CGStmtOpenMP.cpp   [plain text]


//===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit OpenMP nodes as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "TargetInfo.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtOpenMP.h"
using namespace clang;
using namespace CodeGen;

void CodeGenFunction::GenerateOpenMPCapturedVars(
    const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) {
  const RecordDecl *RD = S.getCapturedRecordDecl();
  auto CurField = RD->field_begin();
  auto CurCap = S.captures().begin();
  for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
                                                 E = S.capture_init_end();
       I != E; ++I, ++CurField, ++CurCap) {
    if (CurField->hasCapturedVLAType()) {
      auto VAT = CurField->getCapturedVLAType();
      auto *Val = VLASizeMap[VAT->getSizeExpr()];
      CapturedVars.push_back(Val);
    } else if (CurCap->capturesThis())
      CapturedVars.push_back(CXXThisValue);
    else if (CurCap->capturesVariableByCopy())
      CapturedVars.push_back(
          EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal());
    else {
      assert(CurCap->capturesVariable() && "Expected capture by reference.");
      CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer());
    }
  }
}

static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType,
                                    StringRef Name, LValue AddrLV,
                                    bool isReferenceType = false) {
  ASTContext &Ctx = CGF.getContext();

  auto *CastedPtr = CGF.EmitScalarConversion(
      AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(),
      Ctx.getPointerType(DstType), SourceLocation());
  auto TmpAddr =
      CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType))
          .getAddress();

  // If we are dealing with references we need to return the address of the
  // reference instead of the reference of the value.
  if (isReferenceType) {
    QualType RefType = Ctx.getLValueReferenceType(DstType);
    auto *RefVal = TmpAddr.getPointer();
    TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref");
    auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType);
    CGF.EmitScalarInit(RefVal, TmpLVal);
  }

  return TmpAddr;
}

llvm::Function *
CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) {
  assert(
      CapturedStmtInfo &&
      "CapturedStmtInfo should be set when generating the captured function");
  const CapturedDecl *CD = S.getCapturedDecl();
  const RecordDecl *RD = S.getCapturedRecordDecl();
  assert(CD->hasBody() && "missing CapturedDecl body");

  // Build the argument list.
  ASTContext &Ctx = CGM.getContext();
  FunctionArgList Args;
  Args.append(CD->param_begin(),
              std::next(CD->param_begin(), CD->getContextParamPosition()));
  auto I = S.captures().begin();
  for (auto *FD : RD->fields()) {
    QualType ArgType = FD->getType();
    IdentifierInfo *II = nullptr;
    VarDecl *CapVar = nullptr;

    // If this is a capture by copy and the type is not a pointer, the outlined
    // function argument type should be uintptr and the value properly casted to
    // uintptr. This is necessary given that the runtime library is only able to
    // deal with pointers. We can pass in the same way the VLA type sizes to the
    // outlined function.
    if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) ||
        I->capturesVariableArrayType())
      ArgType = Ctx.getUIntPtrType();

    if (I->capturesVariable() || I->capturesVariableByCopy()) {
      CapVar = I->getCapturedVar();
      II = CapVar->getIdentifier();
    } else if (I->capturesThis())
      II = &getContext().Idents.get("this");
    else {
      assert(I->capturesVariableArrayType());
      II = &getContext().Idents.get("vla");
    }
    if (ArgType->isVariablyModifiedType())
      ArgType = getContext().getVariableArrayDecayedType(ArgType);
    Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr,
                                             FD->getLocation(), II, ArgType));
    ++I;
  }
  Args.append(
      std::next(CD->param_begin(), CD->getContextParamPosition() + 1),
      CD->param_end());

  // Create the function declaration.
  FunctionType::ExtInfo ExtInfo;
  const CGFunctionInfo &FuncInfo =
      CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
  llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);

  llvm::Function *F = llvm::Function::Create(
      FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
      CapturedStmtInfo->getHelperName(), &CGM.getModule());
  CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
  if (CD->isNothrow())
    F->addFnAttr(llvm::Attribute::NoUnwind);

  // Generate the function.
  StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
                CD->getBody()->getLocStart());
  unsigned Cnt = CD->getContextParamPosition();
  I = S.captures().begin();
  for (auto *FD : RD->fields()) {
    // If we are capturing a pointer by copy we don't need to do anything, just
    // use the value that we get from the arguments.
    if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) {
      setAddrOfLocalVar(I->getCapturedVar(), GetAddrOfLocalVar(Args[Cnt]));
      ++Cnt, ++I;
      continue;
    }

    LValue ArgLVal =
        MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(),
                       AlignmentSource::Decl);
    if (FD->hasCapturedVLAType()) {
      LValue CastedArgLVal =
          MakeAddrLValue(castValueFromUintptr(*this, FD->getType(),
                                              Args[Cnt]->getName(), ArgLVal),
                         FD->getType(), AlignmentSource::Decl);
      auto *ExprArg =
          EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal();
      auto VAT = FD->getCapturedVLAType();
      VLASizeMap[VAT->getSizeExpr()] = ExprArg;
    } else if (I->capturesVariable()) {
      auto *Var = I->getCapturedVar();
      QualType VarTy = Var->getType();
      Address ArgAddr = ArgLVal.getAddress();
      if (!VarTy->isReferenceType()) {
        ArgAddr = EmitLoadOfReference(
            ArgAddr, ArgLVal.getType()->castAs<ReferenceType>());
      }
      setAddrOfLocalVar(
          Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var)));
    } else if (I->capturesVariableByCopy()) {
      assert(!FD->getType()->isAnyPointerType() &&
             "Not expecting a captured pointer.");
      auto *Var = I->getCapturedVar();
      QualType VarTy = Var->getType();
      setAddrOfLocalVar(I->getCapturedVar(),
                        castValueFromUintptr(*this, FD->getType(),
                                             Args[Cnt]->getName(), ArgLVal,
                                             VarTy->isReferenceType()));
    } else {
      // If 'this' is captured, load it into CXXThisValue.
      assert(I->capturesThis());
      CXXThisValue =
          EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal();
    }
    ++Cnt, ++I;
  }

  PGO.assignRegionCounters(GlobalDecl(CD), F);
  CapturedStmtInfo->EmitBody(*this, CD->getBody());
  FinishFunction(CD->getBodyRBrace());

  return F;
}

//===----------------------------------------------------------------------===//
//                              OpenMP Directive Emission
//===----------------------------------------------------------------------===//
void CodeGenFunction::EmitOMPAggregateAssign(
    Address DestAddr, Address SrcAddr, QualType OriginalType,
    const llvm::function_ref<void(Address, Address)> &CopyGen) {
  // Perform element-by-element initialization.
  QualType ElementTy;

