NAME is the IDENTIFIER_NODE for `t'.  If BASE_TYPE
   is non-NULL, this type is being created by the implicit typename
   extension, and BASE_TYPE is a type named `t' in some base class of
   `T' which depends on template parameters.

   Returns the new TYPENAME_TYPE.  */

static GTY ((param_is (union tree_node))) htab_t typename_htab;

tree
build_typename_type (context, name, fullname, base_type)
     tree context;
     tree name;
     tree fullname;
     tree base_type;
{
  tree t;
  tree d;
  PTR *e;

  if (typename_htab == NULL)
    {
      typename_htab = htab_create_ggc (61, &typename_hash, 
				       &typename_compare, NULL);
    }

  /* Build the TYPENAME_TYPE.  */
  t = make_aggr_type (TYPENAME_TYPE);
  TYPE_CONTEXT (t) = FROB_CONTEXT (context);
  TYPENAME_TYPE_FULLNAME (t) = fullname;
  TREE_TYPE (t) = base_type;

  /* Build the corresponding TYPE_DECL.  */
  d = build_decl (TYPE_DECL, name, t);
  TYPE_NAME (TREE_TYPE (d)) = d;
  TYPE_STUB_DECL (TREE_TYPE (d)) = d;
  DECL_CONTEXT (d) = FROB_CONTEXT (context);
  DECL_ARTIFICIAL (d) = 1;

  /* See if we already have this type.  */
  e = htab_find_slot (typename_htab, t, INSERT);
  if (*e)
    t = (tree) *e;
  else
    *e = t;

  return t;
}

/* Resolve `typename CONTEXT::NAME'.  Returns an appropriate type,
   unless an error occurs, in which case error_mark_node is returned.
   If we locate a non-artificial TYPE_DECL and TF_KEEP_TYPE_DECL is
   set, we return that, rather than the _TYPE it corresponds to, in
   other cases we look through the type decl.  If TF_ERROR is set,
   complain about errors, otherwise be quiet.  */

tree
make_typename_type (context, name, complain)
     tree context, name;
     tsubst_flags_t complain;
{
  tree fullname;

  if (TYPE_P (name))
    {
      if (!(TYPE_LANG_SPECIFIC (name)
	    && (CLASSTYPE_IS_TEMPLATE (name)
		|| CLASSTYPE_USE_TEMPLATE (name))))
	name = TYPE_IDENTIFIER (name);
      else
	/* Create a TEMPLATE_ID_EXPR for the type.  */
	name = build_nt (TEMPLATE_ID_EXPR,
			 CLASSTYPE_TI_TEMPLATE (name),
			 CLASSTYPE_TI_ARGS (name));
    }
  else if (TREE_CODE (name) == TYPE_DECL)
    name = DECL_NAME (name);

  fullname = name;

  if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
    {
      name = TREE_OPERAND (name, 0);
      if (TREE_CODE (name) == TEMPLATE_DECL)
	name = TREE_OPERAND (fullname, 0) = DECL_NAME (name);
    }
  if (TREE_CODE (name) == TEMPLATE_DECL)
    {
      error ("`%D' used without template parameters", name);
      return error_mark_node;
    }
  if (TREE_CODE (name) != IDENTIFIER_NODE)
    abort ();

  if (TREE_CODE (context) == NAMESPACE_DECL)
    {
      /* We can get here from typename_sub0 in the explicit_template_type
	 expansion.  Just fail.  */
      if (complain & tf_error)
	error ("no class template named `%#T' in `%#T'",
		  name, context);
      return error_mark_node;
    }

  if (! uses_template_parms (context)
      || currently_open_class (context))
    {
      if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR)
	{
	  tree tmpl = NULL_TREE;
	  if (IS_AGGR_TYPE (context))
	    tmpl = lookup_field (context, name, 0, 0);
	  if (!tmpl || !DECL_CLASS_TEMPLATE_P (tmpl))
	    {
	      if (complain & tf_error)
		error ("no class template named `%#T' in `%#T'",
			  name, context);
	      return error_mark_node;
	    }

	  if (complain & tf_error)
	    {
	      if (complain & tf_parsing)
		type_access_control (context, tmpl);
	      else
		enforce_access (context, tmpl);
	    }

	  return lookup_template_class (tmpl,
					TREE_OPERAND (fullname, 1),
					NULL_TREE, context,
					/*entering_scope=*/0,
	                                tf_error | tf_warning);
	}
      else
	{
          tree t;

	  if (!IS_AGGR_TYPE (context))
	    {
	      if (complain & tf_error)
		error ("no type named `%#T' in `%#T'", name, context);
	      return error_mark_node;
	    }

	  t = lookup_field (context, name, 0, 1);
	  if (t)
	    {
	      if (TREE_CODE (t) != TYPE_DECL)
		{
		  if (complain & tf_error)
		    error ("no type named `%#T' in `%#T'", name, context);
		  return error_mark_node;
		}

	      if (complain & tf_error)
		{
	      	  if (complain & tf_parsing)
		    type_access_control (context, t);
		  else
		    enforce_access (context, t);
		}

	      if (DECL_ARTIFICIAL (t) || !(complain & tf_keep_type_decl))
		t = TREE_TYPE (t);
	      if (IMPLICIT_TYPENAME_P (t))
		{
		  /* Lookup found an implicit typename that we had
		     injected into the current scope. Doing things
		     properly would have located the exact same type,
		     so there is no error here.  We must remove the
		     implicitness so that we do not warn about it.  */
		  t = copy_node (t);
		  TREE_TYPE (t) = NULL_TREE;
		}
	      
	      return t;
	    }
	}
    }

  /* If the CONTEXT is not a template type, then either the field is
     there now or its never going to be.  */
  if (!uses_template_parms (context))
    {
      if (complain & tf_error)
	error ("no type named `%#T' in `%#T'", name, context);
      return error_mark_node;
    }

  return build_typename_type (context, name, fullname,  NULL_TREE);
}

/* Resolve `CONTEXT::template NAME'.  Returns an appropriate type,
   unless an error occurs, in which case error_mark_node is returned.
   If we locate a TYPE_DECL, we return that, rather than the _TYPE it
   corresponds to.  If COMPLAIN zero, don't complain about any errors
   that occur.  */

tree
make_unbound_class_template (context, name, complain)
     tree context, name;
     tsubst_flags_t complain;
{
  tree t;
  tree d;

  if (TYPE_P (name))
    name = TYPE_IDENTIFIER (name);
  else if (DECL_P (name))
    name = DECL_NAME (name);
  if (TREE_CODE (name) != IDENTIFIER_NODE)
    abort ();

  if (!uses_template_parms (context)
      || currently_open_class (context))
    {
      tree tmpl = NULL_TREE;

      if (IS_AGGR_TYPE (context))
	tmpl = lookup_field (context, name, 0, 0);

      if (!tmpl || !DECL_CLASS_TEMPLATE_P (tmpl))
	{
	  if (complain & tf_error)
	    error ("no class template named `%#T' in `%#T'", name, context);
	  return error_mark_node;
	}
      
      if (complain & tf_error)
	{
	  if (complain & tf_parsing)
	    type_access_control (context, tmpl);
	  else
	    enforce_access (context, tmpl);
	}

      return tmpl;
    }

  /* Build the UNBOUND_CLASS_TEMPLATE.  */
  t = make_aggr_type (UNBOUND_CLASS_TEMPLATE);
  TYPE_CONTEXT (t) = FROB_CONTEXT (context);
  TREE_TYPE (t) = NULL_TREE;

  /* Build the corresponding TEMPLATE_DECL.  */
  d = build_decl (TEMPLATE_DECL, name, t);
  TYPE_NAME (TREE_TYPE (d)) = d;
  TYPE_STUB_DECL (TREE_TYPE (d)) = d;
  DECL_CONTEXT (d) = FROB_CONTEXT (context);
  DECL_ARTIFICIAL (d) = 1;

  return t;
}

/* Select the right _DECL from multiple choices.  */

static tree
select_decl (cxx_binding *binding, int flags)
{
  tree val;
  
  timevar_push (TV_NAME_LOOKUP);

  val = BINDING_VALUE (binding);

  if (LOOKUP_NAMESPACES_ONLY (flags))
    {
      /* We are not interested in types.  */
      if (val && TREE_CODE (val) == NAMESPACE_DECL)
        POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, val);
      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
    }

  /* If we could have a type and
     we have nothing or we need a type and have none.  */
  if (BINDING_TYPE (binding)
      && (!val || ((flags & LOOKUP_PREFER_TYPES)
                   && TREE_CODE (val) != TYPE_DECL)))
    val = TYPE_STUB_DECL (BINDING_TYPE (binding));
  /* Don't return non-types if we really prefer types.  */
  else if (val && LOOKUP_TYPES_ONLY (flags)  && TREE_CODE (val) != TYPE_DECL
	   && (TREE_CODE (val) != TEMPLATE_DECL
	       || !DECL_CLASS_TEMPLATE_P (val)))
    val = NULL_TREE;

  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, val);
}

/* Unscoped lookup of a global: iterate over current namespaces,
   considering using-directives.  If SPACESP is non-NULL, store a list
   of the namespaces we've considered in it.  */

tree
unqualified_namespace_lookup (name, flags, spacesp)
     tree name;
     int flags;
     tree *spacesp;
{
  tree initial = current_decl_namespace ();
  tree scope = initial;
  tree siter;
  struct cp_binding_level *level;
  tree val = NULL_TREE;
  cxx_binding binding;

  timevar_push (TV_NAME_LOOKUP);
  cxx_binding_clear (&binding);
  if (spacesp)
    *spacesp = NULL_TREE;

  for (; !val; scope = CP_DECL_CONTEXT (scope))
    {
      cxx_binding *b;
      if (spacesp)
	*spacesp = tree_cons (scope, NULL_TREE, *spacesp);
      b = cxx_scope_find_binding_for_name (scope, name);

      /* Ignore anticipated built-in functions.  */
      if (b && BINDING_VALUE (b) && DECL_P (BINDING_VALUE (b))
          && DECL_LANG_SPECIFIC (BINDING_VALUE (b))
          && DECL_ANTICIPATED (BINDING_VALUE (b)))
        /* Keep binding cleared.  */;
      else if (b)
        {
          /* Initialize binding for this context.  */
          binding.value = BINDING_VALUE (b);
          binding.type = BINDING_TYPE (b);
        }

      /* Add all _DECLs seen through local using-directives.  */
      for (level = current_binding_level;
	   !level->namespace_p;
	   level = level->level_chain)
	if (!lookup_using_namespace (name, &binding, level->using_directives,
                                     scope, flags, spacesp))
	  /* Give up because of error.  */
	  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);

      /* Add all _DECLs seen through global using-directives.  */
      /* XXX local and global using lists should work equally.  */
      siter = initial;
      while (1)
	{
	  if (!lookup_using_namespace (name, &binding,
                                       DECL_NAMESPACE_USING (siter),
				       scope, flags, spacesp))
	    /* Give up because of error.  */
	    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
	  if (siter == scope) break;
	  siter = CP_DECL_CONTEXT (siter);
	}

      val = select_decl (&binding, flags);
      if (scope == global_namespace)
	break;
    }
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, val);
}

/* Combine prefer_type and namespaces_only into flags.  */

static int
lookup_flags (prefer_type, namespaces_only)
  int prefer_type, namespaces_only;
{
  if (namespaces_only)
    return LOOKUP_PREFER_NAMESPACES;
  if (prefer_type > 1)
    return LOOKUP_PREFER_TYPES;
  if (prefer_type > 0)
    return LOOKUP_PREFER_BOTH;
  return 0;
}

/* Given a lookup that returned VAL, use FLAGS to decide if we want to
   ignore it or not.  Subroutine of lookup_name_real.  */

static tree
qualify_lookup (val, flags)
     tree val;
     int flags;
{
  if (val == NULL_TREE)
    return val;
  if ((flags & LOOKUP_PREFER_NAMESPACES) && TREE_CODE (val) == NAMESPACE_DECL)
    return val;
  if ((flags & LOOKUP_PREFER_TYPES)
      && (TREE_CODE (val) == TYPE_DECL
	  || ((flags & LOOKUP_TEMPLATES_EXPECTED)
	      && DECL_CLASS_TEMPLATE_P (val))))
    return val;
  if (flags & (LOOKUP_PREFER_NAMESPACES | LOOKUP_PREFER_TYPES))
    return NULL_TREE;
  return val;
}

/* Any other BINDING overrides an implicit TYPENAME.  Warn about
   that.  */

static void
warn_about_implicit_typename_lookup (typename, binding)
     tree typename;
     tree binding;
{
  tree subtype = TREE_TYPE (TREE_TYPE (typename));
  tree name = DECL_NAME (typename);

  if (! (TREE_CODE (binding) == TEMPLATE_DECL
	 && CLASS_TYPE_P (subtype)
	 && CLASSTYPE_TEMPLATE_INFO (subtype)
	 && CLASSTYPE_TI_TEMPLATE (subtype) == binding)
      && ! (TREE_CODE (binding) == TYPE_DECL
	    && same_type_p (TREE_TYPE (binding), subtype)))
    {
      warning ("lookup of `%D' finds `%#D'",
		  name, binding);
      warning ("  instead of `%D' from dependent base class",
		  typename);
      warning ("  (use `typename %T::%D' if that's what you meant)",
		  constructor_name (current_class_type), name);
    }
}

/* Check to see whether or not DECL is a variable that would have been
   in scope under the ARM, but is not in scope under the ANSI/ISO
   standard.  If so, issue an error message.  If name lookup would
   work in both cases, but return a different result, this function
   returns the result of ANSI/ISO lookup.  Otherwise, it returns
   DECL.  */

tree
check_for_out_of_scope_variable (tree decl)
{
  tree shadowed;

  /* We only care about out of scope variables.  */
  if (!(TREE_CODE (decl) == VAR_DECL && DECL_DEAD_FOR_LOCAL (decl)))
    return decl;

  shadowed = DECL_SHADOWED_FOR_VAR (decl);
  while (shadowed != NULL_TREE && TREE_CODE (shadowed) == VAR_DECL
	 && DECL_DEAD_FOR_LOCAL (shadowed))
    shadowed = DECL_SHADOWED_FOR_VAR (shadowed);
  if (!shadowed)
    shadowed = IDENTIFIER_NAMESPACE_VALUE (DECL_NAME (decl));
  if (shadowed)
    {
      if (!DECL_ERROR_REPORTED (decl))
	{
	  warning ("name lookup of `%D' changed",
		      DECL_NAME (decl));
	  cp_warning_at ("  matches this `%D' under ISO standard rules",
			 shadowed);
	  cp_warning_at ("  matches this `%D' under old rules", decl);
	  DECL_ERROR_REPORTED (decl) = 1;
	}
      return shadowed;
    }

  /* If we have already complained about this declaration, there's no
     need to do it again.  */
  if (DECL_ERROR_REPORTED (decl))
    return decl;

  DECL_ERROR_REPORTED (decl) = 1;
  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (decl)))
    {
      error ("name lookup of `%D' changed for new ISO `for' scoping",
	     DECL_NAME (decl));
      cp_error_at ("  cannot use obsolete binding at `%D' because it has a destructor", decl);
      return error_mark_node;
    }
  else
    {
      pedwarn ("name lookup of `%D' changed for new ISO `for' scoping",
	       DECL_NAME (decl));
      cp_pedwarn_at ("  using obsolete binding at `%D'", decl);
    }

  return decl;
}

/* Look up NAME in the current binding level and its superiors in the
   namespace of variables, functions and typedefs.  Return a ..._DECL
   node of some kind representing its definition if there is only one
   such declaration, or return a TREE_LIST with all the overloaded
   definitions if there are many, or return 0 if it is undefined.

   If PREFER_TYPE is > 0, we prefer TYPE_DECLs or namespaces.
   If PREFER_TYPE is > 1, we reject non-type decls (e.g. namespaces).
   If PREFER_TYPE is -2, we're being called from yylex(). (UGLY)
   Otherwise we prefer non-TYPE_DECLs.

   If NONCLASS is nonzero, we don't look for the NAME in class scope,
   using IDENTIFIER_CLASS_VALUE.  */

static tree
lookup_name_real (name, prefer_type, nonclass, namespaces_only)
     tree name;
     int prefer_type, nonclass, namespaces_only;
{
  tree t;
  tree val = NULL_TREE;
  int yylex = 0;
  tree from_obj = NULL_TREE;
  int flags;
  int val_is_implicit_typename = 0;
  cxx_binding *iter;

  timevar_push (TV_NAME_LOOKUP);

  /* Hack: copy flag set by parser, if set.  */
  if (only_namespace_names)
    namespaces_only = 1;

  if (prefer_type == -2)
    {
      extern int looking_for_typename;
      tree type = NULL_TREE;

      yylex = 1;
      prefer_type = looking_for_typename;

      flags = lookup_flags (prefer_type, namespaces_only);
      /* If the next thing is '<', class templates are types.  */
      if (looking_for_template)
        flags |= LOOKUP_TEMPLATES_EXPECTED;

      if (got_scope)
	type = got_scope;
      else if (got_object != error_mark_node)
	type = got_object;

      if (type)
	{
	  if (type == error_mark_node)
	    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
	  if (IMPLICIT_TYPENAME_P (type))
	    type = TREE_TYPE (type);

	  if (TYPE_P (type))
	    type = complete_type (type);

	  if (TREE_CODE (type) == VOID_TYPE)
	    type = global_namespace;
	  if (TREE_CODE (type) == NAMESPACE_DECL)
	    {
              cxx_binding b;
              cxx_binding_clear (&b);
	      flags |= LOOKUP_COMPLAIN;
	      if (!qualified_lookup_using_namespace (name, type, &b, flags))
		POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
	      val = select_decl (&b, flags);
	    }
	  else if (! IS_AGGR_TYPE (type)
		   || TREE_CODE (type) == TEMPLATE_TYPE_PARM
		   || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
		   || TREE_CODE (type) == TYPENAME_TYPE)
	    /* Someone else will give an error about this if needed.  */
	    val = NULL_TREE;
	  else if (type == current_class_type)
	    val = IDENTIFIER_CLASS_VALUE (name);
	  else
	    {
	      val = lookup_member (type, name, 0, prefer_type);
	      if (!uses_template_parms (type))
		type_access_control (type, val);

	      /* Restore the containing TYPENAME_TYPE if we looked
		 through it before.  */
	      if (got_scope && got_scope != type
		  && val && TREE_CODE (val) == TYPE_DECL
		  && TREE_CODE (TREE_TYPE (val)) == TYPENAME_TYPE)
		{
		  val = TREE_TYPE (val);
		  val = build_typename_type (got_scope, name,
					     TYPENAME_TYPE_FULLNAME (val),
					     TREE_TYPE (val));
		  val = TYPE_STUB_DECL (val);
		}
	    }
	}
      else
	val = NULL_TREE;

      if (got_scope)
	goto done;
      else if (got_object && val)
	{
	  from_obj = val;
	  val = NULL_TREE;
	}
    }
  else
    {
      flags = lookup_flags (prefer_type, namespaces_only);
      /* If we're not parsing, we need to complain.  */
      flags |= LOOKUP_COMPLAIN;
    }

  /* First, look in non-namespace scopes.  */

  if (current_class_type == NULL_TREE)
    nonclass = 1;

  for (iter = IDENTIFIER_BINDING (name); iter; iter = iter->previous)
    {
      tree binding;

      if (!LOCAL_BINDING_P (iter) && nonclass)
	/* We're not looking for class-scoped bindings, so keep going.  */
	continue;

      /* If this is the kind of thing we're looking for, we're done.  */
      if (qualify_lookup (BINDING_VALUE (iter), flags))
	binding = BINDING_VALUE (iter);
      else if ((flags & LOOKUP_PREFER_TYPES)
	       && qualify_lookup (BINDING_TYPE (iter), flags))
	binding = BINDING_TYPE (iter);
      else
	binding = NULL_TREE;

      /* Handle access control on types from enclosing or base classes.  */
      if (binding && ! yylex
	  && BINDING_LEVEL (iter) && BINDING_LEVEL (iter)->parm_flag == 2)
	type_access_control (BINDING_LEVEL (iter)->this_class, binding);

      if (binding
	  && (!val || !IMPLICIT_TYPENAME_TYPE_DECL_P (binding)))
	{
	  if (val_is_implicit_typename && !yylex)
	    warn_about_implicit_typename_lookup (val, binding);
	  val = binding;
	  val_is_implicit_typename
	    = IMPLICIT_TYPENAME_TYPE_DECL_P (val);
	  if (!val_is_implicit_typename)
	    break;
	}
    }

  /* The name might be from an enclosing class of the current scope.  */
  if (!val && !nonclass && current_class_type)
    val = qualify_lookup (lookup_nested_field (name, !yylex), flags);

  /* Now lookup in namespace scopes.  */
  if (!val || val_is_implicit_typename)
    {
      t = unqualified_namespace_lookup (name, flags, 0);
      if (t)
	{
	  if (val_is_implicit_typename && !yylex)
	    warn_about_implicit_typename_lookup (val, t);
	  val = t;
	}
    }

 done:
  if (val)
    {
      /* This should only warn about types used in qualified-ids.  */
      if (from_obj && from_obj != val)
	{
	  if (looking_for_typename && TREE_CODE (from_obj) == TYPE_DECL
	      && TREE_CODE (val) == TYPE_DECL
	      && ! same_type_p (TREE_TYPE (from_obj), TREE_TYPE (val)))
	    pedwarn ("\
lookup of `%D' in the scope of `%#T' (`%#D') \
does not match lookup in the current scope (`%#D')",
			name, got_object, from_obj, val);

	  /* We don't change val to from_obj if got_object depends on
	     template parms because that breaks implicit typename for
	     destructor calls.  */
	  if (! uses_template_parms (got_object))
	    val = from_obj;
	}

      /* If we have a single function from a using decl, pull it out.  */
      if (TREE_CODE (val) == OVERLOAD && ! really_overloaded_fn (val))
	val = OVL_FUNCTION (val);
    }
  else if (from_obj)
    val = from_obj;

  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, val);
}

tree
lookup_name_nonclass (name)
     tree name;
{
  return lookup_name_real (name, 0, 1, 0);
}

tree
lookup_function_nonclass (name, args)
     tree name;
     tree args;
{
  return lookup_arg_dependent (name, lookup_name_nonclass (name), args);
}

tree
lookup_name_namespace_only (name)
     tree name;
{
  /* type-or-namespace, nonclass, namespace_only */
  return lookup_name_real (name, 1, 1, 1);
}

tree
lookup_name (name, prefer_type)
     tree name;
     int prefer_type;
{
  return lookup_name_real (name, prefer_type, 0, 0);
}

/* Similar to `lookup_name' but look only in the innermost non-class
   binding level.  */

tree
lookup_name_current_level (name)
     tree name;
{
  struct cp_binding_level *b;
  tree t = NULL_TREE;

  timevar_push (TV_NAME_LOOKUP);

  b = current_binding_level;
  while (b->parm_flag == 2)
    b = b->level_chain;

  if (b->namespace_p)
    {
      t = IDENTIFIER_NAMESPACE_VALUE (name);

      /* extern "C" function() */
      if (t != NULL_TREE && TREE_CODE (t) == TREE_LIST)
	t = TREE_VALUE (t);
    }
  else if (IDENTIFIER_BINDING (name)
	   && LOCAL_BINDING_P (IDENTIFIER_BINDING (name)))
    {
      while (1)
	{
	  if (BINDING_LEVEL (IDENTIFIER_BINDING (name)) == b)
	    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, IDENTIFIER_VALUE (name));

	  if (b->keep == 2)
	    b = b->level_chain;
	  else
	    break;
	}
    }

  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
}

/* Like lookup_name_current_level, but for types.  */

tree
lookup_type_current_level (name)
     tree name;
{
  register tree t = NULL_TREE;
  
  timevar_push (TV_NAME_LOOKUP);

  my_friendly_assert (! current_binding_level->namespace_p, 980716);

  if (REAL_IDENTIFIER_TYPE_VALUE (name) != NULL_TREE
      && REAL_IDENTIFIER_TYPE_VALUE (name) != global_type_node)
    {
      struct cp_binding_level *b = current_binding_level;
      while (1)
	{
	  if (purpose_member (name, b->type_shadowed))
	    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP,
				    REAL_IDENTIFIER_TYPE_VALUE (name));
	  if (b->keep == 2)
	    b = b->level_chain;
	  else
	    break;
	}
    }

  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
}

void
begin_only_namespace_names ()
{
  only_namespace_names = 1;
}

void
end_only_namespace_names ()
{
  only_namespace_names = 0;
}

/* Push the declarations of builtin types into the namespace.
   RID_INDEX is the index of the builtin type
   in the array RID_POINTERS.  NAME is the name used when looking
   up the builtin type.  TYPE is the _TYPE node for the builtin type.  */

void
record_builtin_type (rid_index, name, type)
     enum rid rid_index;
     const char *name;
     tree type;
{
  tree rname = NULL_TREE, tname = NULL_TREE;
  tree tdecl = NULL_TREE;

  if ((int) rid_index < (int) RID_MAX)
    rname = ridpointers[(int) rid_index];
  if (name)
    tname = get_identifier (name);

  TYPE_BUILT_IN (type) = 1;

  if (tname)
    {
      tdecl = pushdecl (build_decl (TYPE_DECL, tname, type));
      set_identifier_type_value (tname, NULL_TREE);
      if ((int) rid_index < (int) RID_MAX)
	/* Built-in types live in the global namespace.  */
	SET_IDENTIFIER_GLOBAL_VALUE (tname, tdecl);
    }
  if (rname != NULL_TREE)
    {
      if (tname != NULL_TREE)
	{
	  set_identifier_type_value (rname, NULL_TREE);
	  SET_IDENTIFIER_GLOBAL_VALUE (rname, tdecl);
	}
      else
	{
	  tdecl = pushdecl (build_decl (TYPE_DECL, rname, type));
	  set_identifier_type_value (rname, NULL_TREE);
	}
    }
}

/* Record one of the standard Java types.
 * Declare it as having the given NAME.
 * If SIZE > 0, it is the size of one of the integral types;
 * otherwise it is the negative of the size of one of the other types.  */

static tree
record_builtin_java_type (name, size)
     const char *name;
     int size;
{
  tree type, decl;
  if (size > 0)
    type = make_signed_type (size);
  else if (size > -32)
    { /* "__java_char" or ""__java_boolean".  */
      type = make_unsigned_type (-size);
      /*if (size == -1)	TREE_SET_CODE (type, BOOLEAN_TYPE);*/
    }
  else
    { /* "__java_float" or ""__java_double".  */
      type = make_node (REAL_TYPE);
      TYPE_PRECISION (type) = - size;
      layout_type (type);
    }
  record_builtin_type (RID_MAX, name, type);
  decl = TYPE_NAME (type);

  /* Suppress generate debug symbol entries for these types,
     since for normal C++ they are just clutter.
     However, push_lang_context undoes this if extern "Java" is seen.  */
  DECL_IGNORED_P (decl) = 1;

  TYPE_FOR_JAVA (type) = 1;
  return type;
}

/* Push a type into the namespace so that the back-ends ignore it.  */

static void
record_unknown_type (type, name)
     tree type;
     const char *name;
{
  tree decl = pushdecl (build_decl (TYPE_DECL, get_identifier (name), type));
  /* Make sure the "unknown type" typedecl gets ignored for debug info.  */
  DECL_IGNORED_P (decl) = 1;
  TYPE_DECL_SUPPRESS_DEBUG (decl) = 1;
  TYPE_SIZE (type) = TYPE_SIZE (void_type_node);
  TYPE_ALIGN (type) = 1;
  TYPE_USER_ALIGN (type) = 0;
  TYPE_MODE (type) = TYPE_MODE (void_type_node);
}

/* An string for which we should create an IDENTIFIER_NODE at
   startup.  */

typedef struct predefined_identifier
{
  /* The name of the identifier.  */
  const char *const name;
  /* The place where the IDENTIFIER_NODE should be stored.  */
  tree *const node;
  /* Nonzero if this is the name of a constructor or destructor.  */
  const int ctor_or_dtor_p;
} predefined_identifier;

/* Create all the predefined identifiers.  */

static void
initialize_predefined_identifiers ()
{
  const predefined_identifier *pid;

  /* A table of identifiers to create at startup.  */
  static const predefined_identifier predefined_identifiers[] = {
    { "C++", &lang_name_cplusplus, 0 },
    { "C", &lang_name_c, 0 },
    /* APPLE LOCAL Objective-C++ */
    { "Objective-C", &lang_name_objc, 0 },  /* this is DEPRECATED */
    { "Java", &lang_name_java, 0 },
    { CTOR_NAME, &ctor_identifier, 1 },
    { "__base_ctor", &base_ctor_identifier, 1 },
    { "__comp_ctor", &complete_ctor_identifier, 1 },
    { DTOR_NAME, &dtor_identifier, 1 },
    { "__comp_dtor", &complete_dtor_identifier, 1 },
    { "__base_dtor", &base_dtor_identifier, 1 },
    { "__deleting_dtor", &deleting_dtor_identifier, 1 },
    { IN_CHARGE_NAME, &in_charge_identifier, 0 },
    { "nelts", &nelts_identifier, 0 },
    { THIS_NAME, &this_identifier, 0 },
    { VTABLE_DELTA_NAME, &delta_identifier, 0 },
    { VTABLE_PFN_NAME, &pfn_identifier, 0 },
    { "_vptr", &vptr_identifier, 0 },
    { "__vtt_parm", &vtt_parm_identifier, 0 },
    { "std", &std_identifier, 0 },
    { NULL, NULL, 0 }
  };

  for (pid = predefined_identifiers; pid->name; ++pid)
    {
      *pid->node = get_identifier (pid->name);
      if (pid->ctor_or_dtor_p)
	IDENTIFIER_CTOR_OR_DTOR_P (*pid->node) = 1;
    }
  /* APPLE LOCAL begin 2.95-ptmf-compatibility  turly 20020313  */
  if (flag_apple_kext)
    {
      /* This is snarfed from the 2.95 cp-tree.h.  The mechanism is
	 completely different from gcc3 (see cp-tree.h, and read the
	 comment just above 'enum ptrmemfunc_vbit_where_t'.  Sigh.

	 A 2.95 pointer-to-function member type looks like:

	 struct {
	   short __delta;
	   short __index;
	   union {
	     P __pfn;
	     short __delta2;
	   } __pfn_or_delta2;
	 };

	 where P is a POINTER_TYPE to a METHOD_TYPE appropriate for the
	 pointer to member.  The fields are used as follows:
      
	 If __INDEX is -1, then the function to call is non-virtual, and
	 is located at the address given by __PFN.  
      
	 If __INDEX is zero, then this a NULL pointer-to-member.

	 Otherwise, the function to call is virtual.  Then, __DELTA2 gives
	 the offset from an instance of the object to the virtual function
	 table, and __INDEX - 1 is the index into the vtable to use to
	 find the function.
      
	 The value to use for the THIS parameter is the address of the
	 object plus __DELTA.  */

      delta2_identifier = get_identifier ("__delta2");
      index_identifier = get_identifier ("__index");
      pfn_or_delta2_identifier = get_identifier ("__pfn_or_delta2");
    }
  /* APPLE LOCAL end 2.95-ptmf-compatibility  turly 20020313  */
}

/* Create the predefined scalar types of C,
   and some nodes representing standard constants (0, 1, (void *)0).
   Initialize the global binding level.
   Make definitions for built-in primitive functions.  */

void
cxx_init_decl_processing ()
{
  tree void_ftype;
  tree void_ftype_ptr;

  /* Create all the identifiers we need.  */
  initialize_predefined_identifiers ();

  /* Fill in back-end hooks.  */
  lang_missing_noreturn_ok_p = &cp_missing_noreturn_ok_p;

  /* Create the global variables.  */
  push_to_top_level ();

  /* Enter the global namespace.  */
  my_friendly_assert (global_namespace == NULL_TREE, 375);
  push_namespace (get_identifier ("::"));
  global_namespace = current_namespace;
  current_lang_name = NULL_TREE;

  /* Adjust various flags based on command-line settings.  */
  if (! flag_permissive && ! pedantic)
    flag_pedantic_errors = 1;
  if (!flag_no_inline)
    {
      flag_inline_trees = 1;
      flag_no_inline = 1;
    }
  if (flag_inline_functions)
    {
      flag_inline_trees = 2;
      flag_inline_functions = 0;
    }

  /* Force minimum function alignment if using the least significant
     bit of function pointers to store the virtual bit.  */
  if (TARGET_PTRMEMFUNC_VBIT_LOCATION == ptrmemfunc_vbit_in_pfn
      && force_align_functions_log < 1)
    force_align_functions_log = 1;

  /* Initially, C.  */
  current_lang_name = lang_name_c;

  current_function_decl = NULL_TREE;
  current_binding_level = NULL_BINDING_LEVEL;
  free_binding_level = NULL_BINDING_LEVEL;

  build_common_tree_nodes (flag_signed_char);

  error_mark_list = build_tree_list (error_mark_node, error_mark_node);
  TREE_TYPE (error_mark_list) = error_mark_node;

  /* Make the binding_level structure for global names.  */
  pushlevel (0);
  global_binding_level = current_binding_level;
  /* The global level is the namespace level of ::.  */
  NAMESPACE_LEVEL (global_namespace) = global_binding_level;
  declare_namespace_level ();

  /* APPLE LOCAL begin improved wrapup_global_declarations fsf candidate */
  VARRAY_TREE_INIT (global_binding_level->static_decls,
		    200,
		    "Static declarations");
  /* APPLE LOCAL end improved wrapup_global_declarations fsf candidate */

  /* Create the `std' namespace.  */
  push_namespace (std_identifier);
  std_node = current_namespace;
  pop_namespace ();

  c_common_nodes_and_builtins ();

  java_byte_type_node = record_builtin_java_type ("__java_byte", 8);
  java_short_type_node = record_builtin_java_type ("__java_short", 16);
  java_int_type_node = record_builtin_java_type ("__java_int", 32);
  java_long_type_node = record_builtin_java_type ("__java_long", 64);
  java_float_type_node = record_builtin_java_type ("__java_float", -32);
  java_double_type_node = record_builtin_java_type ("__java_double", -64);
  java_char_type_node = record_builtin_java_type ("__java_char", -16);
  java_boolean_type_node = record_builtin_java_type ("__java_boolean", -1);

  integer_two_node = build_int_2 (2, 0);
  TREE_TYPE (integer_two_node) = integer_type_node;
  integer_three_node = build_int_2 (3, 0);
  TREE_TYPE (integer_three_node) = integer_type_node;

  boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
  TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
  TYPE_MAX_VALUE (boolean_type_node) = build_int_2 (1, 0);
  TREE_TYPE (TYPE_MAX_VALUE (boolean_type_node)) = boolean_type_node;
  TYPE_PRECISION (boolean_type_node) = 1;
  record_builtin_type (RID_BOOL, "bool", boolean_type_node);
  boolean_false_node = build_int_2 (0, 0);
  TREE_TYPE (boolean_false_node) = boolean_type_node;
  boolean_true_node = build_int_2 (1, 0);
  TREE_TYPE (boolean_true_node) = boolean_type_node;

  empty_except_spec = build_tree_list (NULL_TREE, NULL_TREE);

#if 0
  record_builtin_type (RID_MAX, NULL, string_type_node);
#endif

  /* APPLE LOCAL begin 2.95-ptmf-compatibility  turly 20020313  */
  if (flag_apple_kext)
    delta_type_node = short_integer_type_node;
  else
  /* APPLE LOCAL end 2.95-ptmf-compatibility  turly 20020313  */
  delta_type_node = ptrdiff_type_node;
  vtable_index_type = ptrdiff_type_node;

  vtt_parm_type = build_pointer_type (const_ptr_type_node);
  void_ftype = build_function_type (void_type_node, void_list_node);
  void_ftype_ptr = build_function_type (void_type_node,
					tree_cons (NULL_TREE,
						   ptr_type_node, 
						   void_list_node));
  void_ftype_ptr
    = build_exception_variant (void_ftype_ptr, empty_except_spec);

  /* C++ extensions */

  unknown_type_node = make_node (UNKNOWN_TYPE);
  record_unknown_type (unknown_type_node, "unknown type");

  /* Indirecting an UNKNOWN_TYPE node yields an UNKNOWN_TYPE node.  */
  TREE_TYPE (unknown_type_node) = unknown_type_node;

  /* Looking up TYPE_POINTER_TO and TYPE_REFERENCE_TO yield the same
     result.  */
  TYPE_POINTER_TO (unknown_type_node) = unknown_type_node;
  TYPE_REFERENCE_TO (unknown_type_node) = unknown_type_node;

  {
    /* Make sure we get a unique function type, so we can give
       its pointer type a name.  (This wins for gdb.) */
    tree vfunc_type = make_node (FUNCTION_TYPE);
    TREE_TYPE (vfunc_type) = integer_type_node;
    TYPE_ARG_TYPES (vfunc_type) = NULL_TREE;
    layout_type (vfunc_type);

    vtable_entry_type = build_pointer_type (vfunc_type);
  }
  record_builtin_type (RID_MAX, VTBL_PTR_TYPE, vtable_entry_type);

  vtbl_type_node
    = build_cplus_array_type (vtable_entry_type, NULL_TREE);
  layout_type (vtbl_type_node);
  vtbl_type_node = build_qualified_type (vtbl_type_node, TYPE_QUAL_CONST);
  record_builtin_type (RID_MAX, NULL, vtbl_type_node);
  vtbl_ptr_type_node = build_pointer_type (vtable_entry_type);
  layout_type (vtbl_ptr_type_node);
  record_builtin_type (RID_MAX, NULL, vtbl_ptr_type_node);

  push_namespace (get_identifier ("__cxxabiv1"));
  abi_node = current_namespace;
  pop_namespace ();

  global_type_node = make_node (LANG_TYPE);
  record_unknown_type (global_type_node, "global type");

  /* Now, C++.  */
  current_lang_name = lang_name_cplusplus;

  {
    tree bad_alloc_type_node, newtype, deltype;
    tree ptr_ftype_sizetype;

    push_namespace (std_identifier);
    bad_alloc_type_node 
      = xref_tag (class_type, get_identifier ("bad_alloc"), 
		  /*attributes=*/NULL_TREE, 1);
    pop_namespace ();
    ptr_ftype_sizetype 
      = build_function_type (ptr_type_node,
			     tree_cons (NULL_TREE,
					size_type_node,
					void_list_node));
    newtype = build_exception_variant
      (ptr_ftype_sizetype, add_exception_specifier
       (NULL_TREE, bad_alloc_type_node, -1));
    deltype = build_exception_variant (void_ftype_ptr, empty_except_spec);
    push_cp_library_fn (NEW_EXPR, newtype);
    push_cp_library_fn (VEC_NEW_EXPR, newtype);
    global_delete_fndecl = push_cp_library_fn (DELETE_EXPR, deltype);
    push_cp_library_fn (VEC_DELETE_EXPR, deltype);
  }

  abort_fndecl
    = build_library_fn_ptr ("__cxa_pure_virtual", void_ftype);

  /* Perform other language dependent initializations.  */
  init_class_processing ();
  init_search_processing ();
  init_rtti_processing ();

  if (flag_exceptions)
    init_exception_processing ();

  if (! supports_one_only ())
    flag_weak = 0;

  make_fname_decl = cp_make_fname_decl;
  start_fname_decls ();

  /* Show we use EH for cleanups.  */
  using_eh_for_cleanups ();

  /* Maintain consistency.  Perhaps we should just complain if they
     say -fwritable-strings?  */
  if (flag_writable_strings)
    flag_const_strings = 0;
}

/* Generate an initializer for a function naming variable from
   NAME. NAME may be NULL, in which case we generate a special
   ERROR_MARK node which should be replaced later.  */

tree
cp_fname_init (name)
     const char *name;
{
  tree domain = NULL_TREE;
  tree type;
  tree init = NULL_TREE;
  size_t length = 0;

  if (name)
    {
      length = strlen (name);
      domain = build_index_type (size_int (length));
      init = build_string (length + 1, name);
    }
  
  type = build_qualified_type (char_type_node, TYPE_QUAL_CONST);
  type = build_cplus_array_type (type, domain);

  if (init)
    TREE_TYPE (init) = type;
  else
    /* We don't know the value until instantiation time. Make
       something which will be digested now, but replaced later.  */
    init = build (ERROR_MARK, type);
  
  return init;
}

/* Create the VAR_DECL for __FUNCTION__ etc. ID is the name to give the
   decl, NAME is the initialization string and TYPE_DEP indicates whether
   NAME depended on the type of the function. We make use of that to detect
   __PRETTY_FUNCTION__ inside a template fn. This is being done
   lazily at the point of first use, so we musn't push the decl now.  */

static tree
cp_make_fname_decl (id, type_dep)
     tree id;
     int type_dep;
{
  const char *const name = (type_dep && processing_template_decl
		      ? NULL : fname_as_string (type_dep));
  tree init = cp_fname_init (name);
  tree decl = build_decl (VAR_DECL, id, TREE_TYPE (init));

  /* As we don't push the decl here, we must set the context.  */
  DECL_CONTEXT (decl) = current_function_decl;
  DECL_PRETTY_FUNCTION_P (decl) = type_dep;
      
  TREE_STATIC (decl) = 1;
  TREE_READONLY (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  DECL_INITIAL (decl) = init;
  
  TREE_USED (decl) = 1;

  cp_finish_decl (decl, init, NULL_TREE, LOOKUP_ONLYCONVERTING);
      
  return decl;
}

/* Make a definition for a builtin function named NAME in the current
   namespace, whose data type is TYPE and whose context is CONTEXT.
   TYPE should be a function type with argument types.

   CLASS and CODE tell later passes how to compile calls to this function.
   See tree.h for possible values.

