dsc_extractor.cpp   [plain text]


/* -*- mode: C++; c-basic-offset: 4; tab-width: 4 -*- 
 *
 * Copyright (c) 2010 Apple Inc. All rights reserved.
 *
 * @APPLE_LICENSE_HEADER_START@
 * 
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this
 * file.
 * 
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 * 
 * @APPLE_LICENSE_HEADER_END@
 */

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/stat.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/mman.h>
#include <sys/syslimits.h>
#include <libkern/OSByteOrder.h>
#include <mach-o/fat.h>
#include <mach-o/arch.h>
#include <mach-o/loader.h>
#include <Availability.h>

#define NO_ULEB 
#include "Architectures.hpp"
#include "MachOFileAbstraction.hpp"

#include "dsc_iterator.h"
#include "dsc_extractor.h"

#include <vector>
#include <map>
#include <ext/hash_map>
#include <algorithm>
#include <dispatch/dispatch.h>

struct seg_info
{
				seg_info(const char* n, uint64_t o, uint64_t s) 
					: segName(n), offset(o), sizem(s) { }
	const char* segName;
	uint64_t	offset;
	uint64_t	sizem;
};

class CStringEquals {
public:
	bool operator()(const char* left, const char* right) const { return (strcmp(left, right) == 0); }
};
typedef __gnu_cxx::hash_map<const char*, std::vector<seg_info>, __gnu_cxx::hash<const char*>, CStringEquals> NameToSegments;


template <typename A>
int optimize_linkedit(macho_header<typename A::P>* mh, const void* mapped_cache, uint64_t* newSize) 
{
	typedef typename A::P P;
	typedef typename A::P::E E;
    typedef typename A::P::uint_t pint_t;

	// update header flags
	mh->set_flags(mh->flags() & 0x7FFFFFFF); // remove in-cache bit
	
	// update load commands
	uint64_t cumulativeFileSize = 0;
	const macho_load_command<P>* const cmds = (macho_load_command<P>*)((uint8_t*)mh + sizeof(macho_header<P>));
	const uint32_t cmd_count = mh->ncmds();
	const macho_load_command<P>* cmd = cmds;
	macho_segment_command<P>* linkEditSegCmd = NULL;
	macho_symtab_command<P>* symtab = NULL;
	macho_dysymtab_command<P>*	dynamicSymTab = NULL;
	for (uint32_t i = 0; i < cmd_count; ++i) {
		if ( cmd->cmd() == macho_segment_command<P>::CMD ) {
			// update segment/section file offsets
			macho_segment_command<P>* segCmd = (macho_segment_command<P>*)cmd;
			segCmd->set_fileoff(cumulativeFileSize);
			macho_section<P>* const sectionsStart = (macho_section<P>*)((char*)segCmd + sizeof(macho_segment_command<P>));
			macho_section<P>* const sectionsEnd = &sectionsStart[segCmd->nsects()];
			for(macho_section<P>* sect = sectionsStart; sect < sectionsEnd; ++sect) {
				if ( sect->offset() != 0 )
					sect->set_offset(cumulativeFileSize+sect->addr()-segCmd->vmaddr());
			}
			if ( strcmp(segCmd->segname(), "__LINKEDIT") == 0 ) {
				linkEditSegCmd = segCmd;
			}
			cumulativeFileSize += segCmd->filesize();
		}
		else if ( cmd->cmd() == LC_DYLD_INFO_ONLY ) {
			// zero out all dyld info
			macho_dyld_info_command<P>* dyldInfo = (macho_dyld_info_command<P>*)cmd;
			dyldInfo->set_rebase_off(0);
			dyldInfo->set_rebase_size(0);
			dyldInfo->set_bind_off(0);
			dyldInfo->set_bind_size(0);
			dyldInfo->set_weak_bind_off(0);
			dyldInfo->set_weak_bind_size(0);
			dyldInfo->set_lazy_bind_off(0);
			dyldInfo->set_lazy_bind_size(0);
			dyldInfo->set_export_off(0);
			dyldInfo->set_export_size(0);
		}
		else if ( cmd->cmd() == LC_SYMTAB ) {
			symtab = (macho_symtab_command<P>*)cmd;
		}
		else if ( cmd->cmd() == LC_DYSYMTAB ) {
			dynamicSymTab = (macho_dysymtab_command<P>*)cmd;
		}
		cmd = (const macho_load_command<P>*)(((uint8_t*)cmd)+cmd->cmdsize());
	}
	
