
libcurl-multi(5) libcurl multi interface libcurl-multi(5)

NAME
libcurl-multi − how to use the multi interface

DESCRIPTION
This is an overview on how to use the libcurl multi interface in your C programs. There are specific man
pages for each function mentioned in here. There’s also the libcurl-the-guide document for a complete tuto-
rial to programming with libcurl and thelibcurl(3) man page for an overview of the libcurl easy interface.

All functions in the multi interface are prefixed with curl_multi.

PLEASE NOTICE
The multi interface is a rather new member of the libcurl family. It has not yet been very widely used. It
may still be a few more bugs lurking in there than we are used to. That said, it might also just work in every
aspect you try it. Please report all bugs and oddities you see.

OBJECTIVES
The multi interface introduces several new abilities that the easy interface refuses to offer. They are mainly:

1. Enable a "pull" interface. The application that uses libcurl decides where and when to ask libcurl to
get/send data.

2. Enable multiple simultaneous transfers in the same thread without making it complicated for the applica-
tion.

3. Enable the application to select() on its own file descriptors and curl’s file descriptors simultaneous eas-
ily.

ONE MULTI HANDLE MANY EASY HANDLES
To use the multi interface, you must first create a ’multi handle’ withcurl_multi_init. This handle is then
used as input to all further curl_multi_* functions.

Each single transfer is built up with an easy handle. You must create them, and setup the appropriate
options for each easy handle, as outlined in thelibcurl(3) man page, usingcurl_easy_setopt(3).

When the easy handle is setup for a transfer, then instead of usingcurl_easy_perform (as when using the
easy interface for transfers), you should instead add the easy handle to the multi handle using
curl_easy_add_handl. The multi handle is sometimes referred to as a ´multi stack´ because of the fact that
it may hold a large amount of easy handles.

Should you change your mind, the easy handle is again removed from the multi stack using
curl_multi_remove_handle. Once removed from the multi handle, you can again use other easy interface
functions like curl_easy_perform on the handle or whatever you think is necessary.

Adding the easy handle to the multi handle does not start the transfer. Remember that one of the main ideas
with this interface is to let your application drive. You drive the transfers by invoking curl_multi_perform.
libcurl will then transfer data if there is anything available to transfer. It’ ll use the callbacks and everything
else you have setup in the individual easy handles. It’ll transfer data on all current transfers in the multi
stack that are ready to transfer anything. It may be all, it may be none.

Your application can acquire knowledge from libcurl when it would like to get invoked to transfer data, so
that you don’t hav e to busy-loop and call thatcurl_multi_perform like crazy. curl_multi_fdset offers an
interface using which you can extract fd_sets from libcurl to use in select() or poll() calls in order to get to
know when the transfers in the multi stack might need attention. This also makes it very easy for your pro-
gram to wait for input on your own private file descriptors at the same time or perhaps timeout every now
and then, should you want that.

A l ittle note here about the return codes from the multi functions, and especially thecurl_multi_perform: if

libcurl 7.10.1 13 Oct 2001 1



libcurl-multi(5) libcurl multi interface libcurl-multi(5)

you receive CURLM_CALL_MULTI_PERFORM, this basicly means that you should call
curlm_call_multi_perform again, before you select() on more actions. You don’t hav eto do it immediately,
but the return code means that libcurl may have more data available to return or that there may be more data
to send off before it is "satisfied".

curl_multi_perform stores the number of still running transfers in one of its input arguments, and by read-
ing that you can figure out when all the transfers in the multi handles are done. ’done’ does not mean suc-
cessful. One or more of the transfers may have failed. Tracking when this number changes, you know when
one or more transfers are done.

To get information about completed transfers, to figure out success or not and similar, curl_multi_info_read
should be called. It can return a message about a current or previous transfer. Repeated invokes of the func-
tion get more messages until the message queue is empty. The information you receive there includes an
easy handle pointer which you may use to identify which easy handle the information regards.

When all transfers in the multi stack are done, cleanup the multi handle withcurl_multi_cleanup. Be care-
ful and please note that youMUST invoke separatecurl_easy_cleanup calls on every single easy handle to
clean them up properly.

If you want to re-use an easy handle that was added to the multi handle for transfer, you must first remove it
from the multi stack and then re-add it again (possbily after having altered some options at your own
choice).

libcurl 7.10.1 13 Oct 2001 2