   If LIBNAME is nonzero, use that for DECL_ASSEMBLER_NAME,
   the name to be called if we can't opencode the function.
   If ATTRS is nonzero, use that for the function's attribute
   list.  */

static tree
builtin_function_1 (name, type, context, code, class, libname, attrs)
     const char *name;
     tree type;
     tree context;
     int code;
     enum built_in_class class;
     const char *libname;
     tree attrs;
{
  tree decl = build_library_fn_1 (get_identifier (name), ERROR_MARK, type);
  DECL_BUILT_IN_CLASS (decl) = class;
  DECL_FUNCTION_CODE (decl) = code;
  DECL_CONTEXT (decl) = context;

  pushdecl (decl);

  /* Since `pushdecl' relies on DECL_ASSEMBLER_NAME instead of DECL_NAME,
     we cannot change DECL_ASSEMBLER_NAME until we have installed this
     function in the namespace.  */
  if (libname)
    SET_DECL_ASSEMBLER_NAME (decl, get_identifier (libname));
  make_decl_rtl (decl, NULL);

  /* Warn if a function in the namespace for users
     is used without an occasion to consider it declared.  */
  /* APPLE LOCAL AltiVec */
  /* AltiVec builtins are always "declared".  */
  if (class != BUILT_IN_MD && (name[0] != '_' || name[1] != '_'))
    DECL_ANTICIPATED (decl) = 1;

  /* Possibly apply some default attributes to this built-in function.  */
  if (attrs)
    decl_attributes (&decl, attrs, ATTR_FLAG_BUILT_IN);
  else
    decl_attributes (&decl, NULL_TREE, 0);

  return decl;
}

/* Entry point for the benefit of c_common_nodes_and_builtins.

   Make a defintion for a builtin function named NAME and whose data type
   is TYPE.  TYPE should be a function type with argument types.  This
   function places the anticipated declaration in the global namespace
   and additionally in the std namespace if appropriate.

   CLASS and CODE tell later passes how to compile calls to this function.
   See tree.h for possible values.

   If LIBNAME is nonzero, use that for DECL_ASSEMBLER_NAME,
   the name to be called if we can't opencode the function.

   If ATTRS is nonzero, use that for the function's attribute
   list.  */

tree
builtin_function (name, type, code, class, libname, attrs)
     const char *name;
     tree type;
     int code;
     enum built_in_class class;
     const char *libname;
     tree attrs;
{
  /* All builtins that don't begin with an '_' should additionally
     go in the 'std' namespace.  */
  /* APPLE LOCAL begin AltiVec */
  /* Don't use `std' namespace for MD builtins.  */
  /* APPLE LOCAL begin alloca not in std */
  /* Don't use `std' namespace for alloca.  */
  if (name[0] != '_' && class != BUILT_IN_MD && strcmp (name, "alloca"))
    /* APPLE LOCAL end alloca not in std */
    /* APPLE LOCAL end AltiVec */
    {
      push_namespace (std_identifier);
      builtin_function_1 (name, type, std_node, code, class, libname, attrs);
      pop_namespace ();
    }

  return builtin_function_1 (name, type, NULL_TREE, code,
			     class, libname, attrs);
}

/* Generate a FUNCTION_DECL with the typical flags for a runtime library
   function.  Not called directly.  */

static tree
build_library_fn_1 (name, operator_code, type)
     tree name;
     enum tree_code operator_code;
     tree type;
{
  tree fn = build_lang_decl (FUNCTION_DECL, name, type);
  DECL_EXTERNAL (fn) = 1;
  TREE_PUBLIC (fn) = 1;
  DECL_ARTIFICIAL (fn) = 1;
  TREE_NOTHROW (fn) = 1;
  SET_OVERLOADED_OPERATOR_CODE (fn, operator_code);
  SET_DECL_LANGUAGE (fn, lang_c);
  return fn;
}

/* Returns the _DECL for a library function with C linkage.
   We assume that such functions never throw; if this is incorrect,
   callers should unset TREE_NOTHROW.  */

tree
build_library_fn (name, type)
     tree name;
     tree type;
{
  return build_library_fn_1 (name, ERROR_MARK, type);
}

/* Returns the _DECL for a library function with C++ linkage.  */

static tree
build_cp_library_fn (name, operator_code, type)
     tree name;
     enum tree_code operator_code;
     tree type;
{
  tree fn = build_library_fn_1 (name, operator_code, type);
  TREE_NOTHROW (fn) = TYPE_NOTHROW_P (type);
  DECL_CONTEXT (fn) = FROB_CONTEXT (current_namespace);
  SET_DECL_LANGUAGE (fn, lang_cplusplus);
  set_mangled_name_for_decl (fn);
  return fn;
}

/* Like build_library_fn, but takes a C string instead of an
   IDENTIFIER_NODE.  */

tree
build_library_fn_ptr (name, type)
     const char *name;
     tree type;
{
  return build_library_fn (get_identifier (name), type);
}

/* Like build_cp_library_fn, but takes a C string instead of an
   IDENTIFIER_NODE.  */

tree
build_cp_library_fn_ptr (name, type)
     const char *name;
     tree type;
{
  return build_cp_library_fn (get_identifier (name), ERROR_MARK, type);
}

/* Like build_library_fn, but also pushes the function so that we will
   be able to find it via IDENTIFIER_GLOBAL_VALUE.  */

tree
push_library_fn (name, type)
     tree name, type;
{
  tree fn = build_library_fn (name, type);
  pushdecl_top_level (fn);
  return fn;
}

/* Like build_cp_library_fn, but also pushes the function so that it
   will be found by normal lookup.  */

static tree
push_cp_library_fn (operator_code, type)
     enum tree_code operator_code;
     tree type;
{
  tree fn = build_cp_library_fn (ansi_opname (operator_code),
				 operator_code,
				 type);
  pushdecl (fn);
  return fn;
}

/* Like push_library_fn, but takes a TREE_LIST of parm types rather than
   a FUNCTION_TYPE.  */

tree
push_void_library_fn (name, parmtypes)
     tree name, parmtypes;
{
  tree type = build_function_type (void_type_node, parmtypes);
  return push_library_fn (name, type);
}

/* Like push_library_fn, but also note that this function throws
   and does not return.  Used for __throw_foo and the like.  */

tree
push_throw_library_fn (name, type)
     tree name, type;
{
  tree fn = push_library_fn (name, type);
  TREE_THIS_VOLATILE (fn) = 1;
  TREE_NOTHROW (fn) = 0;
  return fn;
}

/* APPLE LOCAL begin AltiVec */
tree lang_build_type_variant PARAMS ((tree, int, int));
tree
lang_build_type_variant (type, constp, volatilep)
     tree type;
     int constp, volatilep;
{
  return build_type_variant (type, constp, volatilep);
}
/* APPLE LOCAL end AltiVec */

/* Apply default attributes to a function, if a system function with default
   attributes.  */

void
cxx_insert_default_attributes (decl)
     tree decl;
{
  if (!DECL_EXTERN_C_FUNCTION_P (decl))
    return;
  if (!TREE_PUBLIC (decl))
    return;
  c_common_insert_default_attributes (decl);
}

/* When we call finish_struct for an anonymous union, we create
   default copy constructors and such.  But, an anonymous union
   shouldn't have such things; this function undoes the damage to the
   anonymous union type T.

   (The reason that we create the synthesized methods is that we don't
   distinguish `union { int i; }' from `typedef union { int i; } U'.
   The first is an anonymous union; the second is just an ordinary
   union type.)  */

void
fixup_anonymous_aggr (t)
     tree t;
{
  tree *q;

  /* Wipe out memory of synthesized methods */
  TYPE_HAS_CONSTRUCTOR (t) = 0;
  TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 0;
  TYPE_HAS_INIT_REF (t) = 0;
  TYPE_HAS_CONST_INIT_REF (t) = 0;
  TYPE_HAS_ASSIGN_REF (t) = 0;
  TYPE_HAS_CONST_ASSIGN_REF (t) = 0;

  /* Splice the implicitly generated functions out of the TYPE_METHODS
     list.  */
  q = &TYPE_METHODS (t);
  while (*q)
    {
      if (DECL_ARTIFICIAL (*q))
	*q = TREE_CHAIN (*q);
      else
	q = &TREE_CHAIN (*q);
    }

  /* ISO C++ 9.5.3.  Anonymous unions may not have function members.  */
  if (TYPE_METHODS (t))
    cp_error_at ("an anonymous union cannot have function members", t);

  /* Anonymous aggregates cannot have fields with ctors, dtors or complex
     assignment operators (because they cannot have these methods themselves).
     For anonymous unions this is already checked because they are not allowed
     in any union, otherwise we have to check it.  */
  if (TREE_CODE (t) != UNION_TYPE)
    {
      tree field, type;

      for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
	if (TREE_CODE (field) == FIELD_DECL)
	  {
	    type = TREE_TYPE (field);
	    if (CLASS_TYPE_P (type))
	      {
	        if (TYPE_NEEDS_CONSTRUCTING (type))
		  cp_error_at ("member %#D' with constructor not allowed in anonymous aggregate",
			       field);
		if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
		  cp_error_at ("member %#D' with destructor not allowed in anonymous aggregate",
			       field);
		if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
		  cp_error_at ("member %#D' with copy assignment operator not allowed in anonymous aggregate",
			       field);
	      }
	  }
    }
}

/* Make sure that a declaration with no declarator is well-formed, i.e.
   just defines a tagged type or anonymous union.

   Returns the type defined, if any.  */

tree
check_tag_decl (declspecs)
     tree declspecs;
{
  int found_type = 0;
  int saw_friend = 0;
  int saw_typedef = 0;
  tree ob_modifier = NULL_TREE;
  register tree link;
  register tree t = NULL_TREE;

  for (link = declspecs; link; link = TREE_CHAIN (link))
    {
      register tree value = TREE_VALUE (link);

      if (TYPE_P (value)
	  || TREE_CODE (value) == TYPE_DECL
	  || (TREE_CODE (value) == IDENTIFIER_NODE
	      && IDENTIFIER_GLOBAL_VALUE (value)
	      && TREE_CODE (IDENTIFIER_GLOBAL_VALUE (value)) == TYPE_DECL))
	{
	  ++found_type;

	  if (found_type == 2 && TREE_CODE (value) == IDENTIFIER_NODE)
	    {
	      if (! in_system_header)
		pedwarn ("redeclaration of C++ built-in type `%T'", value);
	      return NULL_TREE;
	    }

	  if (TYPE_P (value)
	      && ((TREE_CODE (value) != TYPENAME_TYPE && IS_AGGR_TYPE (value))
		  || TREE_CODE (value) == ENUMERAL_TYPE))
	    {
	      my_friendly_assert (TYPE_MAIN_DECL (value) != NULL_TREE, 261);
	      t = value;
	    }
	}
      else if (value == ridpointers[(int) RID_TYPEDEF])
        saw_typedef = 1;
      else if (value == ridpointers[(int) RID_FRIEND])
	{
	  if (current_class_type == NULL_TREE
	      || current_scope () != current_class_type)
	    ob_modifier = value;
	  else
	    saw_friend = 1;
	}
      else if (value == ridpointers[(int) RID_STATIC]
	       || value == ridpointers[(int) RID_EXTERN]
	       || value == ridpointers[(int) RID_AUTO]
	       || value == ridpointers[(int) RID_REGISTER]
	       || value == ridpointers[(int) RID_INLINE]
	       || value == ridpointers[(int) RID_VIRTUAL]
	       || value == ridpointers[(int) RID_CONST]
	       || value == ridpointers[(int) RID_VOLATILE]
	       || value == ridpointers[(int) RID_EXPLICIT]
	       || value == ridpointers[(int) RID_THREAD])
	ob_modifier = value;
    }

  if (found_type > 1)
    error ("multiple types in one declaration");

  if (t == NULL_TREE && ! saw_friend)
    pedwarn ("declaration does not declare anything");

  /* Check for an anonymous union.  */
  else if (t && IS_AGGR_TYPE_CODE (TREE_CODE (t))
	   && TYPE_ANONYMOUS_P (t))
    {
      /* 7/3 In a simple-declaration, the optional init-declarator-list
         can be omitted only when declaring a class (clause 9) or
         enumeration (7.2), that is, when the decl-specifier-seq contains
         either a class-specifier, an elaborated-type-specifier with
         a class-key (9.1), or an enum-specifier.  In these cases and
         whenever a class-specifier or enum-specifier is present in the
         decl-specifier-seq, the identifiers in these specifiers are among
         the names being declared by the declaration (as class-name,
         enum-names, or enumerators, depending on the syntax).  In such
         cases, and except for the declaration of an unnamed bit-field (9.6),
         the decl-specifier-seq shall introduce one or more names into the
         program, or shall redeclare a name introduced by a previous
         declaration.  [Example:
             enum { };            // ill-formed
             typedef class { };   // ill-formed
         --end example]  */
      if (saw_typedef)
        {
          error ("missing type-name in typedef-declaration");
          return NULL_TREE;
        }
      /* Anonymous unions are objects, so they can have specifiers.  */;
      SET_ANON_AGGR_TYPE_P (t);

      if (TREE_CODE (t) != UNION_TYPE && pedantic && ! in_system_header)
	pedwarn ("ISO C++ prohibits anonymous structs");
    }

  else if (ob_modifier)
    {
      if (ob_modifier == ridpointers[(int) RID_INLINE]
	  || ob_modifier == ridpointers[(int) RID_VIRTUAL])
	error ("`%D' can only be specified for functions", ob_modifier);
      else if (ob_modifier == ridpointers[(int) RID_FRIEND])
	error ("`%D' can only be specified inside a class", ob_modifier);
      else if (ob_modifier == ridpointers[(int) RID_EXPLICIT])
	error ("`%D' can only be specified for constructors",
		  ob_modifier);
      else
	error ("`%D' can only be specified for objects and functions",
		  ob_modifier);
    }

  return t;
}

/* Called when a declaration is seen that contains no names to declare.
   If its type is a reference to a structure, union or enum inherited
   from a containing scope, shadow that tag name for the current scope
   with a forward reference.
   If its type defines a new named structure or union
   or defines an enum, it is valid but we need not do anything here.
   Otherwise, it is an error.

   C++: may have to grok the declspecs to learn about static,
   complain for anonymous unions.  */

void
shadow_tag (declspecs)
     tree declspecs;
{
  tree t = check_tag_decl (declspecs);

  if (t)
    maybe_process_partial_specialization (t);

  /* This is where the variables in an anonymous union are
     declared.  An anonymous union declaration looks like:
     union { ... } ;
     because there is no declarator after the union, the parser
     sends that declaration here.  */
  if (t && ANON_AGGR_TYPE_P (t))
    {
      fixup_anonymous_aggr (t);

      if (TYPE_FIELDS (t))
	{
	  tree decl = grokdeclarator (NULL_TREE, declspecs, NORMAL, 0,
				      NULL);
	  finish_anon_union (decl);
	}
    }
}

/* Decode a "typename", such as "int **", returning a ..._TYPE node.  */

tree
groktypename (typename)
     tree typename;
{
  tree specs, attrs;
  tree type;
  if (TREE_CODE (typename) != TREE_LIST)
    return typename;
  split_specs_attrs (TREE_PURPOSE (typename), &specs, &attrs);
  type = grokdeclarator (TREE_VALUE (typename), specs,
			 TYPENAME, 0, &attrs);
  if (attrs)
    cplus_decl_attributes (&type, attrs, 0);
  return type;
}

/* APPLE LOCAL begin Objective-C++ */
/* Return a PARM_DECL node for a given pair of specs and declarator.  */

tree
groktypename_in_parm_context (objcp_typename)
     tree objcp_typename;
{
  tree specs, objcp_attrs;
  tree objcp_type;
  if (TREE_CODE (objcp_typename) != TREE_LIST)
    return objcp_typename;
  split_specs_attrs (TREE_PURPOSE (objcp_typename), &specs, &objcp_attrs);
  objcp_type = grokdeclarator (TREE_VALUE (objcp_typename), specs,
			       PARM, 0, &objcp_attrs);
  if (objcp_attrs)
    cplus_decl_attributes (&objcp_type, objcp_attrs, 0);
  return objcp_type;
}
/* APPLE LOCAL end Objective-C++ */

/* Decode a declarator in an ordinary declaration or data definition.
   This is called as soon as the type information and variable name
   have been parsed, before parsing the initializer if any.
   Here we create the ..._DECL node, fill in its type,
   and put it on the list of decls for the current context.
   The ..._DECL node is returned as the value.

   Exception: for arrays where the length is not specified,
   the type is left null, to be filled in by `cp_finish_decl'.

   Function definitions do not come here; they go to start_function
   instead.  However, external and forward declarations of functions
   do go through here.  Structure field declarations are done by
   grokfield and not through here.  */

tree
start_decl (declarator, declspecs, initialized, attributes, prefix_attributes)
     tree declarator, declspecs;
     int initialized;
     tree attributes, prefix_attributes;
{
  tree decl;
  register tree type, tem;
  tree context;
  /* APPLE LOCAL unavailable */
  tree a;

#if 0
  /* See code below that used this.  */
  int init_written = initialized;
#endif

  /* This should only be done once on the top most decl.  */
  if (have_extern_spec)
    {
      declspecs = tree_cons (NULL_TREE, get_identifier ("extern"),
			     declspecs);
      have_extern_spec = false;
    }

  /* APPLE LOCAL begin unavailable */
  /* An object declared as __attribute__((unavailable)) suppresses
     any reports of being declared with unavailable or deprecated
     items.  An object declared as __attribute__((deprecated))
     suppresses warnings of uses of other deprecated items.  */
#ifdef A_LESS_INEFFICENT_WAY /* which I really don't want to do!  */
  if (lookup_attribute ("deprecated", attributes))
    deprecated_state = DEPRECATED_SUPPRESS;
  else if (lookup_attribute ("unavailable", attributes))
    deprecated_state = DEPRECATED_UNAVAILABLE_SUPPRESS;
#else /* a more efficient way doing what lookup_attribute would do */
  for (a = attributes; a; a = TREE_CHAIN (a))
    {
      tree name = TREE_PURPOSE (a);
      if (TREE_CODE (name) == IDENTIFIER_NODE)
        if (is_attribute_p ("deprecated", name))
	  {
	    deprecated_state = DEPRECATED_SUPPRESS;
	    break;
	  }
        if (is_attribute_p ("unavailable", name))
	  {
	    deprecated_state = DEPRECATED_UNAVAILABLE_SUPPRESS;
	    break;
	  }
    }
#endif
  /* APPLE LOCAL end unavailable */

  attributes = chainon (attributes, prefix_attributes);

  decl = grokdeclarator (declarator, declspecs, NORMAL, initialized,
			 &attributes);

  deprecated_state = DEPRECATED_NORMAL;

  if (decl == NULL_TREE || TREE_CODE (decl) == VOID_TYPE)
    return NULL_TREE;

  type = TREE_TYPE (decl);

  if (type == error_mark_node)
    return NULL_TREE;

  /* APPLE LOCAL begin indexing dpatel */
  if (flag_gen_index)
    {
      int info_tag = INDEX_ERROR;
      switch (TREE_CODE (decl))
        {
           case FUNCTION_DECL:
             info_tag = INDEX_FUNCTION_DECL;
             break;
           case CONST_DECL:
             info_tag = INDEX_CONST_DECL;
             break;
           case VAR_DECL:
             if (DECL_CLASS_SCOPE_P (decl))
               info_tag = INDEX_DATA_DECL;
             else
               info_tag = INDEX_VAR_DECL;
             break;
           case TYPE_DECL:
             info_tag = INDEX_TYPE_DECL;
             break;
           default:
             //fprintf ("indexing warning: Invalid decl TREE_CODE\n");
             break;
        }
      gen_indexing_info (info_tag, 
                         IDENTIFIER_POINTER (DECL_NAME (decl)),
                         DECL_SOURCE_LINE (decl));

      /* Generate inheritance info, for the class */
      if (DECL_CLASS_SCOPE_P (decl))
        {
          if (TYPE_CHECK (DECL_CLASS_CONTEXT (decl)))
            {
              tree typename = TYPE_NAME (DECL_CLASS_CONTEXT (decl));
              gen_indexing_info (INDEX_DATA_INHERITANCE,
                                 IDENTIFIER_POINTER (DECL_NAME (typename)),
                                 DECL_SOURCE_LINE (typename));
            }
          else if (DECL_CONTEXT (decl))
            {
              tree t = DECL_CONTEXT (decl);
              gen_indexing_info (INDEX_DATA_INHERITANCE,
                                 IDENTIFIER_POINTER (DECL_NAME (t)),
                                 DECL_SOURCE_LINE (t));
            }
        }
    }
  /* APPLE LOCAL end indexing dpatel */

  context = DECL_CONTEXT (decl);

  if (initialized && context && TREE_CODE (context) == NAMESPACE_DECL
      && context != current_namespace && TREE_CODE (decl) == VAR_DECL)
    {
      /* When parsing the initializer, lookup should use the object's
	 namespace.  */
      push_decl_namespace (context);
    }

  /* We are only interested in class contexts, later.  */
  if (context && TREE_CODE (context) == NAMESPACE_DECL)
    context = NULL_TREE;

  if (initialized)
    /* Is it valid for this decl to have an initializer at all?
       If not, set INITIALIZED to zero, which will indirectly
       tell `cp_finish_decl' to ignore the initializer once it is parsed.  */
    switch (TREE_CODE (decl))
      {
      case TYPE_DECL:
	error ("typedef `%D' is initialized (use __typeof__ instead)", decl);
	initialized = 0;
	break;

      case FUNCTION_DECL:
	error ("function `%#D' is initialized like a variable", decl);
	initialized = 0;
	break;

      default:
	break;
      }

  if (initialized)
    {
      if (! toplevel_bindings_p ()
	  && DECL_EXTERNAL (decl))
	warning ("declaration of `%#D' has `extern' and is initialized",
		    decl);
      DECL_EXTERNAL (decl) = 0;
      if (toplevel_bindings_p ())
	TREE_STATIC (decl) = 1;

      /* Tell `pushdecl' this is an initialized decl
	 even though we don't yet have the initializer expression.
	 Also tell `cp_finish_decl' it may store the real initializer.  */
      DECL_INITIAL (decl) = error_mark_node;
    }

  /* Set attributes here so if duplicate decl, will have proper attributes.  */
  cplus_decl_attributes (&decl, attributes, 0);

  /* If #pragma weak was used, mark the decl weak now.  */
  if (current_binding_level == global_binding_level)
    maybe_apply_pragma_weak (decl);

  if (TREE_CODE (decl) == FUNCTION_DECL
      && DECL_DECLARED_INLINE_P (decl)
      && DECL_UNINLINABLE (decl)
      && lookup_attribute ("noinline", DECL_ATTRIBUTES (decl)))
    warning_with_decl (decl,
		       "inline function `%s' given attribute noinline");

  if (context && COMPLETE_TYPE_P (complete_type (context)))
    {
      push_nested_class (context, 2);

      if (TREE_CODE (decl) == VAR_DECL)
	{
	  tree field = lookup_field (context, DECL_NAME (decl), 0, 0);
	  if (field == NULL_TREE || TREE_CODE (field) != VAR_DECL)
	    error ("`%#D' is not a static member of `%#T'", decl, context);
	  else
	    {
	      if (DECL_CONTEXT (field) != context)
		{
		  pedwarn ("ISO C++ does not permit `%T::%D' to be defined as `%T::%D'",
			      DECL_CONTEXT (field), DECL_NAME (decl),
			      context, DECL_NAME (decl));
		  DECL_CONTEXT (decl) = DECL_CONTEXT (field);
		}
	      /* Static data member are tricky; an in-class initialization
		 still doesn't provide a definition, so the in-class
		 declaration will have DECL_EXTERNAL set, but will have an
		 initialization.  Thus, duplicate_decls won't warn
		 about this situation, and so we check here.  */
	      if (DECL_INITIAL (decl) && DECL_INITIAL (field))
		error ("duplicate initialization of %D", decl);
	      if (duplicate_decls (decl, field))
		decl = field;
	    }
	}
      else
	{
	  tree field = check_classfn (context, decl);
	  if (field && duplicate_decls (decl, field))
	    decl = field;
	}

      /* cp_finish_decl sets DECL_EXTERNAL if DECL_IN_AGGR_P is set.  */
      DECL_IN_AGGR_P (decl) = 0;
      if ((DECL_LANG_SPECIFIC (decl) && DECL_USE_TEMPLATE (decl))
	  || CLASSTYPE_TEMPLATE_INSTANTIATION (context))
	{
	  SET_DECL_TEMPLATE_SPECIALIZATION (decl);
	  /* [temp.expl.spec] An explicit specialization of a static data
	     member of a template is a definition if the declaration
	     includes an initializer; otherwise, it is a declaration.

	     We check for processing_specialization so this only applies
	     to the new specialization syntax.  */
	  if (DECL_INITIAL (decl) == NULL_TREE && processing_specialization)
	    DECL_EXTERNAL (decl) = 1;
	}

      if (DECL_EXTERNAL (decl) && ! DECL_TEMPLATE_SPECIALIZATION (decl))
	pedwarn ("declaration of `%#D' outside of class is not definition",
		    decl);
    }

  /* Enter this declaration into the symbol table.  */
  tem = maybe_push_decl (decl);

  if (processing_template_decl)
    tem = push_template_decl (tem);

#if ! defined (ASM_OUTPUT_BSS) && ! defined (ASM_OUTPUT_ALIGNED_BSS)
  /* Tell the back-end to use or not use .common as appropriate.  If we say
     -fconserve-space, we want this to save .data space, at the expense of
     wrong semantics.  If we say -fno-conserve-space, we want this to
     produce errors about redefs; to do this we force variables into the
     data segment.  */
  DECL_COMMON (tem) = ((TREE_CODE (tem) != VAR_DECL
			|| !DECL_THREAD_LOCAL (tem))
		       && (flag_conserve_space || ! TREE_PUBLIC (tem)));
#endif

  if (! processing_template_decl)
    start_decl_1 (tem);

  return tem;
}

void
start_decl_1 (decl)
     tree decl;
{
  tree type = TREE_TYPE (decl);
  int initialized = (DECL_INITIAL (decl) != NULL_TREE);

  if (type == error_mark_node)
    return;

  maybe_push_cleanup_level (type);

  if (initialized)
    /* Is it valid for this decl to have an initializer at all?
       If not, set INITIALIZED to zero, which will indirectly
       tell `cp_finish_decl' to ignore the initializer once it is parsed.  */
    {
      /* Don't allow initializations for incomplete types except for
	 arrays which might be completed by the initialization.  */
      if (COMPLETE_TYPE_P (complete_type (type)))
	;			/* A complete type is ok.  */
      else if (TREE_CODE (type) != ARRAY_TYPE)
	{
	  error ("variable `%#D' has initializer but incomplete type",
		    decl);
	  initialized = 0;
	  type = TREE_TYPE (decl) = error_mark_node;
	}
      else if (!COMPLETE_TYPE_P (complete_type (TREE_TYPE (type))))
	{
	  if (DECL_LANG_SPECIFIC (decl) && DECL_TEMPLATE_INFO (decl))
	    error ("elements of array `%#D' have incomplete type", decl);
	  /* else we already gave an error in start_decl.  */
	  initialized = 0;
	}
    }

  if (!initialized
      && TREE_CODE (decl) != TYPE_DECL
      && TREE_CODE (decl) != TEMPLATE_DECL
      && type != error_mark_node
      && IS_AGGR_TYPE (type)
      && ! DECL_EXTERNAL (decl))
    {
      if ((! processing_template_decl || ! uses_template_parms (type))
	  && !COMPLETE_TYPE_P (complete_type (type)))
	{
	  error ("aggregate `%#D' has incomplete type and cannot be defined",
		 decl);
	  /* Change the type so that assemble_variable will give
	     DECL an rtl we can live with: (mem (const_int 0)).  */
	  type = TREE_TYPE (decl) = error_mark_node;
	}
      else
	{
	  /* If any base type in the hierarchy of TYPE needs a constructor,
	     then we set initialized to 1.  This way any nodes which are
	     created for the purposes of initializing this aggregate
	     will live as long as it does.  This is necessary for global
	     aggregates which do not have their initializers processed until
	     the end of the file.  */
	  initialized = TYPE_NEEDS_CONSTRUCTING (type);
	}
    }

  if (! initialized)
    DECL_INITIAL (decl) = NULL_TREE;
}

/* Handle initialization of references.
   These three arguments are from `cp_finish_decl', and have the
   same meaning here that they do there.

   Quotes on semantics can be found in ARM 8.4.3.  */

static tree
grok_reference_init (decl, type, init)
     tree decl, type, init;
{
  tree tmp;

  if (init == NULL_TREE)
    {
      if ((DECL_LANG_SPECIFIC (decl) == 0
	   || DECL_IN_AGGR_P (decl) == 0)
	  && ! DECL_THIS_EXTERN (decl))
	error ("`%D' declared as reference but not initialized", decl);
      return NULL_TREE;
    }

  if (init == error_mark_node)
    return NULL_TREE;

  if (TREE_CODE (init) == CONSTRUCTOR)
    {
      error ("ISO C++ forbids use of initializer list to initialize reference `%D'", decl);
      return NULL_TREE;
    }

  if (TREE_CODE (init) == TREE_LIST)
    init = build_compound_expr (init);

  if (TREE_CODE (TREE_TYPE (init)) == REFERENCE_TYPE)
    init = convert_from_reference (init);

  if (TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE
      && TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE)
    {
      /* Note: default conversion is only called in very special cases.  */
      init = default_conversion (init);
    }

  /* Convert INIT to the reference type TYPE.  This may involve the
     creation of a temporary, whose lifetime must be the same as that
     of the reference.  If so, a DECL_STMT for the temporary will be
     added just after the DECL_STMT for DECL.  That's why we don't set
     DECL_INITIAL for local references (instead assigning to them
     explicitly); we need to allow the temporary to be initialized
     first.  */
  tmp = initialize_reference (type, init, decl);

  if (tmp == error_mark_node)
    return NULL_TREE;
  else if (tmp == NULL_TREE)
    {
      error ("cannot initialize `%T' from `%T'", type, TREE_TYPE (init));
      return NULL_TREE;
    }

  if (TREE_STATIC (decl) && !TREE_CONSTANT (tmp))
    return tmp;

  DECL_INITIAL (decl) = tmp;

  return NULL_TREE;
}

/* When parsing `int a[] = {1, 2};' we don't know the size of the
   array until we finish parsing the initializer.  If that's the
   situation we're in, update DECL accordingly.  */

static void
maybe_deduce_size_from_array_init (decl, init)
     tree decl;
     tree init;
{
  tree type = TREE_TYPE (decl);

  if (TREE_CODE (type) == ARRAY_TYPE
      && TYPE_DOMAIN (type) == NULL_TREE
      && TREE_CODE (decl) != TYPE_DECL)
    {
      /* do_default is really a C-ism to deal with tentative definitions.
	 But let's leave it here to ease the eventual merge.  */
      int do_default = !DECL_EXTERNAL (decl);
      tree initializer = init ? init : DECL_INITIAL (decl);
      int failure = complete_array_type (type, initializer, do_default);

      if (failure == 1)
	error ("initializer fails to determine size of `%D'", decl);

      if (failure == 2)
	{
	  if (do_default)
	    error ("array size missing in `%D'", decl);
	  /* If a `static' var's size isn't known, make it extern as
	     well as static, so it does not get allocated.  If it's not
	     `static', then don't mark it extern; finish_incomplete_decl
	     will give it a default size and it will get allocated.  */
	  else if (!pedantic && TREE_STATIC (decl) && !TREE_PUBLIC (decl))
	    DECL_EXTERNAL (decl) = 1;
	}

      if (pedantic && TYPE_DOMAIN (type) != NULL_TREE
	  && tree_int_cst_lt (TYPE_MAX_VALUE (TYPE_DOMAIN (type)),
			      integer_zero_node))
	error ("zero-size array `%D'", decl);

      layout_decl (decl, 0);
    }
}

/* Set DECL_SIZE, DECL_ALIGN, etc. for DECL (a VAR_DECL), and issue
   any appropriate error messages regarding the layout.  */

static void
layout_var_decl (decl)
     tree decl;
{
  tree type = TREE_TYPE (decl);
#if 0
  tree ttype = target_type (type);
#endif

  /* If we haven't already layed out this declaration, do so now.
     Note that we must not call complete type for an external object
     because it's type might involve templates that we are not
     supposed to isntantiate yet.  (And it's perfectly valid to say
     `extern X x' for some incomplete type `X'.)  */
  if (!DECL_EXTERNAL (decl))
    complete_type (type);
  if (!DECL_SIZE (decl) 
      && TREE_TYPE (decl) != error_mark_node
      && (COMPLETE_TYPE_P (type)
	  || (TREE_CODE (type) == ARRAY_TYPE 
	      && !TYPE_DOMAIN (type)
	      && COMPLETE_TYPE_P (TREE_TYPE (type)))))
    layout_decl (decl, 0);

  if (!DECL_EXTERNAL (decl) && DECL_SIZE (decl) == NULL_TREE)
    {
      /* An automatic variable with an incomplete type: that is an error.
	 Don't talk about array types here, since we took care of that
	 message in grokdeclarator.  */
      error ("storage size of `%D' isn't known", decl);
      TREE_TYPE (decl) = error_mark_node;
    }
#if 0
  /* Keep this code around in case we later want to control debug info
     based on whether a type is "used".  (jason 1999-11-11) */

  else if (!DECL_EXTERNAL (decl) && IS_AGGR_TYPE (ttype))
    /* Let debugger know it should output info for this type.  */
    note_debug_info_needed (ttype);

  if (TREE_STATIC (decl) && DECL_CLASS_SCOPE_P (decl))
    note_debug_info_needed (DECL_CONTEXT (decl));
#endif

  if ((DECL_EXTERNAL (decl) || TREE_STATIC (decl))
      && DECL_SIZE (decl) != NULL_TREE
      && ! TREE_CONSTANT (DECL_SIZE (decl)))
    {
      if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST)
	constant_expression_warning (DECL_SIZE (decl));
      else
	error ("storage size of `%D' isn't constant", decl);
    }

  if (TREE_STATIC (decl)
      && !DECL_ARTIFICIAL (decl)
      && current_function_decl
      && DECL_CONTEXT (decl) == current_function_decl)
    push_local_name (decl);
}

/* If a local static variable is declared in an inline function, or if
   we have a weak definition, we must endeavor to create only one
   instance of the variable at link-time.  */

static void
maybe_commonize_var (decl)
     tree decl;
{
  /* Static data in a function with comdat linkage also has comdat
     linkage.  */
  if (TREE_STATIC (decl)
      /* Don't mess with __FUNCTION__.  */
      && ! DECL_ARTIFICIAL (decl)
      && current_function_decl
      && DECL_CONTEXT (decl) == current_function_decl
      && (DECL_DECLARED_INLINE_P (current_function_decl)
	  || DECL_TEMPLATE_INSTANTIATION (current_function_decl))
      && TREE_PUBLIC (current_function_decl))
    {
      /* If flag_weak, we don't need to mess with this, as we can just
	 make the function weak, and let it refer to its unique local
	 copy.  This works because we don't allow the function to be
	 inlined.  */
      if (! flag_weak)
	{
	  /* APPLE LOCAL begin coalescing  */
#ifdef MAKE_DECL_COALESCED
	  if (DECL_INTERFACE_KNOWN (current_function_decl))
	    DECL_EXTERNAL (decl) = DECL_EXTERNAL (current_function_decl);
	  TREE_PUBLIC (decl) = 1;
	  MAKE_DECL_COALESCED (decl);
#else
	  if (DECL_INTERFACE_KNOWN (current_function_decl))
	    {
	      TREE_PUBLIC (decl) = 1;
	      DECL_EXTERNAL (decl) = DECL_EXTERNAL (current_function_decl);
	    }
	  else if (DECL_INITIAL (decl) == NULL_TREE
		   || DECL_INITIAL (decl) == error_mark_node)
	    {
	      TREE_PUBLIC (decl) = 1;
	      DECL_COMMON (decl) = 1;
	    }
	  /* else we lose. We can only do this if we can use common,
	     which we can't if it has been initialized.  */

	  if (!TREE_PUBLIC (decl))
	    {
	      cp_warning_at ("sorry: semantics of inline function static data `%#D' are wrong (you'll wind up with multiple copies)", decl);
	      cp_warning_at ("  you can work around this by removing the initializer", decl);
	    }
#endif
	  /* APPLE LOCAL end coalescing */
	}
      else
	comdat_linkage (decl);
    }
  else if (DECL_LANG_SPECIFIC (decl) && DECL_COMDAT (decl))
    /* Set it up again; we might have set DECL_INITIAL since the last
       time.  */
    comdat_linkage (decl);
}

/* Issue an error message if DECL is an uninitialized const variable.  */

static void
check_for_uninitialized_const_var (decl)
     tree decl;
{
  tree type = TREE_TYPE (decl);

  /* ``Unless explicitly declared extern, a const object does not have
     external linkage and must be initialized. ($8.4; $12.1)'' ARM
     7.1.6 */
  if (TREE_CODE (decl) == VAR_DECL
      && TREE_CODE (type) != REFERENCE_TYPE
      && CP_TYPE_CONST_P (type)
      && !TYPE_NEEDS_CONSTRUCTING (type)
      && !DECL_INITIAL (decl))
    error ("uninitialized const `%D'", decl);
}

/* FIELD is a FIELD_DECL or NULL.  In the former case, the value
   returned is the next FIELD_DECL (possibly FIELD itself) that can be
   initialized.  If there are no more such fields, the return value
   will be NULL.  */

static tree
next_initializable_field (tree field)
{
  while (field
	 && (TREE_CODE (field) != FIELD_DECL
	     || (DECL_C_BIT_FIELD (field) && !DECL_NAME (field))
	     || DECL_ARTIFICIAL (field)))
    field = TREE_CHAIN (field);

  return field;
}

/* Undo the brace-elision allowed by [dcl.init.aggr] in a
   brace-enclosed aggregate initializer.

   *INITP is one of a list of initializers describing a brace-enclosed
   initializer for an entity of the indicated aggregate TYPE.  It may
   not presently match the shape of the TYPE; for example:
   
     struct S { int a; int b; };
     struct S a[] = { 1, 2, 3, 4 };

   Here *INITP will point to TREE_LIST of four elements, rather than a
   list of two elements, each itself a list of two elements.  This
   routine transforms INIT from the former form into the latter.  The
   revised initializer is returned.  */

static tree
reshape_init (tree type, tree *initp)
{
  tree inits;
  tree old_init;
  tree old_init_value;
  tree new_init;
  bool brace_enclosed_p;

  old_init = *initp;
  old_init_value = (TREE_CODE (*initp) == TREE_LIST
		    ? TREE_VALUE (*initp) : old_init);

  /* For some parse errors, OLD_INIT_VALUE may be NULL.  */
  if (!old_init_value)
    {
      my_friendly_assert (TREE_CODE (old_init) == TREE_LIST, 20021202);
      TREE_VALUE (old_init) = error_mark_node;
      return old_init;
    }

  /* If the initializer is brace-enclosed, pull initializers from the
     enclosed elements.  Advance past the brace-enclosed initializer
     now.  */
  if (TREE_CODE (old_init_value) == CONSTRUCTOR 
      && TREE_HAS_CONSTRUCTOR (old_init_value))
    {
      *initp = TREE_CHAIN (old_init);
      TREE_CHAIN (old_init) = NULL_TREE;
      inits = CONSTRUCTOR_ELTS (old_init_value);
      initp = &inits;
      brace_enclosed_p = true;
    }
  else
    {
      inits = NULL_TREE;
      brace_enclosed_p = false;
    }

  /* A non-aggregate type is always initialized with a single
     initializer.  */
  if (!CP_AGGREGATE_TYPE_P (type))
      {
	*initp = TREE_CHAIN (old_init);
	TREE_CHAIN (old_init) = NULL_TREE;
	/* It is invalid to initialize a non-aggregate type with a
	   brace-enclosed initializer.  */
	if (brace_enclosed_p)
	  {
	    error ("brace-enclosed initializer used to initialize `%T'",
		   type);
	    if (TREE_CODE (old_init) == TREE_LIST)
	      TREE_VALUE (old_init) = error_mark_node;
	    else
	      old_init = error_mark_node;
	  }
	
	return old_init;
      }

  /* [dcl.init.aggr]

     All implicit type conversions (clause _conv_) are considered when
     initializing the aggregate member with an initializer from an
     initializer-list.  If the initializer can initialize a member,
     the member is initialized.  Otherwise, if the member is itself a
     non-empty subaggregate, brace elision is assumed and the
     initializer is considered for the initialization of the first
     member of the subaggregate.  */
  if (CLASS_TYPE_P (type) 
      && !brace_enclosed_p
      && can_convert_arg (type, TREE_TYPE (old_init_value), old_init_value))
    {
      *initp = TREE_CHAIN (old_init);
      TREE_CHAIN (old_init) = NULL_TREE;
      return old_init;
    }

  if (TREE_CODE (old_init_value) == STRING_CST
      && TREE_CODE (type) == ARRAY_TYPE
      && char_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (type))))
    {
      /* [dcl.init.string]

	 A char array (whether plain char, signed char, or unsigned char)
	 can be initialized by a string-literal (optionally enclosed in
	 braces); a wchar_t array can be initialized by a wide
	 string-literal (optionally enclosed in braces).  */
      new_init = old_init;
      /* Move past the initializer.  */
      *initp = TREE_CHAIN (old_init);
      TREE_CHAIN (old_init) = NULL_TREE;
    }
  else
    {
      /* Build a CONSTRUCTOR to hold the contents of the aggregate.  */  
      new_init = build (CONSTRUCTOR, type, NULL_TREE, NULL_TREE);
      TREE_HAS_CONSTRUCTOR (new_init) = 1;

      if (CLASS_TYPE_P (type))
	{
	  tree field;

	  field = next_initializable_field (TYPE_FIELDS (type));

	  if (!field)
	    {
	      /* [dcl.init.aggr]
	      
		 An initializer for an aggregate member that is an
		 empty class shall have the form of an empty
		 initializer-list {}.  */
	      if (!brace_enclosed_p)
		error ("initializer for `%T' must be brace-enclosed",
		       type);
	    }
	  else
	    {
	      /* Loop through the initializable fields, gathering
		 initializers.  */
              /* FIXME support non-trivial labeled initializers.  */
	      while (*initp && field)
		{
		  tree field_init;

		  field_init = reshape_init (TREE_TYPE (field), initp);
		  TREE_CHAIN (field_init) = CONSTRUCTOR_ELTS (new_init);
		  CONSTRUCTOR_ELTS (new_init) = field_init;
		  /* [dcl.init.aggr] 

		     When a union  is  initialized with a brace-enclosed
		     initializer, the braces shall only contain an
		     initializer for the first member of the union.  */
		  if (TREE_CODE (type) == UNION_TYPE)
		    break;
		  field = next_initializable_field (TREE_CHAIN (field));
		}
	    }
	}
      else if (TREE_CODE (type) == ARRAY_TYPE)
	{
	  tree index;
	  tree max_index;

	  /* If the bound of the array is known, take no more initializers
	     than are allowed.  */
	  max_index = (TYPE_DOMAIN (type) 
		       ? array_type_nelts (type) : NULL_TREE);
	  /* Loop through the array elements, gathering initializers.  */
	  for (index = size_zero_node;
	       *initp && (!max_index || !tree_int_cst_lt (max_index, index));
	       index = size_binop (PLUS_EXPR, index, size_one_node))
	    {
	      tree element_init;

	      element_init = reshape_init (TREE_TYPE (type), initp);
	      TREE_CHAIN (element_init) = CONSTRUCTOR_ELTS (new_init);
	      CONSTRUCTOR_ELTS (new_init) = element_init;
	      if (TREE_PURPOSE (element_init))
		index = TREE_PURPOSE (element_init);
	    }
	}
      else
	abort ();

      /* The initializers were placed in reverse order in the
	 CONSTRUCTOR.  */
      CONSTRUCTOR_ELTS (new_init) = nreverse (CONSTRUCTOR_ELTS (new_init));

      if (TREE_CODE (old_init) == TREE_LIST)
	new_init = build_tree_list (TREE_PURPOSE (old_init), new_init);
    }

  /* If this was a brace-enclosed initializer and all of the
     initializers were not used up, there is a problem.  */
  if (brace_enclosed_p && *initp)
    error ("too many initializers for `%T'", type);

  return new_init;
}

/* Verify INIT (the initializer for DECL), and record the
   initialization in DECL_INITIAL, if appropriate.  