  // Drill down to the base element type on both arrays.
  auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
  auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr);
  SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());

  auto SrcBegin = SrcAddr.getPointer();
  auto DestBegin = DestAddr.getPointer();
  // Cast from pointer to array type to pointer to single element.
  auto DestEnd = Builder.CreateGEP(DestBegin, NumElements);
  // The basic structure here is a while-do loop.
  auto BodyBB = createBasicBlock("omp.arraycpy.body");
  auto DoneBB = createBasicBlock("omp.arraycpy.done");
  auto IsEmpty =
      Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
  Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);

  // Enter the loop body, making that address the current address.
  auto EntryBB = Builder.GetInsertBlock();
  EmitBlock(BodyBB);

  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy);

  llvm::PHINode *SrcElementPHI =
    Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast");
  SrcElementPHI->addIncoming(SrcBegin, EntryBB);
  Address SrcElementCurrent =
      Address(SrcElementPHI,
              SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));

  llvm::PHINode *DestElementPHI =
    Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
  DestElementPHI->addIncoming(DestBegin, EntryBB);
  Address DestElementCurrent =
    Address(DestElementPHI,
            DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));

  // Emit copy.
  CopyGen(DestElementCurrent, SrcElementCurrent);

  // Shift the address forward by one element.
  auto DestElementNext = Builder.CreateConstGEP1_32(
      DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
  auto SrcElementNext = Builder.CreateConstGEP1_32(
      SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
  // Check whether we've reached the end.
  auto Done =
      Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
  Builder.CreateCondBr(Done, DoneBB, BodyBB);
  DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock());
  SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock());

  // Done.
  EmitBlock(DoneBB, /*IsFinished=*/true);
}

/// \brief Emit initialization of arrays of complex types.
/// \param DestAddr Address of the array.
/// \param Type Type of array.
/// \param Init Initial expression of array.
static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
                                 QualType Type, const Expr *Init) {
  // Perform element-by-element initialization.
  QualType ElementTy;

  // Drill down to the base element type on both arrays.
  auto ArrayTy = Type->getAsArrayTypeUnsafe();
  auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
  DestAddr =
      CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());

  auto DestBegin = DestAddr.getPointer();
  // Cast from pointer to array type to pointer to single element.
  auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
  // The basic structure here is a while-do loop.
  auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
  auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
  auto IsEmpty =
      CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
  CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);

  // Enter the loop body, making that address the current address.
  auto EntryBB = CGF.Builder.GetInsertBlock();
  CGF.EmitBlock(BodyBB);

  CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);

  llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
      DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
  DestElementPHI->addIncoming(DestBegin, EntryBB);
  Address DestElementCurrent =
      Address(DestElementPHI,
              DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));

  // Emit copy.
  {
    CodeGenFunction::RunCleanupsScope InitScope(CGF);
    CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
                         /*IsInitializer=*/false);
  }

  // Shift the address forward by one element.
  auto DestElementNext = CGF.Builder.CreateConstGEP1_32(
      DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
  // Check whether we've reached the end.
  auto Done =
      CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
  CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
  DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());

  // Done.
  CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
}

void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr,
                                  Address SrcAddr, const VarDecl *DestVD,
                                  const VarDecl *SrcVD, const Expr *Copy) {
  if (OriginalType->isArrayType()) {
    auto *BO = dyn_cast<BinaryOperator>(Copy);
    if (BO && BO->getOpcode() == BO_Assign) {
      // Perform simple memcpy for simple copying.
      EmitAggregateAssign(DestAddr, SrcAddr, OriginalType);
    } else {
      // For arrays with complex element types perform element by element
      // copying.
      EmitOMPAggregateAssign(
          DestAddr, SrcAddr, OriginalType,
          [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) {
            // Working with the single array element, so have to remap
            // destination and source variables to corresponding array
            // elements.
            CodeGenFunction::OMPPrivateScope Remap(*this);
            Remap.addPrivate(DestVD, [DestElement]() -> Address {
              return DestElement;
            });
            Remap.addPrivate(
                SrcVD, [SrcElement]() -> Address { return SrcElement; });
            (void)Remap.Privatize();
            EmitIgnoredExpr(Copy);
          });
    }
  } else {
    // Remap pseudo source variable to private copy.
    CodeGenFunction::OMPPrivateScope Remap(*this);
    Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; });
    Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; });
    (void)Remap.Privatize();
    // Emit copying of the whole variable.
    EmitIgnoredExpr(Copy);
  }
}

bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
                                                OMPPrivateScope &PrivateScope) {
  if (!HaveInsertPoint())
    return false;
  llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate;
  for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) {
    auto IRef = C->varlist_begin();
    auto InitsRef = C->inits().begin();
    for (auto IInit : C->private_copies()) {
      auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
      if (EmittedAsFirstprivate.count(OrigVD) == 0) {
        EmittedAsFirstprivate.insert(OrigVD);
        auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
        auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
        bool IsRegistered;
        DeclRefExpr DRE(
            const_cast<VarDecl *>(OrigVD),
            /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
                OrigVD) != nullptr,
            (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
        Address OriginalAddr = EmitLValue(&DRE).getAddress();
        QualType Type = OrigVD->getType();
        if (Type->isArrayType()) {
          // Emit VarDecl with copy init for arrays.
          // Get the address of the original variable captured in current
          // captured region.
          IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
            auto Emission = EmitAutoVarAlloca(*VD);
            auto *Init = VD->getInit();
            if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) {
              // Perform simple memcpy.
              EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr,
                                  Type);
            } else {
              EmitOMPAggregateAssign(
                  Emission.getAllocatedAddress(), OriginalAddr, Type,
                  [this, VDInit, Init](Address DestElement,
                                       Address SrcElement) {
                    // Clean up any temporaries needed by the initialization.
                    RunCleanupsScope InitScope(*this);
                    // Emit initialization for single element.
                    setAddrOfLocalVar(VDInit, SrcElement);
                    EmitAnyExprToMem(Init, DestElement,
                                     Init->getType().getQualifiers(),
                                     /*IsInitializer*/ false);
                    LocalDeclMap.erase(VDInit);
                  });
            }
            EmitAutoVarCleanups(Emission);
            return Emission.getAllocatedAddress();
          });
        } else {
          IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address {
            // Emit private VarDecl with copy init.
            // Remap temp VDInit variable to the address of the original
            // variable
            // (for proper handling of captured global variables).
            setAddrOfLocalVar(VDInit, OriginalAddr);
            EmitDecl(*VD);
            LocalDeclMap.erase(VDInit);
            return GetAddrOfLocalVar(VD);
          });
        }
        assert(IsRegistered &&
               "firstprivate var already registered as private");
        // Silence the warning about unused variable.
        (void)IsRegistered;
      }
      ++IRef, ++InitsRef;
    }
  }
  return !EmittedAsFirstprivate.empty();
}