	// rebuild symbol table
	if ( linkEditSegCmd == NULL ) {
		fprintf(stderr, "__LINKEDIT not found\n");
		return -1;
	}
	if ( symtab == NULL ) {
		fprintf(stderr, "LC_SYMTAB not found\n");
		return -1;
	}
	if ( dynamicSymTab == NULL ) {
		fprintf(stderr, "LC_DYSYMTAB not found\n");
		return -1;
	}
	// copy symbol entries and strings from original cache file to new mapped dylib file
	const uint32_t newSymTabOffset = linkEditSegCmd->fileoff();
	const uint32_t newIndSymTabOffset = newSymTabOffset + symtab->nsyms()*sizeof(macho_nlist<P>);
	const uint32_t newStringPoolOffset = newIndSymTabOffset + dynamicSymTab->nindirectsyms()*sizeof(uint32_t);
	macho_nlist<P>* const newSymTabStart = (macho_nlist<P>*)(((uint8_t*)mh) + newSymTabOffset);
	char* const newStringPoolStart = (char*)mh + newStringPoolOffset;
	uint32_t* newIndSymTab = (uint32_t*)((char*)mh + newIndSymTabOffset);
	const uint32_t* mergedIndSymTab = (uint32_t*)((char*)mapped_cache + dynamicSymTab->indirectsymoff());
	const macho_nlist<P>* const mergedSymTabStart = (macho_nlist<P>*)(((uint8_t*)mapped_cache) + symtab->symoff());
	const macho_nlist<P>* const mergedSymTabend = &mergedSymTabStart[symtab->nsyms()];
	const char* mergedStringPoolStart = (char*)mapped_cache + symtab->stroff();
	macho_nlist<P>* t = newSymTabStart;
	int poolOffset = 0;
	newStringPoolStart[poolOffset++] = '\0'; // first pool entry is always empty string
	for (const macho_nlist<P>* s = mergedSymTabStart; s != mergedSymTabend; ++s) {
		*t = *s;
		t->set_n_strx(poolOffset);
		strcpy(&newStringPoolStart[poolOffset], &mergedStringPoolStart[s->n_strx()]);
		poolOffset += (strlen(&newStringPoolStart[poolOffset]) + 1);
		++t;
	}
	// pointer align string pool size
	while ( (poolOffset % sizeof(pint_t)) != 0 )
		++poolOffset; 
	// copy indirect symbol table
	memcpy(newIndSymTab, mergedIndSymTab, dynamicSymTab->nindirectsyms()*sizeof(uint32_t));
	
	// update load commands
	symtab->set_symoff(newSymTabOffset);
	symtab->set_stroff(newStringPoolOffset);
	symtab->set_strsize(poolOffset);
	dynamicSymTab->set_extreloff(0);
	dynamicSymTab->set_nextrel(0);
	dynamicSymTab->set_locreloff(0);
	dynamicSymTab->set_nlocrel(0);
	dynamicSymTab->set_indirectsymoff(newIndSymTabOffset);
	linkEditSegCmd->set_filesize(symtab->stroff()+symtab->strsize() - linkEditSegCmd->fileoff());
	linkEditSegCmd->set_vmsize( (linkEditSegCmd->filesize()+4095) & (-4096) );
	
	// return new size
	*newSize = (symtab->stroff()+symtab->strsize()+4095) & (-4096);
	
	return 0;
}



static void make_dirs(const char* file_path) 
{
	//printf("make_dirs(%s)\n", file_path);
	char dirs[strlen(file_path)+1];
	strcpy(dirs, file_path);
	char* lastSlash = strrchr(dirs, '/');
	if ( lastSlash == NULL )
		return;
	lastSlash[1] = '\0';
	struct stat stat_buf;
	if ( stat(dirs, &stat_buf) != 0 ) {
		const char* afterSlash = &dirs[1];
		char* slash;
		while ( (slash = strchr(afterSlash, '/')) != NULL ) {
			*slash = '\0';
			::mkdir(dirs, S_IRWXU | S_IRGRP|S_IXGRP | S_IROTH|S_IXOTH);
			//printf("mkdir(%s)\n", dirs);
			*slash = '/';
			afterSlash = slash+1;
		}
	}
}



template <typename A>
size_t dylib_maker(const void* mapped_cache, std::vector<uint8_t> &dylib_data, const std::vector<seg_info>& segments) {		
	typedef typename A::P P;
    
    size_t  additionalSize  = 0;
	for(std::vector<seg_info>::const_iterator it=segments.begin(); it != segments.end(); ++it) {
		additionalSize                          += it->sizem;
	}
    
    dylib_data.reserve(dylib_data.size() + additionalSize);
    
    uint32_t                nfat_archs          = 0;
	uint32_t                offsetInFatFile     = 4096;
    uint8_t                 *base_ptr           = &dylib_data.front();
    