   If the return value is non-NULL, it is an expression that must be
   evaluated dynamically to initialize DECL.  */

static tree
check_initializer (tree decl, tree init, int flags)
{
  tree type = TREE_TYPE (decl);

  /* If `start_decl' didn't like having an initialization, ignore it now.  */
  if (init != NULL_TREE && DECL_INITIAL (decl) == NULL_TREE)
    init = NULL_TREE;

  /* If an initializer is present, DECL_INITIAL has been
     error_mark_node, to indicate that an as-of-yet unevaluated
     initialization will occur.  From now on, DECL_INITIAL reflects
     the static initialization -- if any -- of DECL.  */
  DECL_INITIAL (decl) = NULL_TREE;

  /* Things that are going to be initialized need to have complete
     type.  */
  TREE_TYPE (decl) = type = complete_type (TREE_TYPE (decl));

  if (type == error_mark_node)
    /* We will have already complained.  */
    init = NULL_TREE;
  else if (init && COMPLETE_TYPE_P (type) 
	   && !TREE_CONSTANT (TYPE_SIZE (type)))
    {
      error ("variable-sized object `%D' may not be initialized", decl);
      init = NULL_TREE;
    }
  else if (TREE_CODE (type) == ARRAY_TYPE
	   && !COMPLETE_TYPE_P (complete_type (TREE_TYPE (type))))
    {
      error ("elements of array `%#D' have incomplete type", decl);
      init = NULL_TREE;
    }
  else if (TREE_CODE (type) != ARRAY_TYPE && !COMPLETE_TYPE_P (type))
    {
      error ("`%D' has incomplete type", decl);
      TREE_TYPE (decl) = error_mark_node;
      init = NULL_TREE;
    }

  if (TREE_CODE (decl) == CONST_DECL)
    {
      my_friendly_assert (TREE_CODE (decl) != REFERENCE_TYPE, 148);

      DECL_INITIAL (decl) = init;

      my_friendly_assert (init != NULL_TREE, 149);
      init = NULL_TREE;
    }
  else if (!DECL_EXTERNAL (decl) && TREE_CODE (type) == REFERENCE_TYPE)
    init = grok_reference_init (decl, type, init);
  else if (init)
    {
      if (TREE_CODE (init) == CONSTRUCTOR && TREE_HAS_CONSTRUCTOR (init))
	{
	  /* [dcl.init] paragraph 13,
	     If T is a scalar type, then a declaration of the form
	     T x = { a };
	     is equivalent to
	     T x = a;
	     
	     reshape_init will complain about the extra braces,
	     and doesn't do anything useful in the case where TYPE is
	     scalar, so just don't call it.  */
	  if (CP_AGGREGATE_TYPE_P (type))
	    init = reshape_init (type, &init);
	}

      /* If DECL has an array type without a specific bound, deduce the
	 array size from the initializer.  */
      maybe_deduce_size_from_array_init (decl, init);
      type = TREE_TYPE (decl);
      if (TREE_CODE (init) == CONSTRUCTOR && TREE_HAS_CONSTRUCTOR (init))
	TREE_TYPE (init) = type;

      if (TYPE_HAS_CONSTRUCTOR (type) || TYPE_NEEDS_CONSTRUCTING (type))
	{
	  if (TREE_CODE (type) == ARRAY_TYPE)
	    goto initialize_aggr;
	  else if (TREE_CODE (init) == CONSTRUCTOR
		   && TREE_HAS_CONSTRUCTOR (init))
	    {
	      if (TYPE_NON_AGGREGATE_CLASS (type))
		{
		  error ("`%D' must be initialized by constructor, not by `{...}'",
			 decl);
		  init = error_mark_node;
		}
	      else
		goto dont_use_constructor;
	    }
	  else
	    {
	      int saved_stmts_are_full_exprs_p;

	    initialize_aggr:
	      saved_stmts_are_full_exprs_p = 0;
	      if (building_stmt_tree ())
		{
		  saved_stmts_are_full_exprs_p = stmts_are_full_exprs_p ();
		  current_stmt_tree ()->stmts_are_full_exprs_p = 1;
		}
	      init = build_aggr_init (decl, init, flags);
	      if (building_stmt_tree ())
		current_stmt_tree ()->stmts_are_full_exprs_p =
		  saved_stmts_are_full_exprs_p;
	      return init;
	    }
	}
      else
	{
	dont_use_constructor:
	  if (TREE_CODE (init) != TREE_VEC)
	    init = store_init_value (decl, init);
	}
    }
  else if (DECL_EXTERNAL (decl))
    ;
  else if (TYPE_P (type) && TYPE_NEEDS_CONSTRUCTING (type))
    goto initialize_aggr;
  else if (IS_AGGR_TYPE (type))
    {
      tree core_type = strip_array_types (type);

      if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type))
	error ("structure `%D' with uninitialized const members", decl);
      if (CLASSTYPE_REF_FIELDS_NEED_INIT (core_type))
	error ("structure `%D' with uninitialized reference members",
	       decl);

      check_for_uninitialized_const_var (decl);
    }
  else
    check_for_uninitialized_const_var (decl);

  if (init && init != error_mark_node)
    init = build (INIT_EXPR, type, decl, init);

  return init;
}

/* If DECL is not a local variable, give it RTL.  */

static void
make_rtl_for_nonlocal_decl (decl, init, asmspec)
     tree decl;
     tree init;
     const char *asmspec;
{
  int toplev = toplevel_bindings_p ();
  int defer_p;

  /* Handle non-variables up front.  */
  if (TREE_CODE (decl) != VAR_DECL)
    {
      rest_of_decl_compilation (decl, asmspec, toplev, at_eof);
      return;
    }

  /* If we see a class member here, it should be a static data
     member.  */
  if (DECL_LANG_SPECIFIC (decl) && DECL_IN_AGGR_P (decl))
    {
      my_friendly_assert (TREE_STATIC (decl), 19990828);
      /* An in-class declaration of a static data member should be
	 external; it is only a declaration, and not a definition.  */
      if (init == NULL_TREE)
	my_friendly_assert (DECL_EXTERNAL (decl), 20000723);
    }

  /* Set the DECL_ASSEMBLER_NAME for the variable.  */
  if (asmspec)
    {
      SET_DECL_ASSEMBLER_NAME (decl, get_identifier (asmspec));
      /* The `register' keyword, when used together with an
	 asm-specification, indicates that the variable should be
	 placed in a particular register.  */
      if (DECL_REGISTER (decl))
	DECL_C_HARD_REGISTER (decl) = 1;
    }

  /* We don't create any RTL for local variables.  */
  if (DECL_FUNCTION_SCOPE_P (decl) && !TREE_STATIC (decl))
    return;

  /* We defer emission of local statics until the corresponding
     DECL_STMT is expanded.  */
  defer_p = DECL_FUNCTION_SCOPE_P (decl) || DECL_VIRTUAL_P (decl);

  /* We try to defer namespace-scope static constants so that they are
     not emitted into the object file unnecessarily.  */
  if (!DECL_VIRTUAL_P (decl)
      && TREE_READONLY (decl)
      && DECL_INITIAL (decl) != NULL_TREE
      && DECL_INITIAL (decl) != error_mark_node
      && ! EMPTY_CONSTRUCTOR_P (DECL_INITIAL (decl))
      && toplev
      && !TREE_PUBLIC (decl))
    {
      /* Fool with the linkage of static consts according to #pragma
	 interface.  */
      if (!interface_unknown && !TREE_PUBLIC (decl))
	{
	  TREE_PUBLIC (decl) = 1;
	  DECL_EXTERNAL (decl) = interface_only;
	}

      defer_p = 1;
    }
  /* Likewise for template instantiations.  */
  else if (DECL_COMDAT (decl))
    defer_p = 1;

  /* If we're deferring the variable, we only need to make RTL if
     there's an ASMSPEC.  Otherwise, we'll lazily create it later when
     we need it.  (There's no way to lazily create RTL for things that
     have assembly specs because the information about the specifier
     isn't stored in the tree, yet)  */
  if (defer_p && asmspec)
    make_decl_rtl (decl, asmspec);
  /* APPLE LOCAL begin static const members  turly 20020110  */
  /* Static const members which require runtime initialisation should
     not be placed in readonly memory.  Avoid this by temporarily
     whacking the TREE_READONLY bit.  */
  else if (!defer_p && init != NULL_TREE && TREE_READONLY (decl) && toplev)
    {
      TREE_READONLY (decl) = 0;
      rest_of_decl_compilation (decl, asmspec, toplev, at_eof);
      TREE_READONLY (decl) = 1;
    }
  /* APPLE LOCAL end static const members  turly 20020110  */
  /* If we're not deferring, go ahead and assemble the variable.  */
  else if (!defer_p)
    rest_of_decl_compilation (decl, asmspec, toplev, at_eof);
}

/* The old ARM scoping rules injected variables declared in the
   initialization statement of a for-statement into the surrounding
   scope.  We support this usage, in order to be backward-compatible.
   DECL is a just-declared VAR_DECL; if necessary inject its
   declaration into the surrounding scope.  */

void
maybe_inject_for_scope_var (decl)
     tree decl;
{
  timevar_push (TV_NAME_LOOKUP);

  if (!DECL_NAME (decl))
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, (void)0);
  
  /* Declarations of __FUNCTION__ and its ilk appear magically when
     the variable is first used.  If that happens to be inside a
     for-loop, we don't want to do anything special.  */
  if (DECL_PRETTY_FUNCTION_P (decl))
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, (void)0);

  if (current_binding_level->is_for_scope)
    {
      struct cp_binding_level *outer
	= current_binding_level->level_chain;

      /* Check to see if the same name is already bound at the outer
	 level, either because it was directly declared, or because a
	 dead for-decl got preserved.  In either case, the code would
	 not have been valid under the ARM scope rules, so clear
	 is_for_scope for the current_binding_level.

	 Otherwise, we need to preserve the temp slot for decl to last
	 into the outer binding level.  */

      cxx_binding *outer_binding
	= IDENTIFIER_BINDING (DECL_NAME (decl))->previous;

      if (outer_binding && BINDING_LEVEL (outer_binding) == outer
	  && (TREE_CODE (BINDING_VALUE (outer_binding))
	      == VAR_DECL)
	  && DECL_DEAD_FOR_LOCAL (BINDING_VALUE (outer_binding)))
	{
	  BINDING_VALUE (outer_binding)
	    = DECL_SHADOWED_FOR_VAR (BINDING_VALUE (outer_binding));
	  current_binding_level->is_for_scope = 0;
	}
      else if (DECL_IN_MEMORY_P (decl))
	preserve_temp_slots (DECL_RTL (decl));
    }

  timevar_pop (TV_NAME_LOOKUP);
}

/* Generate code to initialize DECL (a local variable).  */

static void
initialize_local_var (decl, init)
     tree decl;
     tree init;
{
  tree type = TREE_TYPE (decl);

  my_friendly_assert (TREE_CODE (decl) == VAR_DECL
		      || TREE_CODE (decl) == RESULT_DECL, 
		      20021010);
  my_friendly_assert (!TREE_STATIC (decl), 20021010);

  if (DECL_SIZE (decl) == NULL_TREE)
    {
      /* If we used it already as memory, it must stay in memory.  */
      DECL_INITIAL (decl) = NULL_TREE;
      TREE_ADDRESSABLE (decl) = TREE_USED (decl);
    }

  if (DECL_SIZE (decl) && type != error_mark_node)
    {
      int already_used;

      /* Compute and store the initial value.  */
      already_used = TREE_USED (decl) || TREE_USED (type);

      /* Perform the initialization.  */
      if (init)
	{
	  int saved_stmts_are_full_exprs_p;

	  my_friendly_assert (building_stmt_tree (), 20000906);
	  saved_stmts_are_full_exprs_p = stmts_are_full_exprs_p ();
	  current_stmt_tree ()->stmts_are_full_exprs_p = 1;
	  finish_expr_stmt (init);
	  current_stmt_tree ()->stmts_are_full_exprs_p =
	    saved_stmts_are_full_exprs_p;
	}

      /* Set this to 0 so we can tell whether an aggregate which was
	 initialized was ever used.  Don't do this if it has a
	 destructor, so we don't complain about the 'resource
	 allocation is initialization' idiom.  Now set
	 attribute((unused)) on types so decls of that type will be
	 marked used. (see TREE_USED, above.)  */
      if (TYPE_NEEDS_CONSTRUCTING (type)
	  && ! already_used
	  && TYPE_HAS_TRIVIAL_DESTRUCTOR (type)
	  && DECL_NAME (decl))
	TREE_USED (decl) = 0;
      else if (already_used)
	TREE_USED (decl) = 1;
    }

  /* Generate a cleanup, if necessary.  */
  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
    {
      tree cleanup;

      /* Compute the cleanup.  */
      cleanup = cxx_maybe_build_cleanup (decl);
      
      /* Record the cleanup required for this declaration.  */
      if (DECL_SIZE (decl) && cleanup)
	finish_decl_cleanup (decl, cleanup);
    }
}

/* Finish processing of a declaration;
   install its line number and initial value.
   If the length of an array type is not known before,
   it must be determined now, from the initial value, or it is an error.

   INIT holds the value of an initializer that should be allowed to escape
   the normal rules.

   FLAGS is LOOKUP_ONLYCONVERTING if the = init syntax was used, else 0
   if the (init) syntax was used.  */

void
cp_finish_decl (decl, init, asmspec_tree, flags)
     tree decl, init;
     tree asmspec_tree;
     int flags;
{
  register tree type;
  tree ttype = NULL_TREE;
  const char *asmspec = NULL;
  int was_readonly = 0;

  if (! decl)
    {
      if (init)
	error ("assignment (not initialization) in declaration");
      return;
    }

  /* If a name was specified, get the string.  */
  if (current_binding_level == global_binding_level)
    asmspec_tree = maybe_apply_renaming_pragma (decl, asmspec_tree);
  if (asmspec_tree)
    asmspec = TREE_STRING_POINTER (asmspec_tree);

  if (init && TREE_CODE (init) == NAMESPACE_DECL)
    {
      error ("cannot initialize `%D' to namespace `%D'",
		decl, init);
      init = NULL_TREE;
    }

  if (current_class_type
      && CP_DECL_CONTEXT (decl) == current_class_type
      && TYPE_BEING_DEFINED (current_class_type)
      && (DECL_INITIAL (decl) || init))
    DECL_INITIALIZED_IN_CLASS_P (decl) = 1;

  if (TREE_CODE (decl) == VAR_DECL
      && DECL_CONTEXT (decl)
      && TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL
      && DECL_CONTEXT (decl) != current_namespace
      && init)
    {
      /* Leave the namespace of the object.  */
      pop_decl_namespace ();
    }

  type = TREE_TYPE (decl);

  if (type == error_mark_node)
    return;

  if (TYPE_HAS_MUTABLE_P (type))
    TREE_READONLY (decl) = 0;

  if (processing_template_decl)
    {
      /* Add this declaration to the statement-tree.  */
      if (at_function_scope_p ()
	  && TREE_CODE (decl) != RESULT_DECL)
	add_decl_stmt (decl);

      if (init && DECL_INITIAL (decl))
	DECL_INITIAL (decl) = init;
      goto finish_end0;
    }

  /* Parameters are handled by store_parm_decls, not cp_finish_decl.  */
  my_friendly_assert (TREE_CODE (decl) != PARM_DECL, 19990828);

  /* Take care of TYPE_DECLs up front.  */
  if (TREE_CODE (decl) == TYPE_DECL)
    {
      if (type != error_mark_node
	  && IS_AGGR_TYPE (type) && DECL_NAME (decl))
	{
	  if (TREE_TYPE (DECL_NAME (decl)) && TREE_TYPE (decl) != type)
	    warning ("shadowing previous type declaration of `%#D'", decl);
	  set_identifier_type_value (DECL_NAME (decl), type);
	  CLASSTYPE_GOT_SEMICOLON (type) = 1;
	}

      /* If we have installed this as the canonical typedef for this
	 type, and that type has not been defined yet, delay emitting
	 the debug information for it, as we will emit it later.  */
      if (TYPE_MAIN_DECL (TREE_TYPE (decl)) == decl
	  && !COMPLETE_TYPE_P (TREE_TYPE (decl)))
	TYPE_DECL_SUPPRESS_DEBUG (decl) = 1;

      rest_of_decl_compilation (decl, NULL,
				DECL_CONTEXT (decl) == NULL_TREE, at_eof);
      goto finish_end;
    }

  /* APPLE LOCAL begin objc typedef */
  if (flag_objc && (TREE_CODE (decl) == VAR_DECL
		    || TREE_CODE (decl) == FUNCTION_DECL
		    || TREE_CODE (decl) == FIELD_DECL))
    objc_check_decl (decl);
  /* APPLE LOCAL end objc typedef */

  if (TREE_CODE (decl) != FUNCTION_DECL)
    ttype = target_type (type);

  if (! DECL_EXTERNAL (decl) && TREE_READONLY (decl)
      && TYPE_NEEDS_CONSTRUCTING (type))
    {
      /* Currently, GNU C++ puts constants in text space, making them
	 impossible to initialize.  In the future, one would hope for
	 an operating system which understood the difference between
	 initialization and the running of a program.  */
      was_readonly = 1;
      TREE_READONLY (decl) = 0;
    }

  if (TREE_CODE (decl) == FIELD_DECL && asmspec)
    {
      /* This must override the asm specifier which was placed by
	 grokclassfn.  Lay this out fresh.  */
      SET_DECL_RTL (TREE_TYPE (decl), NULL_RTX);
      SET_DECL_ASSEMBLER_NAME (decl, get_identifier (asmspec));
      make_decl_rtl (decl, asmspec);
    }
  else if (TREE_CODE (decl) == RESULT_DECL)
    init = check_initializer (decl, init, flags);
  else if (TREE_CODE (decl) == VAR_DECL)
    {
      /* Only PODs can have thread-local storage.  Other types may require
	 various kinds of non-trivial initialization.  */
      if (DECL_THREAD_LOCAL (decl) && !pod_type_p (TREE_TYPE (decl)))
	error ("`%D' cannot be thread-local because it has non-POD type `%T'",
	       decl, TREE_TYPE (decl));
      /* Convert the initializer to the type of DECL, if we have not
	 already initialized DECL.  */
      if (!DECL_INITIALIZED_P (decl)
	  /* If !DECL_EXTERNAL then DECL is being defined.  In the
	     case of a static data member initialized inside the
	     class-specifier, there can be an initializer even if DECL
	     is *not* defined.  */
	  && (!DECL_EXTERNAL (decl) || init))
	{
	  init = check_initializer (decl, init, flags);
	  /* Thread-local storage cannot be dynamically initialized.  */
	  if (DECL_THREAD_LOCAL (decl) && init)
	    {
	      error ("`%D' is thread-local and so cannot be dynamically "
		     "initialized", decl);
	      init = NULL_TREE;
	    }
	  /* Handle:
	     
	     [dcl.init]
	     
	     The memory occupied by any object of static storage
	     duration is zero-initialized at program startup before
	     any other initialization takes place.
	     
	     We cannot create an appropriate initializer until after
	     the type of DECL is finalized.  If DECL_INITIAL is set,
	     then the DECL is statically initialized, and any
	     necessary zero-initialization has already been performed.  */
	  if (TREE_STATIC (decl) && !DECL_INITIAL (decl))
	    DECL_INITIAL (decl) = build_zero_init (TREE_TYPE (decl),
						   /*nelts=*/NULL_TREE,
						   /*static_storage_p=*/true);
	  /* Remember that the initialization for this variable has
	     taken place.  */
	  DECL_INITIALIZED_P (decl) = 1;
	}
      /* If the variable has an array type, lay out the type, even if
	 there is no initializer.  It is valid to index through the
	 array, and we must get TYPE_ALIGN set correctly on the array
	 type.  */
      else if (TREE_CODE (type) == ARRAY_TYPE)
	layout_type (type);
    }

  /* Add this declaration to the statement-tree.  This needs to happen
     after the call to check_initializer so that the DECL_STMT for a
     reference temp is added before the DECL_STMT for the reference itself.  */
  if (building_stmt_tree ()
      && at_function_scope_p ()
      && TREE_CODE (decl) != RESULT_DECL)
    add_decl_stmt (decl);

  if (TREE_CODE (decl) == VAR_DECL)
    layout_var_decl (decl);

  /* Output the assembler code and/or RTL code for variables and functions,
     unless the type is an undefined structure or union.
     If not, it will get done when the type is completed.  */
  if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL
      || TREE_CODE (decl) == RESULT_DECL)
    {
      if (TREE_CODE (decl) == VAR_DECL)
	maybe_commonize_var (decl);

      make_rtl_for_nonlocal_decl (decl, init, asmspec);

      if (TREE_CODE (type) == FUNCTION_TYPE
	  || TREE_CODE (type) == METHOD_TYPE)
	abstract_virtuals_error (decl,
				 strip_array_types (TREE_TYPE (type)));
      else
	abstract_virtuals_error (decl, strip_array_types (type));

      if (TREE_CODE (decl) == FUNCTION_DECL 
	  || TREE_TYPE (decl) == error_mark_node)
	/* No initialization required.  */
	;
      else if (DECL_EXTERNAL (decl)
	       && ! (DECL_LANG_SPECIFIC (decl)
		     && DECL_NOT_REALLY_EXTERN (decl)))
	{
	  if (init)
	    DECL_INITIAL (decl) = init;
	}
      else
	{
	  /* A variable definition.  */
	  if (DECL_FUNCTION_SCOPE_P (decl))
	    {
	      /* This is a local declaration.  */
	      if (doing_semantic_analysis_p ())
		maybe_inject_for_scope_var (decl);
	      /* Initialize the local variable.  */
	      if (processing_template_decl)
		{
		  if (init || DECL_INITIAL (decl) == error_mark_node)
		    DECL_INITIAL (decl) = init;
		}
	      else if (!TREE_STATIC (decl))
		initialize_local_var (decl, init);
	    }

	  if (TREE_STATIC (decl))
	    expand_static_init (decl, init);
	}
    finish_end0:

      /* Undo call to `pushclass' that was done in `start_decl'
	 due to initialization of qualified member variable.
	 I.e., Foo::x = 10;  */
      {
	tree context = CP_DECL_CONTEXT (decl);
	if (context
	    && TYPE_P (context)
	    && (TREE_CODE (decl) == VAR_DECL
		/* We also have a pushclass done that we need to undo here
		   if we're at top level and declare a method.  */
		|| TREE_CODE (decl) == FUNCTION_DECL)
	    /* If size hasn't been set, we're still defining it,
	       and therefore inside the class body; don't pop
	       the binding level..  */
	    && COMPLETE_TYPE_P (context)
	    && context == current_class_type)
	  pop_nested_class ();
      }
    }

 finish_end:

  if (was_readonly)
    TREE_READONLY (decl) = 1;
}

/* This is here for a midend callback from c-common.c */

void
finish_decl (decl, init, asmspec_tree)
     tree decl, init;
     tree asmspec_tree;
{
  cp_finish_decl (decl, init, asmspec_tree, 0);
}

/* Returns a declaration for a VAR_DECL as if:

     extern "C" TYPE NAME;

   had been seen.  Used to create compiler-generated global
   variables.  */

tree
declare_global_var (name, type)
     tree name;
     tree type;
{
  tree decl;

  push_to_top_level ();
  decl = build_decl (VAR_DECL, name, type);
  TREE_PUBLIC (decl) = 1;
  DECL_EXTERNAL (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  pushdecl (decl);
  cp_finish_decl (decl, NULL_TREE, NULL_TREE, 0);
  pop_from_top_level ();

  return decl;
}

/* Returns a pointer to the `atexit' function.  Note that if
   FLAG_USE_CXA_ATEXIT is nonzero, then this will actually be the new
   `__cxa_atexit' function specified in the IA64 C++ ABI.  */

static tree
get_atexit_node ()
{
  tree atexit_fndecl;
  tree arg_types;
  tree fn_type;
  tree fn_ptr_type;
  const char *name;

  if (atexit_node)
    return atexit_node;

  if (flag_use_cxa_atexit)
    {
      /* The declaration for `__cxa_atexit' is:

	   int __cxa_atexit (void (*)(void *), void *, void *)

	 We build up the argument types and then then function type
	 itself.  */

      /* First, build the pointer-to-function type for the first
	 argument.  */
      arg_types = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
      fn_type = build_function_type (void_type_node, arg_types);
      fn_ptr_type = build_pointer_type (fn_type);
      /* Then, build the rest of the argument types.  */
      arg_types = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
      arg_types = tree_cons (NULL_TREE, ptr_type_node, arg_types);
      arg_types = tree_cons (NULL_TREE, fn_ptr_type, arg_types);
      /* And the final __cxa_atexit type.  */
      fn_type = build_function_type (integer_type_node, arg_types);
      fn_ptr_type = build_pointer_type (fn_type);
      name = "__cxa_atexit";
    }
  else
    {
      /* The declaration for `atexit' is:

           int atexit (void (*)());

	 We build up the argument types and then then function type
	 itself.  */
      fn_type = build_function_type (void_type_node, void_list_node);
      fn_ptr_type = build_pointer_type (fn_type);
      arg_types = tree_cons (NULL_TREE, fn_ptr_type, void_list_node);
      /* Build the final atexit type.  */
      fn_type = build_function_type (integer_type_node, arg_types);
      name = "atexit";
    }

  /* Now, build the function declaration.  */
  push_lang_context (lang_name_c);
  atexit_fndecl = build_library_fn_ptr (name, fn_type);
  mark_used (atexit_fndecl);
  pop_lang_context ();
  atexit_node = default_conversion (atexit_fndecl);

  return atexit_node;
}

/* Returns the __dso_handle VAR_DECL.  */

static tree
get_dso_handle_node ()
{
  if (dso_handle_node)
    return dso_handle_node;

  /* Declare the variable.  */
  dso_handle_node = declare_global_var (get_identifier ("__dso_handle"),
					ptr_type_node);

  return dso_handle_node;
}

/* Begin a new function with internal linkage whose job will be simply
   to destroy some particular variable.  */

static tree
start_cleanup_fn ()
{
  static int counter = 0;
  int old_interface_only = interface_only;
  int old_interface_unknown = interface_unknown;
  char name[32];
  tree parmtypes;
  tree fntype;
  tree fndecl;

  push_to_top_level ();

  /* No need to mangle this.  */
  push_lang_context (lang_name_c);

  interface_only = 0;
  interface_unknown = 1;

  /* Build the parameter-types.  */
  parmtypes = void_list_node;
  /* Functions passed to __cxa_atexit take an additional parameter.
     We'll just ignore it.  After we implement the new calling
     convention for destructors, we can eliminate the use of
     additional cleanup functions entirely in the -fnew-abi case.  */
  if (flag_use_cxa_atexit)
    parmtypes = tree_cons (NULL_TREE, ptr_type_node, parmtypes);
  /* Build the function type itself.  */
  fntype = build_function_type (void_type_node, parmtypes);
  /* Build the name of the function.  */
  sprintf (name, "__tcf_%d", counter++);
  /* Build the function declaration.  */
  fndecl = build_lang_decl (FUNCTION_DECL, get_identifier (name), fntype);
  /* It's a function with internal linkage, generated by the
     compiler.  */
  TREE_PUBLIC (fndecl) = 0;
  DECL_ARTIFICIAL (fndecl) = 1;
  /* Make the function `inline' so that it is only emitted if it is
     actually needed.  It is unlikely that it will be inlined, since
     it is only called via a function pointer, but we avoid unnecessary
     emissions this way.  */
  DECL_INLINE (fndecl) = 1;
  /* Build the parameter.  */
  if (flag_use_cxa_atexit)
    {
      tree parmdecl;

      parmdecl = cp_build_parm_decl (NULL_TREE, ptr_type_node);
      DECL_CONTEXT (parmdecl) = fndecl;
      TREE_USED (parmdecl) = 1;
      DECL_ARGUMENTS (fndecl) = parmdecl;
    }

  pushdecl (fndecl);
  start_function (/*specs=*/NULL_TREE, fndecl, NULL_TREE, SF_PRE_PARSED);

  interface_unknown = old_interface_unknown;
  interface_only = old_interface_only;

  pop_lang_context ();

  return current_function_decl;
}

/* Finish the cleanup function begun by start_cleanup_fn.  */

static void
end_cleanup_fn ()
{
  expand_body (finish_function (0));

  pop_from_top_level ();
}

/* Generate code to handle the destruction of DECL, an object with
   static storage duration.  */

void
register_dtor_fn (decl)
     tree decl;
{
  tree cleanup;
  tree compound_stmt;
  tree args;
  tree fcall;

  int saved_flag_access_control;

  if (TYPE_HAS_TRIVIAL_DESTRUCTOR (TREE_TYPE (decl)))
    return;

  /* Call build_cleanup before we enter the anonymous function so that
     any access checks will be done relative to the current scope,
     rather than the scope of the anonymous function.  */
  build_cleanup (decl);

  /* Now start the function.  */
  cleanup = start_cleanup_fn ();

  /* Now, recompute the cleanup.  It may contain SAVE_EXPRs that refer
     to the original function, rather than the anonymous one.  That
     will make the back-end think that nested functions are in use,
     which causes confusion.  */
  saved_flag_access_control = flag_access_control;
  flag_access_control = 0;
  fcall = build_cleanup (decl);
  flag_access_control = saved_flag_access_control;

  /* Create the body of the anonymous function.  */
  compound_stmt = begin_compound_stmt (/*has_no_scope=*/0);
  finish_expr_stmt (fcall);
  finish_compound_stmt (/*has_no_scope=*/0, compound_stmt);
  end_cleanup_fn ();

  /* Call atexit with the cleanup function.  */
  cxx_mark_addressable (cleanup);
  cleanup = build_unary_op (ADDR_EXPR, cleanup, 0);
  if (flag_use_cxa_atexit)
    {
      args = tree_cons (NULL_TREE, 
			build_unary_op (ADDR_EXPR, get_dso_handle_node (), 0),
			NULL_TREE);
      args = tree_cons (NULL_TREE, null_pointer_node, args);
      args = tree_cons (NULL_TREE, cleanup, args);
    }
  else
    args = tree_cons (NULL_TREE, cleanup, NULL_TREE);
  finish_expr_stmt (build_function_call (get_atexit_node (), args));
}

/* DECL is a VAR_DECL with static storage duration.  INIT, if present,
   is its initializer.  Generate code to handle the construction
   and destruction of DECL.  */

static void
expand_static_init (decl, init)
     tree decl;
     tree init;
{
  tree oldstatic;

  my_friendly_assert (TREE_CODE (decl) == VAR_DECL, 20021010);
  my_friendly_assert (TREE_STATIC (decl), 20021010);

  /* Some variables require no initialization.  */
  if (!init 
      && !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl))
      && TYPE_HAS_TRIVIAL_DESTRUCTOR (TREE_TYPE (decl)))
    return;

  oldstatic = value_member (decl, static_aggregates);

  if (oldstatic)
    {
      if (TREE_PURPOSE (oldstatic) && init != NULL_TREE)
	error ("multiple initializations given for `%D'", decl);
    }
  else if (! toplevel_bindings_p ())
    {
      /* Emit code to perform this initialization but once.  */
      tree if_stmt;
      tree then_clause;
      tree assignment;
      tree guard;
      tree guard_init;

      /* Emit code to perform this initialization but once.  This code
	 looks like:

           static int guard = 0;
           if (!guard) {
             // Do initialization.
	     guard = 1;
	     // Register variable for destruction at end of program.
	   }

	 Note that the `temp' variable is only set to 1 *after* the
	 initialization is complete.  This ensures that an exception,
	 thrown during the construction, will cause the variable to
	 reinitialized when we pass through this code again, as per:

	   [stmt.dcl]

	   If the initialization exits by throwing an exception, the
	   initialization is not complete, so it will be tried again
	   the next time control enters the declaration.

         In theory, this process should be thread-safe, too; multiple
	 threads should not be able to initialize the variable more
	 than once.  We don't yet attempt to ensure thread-safety.  */

      /* Create the guard variable.  */
      guard = get_guard (decl);

      /* Begin the conditional initialization.  */
      if_stmt = begin_if_stmt ();
      finish_if_stmt_cond (get_guard_cond (guard), if_stmt);
      then_clause = begin_compound_stmt (/*has_no_scope=*/0);

      /* Do the initialization itself.  */
      assignment = init ? init : NULL_TREE;

      /* Once the assignment is complete, set TEMP to 1.  Since the
	 construction of the static object is complete at this point,
	 we want to make sure TEMP is set to 1 even if a temporary
	 constructed during the initialization throws an exception
	 when it is destroyed.  So, we combine the initialization and
	 the assignment to TEMP into a single expression, ensuring
	 that when we call finish_expr_stmt the cleanups will not be
	 run until after TEMP is set to 1.  */
      guard_init = set_guard (guard);
      if (assignment)
	{
	  assignment = tree_cons (NULL_TREE, assignment,
				  build_tree_list (NULL_TREE,
						   guard_init));
	  assignment = build_compound_expr (assignment);
	}
      else
	assignment = guard_init;
      finish_expr_stmt (assignment);

      /* Use atexit to register a function for destroying this static
	 variable.  */
      register_dtor_fn (decl);

      finish_compound_stmt (/*has_no_scope=*/0, then_clause);
      finish_then_clause (if_stmt);
      finish_if_stmt ();
    }
  else
    static_aggregates = tree_cons (init, decl, static_aggregates);
}

/* Finish the declaration of a catch-parameter.  */

tree
start_handler_parms (declspecs, declarator)
     tree declspecs;
     tree declarator;
{
  tree decl;
  if (declspecs)
    {
      decl = grokdeclarator (declarator, declspecs, CATCHPARM,
			     1, NULL);
      if (decl == NULL_TREE)
	error ("invalid catch parameter");
    }
  else
    decl = NULL_TREE;

  return decl;
}


/* Make TYPE a complete type based on INITIAL_VALUE.
   Return 0 if successful, 1 if INITIAL_VALUE can't be deciphered,
   2 if there was no information (in which case assume 0 if DO_DEFAULT).  */

int
complete_array_type (type, initial_value, do_default)
     tree type, initial_value;
     int do_default;
{
  register tree maxindex = NULL_TREE;
  int value = 0;

  if (initial_value)
    {
      /* An array of character type can be initialized from a
	 brace-enclosed string constant.  */
      if (char_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (type)))
	  && TREE_CODE (initial_value) == CONSTRUCTOR
	  && CONSTRUCTOR_ELTS (initial_value)
	  && (TREE_CODE (TREE_VALUE (CONSTRUCTOR_ELTS (initial_value)))
	      == STRING_CST)
	  && TREE_CHAIN (CONSTRUCTOR_ELTS (initial_value)) == NULL_TREE)
	initial_value = TREE_VALUE (CONSTRUCTOR_ELTS (initial_value));

      /* Note MAXINDEX is really the maximum index, one less than the
	 size.  */
      if (TREE_CODE (initial_value) == STRING_CST)
	{
	  int eltsize
	    = int_size_in_bytes (TREE_TYPE (TREE_TYPE (initial_value)));
	  maxindex = build_int_2 ((TREE_STRING_LENGTH (initial_value)
				   / eltsize) - 1, 0);
	}
      else if (TREE_CODE (initial_value) == CONSTRUCTOR)
	{
	  tree elts = CONSTRUCTOR_ELTS (initial_value);

	  maxindex = ssize_int (-1);
	  for (; elts; elts = TREE_CHAIN (elts))
	    {
	      if (TREE_PURPOSE (elts))
		maxindex = TREE_PURPOSE (elts);
	      else
		maxindex = size_binop (PLUS_EXPR, maxindex, ssize_int (1));
	    }
	  maxindex = copy_node (maxindex);
	}
      else
	{
	  /* Make an error message unless that happened already.  */
	  if (initial_value != error_mark_node)
	    value = 1;
	  else
	    initial_value = NULL_TREE;

	  /* Prevent further error messages.  */
	  maxindex = build_int_2 (0, 0);
	}
    }

  if (!maxindex)
    {
      if (do_default)
	maxindex = build_int_2 (0, 0);
      value = 2;
    }

  if (maxindex)
    {
      tree itype;
      tree domain;

      domain = build_index_type (maxindex);
      TYPE_DOMAIN (type) = domain;

      if (! TREE_TYPE (maxindex))
	TREE_TYPE (maxindex) = domain;
      if (initial_value)
        itype = TREE_TYPE (initial_value);
      else
	itype = NULL;
      if (itype && !TYPE_DOMAIN (itype))
	TYPE_DOMAIN (itype) = domain;
      /* The type of the main variant should never be used for arrays
	 of different sizes.  It should only ever be completed with the
	 size of the array.  */
      if (! TYPE_DOMAIN (TYPE_MAIN_VARIANT (type)))
	TYPE_DOMAIN (TYPE_MAIN_VARIANT (type)) = domain;
    }

  /* Lay out the type now that we can get the real answer.  */

  layout_type (type);

  return value;
}

/* Return zero if something is declared to be a member of type
   CTYPE when in the context of CUR_TYPE.  STRING is the error
   message to print in that case.  Otherwise, quietly return 1.  */

static int
member_function_or_else (ctype, cur_type, flags)
     tree ctype, cur_type;
     enum overload_flags flags;
{
  if (ctype && ctype != cur_type)
    {
      if (flags == DTOR_FLAG)
	error ("destructor for alien class `%T' cannot be a member",
	          ctype);
      else
	error ("constructor for alien class `%T' cannot be a member",
	          ctype);
      return 0;
    }
  return 1;
}

/* Subroutine of `grokdeclarator'.  */

/* Generate errors possibly applicable for a given set of specifiers.
   This is for ARM $7.1.2.  */

static void
bad_specifiers (object, type, virtualp, quals, inlinep, friendp, raises)
     tree object;
     const char *type;
     int virtualp, quals, friendp, raises, inlinep;
{
  if (virtualp)
    error ("`%D' declared as a `virtual' %s", object, type);
  if (inlinep)
    error ("`%D' declared as an `inline' %s", object, type);
  if (quals)
    error ("`const' and `volatile' function specifiers on `%D' invalid in %s declaration",
	      object, type);
  if (friendp)
    cp_error_at ("`%D' declared as a friend", object);
  if (raises
      && (TREE_CODE (object) == TYPE_DECL
	  || (!TYPE_PTRFN_P (TREE_TYPE (object))
	      && !TYPE_REFFN_P (TREE_TYPE (object))
	      && !TYPE_PTRMEMFUNC_P (TREE_TYPE (object)))))
    cp_error_at ("`%D' declared with an exception specification", object);
}

/* CTYPE is class type, or null if non-class.
   TYPE is type this FUNCTION_DECL should have, either FUNCTION_TYPE
   or METHOD_TYPE.
   DECLARATOR is the function's name.
   VIRTUALP is truthvalue of whether the function is virtual or not.
   FLAGS are to be passed through to `grokclassfn'.
   QUALS are qualifiers indicating whether the function is `const'
   or `volatile'.
   RAISES is a list of exceptions that this function can raise.
   CHECK is 1 if we must find this method in CTYPE, 0 if we should
   not look, and -1 if we should not call `grokclassfn' at all.