void CodeGenFunction::EmitOMPPrivateClause(
    const OMPExecutableDirective &D,
    CodeGenFunction::OMPPrivateScope &PrivateScope) {
  if (!HaveInsertPoint())
    return;
  llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
  for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) {
    auto IRef = C->varlist_begin();
    for (auto IInit : C->private_copies()) {
      auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
      if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
        auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
        bool IsRegistered =
            PrivateScope.addPrivate(OrigVD, [&]() -> Address {
              // Emit private VarDecl with copy init.
              EmitDecl(*VD);
              return GetAddrOfLocalVar(VD);
            });
        assert(IsRegistered && "private var already registered as private");
        // Silence the warning about unused variable.
        (void)IsRegistered;
      }
      ++IRef;
    }
  }
}

bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) {
  if (!HaveInsertPoint())
    return false;
  // threadprivate_var1 = master_threadprivate_var1;
  // operator=(threadprivate_var2, master_threadprivate_var2);
  // ...
  // __kmpc_barrier(&loc, global_tid);
  llvm::DenseSet<const VarDecl *> CopiedVars;
  llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr;
  for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) {
    auto IRef = C->varlist_begin();
    auto ISrcRef = C->source_exprs().begin();
    auto IDestRef = C->destination_exprs().begin();
    for (auto *AssignOp : C->assignment_ops()) {
      auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
      QualType Type = VD->getType();
      if (CopiedVars.insert(VD->getCanonicalDecl()).second) {

        // Get the address of the master variable. If we are emitting code with
        // TLS support, the address is passed from the master as field in the
        // captured declaration.
        Address MasterAddr = Address::invalid();
        if (getLangOpts().OpenMPUseTLS &&
            getContext().getTargetInfo().isTLSSupported()) {
          assert(CapturedStmtInfo->lookup(VD) &&
                 "Copyin threadprivates should have been captured!");
          DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(),
                          VK_LValue, (*IRef)->getExprLoc());
          MasterAddr = EmitLValue(&DRE).getAddress();
          LocalDeclMap.erase(VD);
        } else {
          MasterAddr =
            Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD)
                                        : CGM.GetAddrOfGlobal(VD),
                    getContext().getDeclAlign(VD));
        }
        // Get the address of the threadprivate variable.
        Address PrivateAddr = EmitLValue(*IRef).getAddress();
        if (CopiedVars.size() == 1) {
          // At first check if current thread is a master thread. If it is, no
          // need to copy data.
          CopyBegin = createBasicBlock("copyin.not.master");
          CopyEnd = createBasicBlock("copyin.not.master.end");
          Builder.CreateCondBr(
              Builder.CreateICmpNE(
                  Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy),
                  Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)),
              CopyBegin, CopyEnd);
          EmitBlock(CopyBegin);
        }
        auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
        auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
        EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp);
      }
      ++IRef;
      ++ISrcRef;
      ++IDestRef;
    }
  }
  if (CopyEnd) {
    // Exit out of copying procedure for non-master thread.
    EmitBlock(CopyEnd, /*IsFinished=*/true);
    return true;
  }
  return false;
}

bool CodeGenFunction::EmitOMPLastprivateClauseInit(
    const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) {
  if (!HaveInsertPoint())
    return false;
  bool HasAtLeastOneLastprivate = false;
  llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
  for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
    HasAtLeastOneLastprivate = true;
    auto IRef = C->varlist_begin();
    auto IDestRef = C->destination_exprs().begin();
    for (auto *IInit : C->private_copies()) {
      // Keep the address of the original variable for future update at the end
      // of the loop.
      auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
      if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) {
        auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
        PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address {
          DeclRefExpr DRE(
              const_cast<VarDecl *>(OrigVD),
              /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup(
                  OrigVD) != nullptr,
              (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc());
          return EmitLValue(&DRE).getAddress();
        });
        // Check if the variable is also a firstprivate: in this case IInit is
        // not generated. Initialization of this variable will happen in codegen
        // for 'firstprivate' clause.
        if (IInit) {
          auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
          bool IsRegistered =
              PrivateScope.addPrivate(OrigVD, [&]() -> Address {
                // Emit private VarDecl with copy init.
                EmitDecl(*VD);
                return GetAddrOfLocalVar(VD);
              });
          assert(IsRegistered &&
                 "lastprivate var already registered as private");
          (void)IsRegistered;
        }
      }
      ++IRef, ++IDestRef;
    }
  }
  return HasAtLeastOneLastprivate;
}