#define FH reinterpret_cast<fat_header*>(base_ptr)
#define FA reinterpret_cast<fat_arch*>(base_ptr + (8 + (nfat_archs - 1) * sizeof(fat_arch)))
    
    if(dylib_data.size() >= 4096 && OSSwapBigToHostInt32(FH->magic) == FAT_MAGIC) {
		// have fat header, append new arch to end
        nfat_archs                              = OSSwapBigToHostInt32(FH->nfat_arch);
		offsetInFatFile                         = OSSwapBigToHostInt32(FA->offset) + OSSwapBigToHostInt32(FA->size);
    }
    
    dylib_data.resize(offsetInFatFile);
    base_ptr                                    = &dylib_data.front();
    
    FH->magic                                   = OSSwapHostToBigInt32(FAT_MAGIC);
    FH->nfat_arch                               = OSSwapHostToBigInt32(++nfat_archs);
    
    FA->cputype                                 = 0; // filled in later
    FA->cpusubtype                              = 0; // filled in later
    FA->offset                                  = OSSwapHostToBigInt32(offsetInFatFile);
    FA->size                                    = 0; // filled in later
    FA->align                                   = OSSwapHostToBigInt32(12);
    
	// Write regular segments into the buffer
	uint32_t                totalSize           = 0;
    
	for( std::vector<seg_info>::const_iterator it=segments.begin(); it != segments.end(); ++it) {
        
        if(strcmp(it->segName, "__TEXT") == 0 ) {
            const macho_header<P>   *textMH     = reinterpret_cast<macho_header<P>*>((uint8_t*)mapped_cache+it->offset);
            FA->cputype                         = OSSwapHostToBigInt32(textMH->cputype()); 
            FA->cpusubtype                      = OSSwapHostToBigInt32(textMH->cpusubtype());
            
            // if this cputype/subtype already exist in fat header, then return immediately
            for(uint32_t i=0; i < nfat_archs-1; ++i) {
                fat_arch            *afa        = reinterpret_cast<fat_arch*>(base_ptr+8)+i;
                
                if(   afa->cputype == FA->cputype
                   && afa->cpusubtype == FA->cpusubtype) {
                    fprintf(stderr, "arch already exists in fat dylib\n");
                    dylib_data.resize(offsetInFatFile);
                    return offsetInFatFile;
                }
            }
		}
        
		//printf("segName=%s, offset=0x%llX, size=0x%0llX\n", it->segName, it->offset, it->sizem);
        std::copy(((uint8_t*)mapped_cache)+it->offset, ((uint8_t*)mapped_cache)+it->offset+it->sizem, std::back_inserter(dylib_data));
        base_ptr                                = &dylib_data.front();
        totalSize                               += it->sizem;
	}
    
	FA->size                                    = OSSwapHostToBigInt32(totalSize); 
    
	// optimize linkedit
	uint64_t                newSize             = dylib_data.size();
	optimize_linkedit<A>(((macho_header<P>*)(base_ptr+offsetInFatFile)), mapped_cache, &newSize);
	
	// update fat header with new file size
    dylib_data.resize(offsetInFatFile+newSize);
    base_ptr                                    = &dylib_data.front();
	FA->size                                    = OSSwapHostToBigInt32(newSize);
#undef FH
#undef FA
	return offsetInFatFile;
} 


extern int dyld_shared_cache_extract_dylibs_progress(const char* shared_cache_file_path, const char* extraction_root_path,
													void (^progress)(unsigned current, unsigned total))
{
	struct stat statbuf;
	if (stat(shared_cache_file_path, &statbuf)) {
		fprintf(stderr, "Error: stat failed for dyld shared cache at %s\n", shared_cache_file_path);
		return -1;
	}
		
	int cache_fd = open(shared_cache_file_path, O_RDONLY);
	if (cache_fd < 0) {
		fprintf(stderr, "Error: failed to open shared cache file at %s\n", shared_cache_file_path);
		return -1;
	}
	
	void* mapped_cache = mmap(NULL, statbuf.st_size, PROT_READ, MAP_PRIVATE, cache_fd, 0);
	if (mapped_cache == MAP_FAILED) {
		fprintf(stderr, "Error: mmap() for shared cache at %s failed, errno=%d\n", shared_cache_file_path, errno);
		return -1;
	}
    
    close(cache_fd);
    