   Returns `NULL_TREE' if something goes wrong, after issuing
   applicable error messages.  */

static tree
grokfndecl (ctype, type, declarator, orig_declarator, virtualp, flags, quals,
	    raises, check, friendp, publicp, inlinep, funcdef_flag,
	    template_count, in_namespace)
     tree ctype, type;
     tree declarator;
     tree orig_declarator;
     int virtualp;
     enum overload_flags flags;
     tree quals, raises;
     int check, friendp, publicp, inlinep, funcdef_flag, template_count;
     tree in_namespace;
{
  tree decl;
  int staticp = ctype && TREE_CODE (type) == FUNCTION_TYPE;
  int has_default_arg = 0;
  tree t;

  if (raises)
    type = build_exception_variant (type, raises);

  decl = build_lang_decl (FUNCTION_DECL, declarator, type);
  /* Propagate volatile out from type to decl.  */
  if (TYPE_VOLATILE (type))
    TREE_THIS_VOLATILE (decl) = 1;

  /* If this decl has namespace scope, set that up.  */
  if (in_namespace)
    set_decl_namespace (decl, in_namespace, friendp);
  else if (!ctype)
    DECL_CONTEXT (decl) = FROB_CONTEXT (current_namespace);

  /* `main' and builtins have implicit 'C' linkage.  */
  if ((MAIN_NAME_P (declarator)
       || (IDENTIFIER_LENGTH (declarator) > 10
	   && IDENTIFIER_POINTER (declarator)[0] == '_'
	   && IDENTIFIER_POINTER (declarator)[1] == '_'
	   && strncmp (IDENTIFIER_POINTER (declarator)+2, "builtin_", 8) == 0))
      && current_lang_name == lang_name_cplusplus
      && ctype == NULL_TREE
      /* NULL_TREE means global namespace.  */
      && DECL_CONTEXT (decl) == NULL_TREE)
    SET_DECL_LANGUAGE (decl, lang_c);

  /* Should probably propagate const out from type to decl I bet (mrs).  */
  if (staticp)
    {
      DECL_STATIC_FUNCTION_P (decl) = 1;
      DECL_CONTEXT (decl) = ctype;
    }

  if (ctype)
    DECL_CONTEXT (decl) = ctype;

  if (ctype == NULL_TREE && DECL_MAIN_P (decl))
    {
      if (processing_template_decl)
	error ("cannot declare `::main' to be a template");
      if (inlinep)
	error ("cannot declare `::main' to be inline");
      if (!publicp)
	error ("cannot declare `::main' to be static");
      if (!same_type_p (TREE_TYPE (TREE_TYPE (decl)),
			integer_type_node))
	error ("`main' must return `int'");
      inlinep = 0;
      publicp = 1;
    }

  /* Members of anonymous types and local classes have no linkage; make
     them internal.  */
  /* FIXME what if it gets a name from typedef?  */
  if (ctype && (TYPE_ANONYMOUS_P (ctype)
		|| decl_function_context (TYPE_MAIN_DECL (ctype))))
    publicp = 0;

  if (publicp)
    {
      /* [basic.link]: A name with no linkage (notably, the name of a class
	 or enumeration declared in a local scope) shall not be used to
	 declare an entity with linkage.

	 Only check this for public decls for now.  */
      t = no_linkage_check (TREE_TYPE (decl));
      if (t)
	{
	  if (TYPE_ANONYMOUS_P (t))
	    {
	      if (DECL_EXTERN_C_P (decl))
		/* Allow this; it's pretty common in C.  */;
	      else
		{
		  pedwarn ("non-local function `%#D' uses anonymous type",
			      decl);
		  if (DECL_ORIGINAL_TYPE (TYPE_NAME (t)))
		    cp_pedwarn_at ("\
`%#D' does not refer to the unqualified type, so it is not used for linkage",
				TYPE_NAME (t));
		}
	    }
	  else
	    pedwarn ("non-local function `%#D' uses local type `%T'",
			decl, t);
	}
    }

  TREE_PUBLIC (decl) = publicp;
  if (! publicp)
    {
      DECL_INTERFACE_KNOWN (decl) = 1;
      DECL_NOT_REALLY_EXTERN (decl) = 1;
    }

  /* If the declaration was declared inline, mark it as such.  */
  if (inlinep)
    DECL_DECLARED_INLINE_P (decl) = 1;
  /* We inline functions that are explicitly declared inline, or, when
     the user explicitly asks us to, all functions.  */
  if (DECL_DECLARED_INLINE_P (decl))
    DECL_INLINE (decl) = 1;
  if (flag_inline_trees == 2 && !DECL_INLINE (decl))
    {
      DID_INLINE_FUNC (decl) = 1;
      DECL_INLINE (decl) = 1;
    }

  DECL_EXTERNAL (decl) = 1;
  if (quals != NULL_TREE && TREE_CODE (type) == FUNCTION_TYPE)
    {
      error ("%smember function `%D' cannot have `%T' method qualifier",
		(ctype ? "static " : "non-"), decl, TREE_VALUE (quals));
      quals = NULL_TREE;
    }

  if (IDENTIFIER_OPNAME_P (DECL_NAME (decl)))
    grok_op_properties (decl, friendp);

  if (ctype && decl_function_context (decl))
    DECL_NO_STATIC_CHAIN (decl) = 1;

  for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
    if (TREE_PURPOSE (t)
	&& TREE_CODE (TREE_PURPOSE (t)) == DEFAULT_ARG)
      {
	has_default_arg = 1;
	break;
      }

  if (friendp
      && TREE_CODE (orig_declarator) == TEMPLATE_ID_EXPR)
    {
      if (funcdef_flag)
	error
	  ("defining explicit specialization `%D' in friend declaration",
	   orig_declarator);
      else
	{
	  tree fns = TREE_OPERAND (orig_declarator, 0);
	  tree args = TREE_OPERAND (orig_declarator, 1);

	  if (PROCESSING_REAL_TEMPLATE_DECL_P ())
	    {
	      /* Something like `template <class T> friend void f<T>()'.  */
	      error ("invalid use of template-id `%D' in declaration of primary template",
			orig_declarator);
	      return NULL_TREE;
	    }


	  /* A friend declaration of the form friend void f<>().  Record
	     the information in the TEMPLATE_ID_EXPR.  */
	  SET_DECL_IMPLICIT_INSTANTIATION (decl);

          if (TREE_CODE (fns) == COMPONENT_REF)
            {
              /* Due to bison parser ickiness, we will have already looked
                 up an operator_name or PFUNCNAME within the current class
                 (see template_id in parse.y). If the current class contains
                 such a name, we'll get a COMPONENT_REF here. Undo that.  */

              my_friendly_assert (TREE_TYPE (TREE_OPERAND (fns, 0))
                                  == current_class_type, 20001120);
              fns = TREE_OPERAND (fns, 1);
            }
	  my_friendly_assert (TREE_CODE (fns) == IDENTIFIER_NODE
	                      || TREE_CODE (fns) == LOOKUP_EXPR
	                      || TREE_CODE (fns) == OVERLOAD, 20001120);
	  DECL_TEMPLATE_INFO (decl) = tree_cons (fns, args, NULL_TREE);

	  if (has_default_arg)
	    {
	      error ("default arguments are not allowed in declaration of friend template specialization `%D'",
			decl);
	      return NULL_TREE;
	    }

	  if (inlinep)
	    {
	      error ("`inline' is not allowed in declaration of friend template specialization `%D'",
			decl);
	      return NULL_TREE;
	    }
	}
    }

  if (has_default_arg)
    add_defarg_fn (decl);

  if (funcdef_flag)
    /* Make the init_value nonzero so pushdecl knows this is not
       tentative.  error_mark_node is replaced later with the BLOCK.  */
    DECL_INITIAL (decl) = error_mark_node;

  if (TYPE_NOTHROW_P (type) || nothrow_libfn_p (decl))
    TREE_NOTHROW (decl) = 1;

  /* Caller will do the rest of this.  */
  if (check < 0)
    return decl;

  if (flags == NO_SPECIAL && ctype && constructor_name (ctype) == declarator)
    DECL_CONSTRUCTOR_P (decl) = 1;

  /* Function gets the ugly name, field gets the nice one.  This call
     may change the type of the function (because of default
     parameters)!  */
  if (ctype != NULL_TREE)
    grokclassfn (ctype, decl, flags, quals);

  decl = check_explicit_specialization (orig_declarator, decl,
					template_count,
					2 * (funcdef_flag != 0) +
					4 * (friendp != 0));
  if (decl == error_mark_node)
    return NULL_TREE;

  if (ctype != NULL_TREE
      && (! TYPE_FOR_JAVA (ctype) || check_java_method (decl))
      && check)
    {
      tree old_decl;

      old_decl = check_classfn (ctype, decl);

      if (old_decl && TREE_CODE (old_decl) == TEMPLATE_DECL)
	/* Because grokfndecl is always supposed to return a
	   FUNCTION_DECL, we pull out the DECL_TEMPLATE_RESULT
	   here.  We depend on our callers to figure out that its
	   really a template that's being returned.  */
	old_decl = DECL_TEMPLATE_RESULT (old_decl);

      if (old_decl && DECL_STATIC_FUNCTION_P (old_decl)
	  && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE)
	{
	  /* Remove the `this' parm added by grokclassfn.
	     XXX Isn't this done in start_function, too?  */
	  revert_static_member_fn (decl);
	  last_function_parms = TREE_CHAIN (last_function_parms);
	}
      if (old_decl && DECL_ARTIFICIAL (old_decl))
	error ("definition of implicitly-declared `%D'", old_decl);

      if (old_decl)
	{
	  /* Since we've smashed OLD_DECL to its
	     DECL_TEMPLATE_RESULT, we must do the same to DECL.  */
	  if (TREE_CODE (decl) == TEMPLATE_DECL)
	    decl = DECL_TEMPLATE_RESULT (decl);

	  /* Attempt to merge the declarations.  This can fail, in
	     the case of some invalid specialization declarations.  */
	  if (!duplicate_decls (decl, old_decl))
	    error ("no `%#D' member function declared in class `%T'",
		      decl, ctype);
	  return old_decl;
	}
    }

  if (DECL_CONSTRUCTOR_P (decl) && !grok_ctor_properties (ctype, decl))
    return NULL_TREE;

  if (ctype == NULL_TREE || check)
    return decl;

  if (virtualp)
    DECL_VIRTUAL_P (decl) = 1;

  return decl;
}

/* Create a VAR_DECL named NAME with the indicated TYPE.  

   If SCOPE is non-NULL, it is the class type or namespace containing
   the variable.  If SCOPE is NULL, the variable should is created in
   the innermost enclosings scope.  */

static tree
grokvardecl (type, name, specbits_in, initialized, constp, scope)
     tree type;
     tree name;
     RID_BIT_TYPE *specbits_in;
     int initialized;
     int constp;
     tree scope;
{
  tree decl;
  RID_BIT_TYPE specbits;

  my_friendly_assert (!name || TREE_CODE (name) == IDENTIFIER_NODE, 
		      20020808);

  specbits = *specbits_in;

  /* Compute the scope in which to place the variable.  */
  if (!scope)
    {
      /* An explicit "extern" specifier indicates a namespace-scope
	 variable.  */
      if (RIDBIT_SETP (RID_EXTERN, specbits))
	scope = current_namespace;
      else if (!at_function_scope_p ())
	{
	  scope = current_scope ();
	  if (!scope)
	    scope = current_namespace;
	}
    }

  if (scope
      && (/* If the variable is a namespace-scope variable declared in a
	     template, we need DECL_LANG_SPECIFIC.  */
	  (TREE_CODE (scope) == NAMESPACE_DECL && processing_template_decl)
	  /* Similarly for namespace-scope variables with language linkage
	     other than C++.  */
	  || (TREE_CODE (scope) == NAMESPACE_DECL 
	      && current_lang_name != lang_name_cplusplus)
	  /* Similarly for static data members.  */
	  || TYPE_P (scope)))
    decl = build_lang_decl (VAR_DECL, name, type);
  else
    decl = build_decl (VAR_DECL, name, type);

  if (scope && TREE_CODE (scope) == NAMESPACE_DECL)
    set_decl_namespace (decl, scope, 0);
  else
    DECL_CONTEXT (decl) = scope;

  if (name && scope && current_lang_name != lang_name_c)
    /* We can't mangle lazily here because we don't have any
       way to recover whether or not a variable was `extern
       "C"' later.  */
    mangle_decl (decl);

  if (RIDBIT_SETP (RID_EXTERN, specbits))
    {
      DECL_THIS_EXTERN (decl) = 1;
      DECL_EXTERNAL (decl) = !initialized;
    }

  /* In class context, static means one per class,
     public access, and static storage.  */
  if (DECL_CLASS_SCOPE_P (decl))
    {
      TREE_PUBLIC (decl) = 1;
      TREE_STATIC (decl) = 1;
      DECL_EXTERNAL (decl) = 0;
    }
  /* At top level, either `static' or no s.c. makes a definition
     (perhaps tentative), and absence of `static' makes it public.  */
  else if (toplevel_bindings_p ())
    {
      TREE_PUBLIC (decl) = (RIDBIT_NOTSETP (RID_STATIC, specbits)
			    && (DECL_THIS_EXTERN (decl) || ! constp));
      TREE_STATIC (decl) = ! DECL_EXTERNAL (decl);
    }
  /* Not at top level, only `static' makes a static definition.  */
  else
    {
      TREE_STATIC (decl) = !! RIDBIT_SETP (RID_STATIC, specbits);
      TREE_PUBLIC (decl) = DECL_EXTERNAL (decl);
    }

  if (RIDBIT_SETP (RID_THREAD, specbits))
    {
      if (targetm.have_tls)
	DECL_THREAD_LOCAL (decl) = 1;
      else
	/* A mere warning is sure to result in improper semantics
	   at runtime.  Don't bother to allow this to compile.  */
	error ("thread-local storage not supported for this target");
    }

  if (TREE_PUBLIC (decl))
    {
      /* [basic.link]: A name with no linkage (notably, the name of a class
	 or enumeration declared in a local scope) shall not be used to
	 declare an entity with linkage.

	 Only check this for public decls for now.  */
      tree t = no_linkage_check (TREE_TYPE (decl));
      if (t)
	{
	  if (TYPE_ANONYMOUS_P (t))
	    /* Ignore for now; `enum { foo } e' is pretty common.  */;
	  else
	    pedwarn ("non-local variable `%#D' uses local type `%T'",
			decl, t);
	}
    }

  return decl;
}

/* Create and return a canonical pointer to member function type, for
   TYPE, which is a POINTER_TYPE to a METHOD_TYPE.  */

tree
build_ptrmemfunc_type (type)
     tree type;
{
  tree fields[4];
  tree t;
  tree unqualified_variant = NULL_TREE;

  if (type == error_mark_node)
    return type;

  /* If a canonical type already exists for this type, use it.  We use
     this method instead of type_hash_canon, because it only does a
     simple equality check on the list of field members.  */

  if ((t = TYPE_GET_PTRMEMFUNC_TYPE (type)))
    return t;

  /* Make sure that we always have the unqualified pointer-to-member
     type first.  */
  if (cp_type_quals (type) != TYPE_UNQUALIFIED)
    unqualified_variant
      = build_ptrmemfunc_type (TYPE_MAIN_VARIANT (type));

  /* APPLE LOCAL begin 2.95-ptmf-compatibility  turly 20020313  */
  if (flag_apple_kext)
    {
      tree u = make_aggr_type (UNION_TYPE);
      SET_IS_AGGR_TYPE (u, 0);
      fields[0] = build_decl (FIELD_DECL, pfn_identifier, type);
      fields[1] = build_decl (FIELD_DECL, delta2_identifier, delta_type_node);
      finish_builtin_type (u, "__ptrmemfunc_type", fields, 1, ptr_type_node);
      TYPE_NAME (u) = NULL_TREE;
  
      t = make_aggr_type (RECORD_TYPE);
  
      /* Let the front-end know this is a pointer to member function...  */
      TYPE_PTRMEMFUNC_FLAG (t) = 1;
      /* ... and not really an aggregate.  */
      SET_IS_AGGR_TYPE (t, 0);
  
      fields[0] = build_decl (FIELD_DECL, delta_identifier, delta_type_node);
      fields[1] = build_decl (FIELD_DECL, index_identifier, delta_type_node);
      fields[2] = build_decl (FIELD_DECL, pfn_or_delta2_identifier, u);
      finish_builtin_type (t, "__ptrmemfunc_type", fields, 2, ptr_type_node);
    }
  else
    {
  /* APPLE LOCAL end 2.95-ptmf-compatibility  turly 20020313  */

  t = make_aggr_type (RECORD_TYPE);
  /* Let the front-end know this is a pointer to member function...  */
  TYPE_PTRMEMFUNC_FLAG (t) = 1;
  /* ... and not really an aggregate.  */
  SET_IS_AGGR_TYPE (t, 0);

  fields[0] = build_decl (FIELD_DECL, pfn_identifier, type);
  fields[1] = build_decl (FIELD_DECL, delta_identifier,
			  delta_type_node);
  finish_builtin_type (t, "__ptrmemfunc_type", fields, 1, ptr_type_node);

  /* APPLE LOCAL 2.95-ptmf-compatibility  turly 20020313  */
    }

  /* Zap out the name so that the back-end will give us the debugging
     information for this anonymous RECORD_TYPE.  */
  TYPE_NAME (t) = NULL_TREE;

  /* If this is not the unqualified form of this pointer-to-member
     type, set the TYPE_MAIN_VARIANT for this type to be the
     unqualified type.  Since they are actually RECORD_TYPEs that are
     not variants of each other, we must do this manually.  */
  if (cp_type_quals (type) != TYPE_UNQUALIFIED)
    {
      t = build_qualified_type (t, cp_type_quals (type));
      TYPE_MAIN_VARIANT (t) = unqualified_variant;
      TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (unqualified_variant);
      TYPE_NEXT_VARIANT (unqualified_variant) = t;
    }

  /* Cache this pointer-to-member type so that we can find it again
     later.  */
  TYPE_SET_PTRMEMFUNC_TYPE (type, t);

  /* Seems to be wanted.  */
  CLASSTYPE_GOT_SEMICOLON (t) = 1;

  return t;
}

/* Create and return a pointer to data member type.  */

tree
build_ptrmem_type (tree class_type, tree member_type)
{
  return build_pointer_type (build_offset_type (class_type, member_type));
}

/* DECL is a VAR_DECL defined in-class, whose TYPE is also given.
   Check to see that the definition is valid.  Issue appropriate error
   messages.  Return 1 if the definition is particularly bad, or 0
   otherwise.  */

int
check_static_variable_definition (decl, type)
     tree decl;
     tree type;
{
  /* Motion 10 at San Diego: If a static const integral data member is
     initialized with an integral constant expression, the initializer
     may appear either in the declaration (within the class), or in
     the definition, but not both.  If it appears in the class, the
     member is a member constant.  The file-scope definition is always
     required.  */
  if (!ARITHMETIC_TYPE_P (type) && TREE_CODE (type) != ENUMERAL_TYPE)
    {
      error ("invalid in-class initialization of static data member of non-integral type `%T'",
	     type);
      /* If we just return the declaration, crashes will sometimes
	 occur.  We therefore return void_type_node, as if this was a
	 friend declaration, to cause callers to completely ignore
	 this declaration.  */
      return 1;
    }
  else if (!CP_TYPE_CONST_P (type))
    error ("ISO C++ forbids in-class initialization of non-const static member `%D'",
	      decl);
  else if (pedantic && !INTEGRAL_TYPE_P (type))
    pedwarn ("ISO C++ forbids initialization of member constant `%D' of non-integral type `%T'", decl, type);

  return 0;
}

/* Given the SIZE (i.e., number of elements) in an array, compute an
   appropriate index type for the array.  If non-NULL, NAME is the
   name of the thing being declared.  */

tree
compute_array_index_type (name, size)
     tree name;
     tree size;
{
  tree itype;

  /* If this involves a template parameter, it will be a constant at
     instantiation time, but we don't know what the value is yet.
     Even if no template parameters are involved, we may an expression
     that is not a constant; we don't even simplify `1 + 2' when
     processing a template.  */
  if (processing_template_decl)
    {
      /* Resolve a qualified reference to an enumerator or static
	 const data member of ours.  */
      if (TREE_CODE (size) == SCOPE_REF
	  && TREE_OPERAND (size, 0) == current_class_type)
	{
	  tree t = lookup_field (current_class_type,
				 TREE_OPERAND (size, 1), 0, 0);
	  if (t)
	    size = t;
	}

      return build_index_type (build_min (MINUS_EXPR, sizetype,
					  size, integer_one_node));
    }

  /* The size might be the result of a cast.  */
  STRIP_TYPE_NOPS (size);

  /* It might be a const variable or enumeration constant.  */
  size = decl_constant_value (size);

  /* The array bound must be an integer type.  */
  if (TREE_CODE (TREE_TYPE (size)) != INTEGER_TYPE
      && TREE_CODE (TREE_TYPE (size)) != ENUMERAL_TYPE
      && TREE_CODE (TREE_TYPE (size)) != BOOLEAN_TYPE)
    {
      if (name)
	error ("size of array `%D' has non-integer type", name);
      else
	error ("size of array has non-integer type");
      size = integer_one_node;
    }

  /* Normally, the array-bound will be a constant.  */
  if (TREE_CODE (size) == INTEGER_CST)
    {
      /* Check to see if the array bound overflowed.  Make that an
	 error, no matter how generous we're being.  */
      int old_flag_pedantic_errors = flag_pedantic_errors;
      int old_pedantic = pedantic;
      pedantic = flag_pedantic_errors = 1;
      constant_expression_warning (size);
      pedantic = old_pedantic;
      flag_pedantic_errors = old_flag_pedantic_errors;

      /* An array must have a positive number of elements.  */
      if (INT_CST_LT (size, integer_zero_node))
	{
	  if (name)
	    error ("size of array `%D' is negative", name);
	  else
	    error ("size of array is negative");
	  size = integer_one_node;
	}
      /* Except that an extension we allow zero-sized arrays.  We
	 always allow them in system headers because glibc uses
	 them.  */
      else if (integer_zerop (size) && pedantic && !in_system_header)
	{
	  if (name)
	    pedwarn ("ISO C++ forbids zero-size array `%D'", name);
	  else
	    pedwarn ("ISO C++ forbids zero-size array");
	}
    }
  else if (TREE_CONSTANT (size))
    {
      /* `(int) &fn' is not a valid array bound.  */
      if (name)
	error ("size of array `%D' is not an integral constant-expression",
		  name);
      else
	error ("size of array is not an integral constant-expression");
    }

  /* Compute the index of the largest element in the array.  It is
     one less than the number of elements in the array.  */
  itype
    = fold (cp_build_binary_op (MINUS_EXPR,
				cp_convert (ssizetype, size),
				cp_convert (ssizetype,
					    integer_one_node)));

  /* Check for variable-sized arrays.  We allow such things as an
     extension, even though they are not allowed in ANSI/ISO C++.  */
  if (!TREE_CONSTANT (itype))
    {
      if (pedantic)
	{
	  if (name)
	    pedwarn ("ISO C++ forbids variable-size array `%D'",
			name);
	  else
	    pedwarn ("ISO C++ forbids variable-size array");
	}

      /* Create a variable-sized array index type.  */
      itype = variable_size (itype);
    }
  /* Make sure that there was no overflow when creating to a signed
     index type.  (For example, on a 32-bit machine, an array with
     size 2^32 - 1 is too big.)  */
  else if (TREE_OVERFLOW (itype))
    {
      error ("overflow in array dimension");
      TREE_OVERFLOW (itype) = 0;
    }

  /* Create and return the appropriate index type.  */
  return build_index_type (itype);
}

/* Returns an ARRAY_TYPE for an array with SIZE elements of the
   indicated TYPE.  If non-NULL, NAME is the NAME of the declaration
   with this type.  */

static tree
create_array_type_for_decl (name, type, size)
     tree name;
     tree type;
     tree size;
{
  tree itype = NULL_TREE;
  const char* error_msg;

  /* If things have already gone awry, bail now.  */
  if (type == error_mark_node || size == error_mark_node)
    return error_mark_node;

  /* Assume that everything will go OK.  */
  error_msg = NULL;

  /* There are some types which cannot be array elements.  */
  switch (TREE_CODE (type))
    {
    case VOID_TYPE:
      error_msg = "array of void";
      break;

    case FUNCTION_TYPE:
      error_msg = "array of functions";
      break;

    case REFERENCE_TYPE:
      error_msg = "array of references";
      break;

    case OFFSET_TYPE:
      error_msg = "array of data members";
      break;

    case METHOD_TYPE:
      error_msg = "array of function members";
      break;

    default:
      break;
    }

  /* If something went wrong, issue an error-message and return.  */
  if (error_msg)
    {
      if (name)
	error ("declaration of `%D' as %s", name, error_msg);
      else
	error ("creating %s", error_msg);

      return error_mark_node;
    }

  /* [dcl.array]

     The constant expressions that specify the bounds of the arrays
     can be omitted only for the first member of the sequence.  */
  if (TREE_CODE (type) == ARRAY_TYPE && !TYPE_DOMAIN (type))
    {
      if (name)
	error ("declaration of `%D' as multidimensional array must have bounds for all dimensions except the first",
		  name);
      else
	error ("multidimensional array must have bounds for all dimensions except the first");

      return error_mark_node;
    }

  /* Figure out the index type for the array.  */
  if (size)
    itype = compute_array_index_type (name, size);

  return build_cplus_array_type (type, itype);
}

/* Check that it's OK to declare a function with the indicated TYPE.
   SFK indicates the kind of special function (if any) that this
   function is.  OPTYPE is the type given in a conversion operator
   declaration.  Returns the actual return type of the function; that
   may be different than TYPE if an error occurs, or for certain
   special functions.  */

static tree
check_special_function_return_type (sfk, type, optype)
     special_function_kind sfk;
     tree type;
     tree optype;
{
  switch (sfk)
    {
    case sfk_constructor:
      if (type)
	error ("return type specification for constructor invalid");

      type = void_type_node;
      break;

    case sfk_destructor:
      if (type)
	error ("return type specification for destructor invalid");
      type = void_type_node;
      break;

    case sfk_conversion:
      if (type && !same_type_p (type, optype))
	error ("operator `%T' declared to return `%T'", optype, type);
      else if (type)
	pedwarn ("return type specified for `operator %T'",  optype);
      type = optype;
      break;

    default:
      abort ();
      break;
    }

  return type;
}

/* Given declspecs and a declarator,
   determine the name and type of the object declared
   and construct a ..._DECL node for it.
   (In one case we can return a ..._TYPE node instead.
    For invalid input we sometimes return 0.)

   DECLSPECS is a chain of tree_list nodes whose value fields
    are the storage classes and type specifiers.

   DECL_CONTEXT says which syntactic context this declaration is in:
     NORMAL for most contexts.  Make a VAR_DECL or FUNCTION_DECL or TYPE_DECL.
     FUNCDEF for a function definition.  Like NORMAL but a few different
      error messages in each case.  Return value may be zero meaning
      this definition is too screwy to try to parse.
     MEMFUNCDEF for a function definition.  Like FUNCDEF but prepares to
      handle member functions (which have FIELD context).
      Return value may be zero meaning this definition is too screwy to
      try to parse.
     PARM for a parameter declaration (either within a function prototype
      or before a function body).  Make a PARM_DECL, or return void_type_node.
     CATCHPARM for a parameter declaration before a catch clause.
     TYPENAME if for a typename (in a cast or sizeof).
      Don't make a DECL node; just return the ..._TYPE node.
     FIELD for a struct or union field; make a FIELD_DECL.
     BITFIELD for a field with specified width.
   INITIALIZED is 1 if the decl has an initializer.

   ATTRLIST is a pointer to the list of attributes, which may be NULL
   if there are none; *ATTRLIST may be modified if attributes from inside
   the declarator should be applied to the declaration.

   In the TYPENAME case, DECLARATOR is really an abstract declarator.
   It may also be so in the PARM case, for a prototype where the
   argument type is specified but not the name.

   This function is where the complicated C meanings of `static'
   and `extern' are interpreted.

   For C++, if there is any monkey business to do, the function which
   calls this one must do it, i.e., prepending instance variables,
   renaming overloaded function names, etc.

   Note that for this C++, it is an error to define a method within a class
   which does not belong to that class.

   Except in the case where SCOPE_REFs are implicitly known (such as
   methods within a class being redundantly qualified),
   declarations which involve SCOPE_REFs are returned as SCOPE_REFs
   (class_name::decl_name).  The caller must also deal with this.

   If a constructor or destructor is seen, and the context is FIELD,
   then the type gains the attribute TREE_HAS_x.  If such a declaration
   is erroneous, NULL_TREE is returned.

   QUALS is used only for FUNCDEF and MEMFUNCDEF cases.  For a member
   function, these are the qualifiers to give to the `this' pointer. We
   apply TYPE_QUAL_RESTRICT to the this ptr, not the object.

   May return void_type_node if the declarator turned out to be a friend.
   See grokfield for details.  */

tree
grokdeclarator (declarator, declspecs, decl_context, initialized, attrlist)
     tree declspecs;
     tree declarator;
     enum decl_context decl_context;
     int initialized;
     tree *attrlist;
{
  RID_BIT_TYPE specbits;
  /* APPLE LOCAL CW asm blocks */
  int cw_asm_specbit = 0;
  int nclasses = 0;
  tree spec;
  tree type = NULL_TREE;
  int longlong = 0;
  int type_quals;
  int virtualp, explicitp, friendp, inlinep, staticp;
  int explicit_int = 0;
  int explicit_char = 0;
  /* APPLE LOCAL AltiVec */
  int explicit_bool = 0;
  int defaulted_int = 0;
  int extern_langp = 0;
  tree dependant_name = NULL_TREE;
  
  tree typedef_decl = NULL_TREE;
  const char *name;
  tree typedef_type = NULL_TREE;
  int funcdef_flag = 0;
  enum tree_code innermost_code = ERROR_MARK;
  int bitfield = 0;
#if 0
  /* See the code below that used this.  */
  tree decl_attr = NULL_TREE;
#endif
  /* Set this to error_mark_node for FIELD_DECLs we could not handle properly.
     All FIELD_DECLs we build here have `init' put into their DECL_INITIAL.  */
  tree init = NULL_TREE;

  /* Keep track of what sort of function is being processed
     so that we can warn about default return values, or explicit
     return values which do not match prescribed defaults.  */
  special_function_kind sfk = sfk_none;

  tree dname = NULL_TREE;
  tree ctype = current_class_type;
  tree ctor_return_type = NULL_TREE;
  enum overload_flags flags = NO_SPECIAL;
  tree quals = NULL_TREE;
  tree raises = NULL_TREE;
  int template_count = 0;
  tree in_namespace = NULL_TREE;
  tree returned_attrs = NULL_TREE;

  RIDBIT_RESET_ALL (specbits);
  if (decl_context == FUNCDEF)
    funcdef_flag = 1, decl_context = NORMAL;
  else if (decl_context == MEMFUNCDEF)
    funcdef_flag = -1, decl_context = FIELD;
  else if (decl_context == BITFIELD)
    bitfield = 1, decl_context = FIELD;

  /* Look inside a declarator for the name being declared
     and get it as a string, for an error message.  */
  {
    tree *next = &declarator;
    register tree decl;
    name = NULL;

    while (next && *next)
      {
	decl = *next;
	switch (TREE_CODE (decl))
	  {
	  case TREE_LIST:
	    /* For attributes.  */
	    next = &TREE_VALUE (decl);
	    break;

	  case COND_EXPR:
	    ctype = NULL_TREE;
	    next = &TREE_OPERAND (decl, 0);
	    break;

	  case BIT_NOT_EXPR:	/* For C++ destructors!  */
	    {
	      tree name = TREE_OPERAND (decl, 0);
	      tree rename = NULL_TREE;

	      my_friendly_assert (flags == NO_SPECIAL, 152);
	      flags = DTOR_FLAG;
	      sfk = sfk_destructor;
	      if (TREE_CODE (name) == TYPE_DECL)
		TREE_OPERAND (decl, 0) = name = constructor_name (name);
	      my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 153);
	      if (ctype == NULL_TREE)
		{
		  if (current_class_type == NULL_TREE)
		    {
		      error ("destructors must be member functions");
		      flags = NO_SPECIAL;
		    }
		  else
		    {
		      tree t = constructor_name (current_class_name);
		      if (t != name)
			rename = t;
		    }
		}
	      else
		{
		  tree t = constructor_name (ctype);
		  if (t != name)
		    rename = t;
		}

	      if (rename)
		{
		  error ("destructor `%T' must match class name `%T'",
			    name, rename);
		  TREE_OPERAND (decl, 0) = rename;
		}
	      next = &name;
	    }
	    break;

	  case ADDR_EXPR:	/* C++ reference declaration */
	    /* Fall through.  */
	  case ARRAY_REF:
	  case INDIRECT_REF:
	    ctype = NULL_TREE;
	    innermost_code = TREE_CODE (decl);
	    next = &TREE_OPERAND (decl, 0);
	    break;

	  case CALL_EXPR:
	    if (parmlist_is_exprlist (CALL_DECLARATOR_PARMS (decl)))
	      {
		/* This is actually a variable declaration using
		   constructor syntax.  We need to call start_decl and
		   cp_finish_decl so we can get the variable
		   initialized...  */

		tree attributes;

		if (decl_context != NORMAL)
		  {
		    error ("variable declaration is not allowed here");
		    return error_mark_node;
		  }

		*next = TREE_OPERAND (decl, 0);
		init = CALL_DECLARATOR_PARMS (decl);

		if (attrlist)
		  {
		    attributes = *attrlist;
		  }
		else
		  {
		    attributes = NULL_TREE;
		  }

		decl = start_decl (declarator, declspecs, 1,
				   attributes, NULL_TREE);
		decl_type_access_control (decl);
		if (decl)
		  {
		    /* Look for __unused__ attribute */
		    if (TREE_USED (TREE_TYPE (decl)))
		      TREE_USED (decl) = 1;
		    finish_decl (decl, init, NULL_TREE);
		  }
		else
		  error ("invalid declarator");
		return NULL_TREE;
	      }
	    innermost_code = TREE_CODE (decl);
	    if (decl_context == FIELD && ctype == NULL_TREE)
	      ctype = current_class_type;
	    if (ctype
		&& TREE_OPERAND (decl, 0)
		&& (TREE_CODE (TREE_OPERAND (decl, 0)) == TYPE_DECL
		    && constructor_name_p (DECL_NAME (TREE_OPERAND (decl, 0)),
					   ctype)))
	      TREE_OPERAND (decl, 0) = constructor_name (ctype);
	    next = &TREE_OPERAND (decl, 0);
	    decl = *next;
	    if (ctype != NULL_TREE
		&& decl != NULL_TREE && flags != DTOR_FLAG
		&& decl == constructor_name (ctype))
	      {
		sfk = sfk_constructor;
		ctor_return_type = ctype;
	      }
	    ctype = NULL_TREE;
	    break;

	  case TEMPLATE_ID_EXPR:
	      {
		tree fns = TREE_OPERAND (decl, 0);

		if (TREE_CODE (fns) == LOOKUP_EXPR)
		  fns = TREE_OPERAND (fns, 0);

		dname = fns;
		if (TREE_CODE (dname) == COMPONENT_REF)
		  dname = TREE_OPERAND (dname, 1);
		if (TREE_CODE (dname) != IDENTIFIER_NODE)
		  {
		    my_friendly_assert (is_overloaded_fn (dname),
					19990331);
		    dname = DECL_NAME (get_first_fn (dname));
		  }
	      }
	  /* Fall through.  */

	  case IDENTIFIER_NODE:
	    if (TREE_CODE (decl) == IDENTIFIER_NODE)
	      dname = decl;

	    next = 0;

	    if (C_IS_RESERVED_WORD (dname))
	      {
		/* APPLE LOCAL AltiVec */
		if (!ALTIVEC_IS_CONTEXT_KEYWORD (C_RID_CODE (dname)))
		/* APPLE LOCAL Objective-C++ */
		/* This should be finer-grained, but will do for now.  */
		if (!flag_objc) 
		error ("declarator-id missing; using reserved word `%D'",
			  dname);
		name = IDENTIFIER_POINTER (dname);
	      }
	    else if (!IDENTIFIER_TYPENAME_P (dname))
	      name = IDENTIFIER_POINTER (dname);
	    else
	      {
		my_friendly_assert (flags == NO_SPECIAL, 154);
		flags = TYPENAME_FLAG;
		ctor_return_type = TREE_TYPE (dname);
		sfk = sfk_conversion;
		if (IDENTIFIER_GLOBAL_VALUE (dname)
		    && (TREE_CODE (IDENTIFIER_GLOBAL_VALUE (dname))
			== TYPE_DECL))
		  name = IDENTIFIER_POINTER (dname);
		else
		  name = "<invalid operator>";
	      }
	    break;

	    /* C++ extension */
	  case SCOPE_REF:
	    {
	      /* Perform error checking, and decide on a ctype.  */
	      tree cname = TREE_OPERAND (decl, 0);
	      if (cname == NULL_TREE)
		ctype = NULL_TREE;
	      else if (TREE_CODE (cname) == NAMESPACE_DECL)
		{
		  ctype = NULL_TREE;
		  in_namespace = TREE_OPERAND (decl, 0);
		  TREE_OPERAND (decl, 0) = NULL_TREE;
		}
	      else if (! is_aggr_type (cname, 1))
		TREE_OPERAND (decl, 0) = NULL_TREE;
	      /* Must test TREE_OPERAND (decl, 1), in case user gives
		 us `typedef (class::memfunc)(int); memfunc *memfuncptr;'  */
	      else if (TREE_OPERAND (decl, 1)
		       && TREE_CODE (TREE_OPERAND (decl, 1)) == INDIRECT_REF)
		ctype = cname;
	      else if (TREE_CODE (cname) == TEMPLATE_TYPE_PARM
		       || TREE_CODE (cname) == BOUND_TEMPLATE_TEMPLATE_PARM)
		{
	  	  /* This might be declaring a member of a template
		     parm to be a friend.  */
		  ctype = cname;
		  dependant_name = TREE_OPERAND (decl, 1);
		}
	      else if (ctype == NULL_TREE)
		ctype = cname;
	      else if (TREE_COMPLEXITY (decl) == current_class_depth)
		TREE_OPERAND (decl, 0) = ctype;
	      else
		{
		  if (! UNIQUELY_DERIVED_FROM_P (cname, ctype))
		    {
		      error ("type `%T' is not derived from type `%T'",
				cname, ctype);
		      TREE_OPERAND (decl, 0) = NULL_TREE;
		    }
		  else
		    ctype = cname;
		}

	      /* If the parser sees something like "void a::b" where
		 "a::b" is a namespace, it will build a SCOPE_REF with
		 a NAMESPACE_DECL, rather than an IDENTIFIER_NODE, as
		 the second operand.  Since the SCOPE_REF is being
		 used as a declarator, we recover from that here.  */
	      if (TREE_CODE (TREE_OPERAND (decl, 1)) == NAMESPACE_DECL)
		TREE_OPERAND (decl, 1) = DECL_NAME (TREE_OPERAND (decl, 1));

	      if (ctype && TREE_CODE (TREE_OPERAND (decl, 1)) == TYPE_DECL
		  && constructor_name_p (DECL_NAME (TREE_OPERAND (decl, 1)),
					 ctype))
		TREE_OPERAND (decl, 1) = constructor_name (ctype);
	      next = &TREE_OPERAND (decl, 1);
	      decl = *next;
	      if (ctype)
		{
		  if (TREE_CODE (decl) == IDENTIFIER_NODE
		      && constructor_name (ctype) == decl)
		    {
		      sfk = sfk_constructor;
		      ctor_return_type = ctype;
		    }
		  else if (TREE_CODE (decl) == BIT_NOT_EXPR
			   && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE
			   && constructor_name_p (TREE_OPERAND (decl, 0),
						  ctype))
		    {
		      sfk = sfk_destructor;
		      ctor_return_type = ctype;
		      flags = DTOR_FLAG;
		      TREE_OPERAND (decl, 0) = constructor_name (ctype);
		      next = &TREE_OPERAND (decl, 0);
		    }
		}
	    }
	    break;

	  case ERROR_MARK:
	    next = 0;
	    break;

	  case TYPE_DECL:
	    /* Parse error puts this typespec where
	       a declarator should go.  */
	    error ("`%T' specified as declarator-id", DECL_NAME (decl));
	    if (TREE_TYPE (decl) == current_class_type)
	      error ("  perhaps you want `%T' for a constructor",
			current_class_name);
	    dname = DECL_NAME (decl);
	    name = IDENTIFIER_POINTER (dname);

	    /* Avoid giving two errors for this.  */
	    IDENTIFIER_CLASS_VALUE (dname) = NULL_TREE;

	    declspecs = tree_cons (NULL_TREE, integer_type_node, declspecs);
	    *next = dname;
	    next = 0;
	    break;

	  case BASELINK:
	    next = &BASELINK_FUNCTIONS (decl);
	    break;

	  case TEMPLATE_DECL:
	    /* Sometimes, we see a template-name used as part of a 
	       decl-specifier like in 
	          std::allocator alloc;
	       Handle that gracefully.  */
	    error ("invalid use of template-name '%E' in a declarator", decl);
	    return error_mark_node;
	    break;
	    
	  default:
	    my_friendly_assert (0, 20020917);
	  }
      }
  }

  /* A function definition's declarator must have the form of
     a function declarator.  */

  if (funcdef_flag && innermost_code != CALL_EXPR)
    return 0;

  if (((dname && IDENTIFIER_OPNAME_P (dname)) || flags == TYPENAME_FLAG)
      && innermost_code != CALL_EXPR
      && ! (ctype && declspecs == NULL_TREE))
    {
      error ("declaration of `%D' as non-function", dname);
      return void_type_node;
    }

  /* Anything declared one level down from the top level
     must be one of the parameters of a function
     (because the body is at least two levels down).  */

  /* This heuristic cannot be applied to C++ nodes! Fixed, however,
     by not allowing C++ class definitions to specify their parameters
     with xdecls (must be spec.d in the parmlist).