void CodeGenFunction::EmitOMPLastprivateClauseFinal(
    const OMPExecutableDirective &D, llvm::Value *IsLastIterCond) {
  if (!HaveInsertPoint())
    return;
  // Emit following code:
  // if (<IsLastIterCond>) {
  //   orig_var1 = private_orig_var1;
  //   ...
  //   orig_varn = private_orig_varn;
  // }
  llvm::BasicBlock *ThenBB = nullptr;
  llvm::BasicBlock *DoneBB = nullptr;
  if (IsLastIterCond) {
    ThenBB = createBasicBlock(".omp.lastprivate.then");
    DoneBB = createBasicBlock(".omp.lastprivate.done");
    Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB);
    EmitBlock(ThenBB);
  }
  llvm::DenseMap<const Decl *, const Expr *> LoopCountersAndUpdates;
  const Expr *LastIterVal = nullptr;
  const Expr *IVExpr = nullptr;
  const Expr *IncExpr = nullptr;
  if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) {
    if (isOpenMPWorksharingDirective(D.getDirectiveKind())) {
      LastIterVal = cast<VarDecl>(cast<DeclRefExpr>(
                                      LoopDirective->getUpperBoundVariable())
                                      ->getDecl())
                        ->getAnyInitializer();
      IVExpr = LoopDirective->getIterationVariable();
      IncExpr = LoopDirective->getInc();
      auto IUpdate = LoopDirective->updates().begin();
      for (auto *E : LoopDirective->counters()) {
        auto *D = cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
        LoopCountersAndUpdates[D] = *IUpdate;
        ++IUpdate;
      }
    }
  }
  {
    llvm::DenseSet<const VarDecl *> AlreadyEmittedVars;
    bool FirstLCV = true;
    for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) {
      auto IRef = C->varlist_begin();
      auto ISrcRef = C->source_exprs().begin();
      auto IDestRef = C->destination_exprs().begin();
      for (auto *AssignOp : C->assignment_ops()) {
        auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
        QualType Type = PrivateVD->getType();
        auto *CanonicalVD = PrivateVD->getCanonicalDecl();
        if (AlreadyEmittedVars.insert(CanonicalVD).second) {
          // If lastprivate variable is a loop control variable for loop-based
          // directive, update its value before copyin back to original
          // variable.
          if (auto *UpExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) {
            if (FirstLCV && LastIterVal) {
              EmitAnyExprToMem(LastIterVal, EmitLValue(IVExpr).getAddress(),
                               IVExpr->getType().getQualifiers(),
                               /*IsInitializer=*/false);
              EmitIgnoredExpr(IncExpr);
              FirstLCV = false;
            }
            EmitIgnoredExpr(UpExpr);
          }
          auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl());
          auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl());
          // Get the address of the original variable.
          Address OriginalAddr = GetAddrOfLocalVar(DestVD);
          // Get the address of the private variable.
          Address PrivateAddr = GetAddrOfLocalVar(PrivateVD);
          if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>())
            PrivateAddr =
              Address(Builder.CreateLoad(PrivateAddr),
                      getNaturalTypeAlignment(RefTy->getPointeeType()));
          EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp);
        }
        ++IRef;
        ++ISrcRef;
        ++IDestRef;
      }
    }
  }
  if (IsLastIterCond) {
    EmitBlock(DoneBB, /*IsFinished=*/true);
  }
}

void CodeGenFunction::EmitOMPReductionClauseInit(
    const OMPExecutableDirective &D,
    CodeGenFunction::OMPPrivateScope &PrivateScope) {
  if (!HaveInsertPoint())
    return;
  for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
    auto ILHS = C->lhs_exprs().begin();
    auto IRHS = C->rhs_exprs().begin();
    auto IPriv = C->privates().begin();
    for (auto IRef : C->varlists()) {
      auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
      auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
      auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl());
      if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) {
        auto *Base = OASE->getBase()->IgnoreParenImpCasts();
        while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
          Base = TempOASE->getBase()->IgnoreParenImpCasts();
        while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
          Base = TempASE->getBase()->IgnoreParenImpCasts();
        auto *DE = cast<DeclRefExpr>(Base);
        auto *OrigVD = cast<VarDecl>(DE->getDecl());
        auto OASELValueLB = EmitOMPArraySectionExpr(OASE);
        auto OASELValueUB =
            EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
        auto OriginalBaseLValue = EmitLValue(DE);
        auto BaseLValue = OriginalBaseLValue;
        auto *Zero = Builder.getInt64(/*C=*/0);
        llvm::SmallVector<llvm::Value *, 4> Indexes;
        Indexes.push_back(Zero);
        auto *ItemTy =
            OASELValueLB.getPointer()->getType()->getPointerElementType();
        auto *Ty = BaseLValue.getPointer()->getType()->getPointerElementType();
        while (Ty != ItemTy) {
          Indexes.push_back(Zero);
          Ty = Ty->getPointerElementType();
        }
        BaseLValue = MakeAddrLValue(
            Address(Builder.CreateInBoundsGEP(BaseLValue.getPointer(), Indexes),
                    OASELValueLB.getAlignment()),
            OASELValueLB.getType(), OASELValueLB.getAlignmentSource());
        // Store the address of the original variable associated with the LHS
        // implicit variable.
        PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address {
          return OASELValueLB.getAddress();
        });
        // Emit reduction copy.
        bool IsRegistered = PrivateScope.addPrivate(
            OrigVD, [this, PrivateVD, BaseLValue, OASELValueLB, OASELValueUB,
                     OriginalBaseLValue]() -> Address {
              // Emit VarDecl with copy init for arrays.
              // Get the address of the original variable captured in current
              // captured region.
              auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(),
                                                 OASELValueLB.getPointer());
              Size = Builder.CreateNUWAdd(
                  Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
              CodeGenFunction::OpaqueValueMapping OpaqueMap(
                  *this, cast<OpaqueValueExpr>(
                             getContext()
                                 .getAsVariableArrayType(PrivateVD->getType())
                                 ->getSizeExpr()),
                  RValue::get(Size));
              EmitVariablyModifiedType(PrivateVD->getType());
              auto Emission = EmitAutoVarAlloca(*PrivateVD);
              auto Addr = Emission.getAllocatedAddress();
              auto *Init = PrivateVD->getInit();
              EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), Init);
              EmitAutoVarCleanups(Emission);
              // Emit private VarDecl with reduction init.
              auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
                                                   OASELValueLB.getPointer());
              auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
              Ptr = Builder.CreatePointerBitCastOrAddrSpaceCast(
                  Ptr, OriginalBaseLValue.getPointer()->getType());
              return Address(Ptr, OriginalBaseLValue.getAlignment());
            });
        assert(IsRegistered && "private var already registered as private");
        // Silence the warning about unused variable.
        (void)IsRegistered;
        PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
          return GetAddrOfLocalVar(PrivateVD);
        });
      } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) {
        auto *Base = ASE->getBase()->IgnoreParenImpCasts();
        while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
          Base = TempASE->getBase()->IgnoreParenImpCasts();
        auto *DE = cast<DeclRefExpr>(Base);
        auto *OrigVD = cast<VarDecl>(DE->getDecl());
        auto ASELValue = EmitLValue(ASE);
        auto OriginalBaseLValue = EmitLValue(DE);
        auto BaseLValue = OriginalBaseLValue;
        auto *Zero = Builder.getInt64(/*C=*/0);
        llvm::SmallVector<llvm::Value *, 4> Indexes;
        Indexes.push_back(Zero);
        auto *ItemTy =
            ASELValue.getPointer()->getType()->getPointerElementType();
        auto *Ty = BaseLValue.getPointer()->getType()->getPointerElementType();
        while (Ty != ItemTy) {
          Indexes.push_back(Zero);
          Ty = Ty->getPointerElementType();
        }
        BaseLValue = MakeAddrLValue(
            Address(Builder.CreateInBoundsGEP(BaseLValue.getPointer(), Indexes),
                    ASELValue.getAlignment()),
            ASELValue.getType(), ASELValue.getAlignmentSource());
        // Store the address of the original variable associated with the LHS
        // implicit variable.
        PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address {
          return ASELValue.getAddress();
        });
        // Emit reduction copy.
        bool IsRegistered = PrivateScope.addPrivate(
            OrigVD, [this, PrivateVD, BaseLValue, ASELValue,
                     OriginalBaseLValue]() -> Address {
              // Emit private VarDecl with reduction init.
              EmitDecl(*PrivateVD);
              auto Addr = GetAddrOfLocalVar(PrivateVD);
              auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(),
                                                   ASELValue.getPointer());
              auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset);
              Ptr = Builder.CreatePointerBitCastOrAddrSpaceCast(
                  Ptr, OriginalBaseLValue.getPointer()->getType());
              return Address(Ptr, OriginalBaseLValue.getAlignment());
            });
        assert(IsRegistered && "private var already registered as private");
        // Silence the warning about unused variable.
        (void)IsRegistered;
        PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
          return GetAddrOfLocalVar(PrivateVD);
        });
      } else {
        auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl());
        // Store the address of the original variable associated with the LHS
        // implicit variable.
        PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef]() -> Address {
          DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
                          CapturedStmtInfo->lookup(OrigVD) != nullptr,
                          IRef->getType(), VK_LValue, IRef->getExprLoc());
          return EmitLValue(&DRE).getAddress();
        });
        // Emit reduction copy.
        bool IsRegistered =
            PrivateScope.addPrivate(OrigVD, [this, PrivateVD]() -> Address {
              // Emit private VarDecl with reduction init.
              EmitDecl(*PrivateVD);
              return GetAddrOfLocalVar(PrivateVD);
            });
        assert(IsRegistered && "private var already registered as private");
        // Silence the warning about unused variable.
        (void)IsRegistered;
        PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address {
          return GetAddrOfLocalVar(PrivateVD);
        });
      }
      ++ILHS, ++IRHS, ++IPriv;
    }
  }
}