	// instantiate arch specific dylib maker
    size_t (*dylib_create_func)(const void*, std::vector<uint8_t>&, const std::vector<seg_info>&) = NULL;
	     if ( strcmp((char*)mapped_cache, "dyld_v1    i386") == 0 ) 
		dylib_create_func = dylib_maker<x86>;
	else if ( strcmp((char*)mapped_cache, "dyld_v1  x86_64") == 0 ) 
		dylib_create_func = dylib_maker<x86_64>;
	else if ( strcmp((char*)mapped_cache, "dyld_v1     ppc") == 0 ) 
		dylib_create_func = dylib_maker<ppc>;
	else if ( strcmp((char*)mapped_cache, "dyld_v1   armv5") == 0 ) 
		dylib_create_func = dylib_maker<arm>;
	else if ( strcmp((char*)mapped_cache, "dyld_v1   armv6") == 0 ) 
		dylib_create_func = dylib_maker<arm>;
	else if ( strcmp((char*)mapped_cache, "dyld_v1   armv7") == 0 ) 
		dylib_create_func = dylib_maker<arm>;
	else {
		fprintf(stderr, "Error: unrecognized dyld shared cache magic.\n");
        munmap(mapped_cache, statbuf.st_size);
		return -1;
	}

	// iterate through all images in cache and build map of dylibs and segments
	__block NameToSegments map;
	dyld_shared_cache_iterate_segments_with_slide(mapped_cache, 
		^(const char* dylib, const char* segName, uint64_t offset, uint64_t sizem, 
							uint64_t mappedddress, uint64_t slide) {
			map[dylib].push_back(seg_info(segName, offset, sizem));
		});

	// for each dylib instantiate a dylib file
    dispatch_group_t        group               = dispatch_group_create();
    dispatch_semaphore_t    sema                = dispatch_semaphore_create(4);
    dispatch_queue_t        process_queue       = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_LOW, 0);
    dispatch_queue_t        writer_queue        = dispatch_queue_create("dyld writer queue", 0);
    
	__block int             cumulativeResult    = 0;
	__block unsigned        count               = 0;
    
	for ( NameToSegments::iterator it = map.begin(); it != map.end(); ++it) {
        dispatch_group_async(group, process_queue, ^{
            dispatch_semaphore_wait(sema, DISPATCH_TIME_FOREVER);
            
            char    dylib_path[PATH_MAX];
            strcpy(dylib_path, extraction_root_path);
            strcat(dylib_path, "/");
            strcat(dylib_path, it->first);
            
            //printf("%s with %lu segments\n", dylib_path, segments.size());
            // make sure all directories in this path exist
            make_dirs(dylib_path);
            
            // open file, create if does not already exist
            int fd = ::open(dylib_path, O_CREAT | O_EXLOCK | O_RDWR, 0644);
            if ( fd == -1 ) {
                fprintf(stderr, "can't open or create dylib file %s, errnor=%d\n", dylib_path, errno);
                cumulativeResult    = -1;
                return;
            }
            
            struct stat statbuf;
            if (fstat(fd, &statbuf)) {
                fprintf(stderr, "Error: stat failed for dyld file %s, errnor=%d\n", dylib_path, errno);
                close(fd);
                cumulativeResult    = -1;
                return;
            }
            
            std::vector<uint8_t> *vec   = new std::vector<uint8_t>(statbuf.st_size);
            if(pread(fd, &vec->front(), vec->size(), 0) != (long)vec->size()) {
                fprintf(stderr, "can't read dylib file %s, errnor=%d\n", dylib_path, errno);
                close(fd);
                cumulativeResult    = -1;
                return;
            }
            
            const size_t    offset  = dylib_create_func(mapped_cache, *vec, it->second);
            
            dispatch_group_async(group, writer_queue, ^{
                progress(count++, map.size());
                
                if(offset != vec->size()) {
                    //Write out the first page, and everything after offset
                    if(   pwrite(fd, &vec->front(), 4096, 0) == -1 
                       || pwrite(fd, &vec->front() + offset, vec->size() - offset, offset) == -1) {
                        fprintf(stderr, "error writing, errnor=%d\n", errno);
                        cumulativeResult    = -1;
                    }
                }
                
                delete vec;
                close(fd);
                dispatch_semaphore_signal(sema);
            });
        });
	}
    
    dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
    dispatch_release(group);
    dispatch_release(writer_queue);
    
    munmap(mapped_cache, statbuf.st_size);
	return cumulativeResult;
}



int dyld_shared_cache_extract_dylibs(const char* shared_cache_file_path, const char* extraction_root_path)
{
	return dyld_shared_cache_extract_dylibs_progress(shared_cache_file_path, extraction_root_path, 
													^(unsigned , unsigned) {} );
}


#if 0 
int main(int argc, const char* argv[])
{
	if ( argc != 3 ) {
		fprintf(stderr, "usage: dsc_extractor <path-to-cache-file> <path-to-device-dir>\n");
		return 1;
	}
		
	int result = dyld_shared_cache_extract_dylibs_progress(argv[1], argv[2], ^(unsigned c, unsigned total) { printf("%d/%d\n", c, total); } );
	fprintf(stderr, "dyld_shared_cache_extract_dylibs_progress() => %d\n", result);
	return 0;
}
#endif