     Since we now wait to push a class scope until we are sure that
     we are in a legitimate method context, we must set oldcname
     explicitly (since current_class_name is not yet alive).

     We also want to avoid calling this a PARM if it is in a namespace.  */

  if (decl_context == NORMAL && !toplevel_bindings_p ())
    {
      struct cp_binding_level *b = current_binding_level;
      current_binding_level = b->level_chain;
      if (current_binding_level != 0 && toplevel_bindings_p ())
	decl_context = PARM;
      current_binding_level = b;
    }

  if (name == NULL)
    name = decl_context == PARM ? "parameter" : "type name";

  /* Look through the decl specs and record which ones appear.
     Some typespecs are defined as built-in typenames.
     Others, the ones that are modifiers of other types,
     are represented by bits in SPECBITS: set the bits for
     the modifiers that appear.  Storage class keywords are also in SPECBITS.

     If there is a typedef name or a type, store the type in TYPE.
     This includes builtin typedefs such as `int'.

     Set EXPLICIT_INT if the type is `int' or `char' and did not
     come from a user typedef.

     Set LONGLONG if `long' is mentioned twice.

     For C++, constructors and destructors have their own fast treatment.  */

  for (spec = declspecs; spec; spec = TREE_CHAIN (spec))
    {
      register int i;
      register tree id;

      /* Certain parse errors slip through.  For example,
	 `int class;' is not caught by the parser. Try
	 weakly to recover here.  */
      if (TREE_CODE (spec) != TREE_LIST)
	return 0;

      id = TREE_VALUE (spec);

      /* If the entire declaration is itself tagged as deprecated then
	 suppress reports of deprecated items.  */
      /* APPLE LOCAL begin unavailable */
      /* If the entire declaration is itself tagged as unavailable then
         suppress reports of unavailable/deprecated items.  If the
         entire declaration is tagged as only deprecated we still
         report unavailable uses.  */
      if (!adding_implicit_members && id && TREE_DEPRECATED (id))
        {
          if (TREE_UNAVAILABLE (id))
            {
              if (deprecated_state != DEPRECATED_UNAVAILABLE_SUPPRESS)
              	warn_deprecated_use (id);
              #if 0
	      returned_attrs 
		= chainon (returned_attrs, 
			   build_tree_list (get_identifier ("unavailable"),
					    NULL_TREE));
	      #endif
            }
          else 
            {
              if (deprecated_state != DEPRECATED_SUPPRESS
                  && deprecated_state != DEPRECATED_UNAVAILABLE_SUPPRESS)
              	warn_deprecated_use (id);
              #if 0
	      returned_attrs 
		= chainon (returned_attrs, 
			   build_tree_list (get_identifier ("deprecated"),
					    NULL_TREE));
 	      #endif
           }
        }
      /* APPLE LOCAL end unavailable */

      if (TREE_CODE (id) == IDENTIFIER_NODE)
	{
	  /* APPLE LOCAL begin AltiVec */
	  if (id != ridpointers[(int) RID_BOOL] 
	      && ALTIVEC_IS_CONTEXT_KEYWORD (C_RID_CODE (id)))
	    {
	      RIDBIT_SET ((int) C_RID_CODE (id), specbits);
	      goto found;
	    }
	  /* APPLE LOCAL end AltiVec */

	  /* APPLE LOCAL begin CW asm blocks */
	  /* Maybe remember that we saw an "asm".  Don't test
	     -fasm-blocks here because we want to be able to report an
	     error later.  */
	  if (id == ridpointers[(int) RID_ASM])
	    {
	      ++cw_asm_specbit;
	      goto found;
	    }
	  /* APPLE LOCAL end CW asm blocks */

	  if (id == ridpointers[(int) RID_INT]
	      || id == ridpointers[(int) RID_CHAR]
	      || id == ridpointers[(int) RID_BOOL]
	      || id == ridpointers[(int) RID_WCHAR])
	    {
	      /* APPLE LOCAL AltiVec */
	      /* If vector is used, bool is a type modifier.  */
	      if (type && RIDBIT_NOTSETP (RID_ALTIVEC_VECTOR, specbits))
		{
		  if (id == ridpointers[(int) RID_BOOL])
		    error ("`bool' is now a keyword");
		  else
		    error ("extraneous `%T' ignored", id);
		}
	      else
		{
		  if (id == ridpointers[(int) RID_INT])
		    explicit_int = 1;
		  else if (id == ridpointers[(int) RID_CHAR])
		    explicit_char = 1;
		  /* APPLE LOCAL begin AltiVec */
		  else if (id == ridpointers[(int) RID_BOOL])
		    explicit_bool = 1;
		  /* Don't record a bool type if vector is used.  */
		  if (RIDBIT_NOTSETP (RID_ALTIVEC_VECTOR, specbits)
		      || id != ridpointers[(int) RID_BOOL])
		  /* APPLE LOCAL end AltiVec */
		  type = TREE_TYPE (IDENTIFIER_GLOBAL_VALUE (id));
		}
	      goto found;
	    }
	  /* C++ aggregate types.  */
	  if (IDENTIFIER_HAS_TYPE_VALUE (id))
	    {
	      if (type)
		error ("multiple declarations `%T' and `%T'", type, id);
	      else
		type = IDENTIFIER_TYPE_VALUE (id);
	      goto found;
	    }

	  for (i = (int) RID_FIRST_MODIFIER; i <= (int) RID_LAST_MODIFIER; i++)
	    {
	      if (ridpointers[i] == id)
		{
		  if (i == (int) RID_LONG && RIDBIT_SETP (i, specbits))
		    {
		      if (pedantic && ! in_system_header && warn_long_long)
			pedwarn ("ISO C++ does not support `long long'");
		      if (longlong)
			error ("`long long long' is too long for GCC");
		      else
			longlong = 1;
		    }
		  else if (RIDBIT_SETP (i, specbits))
		    pedwarn ("duplicate `%s'", IDENTIFIER_POINTER (id));

		  /* Diagnose "__thread extern".  Recall that this list
		     is in the reverse order seen in the text.  */
		  if (i == (int)RID_THREAD)
		    {
		      if (RIDBIT_SETP (RID_EXTERN, specbits))
			error ("`__thread' before `extern'");
		      if (RIDBIT_SETP (RID_STATIC, specbits))
			error ("`__thread' before `static'");
		    }

		  if (i == (int)RID_EXTERN
		      && TREE_PURPOSE (spec) == error_mark_node)
		    /* This extern was part of a language linkage.  */
		    extern_langp = 1;

		  RIDBIT_SET (i, specbits);
		  goto found;
		}
	    }
	}
      else if (TREE_CODE (id) == TYPE_DECL)
	{
	  if (type)
	    error ("multiple declarations `%T' and `%T'", type,
		      TREE_TYPE (id));
	  else
	    {
	      type = TREE_TYPE (id);
	      TREE_VALUE (spec) = type;
	      typedef_decl = id;
	    }
	  goto found;
	}
      if (type)
	error ("two or more data types in declaration of `%s'", name);
      else if (TREE_CODE (id) == IDENTIFIER_NODE)
	{
	  register tree t = lookup_name (id, 1);
	  if (!t || TREE_CODE (t) != TYPE_DECL)
	    error ("`%s' fails to be a typedef or built in type",
		   IDENTIFIER_POINTER (id));
	  else
	    {
	      type = TREE_TYPE (t);
	      typedef_decl = t;
	    }
	}
      else if (id != error_mark_node)
	/* Can't change CLASS nodes into RECORD nodes here!  */
	type = id;

    found: ;
    }

  /* APPLE LOCAL begin AltiVec */
  /* If there is no type, but we have vector pixel, make the type an int to
     get past the error checks that follow.  Also deal with vector bool.  */
  if (type == NULL_TREE
      && RIDBIT_SETP (RID_ALTIVEC_VECTOR, specbits)
      && (RIDBIT_SETP (RID_ALTIVEC_PIXEL, specbits) || explicit_bool))
    type = integer_type_node;
  /* APPLE LOCAL end AltiVec */
  
#if 0
  /* See the code below that used this.  */
  if (typedef_decl)
    decl_attr = DECL_ATTRIBUTES (typedef_decl);
#endif
  typedef_type = type;

  /* No type at all: default to `int', and set DEFAULTED_INT
     because it was not a user-defined typedef.  */

  if (type == NULL_TREE
      && (RIDBIT_SETP (RID_SIGNED, specbits)
	  || RIDBIT_SETP (RID_UNSIGNED, specbits)
	  || RIDBIT_SETP (RID_LONG, specbits)
	  || RIDBIT_SETP (RID_SHORT, specbits)))
    {
      /* These imply 'int'.  */
      type = integer_type_node;
      defaulted_int = 1;
    }

  if (sfk != sfk_none)
    type = check_special_function_return_type (sfk, type,
					       ctor_return_type);
  else if (type == NULL_TREE)
    {
      int is_main;

      explicit_int = -1;

      /* We handle `main' specially here, because 'main () { }' is so
	 common.  With no options, it is allowed.  With -Wreturn-type,
	 it is a warning.  It is only an error with -pedantic-errors.  */
      is_main = (funcdef_flag
		 && dname && MAIN_NAME_P (dname)
		 && ctype == NULL_TREE
		 && in_namespace == NULL_TREE
		 && current_namespace == global_namespace);

      if (in_system_header || flag_ms_extensions)
	/* Allow it, sigh.  */;
      else if (pedantic || ! is_main)
	pedwarn ("ISO C++ forbids declaration of `%s' with no type",
		    name);
      else if (warn_return_type)
	warning ("ISO C++ forbids declaration of `%s' with no type",
		    name);

      type = integer_type_node;
    }
  
  if (type && IMPLICIT_TYPENAME_P (type))
    {
      /* The implicit typename extension is deprecated and will be
	 removed.  Warn about its use now.  */
      warning ("`%T' is implicitly a typename", type);
      cp_deprecated ("implicit typename");

      /* Now remove its implicitness, so that we don't warn again.
         For instance this might be a typedef, and we do not want to
         warn on uses of the typedef itself.  Simply clearing the
         TREE_TYPE is insufficient.  */
      type = copy_node (type);
      TREE_TYPE (type) = NULL_TREE;
    }

  ctype = NULL_TREE;

  /* Now process the modifiers that were specified
     and check for invalid combinations.  */

  /* Long double is a special combination.  */

  if (RIDBIT_SETP (RID_LONG, specbits)
      && TYPE_MAIN_VARIANT (type) == double_type_node)
    {
      RIDBIT_RESET (RID_LONG, specbits);
      type = build_qualified_type (long_double_type_node,
				   cp_type_quals (type));
      /* APPLE LOCAL -Wlong-double dpatel */
      warn_about_long_double ();
    }

  /* Check all other uses of type modifiers.  */

  if (RIDBIT_SETP (RID_UNSIGNED, specbits)
      || RIDBIT_SETP (RID_SIGNED, specbits)
      || RIDBIT_SETP (RID_LONG, specbits)
      || RIDBIT_SETP (RID_SHORT, specbits))
    {
      int ok = 0;

      if (TREE_CODE (type) == REAL_TYPE)
	error ("short, signed or unsigned invalid for `%s'", name);
      else if (TREE_CODE (type) != INTEGER_TYPE)
	error ("long, short, signed or unsigned invalid for `%s'", name);
      else if (RIDBIT_SETP (RID_LONG, specbits)
	       && RIDBIT_SETP (RID_SHORT, specbits))
	error ("long and short specified together for `%s'", name);
      else if ((RIDBIT_SETP (RID_LONG, specbits)
		|| RIDBIT_SETP (RID_SHORT, specbits))
	       && explicit_char)
	error ("long or short specified with char for `%s'", name);
      else if ((RIDBIT_SETP (RID_LONG, specbits)
		|| RIDBIT_SETP (RID_SHORT, specbits))
	       && TREE_CODE (type) == REAL_TYPE)
	error ("long or short specified with floating type for `%s'", name);
      else if (RIDBIT_SETP (RID_SIGNED, specbits)
	       && RIDBIT_SETP (RID_UNSIGNED, specbits))
	error ("signed and unsigned given together for `%s'", name);
      /* APPLE LOCAL begin AltiVec */	
      /* Ignore the remaining checks for vector types.  */
      else if (RIDBIT_SETP (RID_ALTIVEC_VECTOR, specbits))
	ok = 1;
      else if (TREE_CODE (type) != INTEGER_TYPE)
	error ("long, short, signed or unsigned invalid for `%s'", name);
      /* APPLE LOCAL end AltiVec */	
      else
	{
	  ok = 1;
	  if (!explicit_int && !defaulted_int && !explicit_char && pedantic)
	    {
	      pedwarn ("long, short, signed or unsigned used invalidly for `%s'",
		       name);
	      if (flag_pedantic_errors)
		ok = 0;
	    }
	}

      /* Discard the type modifiers if they are invalid.  */
      if (! ok)
	{
	  RIDBIT_RESET (RID_UNSIGNED, specbits);
	  RIDBIT_RESET (RID_SIGNED, specbits);
	  RIDBIT_RESET (RID_LONG, specbits);
	  RIDBIT_RESET (RID_SHORT, specbits);
	  longlong = 0;
	}
    }

  if (RIDBIT_SETP (RID_COMPLEX, specbits)
      && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
    {
      error ("complex invalid for `%s'", name);
      RIDBIT_RESET (RID_COMPLEX, specbits);
    }

  /* Decide whether an integer type is signed or not.
     Optionally treat bitfields as signed by default.  */
  if (RIDBIT_SETP (RID_UNSIGNED, specbits)
      /* [class.bit]

	 It is implementation-defined whether a plain (neither
	 explicitly signed or unsigned) char, short, int, or long
	 bit-field is signed or unsigned.

	 Naturally, we extend this to long long as well.  Note that
	 this does not include wchar_t.  */
      || (bitfield && !flag_signed_bitfields
	  && RIDBIT_NOTSETP (RID_SIGNED, specbits)
	  /* A typedef for plain `int' without `signed' can be
	     controlled just like plain `int', but a typedef for
	     `signed int' cannot be so controlled.  */
	  && !(typedef_decl
	       && C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl))
	  && (TREE_CODE (type) == INTEGER_TYPE
	      || TREE_CODE (type) == CHAR_TYPE)
	  && !same_type_p (TYPE_MAIN_VARIANT (type), wchar_type_node)))
    {
      if (longlong)
	type = long_long_unsigned_type_node;
      else if (RIDBIT_SETP (RID_LONG, specbits))
	type = long_unsigned_type_node;
      else if (RIDBIT_SETP (RID_SHORT, specbits))
	type = short_unsigned_type_node;
      else if (type == char_type_node)
	type = unsigned_char_type_node;
      else if (typedef_decl)
	type = c_common_unsigned_type (type);
      else
	type = unsigned_type_node;
    }
  else if (RIDBIT_SETP (RID_SIGNED, specbits)
	   && type == char_type_node)
    type = signed_char_type_node;
  else if (longlong)
    type = long_long_integer_type_node;
  else if (RIDBIT_SETP (RID_LONG, specbits))
    type = long_integer_type_node;
  else if (RIDBIT_SETP (RID_SHORT, specbits))
    type = short_integer_type_node;

  if (RIDBIT_SETP (RID_COMPLEX, specbits))
    {
      /* If we just have "complex", it is equivalent to
	 "complex double", but if any modifiers at all are specified it is
	 the complex form of TYPE.  E.g, "complex short" is
	 "complex short int".  */

      if (defaulted_int && ! longlong
	  && ! (RIDBIT_SETP (RID_LONG, specbits)
		|| RIDBIT_SETP (RID_SHORT, specbits)
		|| RIDBIT_SETP (RID_SIGNED, specbits)
		|| RIDBIT_SETP (RID_UNSIGNED, specbits)))
	type = complex_double_type_node;
      else if (type == integer_type_node)
	type = complex_integer_type_node;
      else if (type == float_type_node)
	type = complex_float_type_node;
      else if (type == double_type_node)
	type = complex_double_type_node;
      else if (type == long_double_type_node)
	type = complex_long_double_type_node;
      else
	type = build_complex_type (type);
    }

  type_quals = TYPE_UNQUALIFIED;
  if (RIDBIT_SETP (RID_CONST, specbits))
    type_quals |= TYPE_QUAL_CONST;
  if (RIDBIT_SETP (RID_VOLATILE, specbits))
    type_quals |= TYPE_QUAL_VOLATILE;
  if (RIDBIT_SETP (RID_RESTRICT, specbits))
    type_quals |= TYPE_QUAL_RESTRICT;
  if (sfk == sfk_conversion && type_quals != TYPE_UNQUALIFIED)
    error ("qualifiers are not allowed on declaration of `operator %T'",
	      ctor_return_type);

  /* APPLE LOCAL begin AltiVec */
  /* pixel can only be used with vector.  */
  if (RIDBIT_SETP (RID_ALTIVEC_PIXEL, specbits)
      && RIDBIT_NOTSETP (RID_ALTIVEC_VECTOR, specbits))
    {
      error ("__pixel invalid for `%s'", name);
      RIDBIT_RESET (RID_ALTIVEC_PIXEL, specbits);
    }

  /* Check for the versions of vector.  */
  if (RIDBIT_SETP (RID_ALTIVEC_VECTOR, specbits))
    {
      /* Allow '__bool' as well as 'bool'.  */
      explicit_bool |= RIDBIT_SETP (RID_ALTIVEC_BOOL, specbits);
      if ((type == integer_type_node || type == long_integer_type_node)
          && !explicit_bool && !explicit_int
	  && RIDBIT_SETP (RID_ALTIVEC_PIXEL, specbits))
        type = vector_pixel_type_node;
      else if (type == long_unsigned_type_node)
      	{
	  type = vector_unsigned_long_type_node;
	  /* Radar 2841709 */
	  if (warn_altivec_long_deprecated)
	    warning ("Use of 'long' in AltiVec types is deprecated; use 'int'");
	}
      else if (type == unsigned_type_node)
	type = vector_unsigned_long_type_node;
      else if (explicit_bool
	    && (type == long_integer_type_node || type == integer_type_node))
      	{
	  /* Radar 2841709 */
	  if (warn_altivec_long_deprecated && type == long_integer_type_node)
	    warning ("Use of 'long' in AltiVec types is deprecated; use 'int'");
	  type = vector_boolean_long_type_node;
	}
      else if (RIDBIT_SETP (RID_SIGNED, specbits)
	    && (type == long_integer_type_node || type == integer_type_node))
	{
	  /* Radar 2841709 */
	  if (warn_altivec_long_deprecated && type == long_integer_type_node)
	    warning ("Use of 'long' in AltiVec types is deprecated; use 'int'");
	  type = vector_signed_long_type_node;
	}
      else if (type == short_unsigned_type_node)
	type = vector_unsigned_short_type_node;
      else if (type == short_integer_type_node)
	type = (explicit_bool
		? vector_boolean_short_type_node
		: vector_signed_short_type_node);
      else if (type == unsigned_char_type_node)
	type = vector_unsigned_char_type_node;
      else if (type == signed_char_type_node)
	type = vector_signed_char_type_node;
      else if (type == char_type_node && explicit_bool)
	type = vector_boolean_char_type_node;
      else if (type == float_type_node)
	type = vector_float_type_node;
      else
	{
	  error ("vector invalid for `%s'", name);
	  RIDBIT_RESET (RID_ALTIVEC_VECTOR, specbits);
	  RIDBIT_RESET (RID_ALTIVEC_PIXEL, specbits);
	}
      if (RIDBIT_SETP (RID_ALTIVEC_PIXEL, specbits) && type != vector_pixel_type_node)
        {
          error ("type modifiers do not apply to `vector pixel'");
          type = vector_pixel_type_node;
        }
    }					/* RID_ALTIVEC_VECTOR */
  /* APPLE LOCAL end AltiVec */
    
  type_quals |= cp_type_quals (type);
  type = cp_build_qualified_type_real
    (type, type_quals, ((typedef_decl && !DECL_ARTIFICIAL (typedef_decl)
 			 ? tf_ignore_bad_quals : 0) | tf_error | tf_warning));
  /* We might have ignored or rejected some of the qualifiers.  */
  type_quals = cp_type_quals (type);
  
  staticp = 0;
  inlinep = !! RIDBIT_SETP (RID_INLINE, specbits);
  virtualp = RIDBIT_SETP (RID_VIRTUAL, specbits);
  RIDBIT_RESET (RID_VIRTUAL, specbits);
  explicitp = RIDBIT_SETP (RID_EXPLICIT, specbits) != 0;
  RIDBIT_RESET (RID_EXPLICIT, specbits);

  if (RIDBIT_SETP (RID_STATIC, specbits))
    staticp = 1 + (decl_context == FIELD);

  if (virtualp && staticp == 2)
    {
      error ("member `%D' cannot be declared both virtual and static",
		dname);
      staticp = 0;
    }
  friendp = RIDBIT_SETP (RID_FRIEND, specbits);
  RIDBIT_RESET (RID_FRIEND, specbits);

  if (dependant_name && !friendp)
    {
      error ("`%T::%D' is not a valid declarator", ctype, dependant_name);
      return void_type_node;
    }
  
  /* Warn if two storage classes are given. Default to `auto'.  */

  if (RIDBIT_ANY_SET (specbits))
    {
      if (RIDBIT_SETP (RID_STATIC, specbits)) nclasses++;
      if (RIDBIT_SETP (RID_EXTERN, specbits) && !extern_langp) nclasses++;
      if (RIDBIT_SETP (RID_THREAD, specbits)) nclasses++;
      if (decl_context == PARM && nclasses > 0)
	error ("storage class specifiers invalid in parameter declarations");
      if (RIDBIT_SETP (RID_TYPEDEF, specbits))
	{
	  if (decl_context == PARM)
	    error ("typedef declaration invalid in parameter declaration");
	  nclasses++;
	}
      if (RIDBIT_SETP (RID_AUTO, specbits)) nclasses++;
      if (RIDBIT_SETP (RID_REGISTER, specbits)) nclasses++;
      if (!nclasses && !friendp && extern_langp)
	nclasses++;
    }

  /* Give error if `virtual' is used outside of class declaration.  */
  if (virtualp
      && (current_class_name == NULL_TREE || decl_context != FIELD))
    {
      error ("virtual outside class declaration");
      virtualp = 0;
    }

  /* Static anonymous unions are dealt with here.  */
  if (staticp && decl_context == TYPENAME
      && TREE_CODE (declspecs) == TREE_LIST
      && ANON_AGGR_TYPE_P (TREE_VALUE (declspecs)))
    decl_context = FIELD;

  /* Warn about storage classes that are invalid for certain
     kinds of declarations (parameters, typenames, etc.).  */

  /* "static __thread" and "extern __thread" are allowed.  */
  if (nclasses == 2
      && RIDBIT_SETP (RID_THREAD, specbits)
      && (RIDBIT_SETP (RID_EXTERN, specbits)
	  || RIDBIT_SETP (RID_STATIC, specbits)))
    nclasses = 1;
    
  if (nclasses > 1)
    error ("multiple storage classes in declaration of `%s'", name);
  else if (decl_context != NORMAL && nclasses > 0)
    {
      if ((decl_context == PARM || decl_context == CATCHPARM)
	  && (RIDBIT_SETP (RID_REGISTER, specbits)
	      || RIDBIT_SETP (RID_AUTO, specbits)))
	;
      else if (RIDBIT_SETP (RID_TYPEDEF, specbits))
	;
      else if (decl_context == FIELD
	       /* C++ allows static class elements  */
	       && RIDBIT_SETP (RID_STATIC, specbits))
	/* C++ also allows inlines and signed and unsigned elements,
	   but in those cases we don't come in here.  */
	;
      else
	{
	  if (decl_context == FIELD)
	    {
	      tree tmp = NULL_TREE;
	      register int op = 0;

	      if (declarator)
		{
		  /* Avoid trying to get an operand off an identifier node.  */
		  if (TREE_CODE (declarator) == IDENTIFIER_NODE)
		    tmp = declarator;
		  else
		    tmp = TREE_OPERAND (declarator, 0);
		  op = IDENTIFIER_OPNAME_P (tmp);
		  if (IDENTIFIER_TYPENAME_P (tmp))
		    {
		      if (IDENTIFIER_GLOBAL_VALUE (tmp)
			  && (TREE_CODE (IDENTIFIER_GLOBAL_VALUE (tmp))
			      == TYPE_DECL))
			name = IDENTIFIER_POINTER (tmp);
		      else
			name = "<invalid operator>";
		    }
		}
	      error ("storage class specified for %s `%s'",
		     op ? "member operator" : "field",
		     name);
	    }
	  else
	    {
	      if (decl_context == PARM || decl_context == CATCHPARM)
		error ("storage class specified for parameter `%s'", name);
	      else
		error ("storage class specified for typename");
	    }
	  RIDBIT_RESET (RID_REGISTER, specbits);
	  RIDBIT_RESET (RID_AUTO, specbits);
	  RIDBIT_RESET (RID_EXTERN, specbits);
	  RIDBIT_RESET (RID_THREAD, specbits);
	}
    }
  else if (RIDBIT_SETP (RID_EXTERN, specbits) && initialized && !funcdef_flag)
    {
      if (toplevel_bindings_p ())
	{
	  /* It's common practice (and completely valid) to have a const
	     be initialized and declared extern.  */
	  if (!(type_quals & TYPE_QUAL_CONST))
	    warning ("`%s' initialized and declared `extern'", name);
	}
      else
	error ("`%s' has both `extern' and initializer", name);
    }
  else if (RIDBIT_SETP (RID_EXTERN, specbits) && funcdef_flag
	   && ! toplevel_bindings_p ())
    error ("nested function `%s' declared `extern'", name);
  else if (toplevel_bindings_p ())
    {
      if (RIDBIT_SETP (RID_AUTO, specbits))
	error ("top-level declaration of `%s' specifies `auto'", name);
    }
  else if (RIDBIT_SETP (RID_THREAD, specbits)
	   && !RIDBIT_SETP (RID_EXTERN, specbits)
	   && !RIDBIT_SETP (RID_STATIC, specbits))
    {
      error ("function-scope `%s' implicitly auto and declared `__thread'",
	     name);
      RIDBIT_RESET (RID_THREAD, specbits);
    }

  if (nclasses > 0 && friendp)
    error ("storage class specifiers invalid in friend function declarations");

  /* Now figure out the structure of the declarator proper.
     Descend through it, creating more complex types, until we reach
     the declared identifier (or NULL_TREE, in an abstract declarator).  */

  while (declarator && TREE_CODE (declarator) != IDENTIFIER_NODE
	 && TREE_CODE (declarator) != TEMPLATE_ID_EXPR)
    {
      /* Each level of DECLARATOR is either an ARRAY_REF (for ...[..]),
	 an INDIRECT_REF (for *...),
	 a CALL_EXPR (for ...(...)),
	 an identifier (for the name being declared)
	 or a null pointer (for the place in an absolute declarator
	 where the name was omitted).
	 For the last two cases, we have just exited the loop.

	 For C++ it could also be
	 a SCOPE_REF (for class :: ...).  In this case, we have converted
	 sensible names to types, and those are the values we use to
	 qualify the member name.
	 an ADDR_EXPR (for &...),
	 a BIT_NOT_EXPR (for destructors)

	 At this point, TYPE is the type of elements of an array,
	 or for a function to return, or for a pointer to point to.
	 After this sequence of ifs, TYPE is the type of the
	 array or function or pointer, and DECLARATOR has had its
	 outermost layer removed.  */

      if (type == error_mark_node)
	{
	  if (TREE_CODE (declarator) == SCOPE_REF)
	    declarator = TREE_OPERAND (declarator, 1);
	  else
	    declarator = TREE_OPERAND (declarator, 0);
	  continue;
	}
      if (quals != NULL_TREE
	  && (declarator == NULL_TREE
	      || TREE_CODE (declarator) != SCOPE_REF))
	{
	  if (ctype == NULL_TREE && TREE_CODE (type) == METHOD_TYPE)
	    ctype = TYPE_METHOD_BASETYPE (type);
	  if (ctype != NULL_TREE)
	    {
	      tree dummy = build_decl (TYPE_DECL, NULL_TREE, type);
	      grok_method_quals (ctype, dummy, quals);
	      type = TREE_TYPE (dummy);
	      ctype = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type)));
	      quals = NULL_TREE;
	    }
	}

      switch (TREE_CODE (declarator))
	{
	case TREE_LIST:
	  {
	    /* We encode a declarator with embedded attributes using
	       a TREE_LIST.  */
	    tree attrs = TREE_PURPOSE (declarator);
	    tree inner_decl;
	    int attr_flags;

	    declarator = TREE_VALUE (declarator);
	    inner_decl = declarator;
	    while (inner_decl != NULL_TREE
		   && TREE_CODE (inner_decl) == TREE_LIST)
	      inner_decl = TREE_VALUE (inner_decl);
	    attr_flags = 0;
	    if (inner_decl == NULL_TREE
		|| TREE_CODE (inner_decl) == IDENTIFIER_NODE)
	      attr_flags |= (int) ATTR_FLAG_DECL_NEXT;
	    if (TREE_CODE (inner_decl) == CALL_EXPR)
	      attr_flags |= (int) ATTR_FLAG_FUNCTION_NEXT;
	    if (TREE_CODE (inner_decl) == ARRAY_REF)
	      attr_flags |= (int) ATTR_FLAG_ARRAY_NEXT;
	    returned_attrs = decl_attributes (&type,
					      chainon (returned_attrs, attrs),
					      attr_flags);
	  }
	  break;

	case ARRAY_REF:
	  {
	    register tree size;

	    size = TREE_OPERAND (declarator, 1);

	    /* VC++ spells a zero-sized array with [].  */
	    if (size == NULL_TREE && decl_context == FIELD && !	staticp
		&& ! RIDBIT_SETP (RID_TYPEDEF, specbits))
	      size = integer_zero_node;

	    declarator = TREE_OPERAND (declarator, 0);

	    type = create_array_type_for_decl (dname, type, size);

	    ctype = NULL_TREE;
	  }
	  break;

	case CALL_EXPR:
	  {
	    tree arg_types;
	    int funcdecl_p;
	    tree inner_parms = CALL_DECLARATOR_PARMS (declarator);
	    tree inner_decl = TREE_OPERAND (declarator, 0);

	    /* Declaring a function type.
	       Make sure we have a valid type for the function to return.  */

	    /* We now know that the TYPE_QUALS don't apply to the
               decl, but to its return type.  */
	    type_quals = TYPE_UNQUALIFIED;

	    /* Warn about some types functions can't return.  */

	    if (TREE_CODE (type) == FUNCTION_TYPE)
	      {
		error ("`%s' declared as function returning a function", name);
		type = integer_type_node;
	      }
	    if (TREE_CODE (type) == ARRAY_TYPE)
	      {
		error ("`%s' declared as function returning an array", name);
		type = integer_type_node;
	      }

	    if (inner_decl && TREE_CODE (inner_decl) == SCOPE_REF)
	      inner_decl = TREE_OPERAND (inner_decl, 1);

	    if (inner_decl && TREE_CODE (inner_decl) == TEMPLATE_ID_EXPR)
	      inner_decl = dname;

	    /* Pick up type qualifiers which should be applied to `this'.  */
	    quals = CALL_DECLARATOR_QUALS (declarator);

	    /* Pick up the exception specifications.  */
	    raises = CALL_DECLARATOR_EXCEPTION_SPEC (declarator);

	    /* Say it's a definition only for the CALL_EXPR
	       closest to the identifier.  */
	    funcdecl_p
	      = inner_decl
	      && (TREE_CODE (inner_decl) == IDENTIFIER_NODE
		  || TREE_CODE (inner_decl) == TEMPLATE_ID_EXPR
		  || TREE_CODE (inner_decl) == BIT_NOT_EXPR);

	    if (ctype == NULL_TREE
		&& decl_context == FIELD
		&& funcdecl_p
		&& (friendp == 0 || dname == current_class_name))
	      ctype = current_class_type;

	    if (ctype && sfk == sfk_conversion)
	      TYPE_HAS_CONVERSION (ctype) = 1;
	    if (ctype && constructor_name (ctype) == dname)
	      {
		/* We are within a class's scope. If our declarator name
		   is the same as the class name, and we are defining
		   a function, then it is a constructor/destructor, and
		   therefore returns a void type.  */

		if (flags == DTOR_FLAG)
		  {
		    /* ISO C++ 12.4/2.  A destructor may not be
		       declared const or volatile.  A destructor may
		       not be static.  */
		    if (staticp == 2)
		      error ("destructor cannot be static member function");
		    if (quals)
		      {
			error ("destructors may not be `%s'",
				  IDENTIFIER_POINTER (TREE_VALUE (quals)));
			quals = NULL_TREE;
		      }
		    if (decl_context == FIELD)
		      {
			if (! member_function_or_else (ctype,
						       current_class_type,
						       flags))
			  return void_type_node;
		      }
		  }
		else            /* It's a constructor.  */
		  {
		    if (explicitp == 1)
		      explicitp = 2;
		    /* ISO C++ 12.1.  A constructor may not be
		       declared const or volatile.  A constructor may
		       not be virtual.  A constructor may not be
		       static.  */
		    if (staticp == 2)
		      error ("constructor cannot be static member function");
		    if (virtualp)
		      {
			pedwarn ("constructors cannot be declared virtual");
			virtualp = 0;
		      }
		    if (quals)
		      {
			error ("constructors may not be `%s'",
				  IDENTIFIER_POINTER (TREE_VALUE (quals)));
			quals = NULL_TREE;
		      }
		    {
		      RID_BIT_TYPE tmp_bits;
		      memcpy (&tmp_bits, &specbits, sizeof (RID_BIT_TYPE));
		      RIDBIT_RESET (RID_INLINE, tmp_bits);
		      RIDBIT_RESET (RID_STATIC, tmp_bits);
		      if (RIDBIT_ANY_SET (tmp_bits))
			error ("return value type specifier for constructor ignored");
		    }
		    if (decl_context == FIELD)
		      {
			if (! member_function_or_else (ctype,
						       current_class_type,
						       flags))
			  return void_type_node;
			TYPE_HAS_CONSTRUCTOR (ctype) = 1;
			if (sfk != sfk_constructor)
			  return NULL_TREE;
		      }
		  }
		if (decl_context == FIELD)
		  staticp = 0;
	      }
	    else if (friendp)
	      {
		if (initialized)
		  error ("can't initialize friend function `%s'", name);
		if (virtualp)
		  {
		    /* Cannot be both friend and virtual.  */
		    error ("virtual functions cannot be friends");
		    RIDBIT_RESET (RID_FRIEND, specbits);
		    friendp = 0;
		  }
		if (decl_context == NORMAL)
		  error ("friend declaration not in class definition");
		if (current_function_decl && funcdef_flag)
		  error ("can't define friend function `%s' in a local class definition",
			    name);
	      }

	    /* Construct the function type and go to the next
	       inner layer of declarator.  */

	    declarator = TREE_OPERAND (declarator, 0);

	    /* FIXME: This is where default args should be fully
	       processed.  */

	    arg_types = grokparms (inner_parms);

	    if (declarator && flags == DTOR_FLAG)
	      {
		/* A destructor declared in the body of a class will
		   be represented as a BIT_NOT_EXPR.  But, we just
		   want the underlying IDENTIFIER.  */
		if (TREE_CODE (declarator) == BIT_NOT_EXPR)
		  declarator = TREE_OPERAND (declarator, 0);

                if (arg_types != void_list_node)
		  {
		    error ("destructors may not have parameters");
		    arg_types = void_list_node;
		    last_function_parms = NULL_TREE;
		  }
	      }

	    /* ANSI says that `const int foo ();'
	       does not make the function foo const.  */
	    type = build_function_type (type, arg_types);

	    {
	      tree t;
	      for (t = arg_types; t; t = TREE_CHAIN (t))
		if (TREE_PURPOSE (t)
		    && TREE_CODE (TREE_PURPOSE (t)) == DEFAULT_ARG)
		  {
		    add_defarg_fn (type);
		    break;
		  }
	    }
	  }
	  break;

	case ADDR_EXPR:
	case INDIRECT_REF:
	  /* Filter out pointers-to-references and references-to-references.
	     We can get these if a TYPE_DECL is used.  */

	  if (TREE_CODE (type) == REFERENCE_TYPE)
	    {
	      error ("cannot declare %s to references",
		     TREE_CODE (declarator) == ADDR_EXPR
		     ? "references" : "pointers");
	      declarator = TREE_OPERAND (declarator, 0);
	      continue;
	    }

	  if (ctype
	      && (TREE_CODE (type) == VOID_TYPE
		  || TREE_CODE (type) == REFERENCE_TYPE))
	    {
	      error (TREE_CODE (declarator) == ADDR_EXPR
		     ? "cannot declare reference to `%#T'"
		     : "cannot declare pointer to `%#T'", type);
	      type = TREE_TYPE (type);
	    }
	  else if (VOID_TYPE_P (type)
		   && (ctype || TREE_CODE (declarator) == ADDR_EXPR))
	    error (ctype ? "cannot declare pointer to `%#T' member"
		     : "cannot declare reference to `%#T'", type);

	  /* Merge any constancy or volatility into the target type
	     for the pointer.  */

	  /* We now know that the TYPE_QUALS don't apply to the decl,
	     but to the target of the pointer.  */
	  type_quals = TYPE_UNQUALIFIED;

	  if (TREE_CODE (declarator) == ADDR_EXPR)
	    {
	      if (!VOID_TYPE_P (type))
		type = build_reference_type (type);
	    }
	  else if (TREE_CODE (type) == METHOD_TYPE)
	    type = build_ptrmemfunc_type (build_pointer_type (type));
	  else if (ctype)
	    type = build_ptrmem_type (ctype, type);
	  else
	    type = build_pointer_type (type);

	  /* Process a list of type modifier keywords (such as
	     const or volatile) that were given inside the `*' or `&'.  */

	  if (TREE_TYPE (declarator))
	    {
	      register tree typemodlist;
	      int erred = 0;
	      int constp = 0;
	      int volatilep = 0;
	      int restrictp = 0;
	      
	      for (typemodlist = TREE_TYPE (declarator); typemodlist;
		   typemodlist = TREE_CHAIN (typemodlist))
		{
		  tree qualifier = TREE_VALUE (typemodlist);

		  if (qualifier == ridpointers[(int) RID_CONST])
		    {
		      constp++;
		      type_quals |= TYPE_QUAL_CONST;
		    }
		  else if (qualifier == ridpointers[(int) RID_VOLATILE])
		    {
		      volatilep++;
		      type_quals |= TYPE_QUAL_VOLATILE;
		    }
		  else if (qualifier == ridpointers[(int) RID_RESTRICT])
		    {
		      restrictp++;
		      type_quals |= TYPE_QUAL_RESTRICT;
		    }
		  else if (!erred)
		    {
		      erred = 1;
		      error ("invalid type modifier within pointer declarator");
		    }
		}
	      if (constp > 1)
		pedwarn ("duplicate `const'");
	      if (volatilep > 1)
		pedwarn ("duplicate `volatile'");
	      if (restrictp > 1)
		pedwarn ("duplicate `restrict'");
	      type = cp_build_qualified_type (type, type_quals);
	      type_quals = cp_type_quals (type);
	    }
	  declarator = TREE_OPERAND (declarator, 0);
	  ctype = NULL_TREE;
	  break;

	case SCOPE_REF:
	  {
	    /* We have converted type names to NULL_TREE if the
	       name was bogus, or to a _TYPE node, if not.