void CodeGenFunction::EmitOMPReductionClauseFinal(
    const OMPExecutableDirective &D) {
  if (!HaveInsertPoint())
    return;
  llvm::SmallVector<const Expr *, 8> Privates;
  llvm::SmallVector<const Expr *, 8> LHSExprs;
  llvm::SmallVector<const Expr *, 8> RHSExprs;
  llvm::SmallVector<const Expr *, 8> ReductionOps;
  bool HasAtLeastOneReduction = false;
  for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
    HasAtLeastOneReduction = true;
    Privates.append(C->privates().begin(), C->privates().end());
    LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end());
    RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end());
    ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end());
  }
  if (HasAtLeastOneReduction) {
    // Emit nowait reduction if nowait clause is present or directive is a
    // parallel directive (it always has implicit barrier).
    CGM.getOpenMPRuntime().emitReduction(
        *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps,
        D.getSingleClause<OMPNowaitClause>() ||
            isOpenMPParallelDirective(D.getDirectiveKind()) ||
            D.getDirectiveKind() == OMPD_simd,
        D.getDirectiveKind() == OMPD_simd);
  }
}

static void emitCommonOMPParallelDirective(CodeGenFunction &CGF,
                                           const OMPExecutableDirective &S,
                                           OpenMPDirectiveKind InnermostKind,
                                           const RegionCodeGenTy &CodeGen) {
  auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
  llvm::SmallVector<llvm::Value *, 16> CapturedVars;
  CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
  auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction(
      S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen);
  if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) {
    CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
    auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
                                         /*IgnoreResultAssign*/ true);
    CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
        CGF, NumThreads, NumThreadsClause->getLocStart());
  }
  if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) {
    CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
    CGF.CGM.getOpenMPRuntime().emitProcBindClause(
        CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart());
  }
  const Expr *IfCond = nullptr;
  for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
    if (C->getNameModifier() == OMPD_unknown ||
        C->getNameModifier() == OMPD_parallel) {
      IfCond = C->getCondition();
      break;
    }
  }
  CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
                                              CapturedVars, IfCond);
}

void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
  LexicalScope Scope(*this, S.getSourceRange());
  // Emit parallel region as a standalone region.
  auto &&CodeGen = [&S](CodeGenFunction &CGF) {
    OMPPrivateScope PrivateScope(CGF);
    bool Copyins = CGF.EmitOMPCopyinClause(S);
    bool Firstprivates = CGF.EmitOMPFirstprivateClause(S, PrivateScope);
    if (Copyins || Firstprivates) {
      // Emit implicit barrier to synchronize threads and avoid data races on
      // initialization of firstprivate variables or propagation master's thread
      // values of threadprivate variables to local instances of that variables
      // of all other implicit threads.
      CGF.CGM.getOpenMPRuntime().emitBarrierCall(
          CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
          /*ForceSimpleCall=*/true);
    }
    CGF.EmitOMPPrivateClause(S, PrivateScope);
    CGF.EmitOMPReductionClauseInit(S, PrivateScope);
    (void)PrivateScope.Privatize();
    CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
    CGF.EmitOMPReductionClauseFinal(S);
  };
  emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen);
}

void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D,
                                      JumpDest LoopExit) {
  RunCleanupsScope BodyScope(*this);
  // Update counters values on current iteration.
  for (auto I : D.updates()) {
    EmitIgnoredExpr(I);
  }
  // Update the linear variables.
  for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
    for (auto U : C->updates()) {
      EmitIgnoredExpr(U);
    }
  }

  // On a continue in the body, jump to the end.
  auto Continue = getJumpDestInCurrentScope("omp.body.continue");
  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
  // Emit loop body.
  EmitStmt(D.getBody());
  // The end (updates/cleanups).
  EmitBlock(Continue.getBlock());
  BreakContinueStack.pop_back();
    // TODO: Update lastprivates if the SeparateIter flag is true.
    // This will be implemented in a follow-up OMPLastprivateClause patch, but
    // result should be still correct without it, as we do not make these
    // variables private yet.
}

void CodeGenFunction::EmitOMPInnerLoop(
    const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
    const Expr *IncExpr,
    const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
    const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) {
  auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");