	       The variable CTYPE holds the type we will ultimately
	       resolve to.  The code here just needs to build
	       up appropriate member types.  */
	    tree sname = TREE_OPERAND (declarator, 1);
	    tree t;

	    /* Destructors can have their visibilities changed as well.  */
	    if (TREE_CODE (sname) == BIT_NOT_EXPR)
	      sname = TREE_OPERAND (sname, 0);

	    if (TREE_COMPLEXITY (declarator) == 0)
	      /* This needs to be here, in case we are called
		 multiple times.  */ ;
	    else if (TREE_COMPLEXITY (declarator) == -1)
	      /* Namespace member.  */
	      pop_decl_namespace ();
	    else if (friendp && (TREE_COMPLEXITY (declarator) < 2))
	      /* Don't fall out into global scope. Hides real bug? --eichin */ ;
	    else if (!TREE_OPERAND (declarator, 0)
		     || !IS_AGGR_TYPE_CODE
		          (TREE_CODE (TREE_OPERAND (declarator, 0))))
	      ;
	    else if (TREE_COMPLEXITY (declarator) == current_class_depth)
	      {
		/* Resolve any TYPENAME_TYPEs from the decl-specifier-seq
		   that refer to ctype.  They couldn't be resolved earlier
		   because we hadn't pushed into the class yet.
		   Example: resolve 'B<T>::type' in
		   'B<typename B<T>::type> B<T>::f () { }'.  */
		if (current_template_parms
		    && uses_template_parms (type)
		    && uses_template_parms (current_class_type))
		  {
		    tree args = current_template_args ();
		    type = tsubst (type, args, tf_error | tf_warning,
				   NULL_TREE);
		  }

		/* This pop_nested_class corresponds to the
                   push_nested_class used to push into class scope for
                   parsing the argument list of a function decl, in
                   qualified_id.  */
		pop_nested_class ();
		TREE_COMPLEXITY (declarator) = current_class_depth;
	      }
	    else
	      abort ();

	    if (TREE_OPERAND (declarator, 0) == NULL_TREE)
	      {
		/* We had a reference to a global decl, or
		   perhaps we were given a non-aggregate typedef,
		   in which case we cleared this out, and should just
		   keep going as though it wasn't there.  */
		declarator = sname;
		continue;
	      }
	    ctype = TREE_OPERAND (declarator, 0);

	    t = ctype;
	    while (t != NULL_TREE && CLASS_TYPE_P (t))
	      {
		/* You're supposed to have one `template <...>'
		   for every template class, but you don't need one
		   for a full specialization.  For example:

		     template <class T> struct S{};
		     template <> struct S<int> { void f(); };
		     void S<int>::f () {}

		   is correct; there shouldn't be a `template <>' for
		   the definition of `S<int>::f'.  */
		if (CLASSTYPE_TEMPLATE_INFO (t)
		    && (CLASSTYPE_TEMPLATE_INSTANTIATION (t)
			|| uses_template_parms (CLASSTYPE_TI_ARGS (t)))
	            && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (t)))
		  template_count += 1;

		t = TYPE_MAIN_DECL (t);
		t = DECL_CONTEXT (t);
	      }

	    if (sname == NULL_TREE)
	      goto done_scoping;

	    if (TREE_CODE (sname) == IDENTIFIER_NODE)
	      {
		/* This is the `standard' use of the scoping operator:
		   basetype :: member .  */

		if (ctype == current_class_type)
		  {
		    /* class A {
		         void A::f ();
		       };

		       Is this ill-formed?  */

		    if (pedantic)
		      pedwarn ("extra qualification `%T::' on member `%s' ignored",
				  ctype, name);
		  }
		else if (TREE_CODE (type) == FUNCTION_TYPE)
		  {
		    if (current_class_type == NULL_TREE || friendp)
		      type = build_cplus_method_type (ctype, TREE_TYPE (type),
						      TYPE_ARG_TYPES (type));
		    else
		      {
			error ("cannot declare member function `%T::%s' within `%T'",
				  ctype, name, current_class_type);
			return void_type_node;
		      }
		  }
		else if (RIDBIT_SETP (RID_TYPEDEF, specbits)
			 || COMPLETE_TYPE_P (complete_type (ctype)))
		  {
		    /* Have to move this code elsewhere in this function.
		       this code is used for i.e., typedef int A::M; M *pm;

		       It is?  How? jason 10/2/94 */

		    if (current_class_type)
		      {
			error ("cannot declare member `%T::%s' within `%T'",
				  ctype, name, current_class_type);
			return void_type_node;
		      }
		  }
		else
	          {
	            cxx_incomplete_type_error (NULL_TREE, ctype);
	            return error_mark_node;
		  }

		declarator = sname;
	      }
	    else if (TREE_CODE (sname) == SCOPE_REF)
	      abort ();
	    else
	      {
	      done_scoping:
		declarator = TREE_OPERAND (declarator, 1);
		if (declarator && TREE_CODE (declarator) == CALL_EXPR)
		  /* In this case, we will deal with it later.  */
		  ;
		else if (TREE_CODE (type) == FUNCTION_TYPE)
		  type = build_cplus_method_type (ctype, TREE_TYPE (type),
						  TYPE_ARG_TYPES (type));
	      }
	  }
	  break;

	case BIT_NOT_EXPR:
	  declarator = TREE_OPERAND (declarator, 0);
	  break;

	case BASELINK:
	  declarator = BASELINK_FUNCTIONS (declarator);
	  break;

	case RECORD_TYPE:
	case UNION_TYPE:
	case ENUMERAL_TYPE:
	  declarator = NULL_TREE;
	  break;

	case ERROR_MARK:
	  declarator = NULL_TREE;
	  break;

	default:
	  abort ();
	}
    }

  if (returned_attrs)
    {
      if (attrlist)
	*attrlist = chainon (returned_attrs, *attrlist);
      else
	attrlist = &returned_attrs;
    }

  /* Now TYPE has the actual type.  */

  /* Did array size calculations overflow?  */

  if (TREE_CODE (type) == ARRAY_TYPE
      && COMPLETE_TYPE_P (type)
      && TREE_OVERFLOW (TYPE_SIZE (type)))
    {
      error ("size of array `%s' is too large", name);
      /* If we proceed with the array type as it is, we'll eventually
	 crash in tree_low_cst().  */
      type = error_mark_node;
    }

  if ((decl_context == FIELD || decl_context == PARM)
      && !processing_template_decl 
      && variably_modified_type_p (type))
    {
      if (decl_context == FIELD)
	error ("data member may not have variably modified type `%T'", type);
      else
	error ("parameter may not have variably modified type `%T'", type);
      type = error_mark_node;
    }

  if (explicitp == 1 || (explicitp && friendp))
    {
      /* [dcl.fct.spec] The explicit specifier shall only be used in
         declarations of constructors within a class definition.  */
      error ("only declarations of constructors can be `explicit'");
      explicitp = 0;
    }

  if (RIDBIT_SETP (RID_MUTABLE, specbits))
    {
      if (current_class_name == NULL_TREE || decl_context == PARM || friendp)
        {
	  error ("non-member `%s' cannot be declared `mutable'", name);
          RIDBIT_RESET (RID_MUTABLE, specbits);
        }
      else if (decl_context == TYPENAME || RIDBIT_SETP (RID_TYPEDEF, specbits))
	{
	  error ("non-object member `%s' cannot be declared `mutable'", name);
	  RIDBIT_RESET (RID_MUTABLE, specbits);
	}
      else if (TREE_CODE (type) == FUNCTION_TYPE
               || TREE_CODE (type) == METHOD_TYPE)
        {
	  error ("function `%s' cannot be declared `mutable'", name);
	  RIDBIT_RESET (RID_MUTABLE, specbits);
        }
      else if (staticp)
	{
	  error ("static `%s' cannot be declared `mutable'", name);
	  RIDBIT_RESET (RID_MUTABLE, specbits);
	}
      else if (type_quals & TYPE_QUAL_CONST)
	{
	  error ("const `%s' cannot be declared `mutable'", name);
 	  RIDBIT_RESET (RID_MUTABLE, specbits);
	}
    }

  if (declarator == NULL_TREE
      || TREE_CODE (declarator) == IDENTIFIER_NODE
      || (TREE_CODE (declarator) == TEMPLATE_ID_EXPR
	  && (TREE_CODE (type) == FUNCTION_TYPE
	      || TREE_CODE (type) == METHOD_TYPE)))
    /* OK */;
  else if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR)
    {
      error ("template-id `%D' used as a declarator", declarator);
      declarator = dname;
    }
  else
    /* Unexpected declarator format.  */
    abort ();

  /* If this is declaring a typedef name, return a TYPE_DECL.  */

  if (RIDBIT_SETP (RID_TYPEDEF, specbits) && decl_context != TYPENAME)
    {
      tree decl;

      /* Note that the grammar rejects storage classes
	 in typenames, fields or parameters.  */
      if (current_lang_name == lang_name_java)
	TYPE_FOR_JAVA (type) = 1;

      if (decl_context == FIELD)
	{
	  if (declarator == constructor_name (current_class_type))
	    pedwarn ("ISO C++ forbids nested type `%D' with same name as enclosing class",
			declarator);
	  decl = build_lang_decl (TYPE_DECL, declarator, type);
	}
      else
	{
	  decl = build_decl (TYPE_DECL, declarator, type);
	  if (!current_function_decl)
	    DECL_CONTEXT (decl) = FROB_CONTEXT (current_namespace);
	}
      
      /* If the user declares "typedef struct {...} foo" then the
	 struct will have an anonymous name.  Fill that name in now.
	 Nothing can refer to it, so nothing needs know about the name
	 change.  */
      if (type != error_mark_node
	  && declarator
	  && TYPE_NAME (type)
	  && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
	  && TYPE_ANONYMOUS_P (type)
	  /* Don't do this if there are attributes.  */
	  && (!attrlist || !*attrlist)
	  && cp_type_quals (type) == TYPE_UNQUALIFIED)
	{
	  tree oldname = TYPE_NAME (type);
	  tree t;

	  /* Replace the anonymous name with the real name everywhere.  */
	  lookup_tag_reverse (type, declarator);
	  for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
	    if (TYPE_NAME (t) == oldname)
	      TYPE_NAME (t) = decl;

	  if (TYPE_LANG_SPECIFIC (type))
	    TYPE_WAS_ANONYMOUS (type) = 1;

	  /* If this is a typedef within a template class, the nested
	     type is a (non-primary) template.  The name for the
	     template needs updating as well.  */
	  if (TYPE_LANG_SPECIFIC (type) && CLASSTYPE_TEMPLATE_INFO (type))
	    DECL_NAME (CLASSTYPE_TI_TEMPLATE (type))
	      = TYPE_IDENTIFIER (type);

	  /* FIXME remangle member functions; member functions of a
	     type with external linkage have external linkage.  */
	}

      if (TREE_CODE (type) == OFFSET_TYPE || TREE_CODE (type) == METHOD_TYPE)
	{
	  cp_error_at ("typedef name may not be class-qualified", decl);
	  return NULL_TREE;
	}
      else if (quals)
	{
	  if (ctype == NULL_TREE)
	    {
	      if (TREE_CODE (type) != METHOD_TYPE)
		cp_error_at ("invalid type qualifier for non-member function type", decl);
	      else
		ctype = TYPE_METHOD_BASETYPE (type);
	    }
	  if (ctype != NULL_TREE)
	    grok_method_quals (ctype, decl, quals);
	}

      if (RIDBIT_SETP (RID_SIGNED, specbits)
	  || (typedef_decl && C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl)))
	C_TYPEDEF_EXPLICITLY_SIGNED (decl) = 1;

      bad_specifiers (decl, "type", virtualp, quals != NULL_TREE,
		      inlinep, friendp, raises != NULL_TREE);

      return decl;
    }

  /* Detect the case of an array type of unspecified size
     which came, as such, direct from a typedef name.
     We must copy the type, so that the array's domain can be
     individually set by the object's initializer.  */

  if (type && typedef_type
      && TREE_CODE (type) == ARRAY_TYPE && !TYPE_DOMAIN (type)
      && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (typedef_type))
    type = build_cplus_array_type (TREE_TYPE (type), NULL_TREE);

  /* Detect where we're using a typedef of function type to declare a
     function. last_function_parms will not be set, so we must create
     it now.  */
  
  if (type == typedef_type && TREE_CODE (type) == FUNCTION_TYPE)
    {
      tree decls = NULL_TREE;
      tree args;

      for (args = TYPE_ARG_TYPES (type); args; args = TREE_CHAIN (args))
	{
	  tree decl = cp_build_parm_decl (NULL_TREE, TREE_VALUE (args));

	  TREE_CHAIN (decl) = decls;
	  decls = decl;
	}
      
      last_function_parms = nreverse (decls);
    }

  /* If this is a type name (such as, in a cast or sizeof),
     compute the type and return it now.  */

  if (decl_context == TYPENAME)
    {
      /* Note that the grammar rejects storage classes
	 in typenames, fields or parameters.  */
      if (type_quals != TYPE_UNQUALIFIED)
	type_quals = TYPE_UNQUALIFIED;

      /* Special case: "friend class foo" looks like a TYPENAME context.  */
      if (friendp)
	{
	  if (type_quals != TYPE_UNQUALIFIED)
	    {
	      error ("type qualifiers specified for friend class declaration");
	      type_quals = TYPE_UNQUALIFIED;
	    }
	  if (inlinep)
	    {
	      error ("`inline' specified for friend class declaration");
	      inlinep = 0;
	    }

	  if (!current_aggr)
	    {
	      /* Don't allow friend declaration without a class-key.  */
	      if (TREE_CODE (type) == TEMPLATE_TYPE_PARM)
		pedwarn ("template parameters cannot be friends");
	      else if (TREE_CODE (type) == TYPENAME_TYPE)
	        pedwarn ("friend declaration requires class-key, "
			 "i.e. `friend class %T::%D'",
			 TYPE_CONTEXT (type), TYPENAME_TYPE_FULLNAME (type));
	      else
	        pedwarn ("friend declaration requires class-key, "
			 "i.e. `friend %#T'",
			 type);
	    }

	  /* Only try to do this stuff if we didn't already give up.  */
	  if (type != integer_type_node)
	    {
	      decl_type_access_control (TYPE_NAME (type));

	      /* A friendly class?  */
	      if (current_class_type)
		make_friend_class (current_class_type, TYPE_MAIN_VARIANT (type));
	      else
		error ("trying to make class `%T' a friend of global scope",
		          type);

	      type = void_type_node;
	    }
	}
      else if (quals)
	{
	  if (ctype == NULL_TREE)
	    {
	      if (TREE_CODE (type) != METHOD_TYPE)
	        error ("invalid qualifiers on non-member function type");
	      else
	        ctype = TYPE_METHOD_BASETYPE (type);
	    }
	  if (ctype)
	    {
	      tree dummy = build_decl (TYPE_DECL, declarator, type);
	      grok_method_quals (ctype, dummy, quals);
	      type = TREE_TYPE (dummy);
	    }
	}

      return type;
    }
  else if (declarator == NULL_TREE && decl_context != PARM
	   && decl_context != CATCHPARM
	   && TREE_CODE (type) != UNION_TYPE
	   && ! bitfield)
    {
      error ("abstract declarator `%T' used as declaration", type);
      declarator = make_anon_name ();
    }

  /* `void' at top level (not within pointer)
     is allowed only in typedefs or type names.
     We don't complain about parms either, but that is because
     a better error message can be made later.  */

  if (TREE_CODE (type) == VOID_TYPE && decl_context != PARM)
    {
      if (! declarator)
	error ("unnamed variable or field declared void");
      else if (TREE_CODE (declarator) == IDENTIFIER_NODE)
	{
	  if (IDENTIFIER_OPNAME_P (declarator))
	    abort ();
	  else
	    error ("variable or field `%s' declared void", name);
	}
      else
	error ("variable or field declared void");
      type = integer_type_node;
    }

  /* Now create the decl, which may be a VAR_DECL, a PARM_DECL
     or a FUNCTION_DECL, depending on DECL_CONTEXT and TYPE.  */

  if (decl_context == PARM || decl_context == CATCHPARM)
    {
      if (ctype || in_namespace)
	error ("cannot use `::' in parameter declaration");

      /* A parameter declared as an array of T is really a pointer to T.
	 One declared as a function is really a pointer to a function.
	 One declared as a member is really a pointer to member.  */

      if (TREE_CODE (type) == ARRAY_TYPE)
	{
	  /* Transfer const-ness of array into that of type pointed to.  */
	  type = build_pointer_type (TREE_TYPE (type));
	  type_quals = TYPE_UNQUALIFIED;
	}
      else if (TREE_CODE (type) == FUNCTION_TYPE)
	type = build_pointer_type (type);
      else if (TREE_CODE (type) == OFFSET_TYPE)
	type = build_pointer_type (type);
    }

  {
    register tree decl;

    if (decl_context == PARM)
      {
	decl = cp_build_parm_decl (declarator, type);

	bad_specifiers (decl, "parameter", virtualp, quals != NULL_TREE,
			inlinep, friendp, raises != NULL_TREE);
      }
    else if (decl_context == FIELD)
      {
	if (type == error_mark_node)
	  {
	    /* Happens when declaring arrays of sizes which
	       are error_mark_node, for example.  */
	    decl = NULL_TREE;
	  }
	else if (in_namespace && !friendp)
	  {
	    /* Something like struct S { int N::j; };  */
	    error ("invalid use of `::'");
	    decl = NULL_TREE;
	  }
	else if (TREE_CODE (type) == FUNCTION_TYPE)
	  {
	    int publicp = 0;
	    tree function_context;

	    /* We catch the others as conflicts with the builtin
	       typedefs.  */
	    if (friendp && declarator == ridpointers[(int) RID_SIGNED])
	      {
		error ("function `%D' cannot be declared friend",
			  declarator);
		friendp = 0;
	      }

	    if (friendp == 0)
	      {
		if (ctype == NULL_TREE)
		  ctype = current_class_type;

		if (ctype == NULL_TREE)
		  {
		    error ("can't make `%D' into a method -- not in a class",
			      declarator);
		    return void_type_node;
		  }

		/* ``A union may [ ... ] not [ have ] virtual functions.''
		   ARM 9.5 */
		if (virtualp && TREE_CODE (ctype) == UNION_TYPE)
		  {
		    error ("function `%D' declared virtual inside a union",
			      declarator);
		    return void_type_node;
		  }

		if (declarator == ansi_opname (NEW_EXPR)
		    || declarator == ansi_opname (VEC_NEW_EXPR)
		    || declarator == ansi_opname (DELETE_EXPR)
		    || declarator == ansi_opname (VEC_DELETE_EXPR))
		  {
		    if (virtualp)
		      {
			error ("`%D' cannot be declared virtual, since it is always static",
				  declarator);
			virtualp = 0;
		      }
		  }
		else if (staticp < 2)
		  type = build_cplus_method_type (ctype, TREE_TYPE (type),
						  TYPE_ARG_TYPES (type));
	      }

	    /* Tell grokfndecl if it needs to set TREE_PUBLIC on the node.  */
	    function_context = (ctype != NULL_TREE) ?
	      decl_function_context (TYPE_MAIN_DECL (ctype)) : NULL_TREE;
	    publicp = (! friendp || ! staticp)
	      && function_context == NULL_TREE;
	    decl = grokfndecl (ctype, type,
			       TREE_CODE (declarator) != TEMPLATE_ID_EXPR
			       ? declarator : dname,
			       declarator,
			       virtualp, flags, quals, raises,
			       friendp ? -1 : 0, friendp, publicp, inlinep,
			       funcdef_flag, template_count, in_namespace);
	    if (decl == NULL_TREE)
	      return decl;
#if 0
	    /* This clobbers the attrs stored in `decl' from `attrlist'.  */
	    /* The decl and setting of decl_attr is also turned off.  */
	    decl = build_decl_attribute_variant (decl, decl_attr);
#endif

	    /* [class.conv.ctor]

	       A constructor declared without the function-specifier
	       explicit that can be called with a single parameter
	       specifies a conversion from the type of its first
	       parameter to the type of its class.  Such a constructor
	       is called a converting constructor.  */
	    if (explicitp == 2)
	      DECL_NONCONVERTING_P (decl) = 1;
	    else if (DECL_CONSTRUCTOR_P (decl))
	      {
		/* The constructor can be called with exactly one
		   parameter if there is at least one parameter, and
		   any subsequent parameters have default arguments.
		   Ignore any compiler-added parms.  */
		tree arg_types = FUNCTION_FIRST_USER_PARMTYPE (decl);

		if (arg_types == void_list_node
		    || (arg_types
			&& TREE_CHAIN (arg_types)
			&& TREE_CHAIN (arg_types) != void_list_node
			&& !TREE_PURPOSE (TREE_CHAIN (arg_types))))
		  DECL_NONCONVERTING_P (decl) = 1;
	      }
	  }
	else if (TREE_CODE (type) == METHOD_TYPE)
	  {
	    /* We only get here for friend declarations of
	       members of other classes.  */
	    /* All method decls are public, so tell grokfndecl to set
	       TREE_PUBLIC, also.  */
	    decl = grokfndecl (ctype, type, declarator, declarator,
			       virtualp, flags, quals, raises,
			       friendp ? -1 : 0, friendp, 1, 0, funcdef_flag,
			       template_count, in_namespace);
	    if (decl == NULL_TREE)
	      return NULL_TREE;
	  }
	else if (!staticp && ! processing_template_decl
		 && !COMPLETE_TYPE_P (complete_type (type))
		 && (TREE_CODE (type) != ARRAY_TYPE || initialized == 0))
	  {
	    if (declarator)
	      error ("field `%D' has incomplete type", declarator);
	    else
	      error ("name `%T' has incomplete type", type);

	    /* If we're instantiating a template, tell them which
	       instantiation made the field's type be incomplete.  */
	    if (current_class_type
		&& TYPE_NAME (current_class_type)
		&& IDENTIFIER_TEMPLATE (TYPE_IDENTIFIER (current_class_type))
		&& declspecs && TREE_VALUE (declspecs)
		&& TREE_TYPE (TREE_VALUE (declspecs)) == type)
	      error ("  in instantiation of template `%T'",
			current_class_type);

	    type = error_mark_node;
	    decl = NULL_TREE;
	  }
	else
	  {
	    if (friendp)
	      {
		error ("`%s' is neither function nor member function; cannot be declared friend",
		       IDENTIFIER_POINTER (declarator));
		friendp = 0;
	      }
	    decl = NULL_TREE;
	  }

	if (friendp)
	  {
	    /* Friends are treated specially.  */
	    if (ctype == current_class_type)
	      warning ("member functions are implicitly friends of their class");
 	    else
 	      {
 		tree t = NULL_TREE;
 		if (decl && DECL_NAME (decl))
 		  {
 		    if (template_class_depth (current_class_type) == 0)
 		      {
 			decl
 			  = check_explicit_specialization
 			  (declarator, decl,
 			   template_count, 2 * (funcdef_flag != 0) + 4);
 			if (decl == error_mark_node)
 			  return error_mark_node;
 		      }
		    
 		    t = do_friend (ctype, declarator, decl,
 				   last_function_parms, *attrlist,
				   flags, quals, funcdef_flag);
 		  }
 		if (t && funcdef_flag)
 		  return t;
  
 		return void_type_node;
 	      }
	  }

	/* Structure field.  It may not be a function, except for C++ */

	if (decl == NULL_TREE)
	  {
	    if (initialized)
	      {
		if (!staticp)
		  {
		    /* An attempt is being made to initialize a non-static
		       member.  But, from [class.mem]:

		       4 A member-declarator can contain a
		       constant-initializer only if it declares a static
		       member (_class.static_) of integral or enumeration
		       type, see _class.static.data_.

		       This used to be relatively common practice, but
		       the rest of the compiler does not correctly
		       handle the initialization unless the member is
		       static so we make it static below.  */
		    pedwarn ("ISO C++ forbids initialization of member `%D'",
				declarator);
		    pedwarn ("making `%D' static", declarator);
		    staticp = 1;
		  }

		if (uses_template_parms (type))
		  /* We'll check at instantiation time.  */
		  ;
		else if (check_static_variable_definition (declarator,
							   type))
		  /* If we just return the declaration, crashes
		     will sometimes occur.  We therefore return
		     void_type_node, as if this was a friend
		     declaration, to cause callers to completely
		     ignore this declaration.  */
		  return void_type_node;
	      }

	    /* 9.2p13 [class.mem] */
	    /* APPLE LOCAL Objective-C++ */
	    if (current_class_type && declarator == constructor_name (current_class_type)
		/* The standard does not allow non-static data members
		   here either, but we agreed at the 10/99 meeting
		   to change that in TC 1 so that they are allowed in
		   classes with no user-defined constructors.  */
		&& staticp)
	      pedwarn ("ISO C++ forbids static data member `%D' with same name as enclosing class",
			  declarator);

	    if (staticp)
	      {
		/* C++ allows static class members.  All other work
		   for this is done by grokfield.  */
		decl = build_lang_decl (VAR_DECL, declarator, type);
		TREE_STATIC (decl) = 1;
		/* In class context, 'static' means public access.  */
		TREE_PUBLIC (decl) = DECL_EXTERNAL (decl) = 1;
	      }
	    else
	      {
		decl = build_decl (FIELD_DECL, declarator, type);
		DECL_NONADDRESSABLE_P (decl) = bitfield;
		if (RIDBIT_SETP (RID_MUTABLE, specbits))
		  {
		    DECL_MUTABLE_P (decl) = 1;
		    RIDBIT_RESET (RID_MUTABLE, specbits);
		  }
	      }

	    bad_specifiers (decl, "field", virtualp, quals != NULL_TREE,
			    inlinep, friendp, raises != NULL_TREE);
	  }
      }
    else if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
      {
	tree original_name;
	int publicp = 0;

	if (! declarator)
	  return NULL_TREE;

	if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR)
	  original_name = dname;
	else
	  original_name = declarator;

	if (RIDBIT_SETP (RID_AUTO, specbits))
	  error ("storage class `auto' invalid for function `%s'", name);
	else if (RIDBIT_SETP (RID_REGISTER, specbits))
	  error ("storage class `register' invalid for function `%s'", name);
	else if (RIDBIT_SETP (RID_THREAD, specbits))
	  error ("storage class `__thread' invalid for function `%s'", name);

	/* Function declaration not at top level.
	   Storage classes other than `extern' are not allowed
	   and `extern' makes no difference.  */
	if (! toplevel_bindings_p ()
	    && (RIDBIT_SETP (RID_STATIC, specbits)
		|| RIDBIT_SETP (RID_INLINE, specbits))
	    && pedantic)
	  {
	    if (RIDBIT_SETP (RID_STATIC, specbits))
	      pedwarn ("storage class `static' invalid for function `%s' declared out of global scope", name);
	    else
	      pedwarn ("storage class `inline' invalid for function `%s' declared out of global scope", name);
	  }

	if (ctype == NULL_TREE)
	  {
	    if (virtualp)
	      {
		error ("virtual non-class function `%s'", name);
		virtualp = 0;
	      }
	  }
	else if (TREE_CODE (type) == FUNCTION_TYPE && staticp < 2)
	  type = build_cplus_method_type (ctype, TREE_TYPE (type),
					  TYPE_ARG_TYPES (type));

	/* Record presence of `static'.  */
	publicp = (ctype != NULL_TREE
		   || RIDBIT_SETP (RID_EXTERN, specbits)
		   || !RIDBIT_SETP (RID_STATIC, specbits));

	decl = grokfndecl (ctype, type, original_name, declarator,
			   virtualp, flags, quals, raises,
			   1, friendp,
			   publicp, inlinep, funcdef_flag,
			   template_count, in_namespace);
	if (decl == NULL_TREE)
	  return NULL_TREE;

	if (staticp == 1)
	  {
	    int invalid_static = 0;

	    /* Don't allow a static member function in a class, and forbid
	       declaring main to be static.  */
	    if (TREE_CODE (type) == METHOD_TYPE)
	      {
		pedwarn ("cannot declare member function `%D' to have static linkage", decl);
		invalid_static = 1;
	      }
	    else if (current_function_decl)
	      {
		/* FIXME need arm citation */
		error ("cannot declare static function inside another function");
		invalid_static = 1;
	      }

	    if (invalid_static)
	      {
		staticp = 0;
		RIDBIT_RESET (RID_STATIC, specbits);
	      }
	  }
      }
    else
      {
	/* It's a variable.  */

	/* An uninitialized decl with `extern' is a reference.  */
	decl = grokvardecl (type, declarator, &specbits,
			    initialized,
			    (type_quals & TYPE_QUAL_CONST) != 0,
			    ctype ? ctype : in_namespace);
	bad_specifiers (decl, "variable", virtualp, quals != NULL_TREE,
			inlinep, friendp, raises != NULL_TREE);

	if (ctype)
	  {
	    DECL_CONTEXT (decl) = ctype;
	    if (staticp == 1)
	      {
                pedwarn ("`static' may not be used when defining (as opposed to declaring) a static data member");
	        staticp = 0;
		RIDBIT_RESET (RID_STATIC, specbits);
	      }
	    if (RIDBIT_SETP (RID_REGISTER, specbits) && TREE_STATIC (decl))
	      {
		error ("static member `%D' declared `register'", decl);
		RIDBIT_RESET (RID_REGISTER, specbits);
	      }
	    if (RIDBIT_SETP (RID_EXTERN, specbits) && pedantic)
	      {
	        pedwarn ("cannot explicitly declare member `%#D' to have extern linkage",
			    decl);
		RIDBIT_RESET (RID_EXTERN, specbits);
	      }
	  }
      }

    my_friendly_assert (!RIDBIT_SETP (RID_MUTABLE, specbits), 19990927);

    /* Record `register' declaration for warnings on &
       and in case doing stupid register allocation.  */

    if (RIDBIT_SETP (RID_REGISTER, specbits))
      DECL_REGISTER (decl) = 1;

    if (RIDBIT_SETP (RID_EXTERN, specbits))
      DECL_THIS_EXTERN (decl) = 1;

    if (RIDBIT_SETP (RID_STATIC, specbits))
      DECL_THIS_STATIC (decl) = 1;

    /* APPLE LOCAL begin CW asm blocks */
    if (cw_asm_specbit)
      {
	/* Record that this is a decl of a CW-style asm function.  */
	if (flag_cw_asm_blocks)
	  {
	    DECL_CW_ASM_FUNCTION (decl) = 1;
	    DECL_CW_ASM_NORETURN (decl) = 0;
	    DECL_CW_ASM_FRAME_SIZE (decl) = -2;
	  }
	else
	  error ("asm functions not enabled, use `-fasm-blocks'");
      }
    /* APPLE LOCAL end CW asm blocks */

    /* Record constancy and volatility.  There's no need to do this
       when processing a template; we'll do this for the instantiated
       declaration based on the type of DECL.  */
    if (!processing_template_decl)
      c_apply_type_quals_to_decl (type_quals, decl);

    return decl;
  }
}

/* Tell if a parmlist/exprlist looks like an exprlist or a parmlist.
   An empty exprlist is a parmlist.  An exprlist which
   contains only identifiers at the global level
   is a parmlist.  Otherwise, it is an exprlist.  */

int
parmlist_is_exprlist (exprs)
     tree exprs;
{
  if (exprs == NULL_TREE || TREE_PARMLIST (exprs))
    return 0;

  if (toplevel_bindings_p ())
    {
      /* At the global level, if these are all identifiers,
	 then it is a parmlist.  */
      while (exprs)
	{
	  if (TREE_CODE (TREE_VALUE (exprs)) != IDENTIFIER_NODE)
	    return 1;
	  exprs = TREE_CHAIN (exprs);
	}
      return 0;
    }
  return 1;
}

/* Subroutine of start_function.  Ensure that each of the parameter
   types (as listed in PARMS) is complete, as is required for a
   function definition.  */

static void
require_complete_types_for_parms (parms)
     tree parms;
{
  for (; parms; parms = TREE_CHAIN (parms))
    {
      if (VOID_TYPE_P (TREE_TYPE (parms)))
        /* grokparms will have already issued an error */
        TREE_TYPE (parms) = error_mark_node;
      else if (complete_type_or_else (TREE_TYPE (parms), parms))
	{
	  layout_decl (parms, 0);
	  DECL_ARG_TYPE (parms) = type_passed_as (TREE_TYPE (parms));
	}
      else
        TREE_TYPE (parms) = error_mark_node;
    }
}

/* Returns nonzero if T is a local variable.  */

int
local_variable_p (t)
     tree t;
{
  if ((TREE_CODE (t) == VAR_DECL
       /* A VAR_DECL with a context that is a _TYPE is a static data
	  member.  */
       && !TYPE_P (CP_DECL_CONTEXT (t))
       /* Any other non-local variable must be at namespace scope.  */
       && !DECL_NAMESPACE_SCOPE_P (t))
      || (TREE_CODE (t) == PARM_DECL))
    return 1;

  return 0;
}

/* Returns nonzero if T is an automatic local variable or a label.
   (These are the declarations that need to be remapped when the code
   containing them is duplicated.)  */

int
nonstatic_local_decl_p (t)
     tree t;
{
  return ((local_variable_p (t) && !TREE_STATIC (t))
	  || TREE_CODE (t) == LABEL_DECL
	  || TREE_CODE (t) == RESULT_DECL);
}

/* Like local_variable_p, but suitable for use as a tree-walking
   function.  */

static tree
local_variable_p_walkfn (tp, walk_subtrees, data)
     tree *tp;
     int *walk_subtrees ATTRIBUTE_UNUSED;
     void *data ATTRIBUTE_UNUSED;
{
  return ((local_variable_p (*tp) && !DECL_ARTIFICIAL (*tp))
	  ? *tp : NULL_TREE);
}

/* Check that ARG, which is a default-argument expression for a
   parameter DECL, is valid.  Returns ARG, or ERROR_MARK_NODE, if
   something goes wrong.  DECL may also be a _TYPE node, rather than a
   DECL, if there is no DECL available.  */

tree
check_default_argument (decl, arg)
     tree decl;
     tree arg;
{
  tree var;
  tree decl_type;

  if (TREE_CODE (arg) == DEFAULT_ARG)
    /* We get a DEFAULT_ARG when looking at an in-class declaration
       with a default argument.  Ignore the argument for now; we'll
       deal with it after the class is complete.  */
    return arg;

  if (processing_template_decl || uses_template_parms (arg))
    /* We don't do anything checking until instantiation-time.  Note
       that there may be uninstantiated arguments even for an
       instantiated function, since default arguments are not
       instantiated until they are needed.  */
    return arg;

  if (TYPE_P (decl))
    {
      decl_type = decl;
      decl = NULL_TREE;
    }
  else
    decl_type = TREE_TYPE (decl);

  if (arg == error_mark_node
      || decl == error_mark_node
      || TREE_TYPE (arg) == error_mark_node
      || decl_type == error_mark_node)
    /* Something already went wrong.  There's no need to check
       further.  */
    return error_mark_node;

  /* [dcl.fct.default]

     A default argument expression is implicitly converted to the
     parameter type.  */
  if (!TREE_TYPE (arg)
      || !can_convert_arg (decl_type, TREE_TYPE (arg), arg))
    {
      if (decl)
	error ("default argument for `%#D' has type `%T'",
		  decl, TREE_TYPE (arg));
      else
	error ("default argument for parameter of type `%T' has type `%T'",
		  decl_type, TREE_TYPE (arg));

      return error_mark_node;
    }

  /* [dcl.fct.default]

     Local variables shall not be used in default argument
     expressions.

     The keyword `this' shall not be used in a default argument of a
     member function.  */
  var = walk_tree_without_duplicates (&arg, local_variable_p_walkfn,
				      NULL);
  if (var)
    {
      error ("default argument `%E' uses local variable `%D'",
		arg, var);
      return error_mark_node;
    }

  /* All is well.  */
  return arg;
}

/* Decode the list of parameter types for a function type.
   Given the list of things declared inside the parens,
   return a list of types.

   We determine whether ellipsis parms are used by PARMLIST_ELLIPSIS_P
   flag. If unset, we append void_list_node. A parmlist declared
   as `(void)' is accepted as the empty parmlist.

   Also set last_function_parms to the chain of PARM_DECLs.  */

/* APPLE LOCAL Objective-C++ */
tree
grokparms (first_parm)
     tree first_parm;
{
  tree result = NULL_TREE;
  tree decls = NULL_TREE;
  int ellipsis = !first_parm || PARMLIST_ELLIPSIS_P (first_parm);
  tree parm, chain;
  int any_error = 0;

  my_friendly_assert (!first_parm || TREE_PARMLIST (first_parm), 20001115);

  for (parm = first_parm; parm != NULL_TREE; parm = chain)
    {
      tree type = NULL_TREE;
      tree decl = TREE_VALUE (parm);
      tree init = TREE_PURPOSE (parm);
      tree specs, attrs;

      chain = TREE_CHAIN (parm);
      /* @@ weak defense against parse errors.  */
      if (TREE_CODE (decl) != VOID_TYPE
	  && TREE_CODE (decl) != TREE_LIST)
	{
	  /* Give various messages as the need arises.  */
	  if (TREE_CODE (decl) == STRING_CST)
	    error ("invalid string constant `%E'", decl);
	  else if (TREE_CODE (decl) == INTEGER_CST)
	    error ("invalid integer constant in parameter list, did you forget to give parameter name?");
	  continue;
	}

      if (parm == void_list_node)
        break;

      split_specs_attrs (TREE_PURPOSE (decl), &specs, &attrs);
      decl = grokdeclarator (TREE_VALUE (decl), specs,
			     PARM, init != NULL_TREE, &attrs);
      if (! decl || TREE_TYPE (decl) == error_mark_node)
        continue;

      if (attrs)
	cplus_decl_attributes (&decl, attrs, 0);

      type = TREE_TYPE (decl);
      if (VOID_TYPE_P (type))
        {
          if (same_type_p (type, void_type_node)
              && !DECL_NAME (decl) && !result && !chain && !ellipsis)
            /* this is a parmlist of `(void)', which is ok.  */
            break;
          cxx_incomplete_type_error (decl, type);
	  /* It's not a good idea to actually create parameters of
	     type `void'; other parts of the compiler assume that a
	     void type terminates the parameter list.  */
	  type = error_mark_node;
	  TREE_TYPE (decl) = error_mark_node;
        }

      if (type != error_mark_node)
	{
	  /* Top-level qualifiers on the parameters are
	     ignored for function types.  */
	  type = TYPE_MAIN_VARIANT (type);
	  if (TREE_CODE (type) == METHOD_TYPE)
	    {
	      error ("parameter `%D' invalidly declared method type", decl);
	      type = build_pointer_type (type);
	      TREE_TYPE (decl) = type;
	    }
	  else if (TREE_CODE (type) == OFFSET_TYPE)
	    {
	      error ("parameter `%D' invalidly declared offset type", decl);
	      type = build_pointer_type (type);
	      TREE_TYPE (decl) = type;
	    }
	  else if (abstract_virtuals_error (decl, type))
	    any_error = 1;  /* Seems like a good idea.  */
	  else if (POINTER_TYPE_P (type))
	    {
	      /* [dcl.fct]/6, parameter types cannot contain pointers
		 (references) to arrays of unknown bound.  */
	      tree t = TREE_TYPE (type);
	      int ptr = TYPE_PTR_P (type);

              while (1)
                {
                  if (TYPE_PTR_P (t))
                    ptr = 1;
                  else if (TREE_CODE (t) != ARRAY_TYPE)
                    break;
                  else if (!TYPE_DOMAIN (t))
	            break;
	          t = TREE_TYPE (t);
	        }
	      if (TREE_CODE (t) == ARRAY_TYPE)
		error ("parameter `%D' includes %s to array of unknown bound `%T'",
			  decl, ptr ? "pointer" : "reference", t);
	    }

	  if (!any_error && init)
	    init = check_default_argument (decl, init);
	  else
	    init = NULL_TREE;
	}

      TREE_CHAIN (decl) = decls;
      decls = decl;
      result = tree_cons (init, type, result);
    }
  decls = nreverse (decls);
  result = nreverse (result);
  if (!ellipsis)
    result = chainon (result, void_list_node);
  last_function_parms = decls;

  return result;
}


/* D is a constructor or overloaded `operator='.

   Let T be the class in which D is declared. Then, this function
   returns:

   -1 if D's is an ill-formed constructor or copy assignment operator
      whose first parameter is of type `T'.
   0  if D is not a copy constructor or copy assignment
      operator.
   1  if D is a copy constructor or copy assignment operator whose
      first parameter is a reference to const qualified T.
   2  if D is a copy constructor or copy assignment operator whose
      first parameter is a reference to non-const qualified T.

   This function can be used as a predicate. Positive values indicate
   a copy constructor and nonzero values indicate a copy assignment
   operator.  */

int
copy_fn_p (d)
     tree d;
{
  tree args;
  tree arg_type;
  int result = 1;
  
  my_friendly_assert (DECL_FUNCTION_MEMBER_P (d), 20011208);

  if (DECL_TEMPLATE_INFO (d) && is_member_template (DECL_TI_TEMPLATE (d)))
    /* Instantiations of template member functions are never copy
       functions.  Note that member functions of templated classes are
       represented as template functions internally, and we must
       accept those as copy functions.  */
    return 0;
    
  args = FUNCTION_FIRST_USER_PARMTYPE (d);
  if (!args)
    return 0;

  arg_type = TREE_VALUE (args);

  if (TYPE_MAIN_VARIANT (arg_type) == DECL_CONTEXT (d))
    {
      /* Pass by value copy assignment operator.  */
      result = -1;
    }
  else if (TREE_CODE (arg_type) == REFERENCE_TYPE
	   && TYPE_MAIN_VARIANT (TREE_TYPE (arg_type)) == DECL_CONTEXT (d))
    {
      if (CP_TYPE_CONST_P (TREE_TYPE (arg_type)))
	result = 2;
    }
  else
    return 0;
  
  args = TREE_CHAIN (args);

  if (args && args != void_list_node && !TREE_PURPOSE (args))
    /* There are more non-optional args.  */
    return 0;

  return result;
}

/* Remember any special properties of member function DECL.  */

void grok_special_member_properties (decl)
     tree decl;
{
  if (!DECL_NONSTATIC_MEMBER_FUNCTION_P(decl))
    ; /* Not special.  */
  else if (DECL_CONSTRUCTOR_P (decl))
    {
      int ctor = copy_fn_p (decl);
      
      if (ctor > 0)
	{
	  /* [class.copy]
	      
     	     A non-template constructor for class X is a copy
     	     constructor if its first parameter is of type X&, const
     	     X&, volatile X& or const volatile X&, and either there
     	     are no other parameters or else all other parameters have
     	     default arguments.  */
	  TYPE_HAS_INIT_REF (DECL_CONTEXT (decl)) = 1;
	  if (ctor > 1)
	    TYPE_HAS_CONST_INIT_REF (DECL_CONTEXT (decl)) = 1;
	}
      else if (sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (decl)))
	TYPE_HAS_DEFAULT_CONSTRUCTOR (DECL_CONTEXT (decl)) = 1;
    }
  else if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
    {
      /* [class.copy]
	  
     	 A non-template assignment operator for class X is a copy
     	 assignment operator if its parameter is of type X, X&, const
     	 X&, volatile X& or const volatile X&.  */
      
      int assop = copy_fn_p (decl);
      
      if (assop)
	{
	  TYPE_HAS_ASSIGN_REF (DECL_CONTEXT (decl)) = 1;
	  if (assop != 1)
	    TYPE_HAS_CONST_ASSIGN_REF (DECL_CONTEXT (decl)) = 1;
	  if (DECL_PURE_VIRTUAL_P (decl))
	    TYPE_HAS_ABSTRACT_ASSIGN_REF (DECL_CONTEXT (decl)) = 1;
	}
    }
}

/* Check a constructor DECL has the correct form.  Complains
   if the class has a constructor of the form X(X).  */

int
grok_ctor_properties (ctype, decl)
     tree ctype, decl;
{
  int ctor_parm = copy_fn_p (decl);

  if (ctor_parm < 0)
    {
      /* [class.copy]
	  
     	 A declaration of a constructor for a class X is ill-formed if
     	 its first parameter is of type (optionally cv-qualified) X
     	 and either there are no other parameters or else all other
     	 parameters have default arguments.
	  
     	 We *don't* complain about member template instantiations that
     	 have this form, though; they can occur as we try to decide
     	 what constructor to use during overload resolution.  Since
     	 overload resolution will never prefer such a constructor to
     	 the non-template copy constructor (which is either explicitly
     	 or implicitly defined), there's no need to worry about their
     	 existence.  Theoretically, they should never even be
     	 instantiated, but that's hard to forestall.  */
      error ("invalid constructor; you probably meant `%T (const %T&)'",
		ctype, ctype);
      SET_IDENTIFIER_ERROR_LOCUS (DECL_NAME (decl), ctype);
      return 0;
    }
  
  return 1;
}

/* An operator with this code is unary, but can also be binary.  */

static int
ambi_op_p (code)
     enum tree_code code;
{
  return (code == INDIRECT_REF
	  || code == ADDR_EXPR
	  || code == CONVERT_EXPR
	  || code == NEGATE_EXPR
	  || code == PREINCREMENT_EXPR
	  || code == PREDECREMENT_EXPR);
}

/* An operator with this name can only be unary.  */

static int
unary_op_p (code)
     enum tree_code code;
{
  return (code == TRUTH_NOT_EXPR
	  || code == BIT_NOT_EXPR
	  || code == COMPONENT_REF
	  || code == TYPE_EXPR);
}

/* Do a little sanity-checking on how they declared their operator.  */

void
grok_op_properties (decl, friendp)
     tree decl;
     int friendp;
{
  tree argtypes = TYPE_ARG_TYPES (TREE_TYPE (decl));
  tree argtype;
  int methodp = (TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE);
  tree name = DECL_NAME (decl);
  enum tree_code operator_code;
  int arity;

  /* Count the number of arguments.  */
  for (argtype = argtypes, arity = 0;
       argtype && argtype != void_list_node;
       argtype = TREE_CHAIN (argtype))
    ++arity;

  if (current_class_type == NULL_TREE)
    friendp = 1;

  if (DECL_CONV_FN_P (decl))
    operator_code = TYPE_EXPR;
  else
    do
      {
#define DEF_OPERATOR(NAME, CODE, MANGLING, ARITY, ASSN_P)	\
	if (ansi_opname (CODE) == name)				\
	  {							\
	    operator_code = (CODE);				\
	    break;						\
	  }							\
	else if (ansi_assopname (CODE) == name)			\
	  {							\
	    operator_code = (CODE);				\
	    DECL_ASSIGNMENT_OPERATOR_P (decl) = 1;		\
	    break;						\
	  }

#include "operators.def"
#undef DEF_OPERATOR

	abort ();
      }
    while (0);
  my_friendly_assert (operator_code != LAST_CPLUS_TREE_CODE, 20000526);
  SET_OVERLOADED_OPERATOR_CODE (decl, operator_code);

  if (! friendp)
    {
      switch (operator_code)
	{
	case CALL_EXPR:
	  TYPE_OVERLOADS_CALL_EXPR (current_class_type) = 1;
	  break;

	case ARRAY_REF:
	  TYPE_OVERLOADS_ARRAY_REF (current_class_type) = 1;
	  break;

	case COMPONENT_REF:
	case MEMBER_REF:
	  TYPE_OVERLOADS_ARROW (current_class_type) = 1;
	  break;

	case NEW_EXPR:
	  TYPE_HAS_NEW_OPERATOR (current_class_type) = 1;
	  break;

	case DELETE_EXPR:
	  TYPE_GETS_DELETE (current_class_type) |= 1;
	  break;

	case VEC_NEW_EXPR:
	  TYPE_HAS_ARRAY_NEW_OPERATOR (current_class_type) = 1;
	  break;

	case VEC_DELETE_EXPR:
	  TYPE_GETS_DELETE (current_class_type) |= 2;
	  break;

	default:
	  break;
	}
    }

  if (operator_code == NEW_EXPR || operator_code == VEC_NEW_EXPR)
    {
      /* When the compiler encounters the definition of A::operator new, it
	 doesn't look at the class declaration to find out if it's static.  */
      if (methodp)
	revert_static_member_fn (decl);

      TREE_TYPE (decl) = coerce_new_type (TREE_TYPE (decl));
    }
  else if (operator_code == DELETE_EXPR || operator_code == VEC_DELETE_EXPR)
    {
      if (methodp)
	revert_static_member_fn (decl);

      TREE_TYPE (decl) = coerce_delete_type (TREE_TYPE (decl));
    }
  else
    {
      /* An operator function must either be a non-static member function
	 or have at least one parameter of a class, a reference to a class,
	 an enumeration, or a reference to an enumeration.  13.4.0.6 */
      if (! methodp || DECL_STATIC_FUNCTION_P (decl))
	{
	  if (operator_code == TYPE_EXPR
	      || operator_code == CALL_EXPR
	      || operator_code == COMPONENT_REF
	      || operator_code == ARRAY_REF
	      || operator_code == NOP_EXPR)
	    error ("`%D' must be a nonstatic member function", decl);
	  else
	    {
	      tree p = argtypes;

	      if (DECL_STATIC_FUNCTION_P (decl))
		error ("`%D' must be either a non-static member function or a non-member function", decl);

	      if (p)
		for (; TREE_CODE (TREE_VALUE (p)) != VOID_TYPE ; p = TREE_CHAIN (p))
		  {
		    tree arg = TREE_VALUE (p);
		    if (TREE_CODE (arg) == REFERENCE_TYPE)
		      arg = TREE_TYPE (arg);

		    /* This lets bad template code slip through.  */
		    if (IS_AGGR_TYPE (arg)
			|| TREE_CODE (arg) == ENUMERAL_TYPE
			|| TREE_CODE (arg) == TEMPLATE_TYPE_PARM
			|| TREE_CODE (arg) == BOUND_TEMPLATE_TEMPLATE_PARM)
		      goto foundaggr;
		  }
	      error
		("`%D' must have an argument of class or enumerated type",
		 decl);
	    foundaggr:
	      ;
	    }
	}

      if (operator_code == CALL_EXPR)
	return;			/* No restrictions on args.  */

      if (IDENTIFIER_TYPENAME_P (name) && ! DECL_TEMPLATE_INFO (decl))
	{
	  tree t = TREE_TYPE (name);
	  if (! friendp)
	    {
	      int ref = (TREE_CODE (t) == REFERENCE_TYPE);
	      const char *what = 0;

	      if (ref)
		t = TYPE_MAIN_VARIANT (TREE_TYPE (t));

	      if (TREE_CODE (t) == VOID_TYPE)
	        what = "void";
	      else if (t == current_class_type)
		what = "the same type";
	      /* Don't force t to be complete here.  */
	      else if (IS_AGGR_TYPE (t)
		       && COMPLETE_TYPE_P (t)
		       && DERIVED_FROM_P (t, current_class_type))
		what = "a base class";

	      if (what)
		warning ("conversion to %s%s will never use a type conversion operator",
			 ref ? "a reference to " : "", what);
	    }
	}
      if (operator_code == COND_EXPR)
	{
	  /* 13.4.0.3 */
	  error ("ISO C++ prohibits overloading operator ?:");
	}
      else if (ambi_op_p (operator_code))
	{
	  if (arity == 1)
	    /* We pick the one-argument operator codes by default, so
	       we don't have to change anything.  */
	    ;
	  else if (arity == 2)
	    {
	      /* If we thought this was a unary operator, we now know
		 it to be a binary operator.  */
	      switch (operator_code)
		{
		case INDIRECT_REF:
		  operator_code = MULT_EXPR;
		  break;

		case ADDR_EXPR:
		  operator_code = BIT_AND_EXPR;
		  break;

		case CONVERT_EXPR:
		  operator_code = PLUS_EXPR;
		  break;

		case NEGATE_EXPR:
		  operator_code = MINUS_EXPR;
		  break;

		case PREINCREMENT_EXPR:
		  operator_code = POSTINCREMENT_EXPR;
		  break;

		case PREDECREMENT_EXPR:
		  operator_code = POSTDECREMENT_EXPR;
		  break;

		default:
		  abort ();
		}

	      SET_OVERLOADED_OPERATOR_CODE (decl, operator_code);

	      if ((operator_code == POSTINCREMENT_EXPR
		   || operator_code == POSTDECREMENT_EXPR)
		  && ! processing_template_decl
		  && ! same_type_p (TREE_VALUE (TREE_CHAIN (argtypes)), integer_type_node))
		{
		  if (methodp)
		    error ("postfix `%D' must take `int' as its argument",
			      decl);
		  else
		    error
		      ("postfix `%D' must take `int' as its second argument",
		       decl);
		}
	    }
	  else
	    {
	      if (methodp)
		error ("`%D' must take either zero or one argument", decl);
	      else
		error ("`%D' must take either one or two arguments", decl);
	    }

	  /* More Effective C++ rule 6.  */
	  if (warn_ecpp
	      && (operator_code == POSTINCREMENT_EXPR
		  || operator_code == POSTDECREMENT_EXPR
		  || operator_code == PREINCREMENT_EXPR
		  || operator_code == PREDECREMENT_EXPR))
	    {
	      tree arg = TREE_VALUE (argtypes);
	      tree ret = TREE_TYPE (TREE_TYPE (decl));
	      if (methodp || TREE_CODE (arg) == REFERENCE_TYPE)
		arg = TREE_TYPE (arg);
	      arg = TYPE_MAIN_VARIANT (arg);
	      if (operator_code == PREINCREMENT_EXPR
		  || operator_code == PREDECREMENT_EXPR)
		{
		  if (TREE_CODE (ret) != REFERENCE_TYPE
		      || !same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (ret)),
				       arg))
		    warning ("prefix `%D' should return `%T'", decl,
				build_reference_type (arg));
		}
	      else
		{
		  if (!same_type_p (TYPE_MAIN_VARIANT (ret), arg))
		    warning ("postfix `%D' should return `%T'", decl, arg);
		}
	    }
	}
      else if (unary_op_p (operator_code))
	{
	  if (arity != 1)
	    {
	      if (methodp)
		error ("`%D' must take `void'", decl);
	      else
		error ("`%D' must take exactly one argument", decl);
	    }
	}
      else /* if (binary_op_p (operator_code)) */
	{
	  if (arity != 2)
	    {
	      if (methodp)
		error ("`%D' must take exactly one argument", decl);
	      else
		error ("`%D' must take exactly two arguments", decl);
	    }

	  /* More Effective C++ rule 7.  */
	  if (warn_ecpp
	      && (operator_code == TRUTH_ANDIF_EXPR
		  || operator_code == TRUTH_ORIF_EXPR
		  || operator_code == COMPOUND_EXPR))
	    warning ("user-defined `%D' always evaluates both arguments",
			decl);
	}

      /* Effective C++ rule 23.  */
      if (warn_ecpp
	  && arity == 2
	  && !DECL_ASSIGNMENT_OPERATOR_P (decl)
	  && (operator_code == PLUS_EXPR
	      || operator_code == MINUS_EXPR
	      || operator_code == TRUNC_DIV_EXPR
	      || operator_code == MULT_EXPR
	      || operator_code == TRUNC_MOD_EXPR)
	  && TREE_CODE (TREE_TYPE (TREE_TYPE (decl))) == REFERENCE_TYPE)
	warning ("`%D' should return by value", decl);

      /* [over.oper]/8 */
      for (; argtypes && argtypes != void_list_node;
          argtypes = TREE_CHAIN (argtypes))
        if (TREE_PURPOSE (argtypes))
          {
            TREE_PURPOSE (argtypes) = NULL_TREE;
            if (operator_code == POSTINCREMENT_EXPR
		|| operator_code == POSTDECREMENT_EXPR)
              {
                if (pedantic)
                  pedwarn ("`%D' cannot have default arguments", decl);
              }
            else
              error ("`%D' cannot have default arguments", decl);
          }

    }
}

static const char *
tag_name (code)
     enum tag_types code;
{
  switch (code)
    {
    case record_type:
      return "struct";
    case class_type:
      return "class";
    case union_type:
      return "union ";
    case enum_type:
      return "enum";
    default:
      abort ();
    }
}

/* Get the struct, enum or union (CODE says which) with tag NAME.
   Define the tag as a forward-reference if it is not defined.

   C++: If a class derivation is given, process it here, and report
   an error if multiple derivation declarations are not identical.

   If this is a definition, come in through xref_tag and only look in
   the current frame for the name (since C++ allows new names in any
   scope.)  */

tree
xref_tag (enum tag_types tag_code, tree name, tree attributes, 
	  bool globalize)
{
  enum tree_code code;
  register tree ref, t;
  struct cp_binding_level *b = current_binding_level;
  tree context = NULL_TREE;

  timevar_push (TV_NAME_LOOKUP);

  switch (tag_code)
    {
    case record_type:
    case class_type:
      code = RECORD_TYPE;
      break;
    case union_type:
      code = UNION_TYPE;
      break;
    case enum_type:
      code = ENUMERAL_TYPE;
      break;
    default:
      abort ();
    }

  /* If a cross reference is requested, look up the type
     already defined for this tag and return it.  */
  if (TYPE_P (name))
    {
      t = name;
      name = TYPE_IDENTIFIER (t);
    }
  else
    t = IDENTIFIER_TYPE_VALUE (name);

  /* Warn about 'friend struct Inherited;' doing the wrong thing.  */
  if (t && globalize && TREE_CODE (t) == TYPENAME_TYPE)
    {
      static int explained;
      tree shadowed;

      warning ("`%s %T' declares a new type at namespace scope",
		  tag_name (tag_code), name);
      if (!explained++)
	warning ("  names from dependent base classes are not visible to unqualified name lookup - to refer to the inherited type, say `%s %T::%T'",
		    tag_name (tag_code),
		    constructor_name (current_class_type),
		    TYPE_IDENTIFIER (t));

      /* We need to remove the class scope binding for the
         TYPENAME_TYPE as otherwise poplevel_class gets confused.  */
      for (shadowed = b->class_shadowed;
	   shadowed;
	   shadowed = TREE_CHAIN (shadowed))
	if (TREE_TYPE (shadowed) == TYPE_NAME (t))
	  {
	    TREE_PURPOSE (shadowed) = NULL_TREE;
	    break;
	  }
    }

  if (t && TREE_CODE (t) != code && TREE_CODE (t) != TEMPLATE_TYPE_PARM
      && TREE_CODE (t) != BOUND_TEMPLATE_TEMPLATE_PARM)
    t = NULL_TREE;

  if (! globalize)
    {
      /* If we know we are defining this tag, only look it up in
	 this scope and don't try to find it as a type.  */
      ref = lookup_tag (code, name, b, 1);
    }
  else
    {
      if (t)
	{
	  ref = follow_tag_typedef (t);

	  /* [dcl.type.elab] If the identifier resolves to a
	     typedef-name or a template type-parameter, the
	     elaborated-type-specifier is ill-formed.  */
	  if (!ref)
	    {
	      pedwarn ("using typedef-name `%D' after `%s'",
		       TYPE_NAME (t), tag_name (tag_code));
	      ref = t;
	    }
	  else if (TREE_CODE (t) == TEMPLATE_TYPE_PARM)
	    error ("using template type parameter `%T' after `%s'",
		   t, tag_name (tag_code));
	}
      else
	ref = lookup_tag (code, name, b, 0);

      if (! ref)
	{
	  /* Try finding it as a type declaration.  If that wins,
	     use it.  */
	  ref = lookup_name (name, 1);

	  if (ref != NULL_TREE
	      && processing_template_decl
	      && DECL_CLASS_TEMPLATE_P (ref)
	      && template_class_depth (current_class_type) == 0)
	    /* Since GLOBALIZE is true, we're declaring a global
	       template, so we want this type.  */
	    ref = DECL_TEMPLATE_RESULT (ref);

	  if (ref && TREE_CODE (ref) == TYPE_DECL
	      && TREE_CODE (TREE_TYPE (ref)) == code)
	    ref = TREE_TYPE (ref);
	  else
	    ref = NULL_TREE;
	}

      if (ref && current_class_type
	  && template_class_depth (current_class_type)
	  && PROCESSING_REAL_TEMPLATE_DECL_P ())
	{
	  /* Since GLOBALIZE is nonzero, we are not looking at a
	     definition of this tag.  Since, in addition, we are currently
	     processing a (member) template declaration of a template
	     class, we must be very careful; consider:

	       template <class X>
	       struct S1

	       template <class U>
	       struct S2
	       { template <class V>
	       friend struct S1; };

	     Here, the S2::S1 declaration should not be confused with the
	     outer declaration.  In particular, the inner version should
	     have a template parameter of level 2, not level 1.  This
	     would be particularly important if the member declaration
	     were instead:

	       template <class V = U> friend struct S1;

	     say, when we should tsubst into `U' when instantiating
	     S2.  On the other hand, when presented with:

	         template <class T>
	         struct S1 {
		   template <class U>
	           struct S2 {};
		   template <class U>
		   friend struct S2;
		 };

              we must find the inner binding eventually.  We
	      accomplish this by making sure that the new type we
	      create to represent this declaration has the right
	      TYPE_CONTEXT.  */
	  context = TYPE_CONTEXT (ref);
	  ref = NULL_TREE;
	}
    }

  if (! ref)
    {
      /* If no such tag is yet defined, create a forward-reference node
	 and record it as the "definition".
	 When a real declaration of this type is found,
	 the forward-reference will be altered into a real type.  */
      if (code == ENUMERAL_TYPE)
	{
	  error ("use of enum `%#D' without previous declaration", name);

	  ref = make_node (ENUMERAL_TYPE);

	  /* Give the type a default layout like unsigned int
	     to avoid crashing if it does not get defined.  */
	  TYPE_MODE (ref) = TYPE_MODE (unsigned_type_node);
	  TYPE_ALIGN (ref) = TYPE_ALIGN (unsigned_type_node);
	  TYPE_USER_ALIGN (ref) = 0;
	  TREE_UNSIGNED (ref) = 1;
	  TYPE_PRECISION (ref) = TYPE_PRECISION (unsigned_type_node);
	  TYPE_MIN_VALUE (ref) = TYPE_MIN_VALUE (unsigned_type_node);
	  TYPE_MAX_VALUE (ref) = TYPE_MAX_VALUE (unsigned_type_node);

	  /* Enable us to recognize when a type is created in class context.
	     To do nested classes correctly, this should probably be cleared
	     out when we leave this classes scope.  Currently this in only
	     done in `start_enum'.  */

	  pushtag (name, ref, globalize);
	}
      else
	{
	  struct cp_binding_level *old_b = class_binding_level;

	  ref = make_aggr_type (code);
	  TYPE_CONTEXT (ref) = context;

#ifdef NONNESTED_CLASSES
	  /* Class types don't nest the way enums do.  */
	  class_binding_level = (struct cp_binding_level *)0;
#endif
	  pushtag (name, ref, globalize);
	  class_binding_level = old_b;
	}
    }
  else
    {
      if (!globalize && processing_template_decl && IS_AGGR_TYPE (ref))
	redeclare_class_template (ref, current_template_parms);
    }

  TYPE_ATTRIBUTES (ref) = attributes;

  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, ref);
}

tree
xref_tag_from_type (old, id, globalize)
     tree old, id;
     int globalize;
{
  enum tag_types tag_kind;

  if (TREE_CODE (old) == RECORD_TYPE)
    tag_kind = (CLASSTYPE_DECLARED_CLASS (old) ? class_type : record_type);
  else
    tag_kind  = union_type;

  if (id == NULL_TREE)
    id = TYPE_IDENTIFIER (old);

  return xref_tag (tag_kind, id, /*attributes=*/NULL_TREE, globalize);
}

/* REF is a type (named NAME), for which we have just seen some
   baseclasses.  BINFO is a list of those baseclasses; the
   TREE_PURPOSE is an access_* node, and the TREE_VALUE is the type of
   the base-class.  CODE_TYPE_NODE indicates whether REF is a class,
   struct, or union.  */

void
xref_basetypes (ref, binfo)
     tree ref;
     tree binfo;
{
  /* In the declaration `A : X, Y, ... Z' we mark all the types
     (A, X, Y, ..., Z) so we can check for duplicates.  */
  tree binfos;
  tree base;

  int i, len;
  enum tag_types tag_code;

  if (TREE_CODE (ref) == UNION_TYPE)
    {
      error ("derived union `%T' invalid", ref);
      return;
    }

  tag_code = (CLASSTYPE_DECLARED_CLASS (ref) ? class_type : record_type);

  len = list_length (binfo);

  /* First, make sure that any templates in base-classes are
     instantiated.  This ensures that if we call ourselves recursively
     we do not get confused about which classes are marked and which
     are not.  */
  for (base = binfo; base; base = TREE_CHAIN (base))
    complete_type (TREE_VALUE (base));

  SET_CLASSTYPE_MARKED (ref);
  BINFO_BASETYPES (TYPE_BINFO (ref)) = binfos = make_tree_vec (len);

  for (i = 0; binfo; binfo = TREE_CHAIN (binfo))
    {
      /* The base of a derived struct is public by default.  */
      int via_public
	= (TREE_PURPOSE (binfo) == access_public_node
	   || TREE_PURPOSE (binfo) == access_public_virtual_node
	   || (tag_code != class_type
	       && (TREE_PURPOSE (binfo) == access_default_node
		   || TREE_PURPOSE (binfo) == access_default_virtual_node)));
      int via_protected
	= (TREE_PURPOSE (binfo) == access_protected_node
	   || TREE_PURPOSE (binfo) == access_protected_virtual_node);
      int via_virtual
	= (TREE_PURPOSE (binfo) == access_private_virtual_node
	   || TREE_PURPOSE (binfo) == access_protected_virtual_node
	   || TREE_PURPOSE (binfo) == access_public_virtual_node
	   || TREE_PURPOSE (binfo) == access_default_virtual_node);
      tree basetype = TREE_VALUE (binfo);
      tree base_binfo;

      if (basetype && TREE_CODE (basetype) == TYPE_DECL)
	basetype = TREE_TYPE (basetype);
      if (!basetype
	  || (TREE_CODE (basetype) != RECORD_TYPE
	      && TREE_CODE (basetype) != TYPENAME_TYPE
	      && TREE_CODE (basetype) != TEMPLATE_TYPE_PARM
	      && TREE_CODE (basetype) != BOUND_TEMPLATE_TEMPLATE_PARM))
	{
	  error ("base type `%T' fails to be a struct or class type",
		    TREE_VALUE (binfo));
	  continue;
	}

      /* This code replaces similar code in layout_basetypes.
         We put the complete_type first for implicit `typename'.  */
      if (!COMPLETE_TYPE_P (basetype)
	  && ! (current_template_parms && uses_template_parms (basetype)))
	{
	  error ("base class `%T' has incomplete type", basetype);
	  continue;
	}
      else
	{
	  if (CLASSTYPE_MARKED (basetype))
	    {
	      if (basetype == ref)
		error ("recursive type `%T' undefined", basetype);
	      else
		error ("duplicate base type `%T' invalid", basetype);
	      continue;
	    }

	  if (TYPE_FOR_JAVA (basetype)
	      && (current_lang_depth () == 0))
	    TYPE_FOR_JAVA (ref) = 1;

	  /* Note that the BINFO records which describe individual
	     inheritances are *not* shared in the lattice!  They
	     cannot be shared because a given baseclass may be
	     inherited with different `accessibility' by different
	     derived classes.  (Each BINFO record describing an
	     individual inheritance contains flags which say what
	     the `accessibility' of that particular inheritance is.)  */

	  base_binfo
	    = make_binfo (size_zero_node, basetype,
			  CLASS_TYPE_P (basetype)
			  ? TYPE_BINFO_VTABLE (basetype) : NULL_TREE,
			  CLASS_TYPE_P (basetype)
			  ? TYPE_BINFO_VIRTUALS (basetype) : NULL_TREE);

	  TREE_VEC_ELT (binfos, i) = base_binfo;
	  TREE_VIA_PUBLIC (base_binfo) = via_public;
	  TREE_VIA_PROTECTED (base_binfo) = via_protected;
	  TREE_VIA_VIRTUAL (base_binfo) = via_virtual;
	  BINFO_INHERITANCE_CHAIN (base_binfo) = TYPE_BINFO (ref);

	  /* We need to unshare the binfos now so that lookups during class
	     definition work.  */
	  unshare_base_binfos (base_binfo);

	  SET_CLASSTYPE_MARKED (basetype);

	  /* We are free to modify these bits because they are meaningless
	     at top level, and BASETYPE is a top-level type.  */
	  if (via_virtual || TYPE_USES_VIRTUAL_BASECLASSES (basetype))
	    {
	      TYPE_USES_VIRTUAL_BASECLASSES (ref) = 1;
	      /* Converting to a virtual base class requires looking
		 up the offset of the virtual base.  */
	      TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (ref) = 1;
	    }

	  if (CLASS_TYPE_P (basetype))
	    {
	      TYPE_HAS_NEW_OPERATOR (ref)
		|= TYPE_HAS_NEW_OPERATOR (basetype);
	      TYPE_HAS_ARRAY_NEW_OPERATOR (ref)
		|= TYPE_HAS_ARRAY_NEW_OPERATOR (basetype);
	      TYPE_GETS_DELETE (ref) |= TYPE_GETS_DELETE (basetype);
	      /* If the base-class uses multiple inheritance, so do we.  */
	      TYPE_USES_MULTIPLE_INHERITANCE (ref)
		|= TYPE_USES_MULTIPLE_INHERITANCE (basetype);
	      /* Likewise, if converting to a base of the base may require
		 code, then we may need to generate code to convert to a
		 base as well.  */
	      TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (ref)
		|= TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (basetype);
	    }

	  i += 1;
	}
    }
  if (i)
    TREE_VEC_LENGTH (binfos) = i;
  else
    BINFO_BASETYPES (TYPE_BINFO (ref)) = NULL_TREE;

  if (i > 1)
    {
      TYPE_USES_MULTIPLE_INHERITANCE (ref) = 1;
      /* If there is more than one non-empty they cannot be at the same
	 address.  */
      TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (ref) = 1;
    }

  /* Unmark all the types.  */
  while (--i >= 0)
    CLEAR_CLASSTYPE_MARKED (BINFO_TYPE (TREE_VEC_ELT (binfos, i)));
  CLEAR_CLASSTYPE_MARKED (ref);

  /* Now that we know all the base-classes, set up the list of virtual
     bases.  */
  get_vbase_types (ref);
}


/* Begin compiling the definition of an enumeration type.
   NAME is its name (or null if anonymous).
   Returns the type object, as yet incomplete.
   Also records info about it so that build_enumerator
   may be used to declare the individual values as they are read.  */

tree
start_enum (name)
     tree name;
{
  register tree enumtype = NULL_TREE;
  struct cp_binding_level *b = current_binding_level;

  /* If this is the real definition for a previous forward reference,
     fill in the contents in the same object that used to be the
     forward reference.  */
  /* APPLE LOCAL do not forward reference anonymous enum */
  /* Note that an anonymous enum cannot be forward-referenced.  */
  if (name != NULL_TREE && !ANON_AGGRNAME_P (name))
    enumtype = lookup_tag (ENUMERAL_TYPE, name, b, 1);

  if (enumtype != NULL_TREE && TREE_CODE (enumtype) == ENUMERAL_TYPE)
    {
      error ("multiple definition of `%#T'", enumtype);
      cp_error_at ("previous definition here", enumtype);
      /* Clear out TYPE_VALUES, and start again.  */
      TYPE_VALUES (enumtype) = NULL_TREE;
    }
  else
    {
      enumtype = make_node (ENUMERAL_TYPE);
      pushtag (name, enumtype, 0);
    }

  return enumtype;
}

/* After processing and defining all the values of an enumeration type,
   install their decls in the enumeration type and finish it off.
   ENUMTYPE is the type object and VALUES a list of name-value pairs.  */

void
finish_enum (enumtype)
     tree enumtype;
{
  tree pair;
  tree minnode;
  tree maxnode;
  tree t;
  bool unsignedp;
  int lowprec;
  int highprec; 
  int precision;

  /* We built up the VALUES in reverse order.  */
  TYPE_VALUES (enumtype) = nreverse (TYPE_VALUES (enumtype));

  /* For an enum defined in a template, just set the type of the values;
     all further processing is postponed until the template is
     instantiated.  We need to set the type so that tsubst of a CONST_DECL
     works.  */
  if (processing_template_decl)
    {
      for (pair = TYPE_VALUES (enumtype); pair; pair = TREE_CHAIN (pair))
	TREE_TYPE (TREE_VALUE (pair)) = enumtype;
      if (at_function_scope_p ())
	add_stmt (build_min (TAG_DEFN, enumtype));
      return;
    }

  if (TYPE_VALUES (enumtype))
    {
      minnode = maxnode = NULL_TREE;

      for (pair = TYPE_VALUES (enumtype); pair; pair = TREE_CHAIN (pair))
	{
	  tree decl = TREE_VALUE (pair);
	  tree value = DECL_INITIAL (decl);

	  /* [dcl.enum]: Following the closing brace of an enum-specifier,
	     each enumerator has the type of its enumeration.  Prior to the
	     closing brace, the type of each enumerator is the type of its
	     initializing value.  */
	  TREE_TYPE (decl) = enumtype;

	  /* Figure out what the minimum and maximum values of the
	     enumerators are.  */
	  if (!minnode)
	    minnode = maxnode = value;
	  else if (tree_int_cst_lt (maxnode, value))
	    maxnode = value;
	  else if (tree_int_cst_lt (value, minnode))
	    minnode = value;

	  /* Set the TREE_TYPE for the values as well.  That's so that when
	     we call decl_constant_value we get an entity of the right type
	     (but with the constant value).  But first make a copy so we
	     don't clobber shared INTEGER_CSTs.  */
	  if (TREE_TYPE (value) != enumtype)
	    {
	      value = DECL_INITIAL (decl) = copy_node (value);
	      TREE_TYPE (value) = enumtype;
	    }

	  /* In addition, transform the TYPE_VALUES list to contain the
	     values, rather than the CONST_DECLs for them.  */
	  TREE_VALUE (pair) = value;
	}
    }
  else
    minnode = maxnode = integer_zero_node;

  /* Compute the number of bits require to represent all values of the
     enumeration.  We must do this before the type of MINNODE and
     MAXNODE are transformed, since min_precision relies on the
     TREE_TYPE of the value it is passed.  */
  unsignedp = tree_int_cst_sgn (minnode) >= 0;
  lowprec = min_precision (minnode, unsignedp);
  highprec = min_precision (maxnode, unsignedp);
  precision = MAX (lowprec, highprec);

  /* Set TYPE_MIN_VALUE and TYPE_MAX_VALUE according to `precision'.  */
  TYPE_SIZE (enumtype) = NULL_TREE;
  TYPE_PRECISION (enumtype) = precision;
  if (unsignedp)
    fixup_unsigned_type (enumtype);
  else
    fixup_signed_type (enumtype);

  if (flag_short_enums || (precision > TYPE_PRECISION (integer_type_node)))
    /* Use the width of the narrowest normal C type which is wide
       enough.  */
    TYPE_PRECISION (enumtype) = TYPE_PRECISION (c_common_type_for_size
						(precision, 1));
  else
    TYPE_PRECISION (enumtype) = TYPE_PRECISION (integer_type_node);

  TYPE_SIZE (enumtype) = NULL_TREE;
  layout_type (enumtype);

  /* Fix up all variant types of this enum type.  */
  for (t = TYPE_MAIN_VARIANT (enumtype); t; t = TYPE_NEXT_VARIANT (t))
    {
      TYPE_VALUES (t) = TYPE_VALUES (enumtype);
      TYPE_MIN_VALUE (t) = TYPE_MIN_VALUE (enumtype);
      TYPE_MAX_VALUE (t) = TYPE_MAX_VALUE (enumtype);
      TYPE_SIZE (t) = TYPE_SIZE (enumtype);
      TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (enumtype);
      TYPE_MODE (t) = TYPE_MODE (enumtype);
      TYPE_PRECISION (t) = TYPE_PRECISION (enumtype);
      TYPE_ALIGN (t) = TYPE_ALIGN (enumtype);
      TYPE_USER_ALIGN (t) = TYPE_USER_ALIGN (enumtype);
      TREE_UNSIGNED (t) = TREE_UNSIGNED (enumtype);
    }

  /* Finish debugging output for this type.  */
  rest_of_type_compilation (enumtype, namespace_bindings_p ());
}

/* Build and install a CONST_DECL for an enumeration constant of the
   enumeration type ENUMTYPE whose NAME and VALUE (if any) are provided.
   Assignment of sequential values by default is handled here.  */

void
build_enumerator (name, value, enumtype)
     tree name;
     tree value;
     tree enumtype;
{
  tree decl;
  tree context;
  tree type;

  /* Remove no-op casts from the value.  */
  if (value)
    STRIP_TYPE_NOPS (value);

  if (! processing_template_decl)
    {
      /* Validate and default VALUE.  */
      if (value != NULL_TREE)
	{
	  value = decl_constant_value (value);

	  if (TREE_CODE (value) == INTEGER_CST)
	    {
	      value = default_conversion (value);
	      constant_expression_warning (value);
	    }
	  else
	    {
	      error ("enumerator value for `%D' not integer constant", name);
	      value = NULL_TREE;
	    }
	}

      /* Default based on previous value.  */
      if (value == NULL_TREE && ! processing_template_decl)
	{
	  tree prev_value;

	  if (TYPE_VALUES (enumtype))
	    {
	      /* The next value is the previous value ...  */
	      prev_value = DECL_INITIAL (TREE_VALUE (TYPE_VALUES (enumtype)));
	      /* ... plus one.  */
	      value = cp_build_binary_op (PLUS_EXPR,
					  prev_value,
					  integer_one_node);

	      if (tree_int_cst_lt (value, prev_value))
		error ("overflow in enumeration values at `%D'", name);
	    }
	  else
	    value = integer_zero_node;
	}

      /* Remove no-op casts from the value.  */
      STRIP_TYPE_NOPS (value);
    }

  /* C++ associates enums with global, function, or class declarations.  */
  context = current_scope ();

  /* Build the actual enumeration constant.  Note that the enumeration
    constants have the type of their initializers until the
    enumeration is complete:

      [ dcl.enum ]

      Following the closing brace of an enum-specifier, each enumer-
      ator has the type of its enumeration.  Prior to the closing
      brace, the type of each enumerator is the type of its
      initializing value.

    In finish_enum we will reset the type.  Of course, if we're
    processing a template, there may be no value.  */
  type = value ? TREE_TYPE (value) : NULL_TREE;

  if (context && context == current_class_type)
    /* This enum declaration is local to the class.  We need the full
       lang_decl so that we can record DECL_CLASS_CONTEXT, for example.  */
    decl = build_lang_decl (CONST_DECL, name, type);
  else
    /* It's a global enum, or it's local to a function.  (Note local to
      a function could mean local to a class method.  */
    decl = build_decl (CONST_DECL, name, type);

  DECL_CONTEXT (decl) = FROB_CONTEXT (context);
  DECL_INITIAL (decl) = value;
  TREE_READONLY (decl) = 1;

  if (context && context == current_class_type)
    /* In something like `struct S { enum E { i = 7 }; };' we put `i'
      on the TYPE_FIELDS list for `S'.  (That's so that you can say
      things like `S::i' later.)  */
    finish_member_declaration (decl);
  else
    pushdecl (decl);

  /* APPLE LOCAL begin indexing dpatel */
    if (flag_gen_index)
      gen_indexing_info (INDEX_ENUM, IDENTIFIER_POINTER (name), lineno);
  /* APPLE LOCAL end indexing dpatel */ 

  /* Add this enumeration constant to the list for this type.  */
  TYPE_VALUES (enumtype) = tree_cons (name, decl, TYPE_VALUES (enumtype));
}


/* We're defining DECL.  Make sure that it's type is OK.  */

static void
check_function_type (decl, current_function_parms)
     tree decl;
     tree current_function_parms;
{
  tree fntype = TREE_TYPE (decl);
  tree return_type = complete_type (TREE_TYPE (fntype));

  /* In a function definition, arg types must be complete.  */
  require_complete_types_for_parms (current_function_parms);

  if (!COMPLETE_OR_VOID_TYPE_P (return_type))
    {
      error ("return type `%#T' is incomplete", TREE_TYPE (fntype));

      /* Make it return void instead, but don't change the
	 type of the DECL_RESULT, in case we have a named return value.  */
      if (TREE_CODE (fntype) == METHOD_TYPE)
	{
	  tree ctype = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (fntype)));
	  TREE_TYPE (decl)
	    = build_cplus_method_type (ctype,
				       void_type_node,
				       FUNCTION_ARG_CHAIN (decl));
	}
      else
	TREE_TYPE (decl)
	  = build_function_type (void_type_node,
				 TYPE_ARG_TYPES (TREE_TYPE (decl)));
      TREE_TYPE (decl)
	= build_exception_variant (fntype,
				   TYPE_RAISES_EXCEPTIONS (fntype));
    }
  else
    abstract_virtuals_error (decl, TREE_TYPE (fntype));
}

/* APPLE LOCAL begin indexing dpatel */
static void gen_start_function_index PARAMS ((tree));
static void
gen_start_function_index (decl)
     tree decl;
{
  int info_tag = INDEX_ERROR;
  tree dc = NULL_TREE;

  /* Do not generate indexing info for compiler generated
     and template related stuff.  */
  if (processing_template_decl 
      || DECL_USE_TEMPLATE (decl)
      || DECL_ARTIFICIAL (decl))
    return;
            
  if (DECL_CONSTRUCTOR_P (decl))
    {
      info_tag = INDEX_CONSTRUCTOR_BEGIN;
      if (DECL_BASE_CONSTRUCTOR_P (decl) 
	  || DECL_COMPLETE_CONSTRUCTOR_P (decl))
        info_tag = INDEX_ERROR;
    }
  else if (DECL_DESTRUCTOR_P (decl))
    {
      info_tag = INDEX_DESTRUCTOR_BEGIN;
      if (DECL_BASE_DESTRUCTOR_P (decl) 
	  || DECL_COMPLETE_DESTRUCTOR_P (decl))
        info_tag = INDEX_ERROR;
    }
  else if (DECL_STATIC_FUNCTION_P (decl))
    {
       if (IDENTIFIER_OPNAME_P (DECL_NAME (decl)))
         info_tag = INDEX_CLASS_OPERATOR_BEGIN;
       else
         info_tag = INDEX_CLASS_METHOD_BEGIN;
    }
  else if (DECL_NONSTATIC_MEMBER_FUNCTION_P (decl))
    {
       if (IDENTIFIER_OPNAME_P (DECL_NAME (decl)))
         info_tag = INDEX_INSTANCE_OPERATOR_BEGIN;
       else
         info_tag = INDEX_INSTANCE_METHOD_BEGIN;
    }
  else 
    info_tag = INDEX_FUNCTION_BEGIN;

  if (info_tag == INDEX_ERROR)
    return;

  gen_indexing_info (info_tag,
                     IDENTIFIER_POINTER (DECL_NAME (decl)),
                     DECL_SOURCE_LINE (decl));

  if (DECL_CLASS_CONTEXT (decl)) 
    dc = TYPE_NAME (DECL_CLASS_CONTEXT (decl));
  else if (DECL_CONTEXT (decl)) 
    /* This function does not belong to any class.
       It may belong to a name space.  */
    dc = DECL_CONTEXT (decl);

  if (dc != NULL_TREE)
    gen_indexing_info (INDEX_CLASS_INHERITANCE,
                       IDENTIFIER_POINTER (DECL_NAME (dc)),
                       DECL_SOURCE_LINE (dc));
}
/* APPLE LOCAL end indexing dpatel */

/* Create the FUNCTION_DECL for a function definition.
   DECLSPECS and DECLARATOR are the parts of the declaration;
   they describe the function's name and the type it returns,
   but twisted together in a fashion that parallels the syntax of C.

   FLAGS is a bitwise or of SF_PRE_PARSED (indicating that the
   DECLARATOR is really the DECL for the function we are about to
   process and that DECLSPECS should be ignored), SF_INCLASS_INLINE
   indicating that the function is an inline defined in-class.

   This function creates a binding context for the function body
   as well as setting up the FUNCTION_DECL in current_function_decl.

   Returns 1 on success.  If the DECLARATOR is not suitable for a function
   (it defines a datum instead), we return 0, which tells
   yyparse to report a parse error.