  // Start the loop with a block that tests the condition.
  auto CondBlock = createBasicBlock("omp.inner.for.cond");
  EmitBlock(CondBlock);
  LoopStack.push(CondBlock);

  // If there are any cleanups between here and the loop-exit scope,
  // create a block to stage a loop exit along.
  auto ExitBlock = LoopExit.getBlock();
  if (RequiresCleanup)
    ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");

  auto LoopBody = createBasicBlock("omp.inner.for.body");

  // Emit condition.
  EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S));
  if (ExitBlock != LoopExit.getBlock()) {
    EmitBlock(ExitBlock);
    EmitBranchThroughCleanup(LoopExit);
  }

  EmitBlock(LoopBody);
  incrementProfileCounter(&S);

  // Create a block for the increment.
  auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));

  BodyGen(*this);

  // Emit "IV = IV + 1" and a back-edge to the condition block.
  EmitBlock(Continue.getBlock());
  EmitIgnoredExpr(IncExpr);
  PostIncGen(*this);
  BreakContinueStack.pop_back();
  EmitBranch(CondBlock);
  LoopStack.pop();
  // Emit the fall-through block.
  EmitBlock(LoopExit.getBlock());
}

void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) {
  if (!HaveInsertPoint())
    return;
  // Emit inits for the linear variables.
  for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
    for (auto Init : C->inits()) {
      auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
      auto *OrigVD = cast<VarDecl>(
          cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())->getDecl());
      DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
                      CapturedStmtInfo->lookup(OrigVD) != nullptr,
                      VD->getInit()->getType(), VK_LValue,
                      VD->getInit()->getExprLoc());
      AutoVarEmission Emission = EmitAutoVarAlloca(*VD);
      EmitExprAsInit(&DRE, VD,
               MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()),
                     /*capturedByInit=*/false);
      EmitAutoVarCleanups(Emission);
    }
    // Emit the linear steps for the linear clauses.
    // If a step is not constant, it is pre-calculated before the loop.
    if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
      if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
        EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
        // Emit calculation of the linear step.
        EmitIgnoredExpr(CS);
      }
  }
}

static void emitLinearClauseFinal(CodeGenFunction &CGF,
                                  const OMPLoopDirective &D) {
  if (!CGF.HaveInsertPoint())
    return;
  // Emit the final values of the linear variables.
  for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
    auto IC = C->varlist_begin();
    for (auto F : C->finals()) {
      auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl());
      DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
                      CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr,
                      (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
      Address OrigAddr = CGF.EmitLValue(&DRE).getAddress();
      CodeGenFunction::OMPPrivateScope VarScope(CGF);
      VarScope.addPrivate(OrigVD,
                          [OrigAddr]() -> Address { return OrigAddr; });
      (void)VarScope.Privatize();
      CGF.EmitIgnoredExpr(F);
      ++IC;
    }
  }
}

static void emitAlignedClause(CodeGenFunction &CGF,
                              const OMPExecutableDirective &D) {
  if (!CGF.HaveInsertPoint())
    return;
  for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) {
    unsigned ClauseAlignment = 0;
    if (auto AlignmentExpr = Clause->getAlignment()) {
      auto AlignmentCI =
          cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
      ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
    }
    for (auto E : Clause->varlists()) {
      unsigned Alignment = ClauseAlignment;
      if (Alignment == 0) {
        // OpenMP [2.8.1, Description]
        // If no optional parameter is specified, implementation-defined default
        // alignments for SIMD instructions on the target platforms are assumed.
        Alignment =
            CGF.getContext()
                .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
                    E->getType()->getPointeeType()))
                .getQuantity();
      }
      assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
             "alignment is not power of 2");
      if (Alignment != 0) {
        llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
        CGF.EmitAlignmentAssumption(PtrValue, Alignment);
      }
    }
  }
}

static void emitPrivateLoopCounters(CodeGenFunction &CGF,
                                    CodeGenFunction::OMPPrivateScope &LoopScope,
                                    ArrayRef<Expr *> Counters,
                                    ArrayRef<Expr *> PrivateCounters) {
  if (!CGF.HaveInsertPoint())
    return;
  auto I = PrivateCounters.begin();
  for (auto *E : Counters) {
    auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
    auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl());
    Address Addr = Address::invalid();
    (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address {
      // Emit var without initialization.
      auto VarEmission = CGF.EmitAutoVarAlloca(*PrivateVD);
      CGF.EmitAutoVarCleanups(VarEmission);
      Addr = VarEmission.getAllocatedAddress();
      return Addr;
    });
    (void)LoopScope.addPrivate(VD, [&]() -> Address { return Addr; });
    ++I;
  }
}

static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S,
                        const Expr *Cond, llvm::BasicBlock *TrueBlock,
                        llvm::BasicBlock *FalseBlock, uint64_t TrueCount) {
  if (!CGF.HaveInsertPoint())
    return;
  {
    CodeGenFunction::OMPPrivateScope PreCondScope(CGF);
    emitPrivateLoopCounters(CGF, PreCondScope, S.counters(),
                            S.private_counters());
    (void)PreCondScope.Privatize();
    // Get initial values of real counters.
    for (auto I : S.inits()) {
      CGF.EmitIgnoredExpr(I);
    }
  }
  // Check that loop is executed at least one time.
  CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount);
}

static void
emitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D,
                      CodeGenFunction::OMPPrivateScope &PrivateScope) {
  if (!CGF.HaveInsertPoint())
    return;
  for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) {
    auto CurPrivate = C->privates().begin();
    for (auto *E : C->varlists()) {
      auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
      auto *PrivateVD =
          cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl());
      bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address {
        // Emit private VarDecl with copy init.
        CGF.EmitVarDecl(*PrivateVD);
        return CGF.GetAddrOfLocalVar(PrivateVD);
      });
      assert(IsRegistered && "linear var already registered as private");
      // Silence the warning about unused variable.
      (void)IsRegistered;
      ++CurPrivate;
    }
  }
}

static void emitSimdlenSafelenClause(CodeGenFunction &CGF,
                                     const OMPExecutableDirective &D,
                                     bool IsMonotonic) {
  if (!CGF.HaveInsertPoint())
    return;
  if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) {
    RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(),
                                 /*ignoreResult=*/true);
    llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
    CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
    // In presence of finite 'safelen', it may be unsafe to mark all
    // the memory instructions parallel, because loop-carried
    // dependences of 'safelen' iterations are possible.
    if (!IsMonotonic)
      CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>());
  } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) {
    RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(),
                                 /*ignoreResult=*/true);
    llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
    CGF.LoopStack.setVectorizeWidth(Val->getZExtValue());
    // In presence of finite 'safelen', it may be unsafe to mark all
    // the memory instructions parallel, because loop-carried
    // dependences of 'safelen' iterations are possible.
    CGF.LoopStack.setParallel(false);
  }
}

void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D,
                                      bool IsMonotonic) {
  // Walk clauses and process safelen/lastprivate.
  LoopStack.setParallel(!IsMonotonic);
  LoopStack.setVectorizeEnable(true);
  emitSimdlenSafelenClause(*this, D, IsMonotonic);
}

void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &D) {
  if (!HaveInsertPoint())
    return;
  auto IC = D.counters().begin();
  for (auto F : D.finals()) {
    auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl());
    if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD)) {
      DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD),
                      CapturedStmtInfo->lookup(OrigVD) != nullptr,
                      (*IC)->getType(), VK_LValue, (*IC)->getExprLoc());
      Address OrigAddr = EmitLValue(&DRE).getAddress();
      OMPPrivateScope VarScope(*this);
      VarScope.addPrivate(OrigVD,
                          [OrigAddr]() -> Address { return OrigAddr; });
      (void)VarScope.Privatize();
      EmitIgnoredExpr(F);
    }
    ++IC;
  }
  emitLinearClauseFinal(*this, D);
}

void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
  auto &&CodeGen = [&S](CodeGenFunction &CGF) {
    // if (PreCond) {
    //   for (IV in 0..LastIteration) BODY;
    //   <Final counter/linear vars updates>;
    // }
    //

    // Emit: if (PreCond) - begin.
    // If the condition constant folds and can be elided, avoid emitting the
    // whole loop.
    bool CondConstant;
    llvm::BasicBlock *ContBlock = nullptr;
    if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
      if (!CondConstant)
        return;
    } else {
      auto *ThenBlock = CGF.createBasicBlock("simd.if.then");
      ContBlock = CGF.createBasicBlock("simd.if.end");
      emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock,
                  CGF.getProfileCount(&S));
      CGF.EmitBlock(ThenBlock);
      CGF.incrementProfileCounter(&S);
    }

    // Emit the loop iteration variable.
    const Expr *IVExpr = S.getIterationVariable();
    const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
    CGF.EmitVarDecl(*IVDecl);
    CGF.EmitIgnoredExpr(S.getInit());

    // Emit the iterations count variable.
    // If it is not a variable, Sema decided to calculate iterations count on
    // each iteration (e.g., it is foldable into a constant).
    if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
      CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
      // Emit calculation of the iterations count.
      CGF.EmitIgnoredExpr(S.getCalcLastIteration());
    }

    CGF.EmitOMPSimdInit(S);

    emitAlignedClause(CGF, S);
    CGF.EmitOMPLinearClauseInit(S);
    bool HasLastprivateClause;
    {
      OMPPrivateScope LoopScope(CGF);
      emitPrivateLoopCounters(CGF, LoopScope, S.counters(),
                              S.private_counters());
      emitPrivateLinearVars(CGF, S, LoopScope);
      CGF.EmitOMPPrivateClause(S, LoopScope);
      CGF.EmitOMPReductionClauseInit(S, LoopScope);
      HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
      (void)LoopScope.Privatize();
      CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
                           S.getInc(),
                           [&S](CodeGenFunction &CGF) {
                             CGF.EmitOMPLoopBody(S, JumpDest());
                             CGF.EmitStopPoint(&S);
                           },
                           [](CodeGenFunction &) {});
      // Emit final copy of the lastprivate variables at the end of loops.
      if (HasLastprivateClause) {
        CGF.EmitOMPLastprivateClauseFinal(S);
      }
      CGF.EmitOMPReductionClauseFinal(S);
    }
    CGF.EmitOMPSimdFinal(S);
    // Emit: if (PreCond) - end.
    if (ContBlock) {
      CGF.EmitBranch(ContBlock);
      CGF.EmitBlock(ContBlock, true);
    }
  };
  CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);
}

void CodeGenFunction::EmitOMPForOuterLoop(
    OpenMPScheduleClauseKind ScheduleKind, bool IsMonotonic,
    const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
    Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk) {
  auto &RT = CGM.getOpenMPRuntime();

  // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
  const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind);

  assert((Ordered ||
          !RT.isStaticNonchunked(ScheduleKind, /*Chunked=*/Chunk != nullptr)) &&
         "static non-chunked schedule does not need outer loop");

  // Emit outer loop.
  //
  // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
  // When schedule(dynamic,chunk_size) is specified, the iterations are
  // distributed to threads in the team in chunks as the threads request them.
  // Each thread executes a chunk of iterations, then requests another chunk,
  // until no chunks remain to be distributed. Each chunk contains chunk_size
  // iterations, except for the last chunk to be distributed, which may have
  // fewer iterations. When no chunk_size is specified, it defaults to 1.
  //
  // When schedule(guided,chunk_size) is specified, the iterations are assigned
  // to threads in the team in chunks as the executing threads request them.
  // Each thread executes a chunk of iterations, then requests another chunk,
  // until no chunks remain to be assigned. For a chunk_size of 1, the size of
  // each chunk is proportional to the number of unassigned iterations divided
  // by the number of threads in the team, decreasing to 1. For a chunk_size
  // with value k (greater than 1), the size of each chunk is determined in the
  // same way, with the restriction that the chunks do not contain fewer than k
  // iterations (except for the last chunk to be assigned, which may have fewer
  // than k iterations).
  //
  // When schedule(auto) is specified, the decision regarding scheduling is
  // delegated to the compiler and/or runtime system. The programmer gives the
  // implementation the freedom to choose any possible mapping of iterations to
  // threads in the team.
  //
  // When schedule(runtime) is specified, the decision regarding scheduling is
  // deferred until run time, and the schedule and chunk size are taken from the
  // run-sched-var ICV. If the ICV is set to auto, the schedule is
  // implementation defined
  //
  // while(__kmpc_dispatch_next(&LB, &UB)) {
  //   idx = LB;
  //   while (idx <= UB) { BODY; ++idx;
  //   __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
  //   } // inner loop
  // }
  //
  // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
  // When schedule(static, chunk_size) is specified, iterations are divided into
  // chunks of size chunk_size, and the chunks are assigned to the threads in
  // the team in a round-robin fashion in the order of the thread number.
  //
  // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
  //   while (idx <= UB) { BODY; ++idx; } // inner loop
  //   LB = LB + ST;
  //   UB = UB + ST;
  // }
  //

  const Expr *IVExpr = S.getIterationVariable();
  const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
  const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();

  if (DynamicOrOrdered) {
    llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration());
    RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind,
                           IVSize, IVSigned, Ordered, UBVal, Chunk);
  } else {
    RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind,
                         IVSize, IVSigned, Ordered, IL, LB, UB, ST, Chunk);
  }

  auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");