   For C++, we must first check whether that datum makes any sense.
   For example, "class A local_a(1,2);" means that variable local_a
   is an aggregate of type A, which should have a constructor
   applied to it with the argument list [1, 2].  */

int
start_function (declspecs, declarator, attrs, flags)
     tree declspecs, declarator, attrs;
     int flags;
{
  tree decl1;
  tree ctype = NULL_TREE;
  tree fntype;
  tree restype;
  int doing_friend = 0;
  struct cp_binding_level *bl;
  tree current_function_parms;

  /* Sanity check.  */
  my_friendly_assert (TREE_CODE (TREE_VALUE (void_list_node)) == VOID_TYPE, 160);
  my_friendly_assert (TREE_CHAIN (void_list_node) == NULL_TREE, 161);

  /* This should only be done once on the top most decl.  */
  if (have_extern_spec)
    {
      declspecs = tree_cons (NULL_TREE, get_identifier ("extern"), declspecs);
      have_extern_spec = false;
    }

  if (flags & SF_PRE_PARSED)
    {
      decl1 = declarator;

      fntype = TREE_TYPE (decl1);
      if (TREE_CODE (fntype) == METHOD_TYPE)
	ctype = TYPE_METHOD_BASETYPE (fntype);

      /* ISO C++ 11.4/5.  A friend function defined in a class is in
	 the (lexical) scope of the class in which it is defined.  */
      if (!ctype && DECL_FRIEND_P (decl1))
	{
	  ctype = DECL_FRIEND_CONTEXT (decl1);

	  /* CTYPE could be null here if we're dealing with a template;
	     for example, `inline friend float foo()' inside a template
	     will have no CTYPE set.  */
	  if (ctype && TREE_CODE (ctype) != RECORD_TYPE)
	    ctype = NULL_TREE;
	  else
	    doing_friend = 1;
	}

      last_function_parms = DECL_ARGUMENTS (decl1);
    }
  else
    {
      decl1 = grokdeclarator (declarator, declspecs, FUNCDEF, 1, NULL);
      /* If the declarator is not suitable for a function definition,
	 cause a syntax error.  */
      if (decl1 == NULL_TREE || TREE_CODE (decl1) != FUNCTION_DECL)
	return 0;

      cplus_decl_attributes (&decl1, attrs, 0);

      /* If #pragma weak was used, mark the decl weak now.  */
      if (current_binding_level == global_binding_level)
	maybe_apply_pragma_weak (decl1);

      fntype = TREE_TYPE (decl1);

      restype = TREE_TYPE (fntype);
      if (CLASS_TYPE_P (restype) && !CLASSTYPE_GOT_SEMICOLON (restype))
	{
	  error ("semicolon missing after declaration of `%#T'", restype);
	  shadow_tag (build_tree_list (NULL_TREE, restype));
	  CLASSTYPE_GOT_SEMICOLON (restype) = 1;
	  if (TREE_CODE (fntype) == FUNCTION_TYPE)
	    fntype = build_function_type (integer_type_node,
					  TYPE_ARG_TYPES (fntype));
	  else
	    fntype = build_cplus_method_type (build_type_variant (TYPE_METHOD_BASETYPE (fntype), TREE_READONLY (decl1), TREE_SIDE_EFFECTS (decl1)),
					      integer_type_node,
					      TYPE_ARG_TYPES (fntype));
	  TREE_TYPE (decl1) = fntype;
	}

      if (TREE_CODE (fntype) == METHOD_TYPE)
	ctype = TYPE_METHOD_BASETYPE (fntype);
      else if (DECL_MAIN_P (decl1))
	{
	  /* If this doesn't return integer_type, complain.  */
	  if (TREE_TYPE (TREE_TYPE (decl1)) != integer_type_node)
	    {
	      if (pedantic || warn_return_type)
		pedwarn ("return type for `main' changed to `int'");
	      TREE_TYPE (decl1) = fntype = default_function_type;
	    }
	}
    }

  if (DECL_DECLARED_INLINE_P (decl1)
      && lookup_attribute ("noinline", attrs))
    warning_with_decl (decl1,
		       "inline function `%s' given attribute noinline");

  if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (decl1))
    /* This is a constructor, we must ensure that any default args
       introduced by this definition are propagated to the clones
       now. The clones are used directly in overload resolution.  */
    adjust_clone_args (decl1);

  /* Sometimes we don't notice that a function is a static member, and
     build a METHOD_TYPE for it.  Fix that up now.  */
  if (ctype != NULL_TREE && DECL_STATIC_FUNCTION_P (decl1)
      && TREE_CODE (TREE_TYPE (decl1)) == METHOD_TYPE)
    {
      revert_static_member_fn (decl1);
      last_function_parms = TREE_CHAIN (last_function_parms);
      ctype = NULL_TREE;
    }

  /* Warn if function was previously implicitly declared
     (but not if we warned then).  */
  if (! warn_implicit
      && IDENTIFIER_IMPLICIT_DECL (DECL_NAME (decl1)) != NULL_TREE)
    cp_warning_at ("`%D' implicitly declared before its definition", IDENTIFIER_IMPLICIT_DECL (DECL_NAME (decl1)));

  /* Set up current_class_type, and enter the scope of the class, if
     appropriate.  */
  if (ctype)
    push_nested_class (ctype, 1);
  else if (DECL_STATIC_FUNCTION_P (decl1))
    push_nested_class (DECL_CONTEXT (decl1), 2);

  /* Now that we have entered the scope of the class, we must restore
     the bindings for any template parameters surrounding DECL1, if it
     is an inline member template.  (Order is important; consider the
     case where a template parameter has the same name as a field of
     the class.)  It is not until after this point that
     PROCESSING_TEMPLATE_DECL is guaranteed to be set up correctly.  */
  if (flags & SF_INCLASS_INLINE)
    maybe_begin_member_template_processing (decl1);

  /* Effective C++ rule 15.  */
  if (warn_ecpp
      && DECL_OVERLOADED_OPERATOR_P (decl1) == NOP_EXPR
      && TREE_CODE (TREE_TYPE (fntype)) == VOID_TYPE)
    warning ("`operator=' should return a reference to `*this'");

  /* Make the init_value nonzero so pushdecl knows this is not tentative.
     error_mark_node is replaced below (in poplevel) with the BLOCK.  */
  if (!DECL_INITIAL (decl1))
    DECL_INITIAL (decl1) = error_mark_node;

  /* This function exists in static storage.
     (This does not mean `static' in the C sense!)  */
  TREE_STATIC (decl1) = 1;

  /* We must call push_template_decl after current_class_type is set
     up.  (If we are processing inline definitions after exiting a
     class scope, current_class_type will be NULL_TREE until set above
     by push_nested_class.)  */
  if (processing_template_decl)
    decl1 = push_template_decl (decl1);

  /* We are now in the scope of the function being defined.  */
  current_function_decl = decl1;

  /* Save the parm names or decls from this function's declarator
     where store_parm_decls will find them.  */
  current_function_parms = last_function_parms;

  /* Make sure the parameter and return types are reasonable.  When
     you declare a function, these types can be incomplete, but they
     must be complete when you define the function.  */
  if (! processing_template_decl)
    check_function_type (decl1, current_function_parms);

  /* Build the return declaration for the function.  */
  restype = TREE_TYPE (fntype);
  /* Promote the value to int before returning it.  */
  if (c_promoting_integer_type_p (restype))
    restype = type_promotes_to (restype);
  if (DECL_RESULT (decl1) == NULL_TREE)
    {
      DECL_RESULT (decl1)
	= build_decl (RESULT_DECL, 0, TYPE_MAIN_VARIANT (restype));
      c_apply_type_quals_to_decl (cp_type_quals (restype),
				  DECL_RESULT (decl1));
    }

  /* Initialize RTL machinery.  We cannot do this until
     CURRENT_FUNCTION_DECL and DECL_RESULT are set up.  We do this
     even when processing a template; this is how we get
     CFUN set up, and our per-function variables initialized.
     FIXME factor out the non-RTL stuff.  */
  bl = current_binding_level;
  init_function_start (decl1, input_filename, lineno);
  current_binding_level = bl;

  /* Even though we're inside a function body, we still don't want to
     call expand_expr to calculate the size of a variable-sized array.
     We haven't necessarily assigned RTL to all variables yet, so it's
     not safe to try to expand expressions involving them.  */
  immediate_size_expand = 0;
  cfun->x_dont_save_pending_sizes_p = 1;

  /* Start the statement-tree, start the tree now.  */
  begin_stmt_tree (&DECL_SAVED_TREE (decl1));

  /* Let the user know we're compiling this function.  */
  announce_function (decl1);

  /* APPLE LOCAL begin indexing dpatel */
  if (flag_gen_index)
    gen_start_function_index (decl1);
  /* APPLE LOCAL end indexing dpatel */

  /* Record the decl so that the function name is defined.
     If we already have a decl for this name, and it is a FUNCTION_DECL,
     use the old decl.  */
  if (!processing_template_decl && !(flags & SF_PRE_PARSED))
    {
      /* A specialization is not used to guide overload resolution.  */
      if (!DECL_TEMPLATE_SPECIALIZATION (decl1)
	  && ! DECL_FUNCTION_MEMBER_P (decl1))
	decl1 = pushdecl (decl1);
      else
	{
	  /* We need to set the DECL_CONTEXT.  */
	  if (!DECL_CONTEXT (decl1) && DECL_TEMPLATE_INFO (decl1))
	    DECL_CONTEXT (decl1) = DECL_CONTEXT (DECL_TI_TEMPLATE (decl1));
	  /* And make sure we have enough default args.  */
	  check_default_args (decl1);
	}
      fntype = TREE_TYPE (decl1);
    }

  /* Reset these in case the call to pushdecl changed them.  */
  current_function_decl = decl1;
  cfun->decl = decl1;

  /* If we are (erroneously) defining a function that we have already
     defined before, wipe out what we knew before.  */
  if (!DECL_PENDING_INLINE_P (decl1))
    DECL_SAVED_FUNCTION_DATA (decl1) = NULL;

  if (ctype && !doing_friend && !DECL_STATIC_FUNCTION_P (decl1))
    {
      /* We know that this was set up by `grokclassfn'.  We do not
	 wait until `store_parm_decls', since evil parse errors may
	 never get us to that point.  Here we keep the consistency
	 between `current_class_type' and `current_class_ptr'.  */
      tree t = DECL_ARGUMENTS (decl1);

      my_friendly_assert (t != NULL_TREE && TREE_CODE (t) == PARM_DECL,
			  162);
      my_friendly_assert (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE,
			  19990811);

      cp_function_chain->x_current_class_ref
	= build_indirect_ref (t, NULL);
      cp_function_chain->x_current_class_ptr = t;

      /* Constructors and destructors need to know whether they're "in
	 charge" of initializing virtual base classes.  */
      t = TREE_CHAIN (t);
      if (DECL_HAS_IN_CHARGE_PARM_P (decl1))
	{
	  current_in_charge_parm = t;
	  t = TREE_CHAIN (t);
	}
      if (DECL_HAS_VTT_PARM_P (decl1))
	{
	  if (DECL_NAME (t) != vtt_parm_identifier)
	    abort ();
	  current_vtt_parm = t;
	}
    }

  if (DECL_INTERFACE_KNOWN (decl1))
    {
      tree ctx = decl_function_context (decl1);

      if (DECL_NOT_REALLY_EXTERN (decl1))
	DECL_EXTERNAL (decl1) = 0;

      if (ctx != NULL_TREE && DECL_DECLARED_INLINE_P (ctx)
	  && TREE_PUBLIC (ctx))
	/* This is a function in a local class in an extern inline
	   function.  */
	comdat_linkage (decl1);
    }
  /* If this function belongs to an interface, it is public.
     If it belongs to someone else's interface, it is also external.
     This only affects inlines and template instantiations.  */
  else if (interface_unknown == 0
	   && (! DECL_TEMPLATE_INSTANTIATION (decl1)
	       || flag_alt_external_templates))
    {
      if (DECL_DECLARED_INLINE_P (decl1) 
	  || DECL_TEMPLATE_INSTANTIATION (decl1)
	  || processing_template_decl)
	{
	  DECL_EXTERNAL (decl1)
	    = (interface_only
	       || (DECL_DECLARED_INLINE_P (decl1) 
		   && ! flag_implement_inlines
		   && !DECL_VINDEX (decl1)));

	  /* For WIN32 we also want to put these in linkonce sections.  */
	  maybe_make_one_only (decl1);
	}
      else
	DECL_EXTERNAL (decl1) = 0;
      DECL_NOT_REALLY_EXTERN (decl1) = 0;
      DECL_INTERFACE_KNOWN (decl1) = 1;
    }
  else if (interface_unknown && interface_only
	   && (! DECL_TEMPLATE_INSTANTIATION (decl1)
	       || flag_alt_external_templates))
    {
      /* If MULTIPLE_SYMBOL_SPACES is defined and we saw a #pragma
	 interface, we will have interface_only set but not
	 interface_known.  In that case, we don't want to use the normal
	 heuristics because someone will supply a #pragma implementation
	 elsewhere, and deducing it here would produce a conflict.  */
      comdat_linkage (decl1);
      DECL_EXTERNAL (decl1) = 0;
      DECL_INTERFACE_KNOWN (decl1) = 1;
      DECL_DEFER_OUTPUT (decl1) = 1;
    }
  else
    {
      /* This is a definition, not a reference.
	 So clear DECL_EXTERNAL.  */
      DECL_EXTERNAL (decl1) = 0;

      if ((DECL_DECLARED_INLINE_P (decl1) 
	   || DECL_TEMPLATE_INSTANTIATION (decl1))
	  && ! DECL_INTERFACE_KNOWN (decl1)
	  /* Don't try to defer nested functions for now.  */
	  && ! decl_function_context (decl1))
	DECL_DEFER_OUTPUT (decl1) = 1;
      else
	DECL_INTERFACE_KNOWN (decl1) = 1;
    }

  pushlevel (0);
  current_binding_level->parm_flag = 1;

  /* APPLE LOCAL weak_import (Radar 2809704) ilr */
  cplus_decl_attributes (&decl1, attrs, (int)ATTR_FLAG_FUNCTION_DEF);

  ++function_depth;

  if (DECL_DESTRUCTOR_P (decl1))
    {
      dtor_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
      DECL_CONTEXT (dtor_label) = current_function_decl;
    }

  /* APPLE LOCAL begin CW asm blocks */
  /* If this was a function declared as an assembly function, change
     the state to expect to see C++ decls, possibly followed by assembly
     code.  */
  if (DECL_CW_ASM_FUNCTION (current_function_decl))
    {
      cw_asm_state = cw_asm_decls;
      cw_asm_in_decl = 0;
    }
  /* APPLE LOCAL end CW asm blocks */

  start_fname_decls ();
  
  store_parm_decls (current_function_parms);

  return 1;
}

/* Store the parameter declarations into the current function declaration.
   This is called after parsing the parameter declarations, before
   digesting the body of the function.

   Also install to binding contour return value identifier, if any.  */

/* APPLE LOCAL Objective-C++ */
/* static */ void         /* 'store_parm_decls' is extern for Obj-C++ */
store_parm_decls (current_function_parms)
     tree current_function_parms;
{
  register tree fndecl = current_function_decl;
  register tree parm;

  /* This is a chain of any other decls that came in among the parm
     declarations.  If a parm is declared with  enum {foo, bar} x;
     then CONST_DECLs for foo and bar are put here.  */
  tree nonparms = NULL_TREE;

  if (current_function_parms)
    {
      /* This case is when the function was defined with an ANSI prototype.
	 The parms already have decls, so we need not do anything here
	 except record them as in effect
	 and complain if any redundant old-style parm decls were written.  */

      tree specparms = current_function_parms;
      tree next;

      /* Must clear this because it might contain TYPE_DECLs declared
	     at class level.  */
      storedecls (NULL_TREE);

      /* If we're doing semantic analysis, then we'll call pushdecl
	     for each of these.  We must do them in reverse order so that
	     they end in the correct forward order.  */
      specparms = nreverse (specparms);

      for (parm = specparms; parm; parm = next)
	{
	  next = TREE_CHAIN (parm);
	  if (TREE_CODE (parm) == PARM_DECL)
	    {
	      if (DECL_NAME (parm) == NULL_TREE
		  || TREE_CODE (parm) != VOID_TYPE)
		pushdecl (parm);
	      else
		error ("parameter `%D' declared void", parm);
	    }
	  else
	    {
	      /* If we find an enum constant or a type tag,
		 put it aside for the moment.  */
	      TREE_CHAIN (parm) = NULL_TREE;
	      nonparms = chainon (nonparms, parm);
	    }
	}

      /* Get the decls in their original chain order and record in the
	 function.  This is all and only the PARM_DECLs that were
	 pushed into scope by the loop above.  */
      DECL_ARGUMENTS (fndecl) = getdecls ();
      storetags (gettags ());
    }
  else
    DECL_ARGUMENTS (fndecl) = NULL_TREE;

  /* Now store the final chain of decls for the arguments
     as the decl-chain of the current lexical scope.
     Put the enumerators in as well, at the front so that
     DECL_ARGUMENTS is not modified.  */
  storedecls (chainon (nonparms, DECL_ARGUMENTS (fndecl)));

  /* Do the starting of the exception specifications, if we have any.  */
  if (flag_exceptions && !processing_template_decl
      && flag_enforce_eh_specs
      && TYPE_RAISES_EXCEPTIONS (TREE_TYPE (current_function_decl)))
    current_eh_spec_block = begin_eh_spec_block ();
}


/* We have finished doing semantic analysis on DECL, but have not yet
   generated RTL for its body.  Save away our current state, so that
   when we want to generate RTL later we know what to do.  */

static void
save_function_data (decl)
     tree decl;
{
  struct language_function *f;

  /* Save the language-specific per-function data so that we can
     get it back when we really expand this function.  */
  my_friendly_assert (!DECL_PENDING_INLINE_P (decl),
		      19990908);

  /* Make a copy.  */
  f = ((struct language_function *)
       ggc_alloc (sizeof (struct language_function)));
  memcpy (f, cp_function_chain, sizeof (struct language_function));
  DECL_SAVED_FUNCTION_DATA (decl) = f;

  /* Clear out the bits we don't need.  */
  f->base.x_stmt_tree.x_last_stmt = NULL_TREE;
  f->base.x_stmt_tree.x_last_expr_type = NULL_TREE;
  f->x_named_label_uses = NULL;
  f->bindings = NULL;
  f->x_local_names = NULL;

  /* When we get back here again, we will be expanding.  */
  f->x_expanding_p = 1;

  /* If we've already decided that we cannot inline this function, we
     must remember that fact when we actually go to expand the
     function.  */
  if (current_function_cannot_inline)
    {
      f->cannot_inline = current_function_cannot_inline;
      DECL_INLINE (decl) = 0;
    }
}

/* Add a note to mark the beginning of the main body of the constructor.
   This is used to set up the data structures for the cleanup regions for
   fully-constructed bases and members.  */

static void
begin_constructor_body ()
{
}

/* Add a note to mark the end of the main body of the constructor.  This is
   used to end the cleanup regions for fully-constructed bases and
   members.  */

static void
finish_constructor_body ()
{
}

/* Do all the processing for the beginning of a destructor; set up the
   vtable pointers and cleanups for bases and members.  */

static void
begin_destructor_body ()
{
  tree if_stmt;
  tree compound_stmt;

  /* If the dtor is empty, and we know there is not any possible
     way we could use any vtable entries, before they are possibly
     set by a base class dtor, we don't have to setup the vtables,
     as we know that any base class dtor will set up any vtables
     it needs.  We avoid MI, because one base class dtor can do a
     virtual dispatch to an overridden function that would need to
     have a non-related vtable set up, we cannot avoid setting up
     vtables in that case.  We could change this to see if there
     is just one vtable.

     ??? In the destructor for a class, the vtables are set
     appropriately for that class.  There will be no non-related
     vtables.  jason 2001-12-11.  */
  if_stmt = begin_if_stmt ();

  /* If it is not safe to avoid setting up the vtables, then
     someone will change the condition to be boolean_true_node.  
     (Actually, for now, we do not have code to set the condition
     appropriately, so we just assume that we always need to
     initialize the vtables.)  */
  finish_if_stmt_cond (boolean_true_node, if_stmt);

  compound_stmt = begin_compound_stmt (/*has_no_scope=*/0);

  /* Make all virtual function table pointers in non-virtual base
     classes point to CURRENT_CLASS_TYPE's virtual function
     tables.  */
  initialize_vtbl_ptrs (current_class_ptr);

  finish_compound_stmt (/*has_no_scope=*/0, compound_stmt);
  finish_then_clause (if_stmt);
  finish_if_stmt ();

  /* And insert cleanups for our bases and members so that they
     will be properly destroyed if we throw.  */
  push_base_cleanups ();
}

/* At the end of every destructor we generate code to delete the object if
   necessary.  Do that now.  */

static void
finish_destructor_body ()
{
  tree exprstmt;

  /* Any return from a destructor will end up here; that way all base
     and member cleanups will be run when the function returns.  */
  add_stmt (build_stmt (LABEL_STMT, dtor_label));

  /* In a virtual destructor, we must call delete.  */
  if (DECL_VIRTUAL_P (current_function_decl))
    {
      tree if_stmt;
      tree virtual_size = cxx_sizeof (current_class_type);

      /* [class.dtor]

      At the point of definition of a virtual destructor (including
      an implicit definition), non-placement operator delete shall
      be looked up in the scope of the destructor's class and if
      found shall be accessible and unambiguous.  */
      exprstmt = build_op_delete_call
	(DELETE_EXPR, current_class_ptr, virtual_size,
	 LOOKUP_NORMAL | LOOKUP_SPECULATIVELY, NULL_TREE);

      if_stmt = begin_if_stmt ();
      finish_if_stmt_cond (build (BIT_AND_EXPR, integer_type_node,
				  current_in_charge_parm,
				  integer_one_node),
			   if_stmt);
      finish_expr_stmt (exprstmt);
      finish_then_clause (if_stmt);
      finish_if_stmt ();
    }
}

/* Do the necessary processing for the beginning of a function body, which
   in this case includes member-initializers, but not the catch clauses of
   a function-try-block.  Currently, this means opening a binding level
   for the member-initializers (in a ctor) and member cleanups (in a dtor).
   In other functions, this isn't necessary, but it doesn't hurt.  */

tree
begin_function_body ()
{
  tree stmt;

  if (processing_template_decl)
    /* Do nothing now.  */;
  else
    /* Always keep the BLOCK node associated with the outermost pair of
       curly braces of a function.  These are needed for correct
       operation of dwarfout.c.  */
    keep_next_level (1);

  stmt = begin_compound_stmt (0);
  COMPOUND_STMT_BODY_BLOCK (stmt) = 1;

  if (processing_template_decl)
    /* Do nothing now.  */;
  else if (DECL_CONSTRUCTOR_P (current_function_decl))
    begin_constructor_body ();
  else if (DECL_DESTRUCTOR_P (current_function_decl))
    begin_destructor_body ();

  return stmt;
}

/* Do the processing for the end of a function body.  Currently, this means
   closing out the cleanups for fully-constructed bases and members, and in
   the case of the destructor, deleting the object if desired.  Again, this
   is only meaningful for [cd]tors, since they are the only functions where
   there is a significant distinction between the main body and any
   function catch clauses.  Handling, say, main() return semantics here
   would be wrong, as flowing off the end of a function catch clause for
   main() would also need to return 0.  */

void
finish_function_body (compstmt)
     tree compstmt;
{
  /* Close the block.  */
  finish_compound_stmt (0, compstmt);

  if (processing_template_decl)
    /* Do nothing now.  */;
  else if (DECL_CONSTRUCTOR_P (current_function_decl))
    finish_constructor_body ();
  else if (DECL_DESTRUCTOR_P (current_function_decl))
    finish_destructor_body ();
}  

/* Finish up a function declaration and compile that function
   all the way to assembler language output.  The free the storage
   for the function definition.

   FLAGS is a bitwise or of the following values:
     2 - INCLASS_INLINE
       We just finished processing the body of an in-class inline
       function definition.  (This processing will have taken place
       after the class definition is complete.)  */

tree
finish_function (flags)
     int flags;
{
  register tree fndecl = current_function_decl;
  tree fntype, ctype = NULL_TREE;
  int inclass_inline = (flags & 2) != 0;
  int nested;

  /* When we get some parse errors, we can end up without a
     current_function_decl, so cope.  */
  if (fndecl == NULL_TREE)
    return error_mark_node;

  /* APPLE LOCAL begin improved vtable emission fsf candidate */
  if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fndecl)
      && DECL_VIRTUAL_P (fndecl)
      && !processing_template_decl)
    {
      tree fnclass = DECL_CONTEXT (fndecl);
      if (fndecl == CLASSTYPE_KEY_METHOD (fnclass))
 	{
 	  /* If the function we thought was the key method turns out
 	     to be inline, then the class has no key method.  (This
	     isn't what the C++ ABI document calls for, but it's what
	     we did in 3.1) */
 	  if (DECL_DECLARED_INLINE_P (fndecl))
 	    CLASSTYPE_KEY_METHOD (fnclass) = NULL_TREE;
	  keyed_classes = tree_cons (NULL_TREE, fnclass, keyed_classes);
	}
    }
  /* APPLE LOCAL end improved vtable emission fsf candidate */

  /* APPLE LOCAL begin indexing dpatel */
  if (flag_gen_index)
    {
       /* Do not generate indexing info for compiler generated
          and template related stuff.  */
       if (!processing_template_decl 
           && !DECL_USE_TEMPLATE (fndecl)
           && !DECL_ARTIFICIAL (fndecl)
	   && !DECL_BASE_DESTRUCTOR_P (fndecl) 
	   && !DECL_COMPLETE_DESTRUCTOR_P (fndecl)
	   && !DECL_BASE_CONSTRUCTOR_P (fndecl)
	   && !DECL_COMPLETE_CONSTRUCTOR_P (fndecl))
         {
            int info_tag;
            if (DECL_STATIC_FUNCTION_P (fndecl))
              info_tag = INDEX_CLASS_METHOD_END;
            else if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fndecl))
              info_tag = INDEX_INSTANCE_METHOD_END;
            else 
              info_tag = INDEX_FUNCTION_END;
            gen_indexing_info (info_tag, NULL, lineno);
         }
    }
  /* APPLE LOCAL end indexing dpatel */

  nested = function_depth > 1;
  fntype = TREE_TYPE (fndecl);

  /*  TREE_READONLY (fndecl) = 1;
      This caused &foo to be of type ptr-to-const-function
      which then got a warning when stored in a ptr-to-function variable.  */

  my_friendly_assert (building_stmt_tree (), 20000911);

  finish_fname_decls ();
  
  /* For a cloned function, we've already got all the code we need;
     there's no need to add any extra bits.  */
  if (!DECL_CLONED_FUNCTION_P (fndecl))
    {
      if (DECL_MAIN_P (current_function_decl))
	{
	  /* Make it so that `main' always returns 0 by default.  */
#if VMS_TARGET
	  finish_return_stmt (integer_one_node);
#else
	  finish_return_stmt (integer_zero_node);
#endif
	}

      /* Finish dealing with exception specifiers.  */
      if (flag_exceptions && !processing_template_decl
	  && flag_enforce_eh_specs
	  && TYPE_RAISES_EXCEPTIONS (TREE_TYPE (current_function_decl)))
	finish_eh_spec_block (TYPE_RAISES_EXCEPTIONS
			      (TREE_TYPE (current_function_decl)),
			      current_eh_spec_block);
    }

  /* If we're saving up tree structure, tie off the function now.  */
  finish_stmt_tree (&DECL_SAVED_TREE (fndecl));

  /* This must come after expand_function_end because cleanups might
     have declarations (from inline functions) that need to go into
     this function's blocks.  */
  
  /* If the current binding level isn't the outermost binding level
     for this function, either there is a bug, or we have experienced
     syntax errors and the statement tree is malformed.  */
  if (current_binding_level->parm_flag != 1)
    {
      /* Make sure we have already experienced errors.  */
      if (errorcount == 0)
	abort ();

      /* Throw away the broken statement tree and extra binding
         levels.  */
      DECL_SAVED_TREE (fndecl) = build_stmt (COMPOUND_STMT, NULL_TREE);

      while (current_binding_level->parm_flag != 1)
	{
	  if (current_binding_level->parm_flag == 2)
	    pop_nested_class ();
	  else
	    poplevel (0, 0, 0);
	}
    }
  poplevel (1, 0, 1);

  /* Set up the named return value optimization, if we can.  Here, we
     eliminate the copy from the nrv into the RESULT_DECL and any cleanup
     for the nrv.  genrtl_start_function and declare_return_variable
     handle making the nrv and RESULT_DECL share space.  */
  if (current_function_return_value)
    {
      tree r = current_function_return_value;
      /* This is only worth doing for fns that return in memory--and
	 simpler, since we don't have to worry about promoted modes.  */
      if (r != error_mark_node
	  && aggregate_value_p (TREE_TYPE (TREE_TYPE (fndecl))))
	{
	  DECL_ALIGN (r) = DECL_ALIGN (DECL_RESULT (fndecl));
	  walk_tree_without_duplicates (&DECL_SAVED_TREE (fndecl),
					nullify_returns_r, r);
	}
      else
	/* Clear it so genrtl_start_function and declare_return_variable
	   know we're not optimizing.  */
	current_function_return_value = NULL_TREE;
    }

  /* Remember that we were in class scope.  */
  if (current_class_name)
    ctype = current_class_type;

  /* Must mark the RESULT_DECL as being in this function.  */
  DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;

  /* Set the BLOCK_SUPERCONTEXT of the outermost function scope to point
     to the FUNCTION_DECL node itself.  */
  BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;

  /* Save away current state, if appropriate.  */
  if (!processing_template_decl)
    save_function_data (fndecl);

  /* If this function calls `setjmp' it cannot be inlined.  When
     `longjmp' is called it is not guaranteed to restore the value of
     local variables that have been modified since the call to
     `setjmp'.  So, if were to inline this function into some caller
     `c', then when we `longjmp', we might not restore all variables
     in `c'.  (It might seem, at first blush, that there's no way for
     this function to modify local variables in `c', but their
     addresses may have been stored somewhere accessible to this
     function.)  */
  if (!processing_template_decl && calls_setjmp_p (fndecl))
    DECL_UNINLINABLE (fndecl) = 1;

  /* Complain if there's just no return statement.  */
  if (warn_return_type
      && !processing_template_decl
      && TREE_CODE (TREE_TYPE (fntype)) != VOID_TYPE
      && !current_function_returns_value && !current_function_returns_null
      /* Don't complain if we abort or throw.  */
      && !current_function_returns_abnormally
      && !DECL_NAME (DECL_RESULT (fndecl))
      /* Normally, with -Wreturn-type, flow will complain.  Unless we're an
	 inline function, as we might never be compiled separately.  */
      && DECL_INLINE (fndecl))
    warning ("no return statement in function returning non-void");
    
  /* Clear out memory we no longer need.  */
  free_after_parsing (cfun);
  /* Since we never call rest_of_compilation, we never clear
     CFUN.  Do so explicitly.  */
  free_after_compilation (cfun);
  cfun = NULL;

  /* If this is an in-class inline definition, we may have to pop the
     bindings for the template parameters that we added in
     maybe_begin_member_template_processing when start_function was
     called.  */
  if (inclass_inline)
    maybe_end_member_template_processing ();

  /* Leave the scope of the class.  */
  if (ctype)
    pop_nested_class ();

  --function_depth;

  /* Clean up.  */
  if (! nested)
    /* Let the error reporting routines know that we're outside a
       function.  For a nested function, this value is used in
       cxx_pop_function_context and then reset via pop_function_context.  */
    current_function_decl = NULL_TREE;

  return fndecl;
}

/* Create the FUNCTION_DECL for a function definition.
   DECLSPECS and DECLARATOR are the parts of the declaration;
   they describe the return type and the name of the function,
   but twisted together in a fashion that parallels the syntax of C.

   This function creates a binding context for the function body
   as well as setting up the FUNCTION_DECL in current_function_decl.

   Returns a FUNCTION_DECL on success.

   If the DECLARATOR is not suitable for a function (it defines a datum
   instead), we return 0, which tells yyparse to report a parse error.

   May return void_type_node indicating that this method is actually
   a friend.  See grokfield for more details.

   Came here with a `.pushlevel' .

   DO NOT MAKE ANY CHANGES TO THIS CODE WITHOUT MAKING CORRESPONDING
   CHANGES TO CODE IN `grokfield'.  */

tree
start_method (declspecs, declarator, attrlist)
     tree declarator, declspecs, attrlist;
{
  tree fndecl = grokdeclarator (declarator, declspecs, MEMFUNCDEF, 0,
				&attrlist);

  /* Something too ugly to handle.  */
  if (fndecl == NULL_TREE)
    return NULL_TREE;

  if (attrlist)
    cplus_decl_attributes (&fndecl, attrlist, 0);

  /* Pass friends other than inline friend functions back.  */
  if (fndecl == void_type_node)
    return fndecl;

  if (TREE_CODE (fndecl) != FUNCTION_DECL)
    /* Not a function, tell parser to report parse error.  */
    return NULL_TREE;

  if (DECL_IN_AGGR_P (fndecl))
    {
      if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (fndecl)) != current_class_type)
	{
	  if (DECL_CONTEXT (fndecl)
	      && TREE_CODE( DECL_CONTEXT (fndecl)) != NAMESPACE_DECL)
	    error ("`%D' is already defined in class `%T'", fndecl,
	              DECL_CONTEXT (fndecl));
	}
      return void_type_node;
    }

  check_template_shadow (fndecl);

  DECL_DECLARED_INLINE_P (fndecl) = 1;

  DID_INLINE_FUNC (fndecl) = 0;
  if (flag_default_inline)
    DECL_INLINE (fndecl) = 1;

  /* We process method specializations in finish_struct_1.  */
  if (processing_template_decl && !DECL_TEMPLATE_SPECIALIZATION (fndecl))
    fndecl = push_template_decl (fndecl);

  if (! DECL_FRIEND_P (fndecl))
    {
      if (TREE_CHAIN (fndecl))
	{
	  fndecl = copy_node (fndecl);
	  TREE_CHAIN (fndecl) = NULL_TREE;
	}
      grok_special_member_properties (fndecl);
    }

  cp_finish_decl (fndecl, NULL_TREE, NULL_TREE, 0);

  /* Make a place for the parms */
  pushlevel (0);
  current_binding_level->parm_flag = 1;

  DECL_IN_AGGR_P (fndecl) = 1;
  return fndecl;
}

/* Go through the motions of finishing a function definition.
   We don't compile this method until after the whole class has
   been processed.

   FINISH_METHOD must return something that looks as though it
   came from GROKFIELD (since we are defining a method, after all).

   This is called after parsing the body of the function definition.
   STMTS is the chain of statements that makes up the function body.

   DECL is the ..._DECL that `start_method' provided.  */

tree
finish_method (decl)
     tree decl;
{
  register tree fndecl = decl;
  tree old_initial;

  register tree link;

  if (decl == void_type_node)
    return decl;

  old_initial = DECL_INITIAL (fndecl);

  /* Undo the level for the parms (from start_method).
     This is like poplevel, but it causes nothing to be
     saved.  Saving information here confuses symbol-table
     output routines.  Besides, this information will
     be correctly output when this method is actually
     compiled.  */

  /* Clear out the meanings of the local variables of this level;
     also record in each decl which block it belongs to.  */

  for (link = current_binding_level->names; link; link = TREE_CHAIN (link))
    {
      if (DECL_NAME (link) != NULL_TREE)
	pop_binding (DECL_NAME (link), link);
      my_friendly_assert (TREE_CODE (link) != FUNCTION_DECL, 163);
      DECL_CONTEXT (link) = NULL_TREE;
    }

  poplevel (0, 0, 0);

  DECL_INITIAL (fndecl) = old_initial;

  /* We used to check if the context of FNDECL was different from
     current_class_type as another way to get inside here.  This didn't work
     for String.cc in libg++.  */
  if (DECL_FRIEND_P (fndecl))
    {
      CLASSTYPE_INLINE_FRIENDS (current_class_type)
	= tree_cons (NULL_TREE, fndecl, CLASSTYPE_INLINE_FRIENDS (current_class_type));
      decl = void_type_node;
    }

  return decl;
}


/* VAR is a VAR_DECL.  If its type is incomplete, remember VAR so that
   we can lay it out later, when and if its type becomes complete.  */

void
maybe_register_incomplete_var (var)
     tree var;
{
  my_friendly_assert (TREE_CODE (var) == VAR_DECL, 20020406);

  /* Keep track of variables with incomplete types.  */
  if (!processing_template_decl && TREE_TYPE (var) != error_mark_node 
      && DECL_EXTERNAL (var))
    {
      tree inner_type = TREE_TYPE (var);
      
      while (TREE_CODE (inner_type) == ARRAY_TYPE)
	inner_type = TREE_TYPE (inner_type);
      inner_type = TYPE_MAIN_VARIANT (inner_type);
      
      if ((!COMPLETE_TYPE_P (inner_type) && CLASS_TYPE_P (inner_type))
	  /* RTTI TD entries are created while defining the type_info.  */
	  || (TYPE_LANG_SPECIFIC (inner_type)
	      && TYPE_BEING_DEFINED (inner_type)))
	incomplete_vars = tree_cons (inner_type, var, incomplete_vars);
    }
}

/* Called when a class type (given by TYPE) is defined.  If there are
   any existing VAR_DECLs whose type hsa been completed by this
   declaration, update them now.  */

void
complete_vars (type)
     tree type;
{
  tree *list = &incomplete_vars;

  my_friendly_assert (CLASS_TYPE_P (type), 20020406);
  while (*list) 
    {
      if (same_type_p (type, TREE_PURPOSE (*list)))
	{
	  tree var = TREE_VALUE (*list);
	  /* Complete the type of the variable.  The VAR_DECL itself
	     will be laid out in expand_expr.  */
	  complete_type (TREE_TYPE (var));
	  /* Remove this entry from the list.  */
	  *list = TREE_CHAIN (*list);
	}
      else
	list = &TREE_CHAIN (*list);
    }
}

/* If DECL is of a type which needs a cleanup, build that cleanup
   here.  */

tree
cxx_maybe_build_cleanup (decl)
     tree decl;
{
  tree type = TREE_TYPE (decl);

  if (type != error_mark_node && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
    {
      int flags = LOOKUP_NORMAL|LOOKUP_DESTRUCTOR;
      tree rval;
      /* APPLE LOCAL  begin double destructor  turly 20020214  */
      special_function_kind dtor = sfk_complete_destructor;
      if (flag_apple_kext
	  && has_apple_kext_compatibility_attr_p (type))
	{
	  /* If we have a trivial operator delete (), we can go ahead and
	     just use the deleting destructor, sfk_deleting_destructor.  */

	  if (! has_empty_operator_delete_p (type) || pedantic)
	    {
	      cp_warning_at ("'%D' is an instance of a class which does "
			 "not allow global or stack-based objects; it "
			 "does not have an empty `operator delete', and "
			 "so it will ** NOT ** be destructed.", decl);
	      return 0;
	    }
	  dtor = sfk_deleting_destructor;
	}
      /* APPLE LOCAL  end double destructor  turly 20020214  */
 

      if (TREE_CODE (type) == ARRAY_TYPE)
	rval = decl;
      else
	{
	  cxx_mark_addressable (decl);
	  rval = build_unary_op (ADDR_EXPR, decl, 0);
	}

      /* Optimize for space over speed here.  */
      if (! TYPE_USES_VIRTUAL_BASECLASSES (type)
	  || flag_expensive_optimizations)
	flags |= LOOKUP_NONVIRTUAL;

      rval = build_delete (TREE_TYPE (rval), rval,
			   /* APPLE LOCAL  double destructor  */
			   dtor, flags, 0);

      if (TYPE_USES_VIRTUAL_BASECLASSES (type)
	  && ! TYPE_HAS_DESTRUCTOR (type))
	rval = build_compound_expr (tree_cons (NULL_TREE, rval,
					       build_tree_list (NULL_TREE, build_vbase_delete (type, decl))));

      return rval;
    }
  return NULL_TREE;
}

/* When a stmt has been parsed, this function is called.  */

void
finish_stmt ()
{
  /* Always assume this statement was not an expression statement.  If
     it actually was an expression statement, its our callers
     responsibility to fix this up.  */
  last_expr_type = NULL_TREE;
}

/* DECL was originally constructed as a non-static member function,
   but turned out to be static.  Update it accordingly.  */

void
revert_static_member_fn (decl)
     tree decl;
{
  tree tmp;
  tree function = TREE_TYPE (decl);
  tree args = TYPE_ARG_TYPES (function);

  if (cp_type_quals (TREE_TYPE (TREE_VALUE (args)))
      != TYPE_UNQUALIFIED)
    error ("static member function `%#D' declared with type qualifiers",
	      decl);

  args = TREE_CHAIN (args);
  tmp = build_function_type (TREE_TYPE (function), args);
  tmp = build_qualified_type (tmp, cp_type_quals (function));
  tmp = build_exception_variant (tmp,
				 TYPE_RAISES_EXCEPTIONS (function));
  TREE_TYPE (decl) = tmp;
  if (DECL_ARGUMENTS (decl))
    DECL_ARGUMENTS (decl) = TREE_CHAIN (DECL_ARGUMENTS (decl));
  DECL_STATIC_FUNCTION_P (decl) = 1;
}

/* Initialize the variables used during compilation of a C++
   function.  */

void
cxx_push_function_context (f)
     struct function *f;
{
  struct language_function *p
    = ((struct language_function *)
       ggc_alloc_cleared (sizeof (struct language_function)));
  f->language = p;

  /* It takes an explicit call to expand_body to generate RTL for a
     function.  */
  expanding_p = 0;

  /* Whenever we start a new function, we destroy temporaries in the
     usual way.  */
  current_stmt_tree ()->stmts_are_full_exprs_p = 1;
}

/* Free the language-specific parts of F, now that we've finished
   compiling the function.  */

void
cxx_pop_function_context (f)
     struct function *f;
{
  f->language = 0;
}

/* Return which tree structure is used by T, or TS_CP_GENERIC if T is
   one of the language-independent trees.  */

enum cp_tree_node_structure_enum
cp_tree_node_structure (t)
     union lang_tree_node *t;
{
  switch (TREE_CODE (&t->generic))
    {
    case DEFAULT_ARG:		return TS_CP_IDENTIFIER;
    case IDENTIFIER_NODE:	return TS_CP_IDENTIFIER;
    case OVERLOAD:		return TS_CP_OVERLOAD;
    case TEMPLATE_PARM_INDEX:	return TS_CP_TPI;
    case PTRMEM_CST:		return TS_CP_PTRMEM;
    case WRAPPER:		return TS_CP_WRAPPER;
    case SRCLOC:		return TS_CP_SRCLOC;
    default:			return TS_CP_GENERIC;
    }
}

/* Return the IDENTIFIER_GLOBAL_VALUE of T, for use in common code, since
   the definition of IDENTIFIER_GLOBAL_VALUE is different for C and C++.  */

tree
identifier_global_value	(t)
     tree t;
{
  return IDENTIFIER_GLOBAL_VALUE (t);
}

/* Build the void_list_node (void_type_node having been created).  */
tree
build_void_list_node ()
{
  tree t = build_tree_list (NULL_TREE, void_type_node);
  TREE_PARMLIST (t) = 1;
  return t;
}

static int
cp_missing_noreturn_ok_p (decl)
     tree decl;
{
  /* A missing noreturn is ok for the `main' function.  */
  return DECL_MAIN_P (decl);
}

#include "gt-cp-decl.h"
/* APPLE LOCAL Objective-C++ */
/* Move gtype-cp.h to cp-lang.c.  */