  // Start the loop with a block that tests the condition.
  auto CondBlock = createBasicBlock("omp.dispatch.cond");
  EmitBlock(CondBlock);
  LoopStack.push(CondBlock);

  llvm::Value *BoolCondVal = nullptr;
  if (!DynamicOrOrdered) {
    // UB = min(UB, GlobalUB)
    EmitIgnoredExpr(S.getEnsureUpperBound());
    // IV = LB
    EmitIgnoredExpr(S.getInit());
    // IV < UB
    BoolCondVal = EvaluateExprAsBool(S.getCond());
  } else {
    BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned,
                                    IL, LB, UB, ST);
  }

  // If there are any cleanups between here and the loop-exit scope,
  // create a block to stage a loop exit along.
  auto ExitBlock = LoopExit.getBlock();
  if (LoopScope.requiresCleanups())
    ExitBlock = createBasicBlock("omp.dispatch.cleanup");

  auto LoopBody = createBasicBlock("omp.dispatch.body");
  Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
  if (ExitBlock != LoopExit.getBlock()) {
    EmitBlock(ExitBlock);
    EmitBranchThroughCleanup(LoopExit);
  }
  EmitBlock(LoopBody);

  // Emit "IV = LB" (in case of static schedule, we have already calculated new
  // LB for loop condition and emitted it above).
  if (DynamicOrOrdered)
    EmitIgnoredExpr(S.getInit());

  // Create a block for the increment.
  auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));

  // Generate !llvm.loop.parallel metadata for loads and stores for loops
  // with dynamic/guided scheduling and without ordered clause.
  if (!isOpenMPSimdDirective(S.getDirectiveKind()))
    LoopStack.setParallel(!IsMonotonic);
  else
    EmitOMPSimdInit(S, IsMonotonic);

  SourceLocation Loc = S.getLocStart();
  EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(),
                   [&S, LoopExit](CodeGenFunction &CGF) {
                     CGF.EmitOMPLoopBody(S, LoopExit);
                     CGF.EmitStopPoint(&S);
                   },
                   [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) {
                     if (Ordered) {
                       CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(
                           CGF, Loc, IVSize, IVSigned);
                     }
                   });

  EmitBlock(Continue.getBlock());
  BreakContinueStack.pop_back();
  if (!DynamicOrOrdered) {
    // Emit "LB = LB + Stride", "UB = UB + Stride".
    EmitIgnoredExpr(S.getNextLowerBound());
    EmitIgnoredExpr(S.getNextUpperBound());
  }

  EmitBranch(CondBlock);
  LoopStack.pop();
  // Emit the fall-through block.
  EmitBlock(LoopExit.getBlock());

  // Tell the runtime we are done.
  if (!DynamicOrOrdered)
    RT.emitForStaticFinish(*this, S.getLocEnd());
}

/// \brief Emit a helper variable and return corresponding lvalue.
static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
                               const DeclRefExpr *Helper) {
  auto VDecl = cast<VarDecl>(Helper->getDecl());
  CGF.EmitVarDecl(*VDecl);
  return CGF.EmitLValue(Helper);
}

namespace {
  struct ScheduleKindModifiersTy {
    OpenMPScheduleClauseKind Kind;
    OpenMPScheduleClauseModifier M1;
    OpenMPScheduleClauseModifier M2;
    ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind,
                            OpenMPScheduleClauseModifier M1,
                            OpenMPScheduleClauseModifier M2)
        : Kind(Kind), M1(M1), M2(M2) {}
  };
} // namespace

static std::pair<llvm::Value * /*Chunk*/, ScheduleKindModifiersTy>
emitScheduleClause(CodeGenFunction &CGF, const OMPLoopDirective &S,
                   bool OuterRegion) {
  // Detect the loop schedule kind and chunk.
  auto ScheduleKind = OMPC_SCHEDULE_unknown;
  OpenMPScheduleClauseModifier M1 = OMPC_SCHEDULE_MODIFIER_unknown;
  OpenMPScheduleClauseModifier M2 = OMPC_SCHEDULE_MODIFIER_unknown;
  llvm::Value *Chunk = nullptr;
  if (const auto *C = S.getSingleClause<OMPScheduleClause>()) {
    ScheduleKind = C->getScheduleKind();
    M1 = C->getFirstScheduleModifier();
    M2 = C->getSecondScheduleModifier();
    if (const auto *Ch = C->getChunkSize()) {
      if (auto *ImpRef = cast_or_null<DeclRefExpr>(C->getHelperChunkSize())) {
        if (OuterRegion) {
          const VarDecl *ImpVar = cast<VarDecl>(ImpRef->getDecl());
          CGF.EmitVarDecl(*ImpVar);
          CGF.EmitStoreThroughLValue(
              CGF.EmitAnyExpr(Ch),
              CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(ImpVar),
                                 ImpVar->getType()));
        } else {
          Ch = ImpRef;
        }
      }
      if (!C->getHelperChunkSize() || !OuterRegion) {
        Chunk = CGF.EmitScalarExpr(Ch);
        Chunk = CGF.EmitScalarConversion(Chunk, Ch->getType(),
                                         S.getIterationVariable()->getType(),
                                         S.getLocStart());
      }
    }
  }
  return std::make_pair(Chunk, ScheduleKindModifiersTy(ScheduleKind, M1, M2));
}

bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
  // Emit the loop iteration variable.
  auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
  auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
  EmitVarDecl(*IVDecl);

  // Emit the iterations count variable.
  // If it is not a variable, Sema decided to calculate iterations count on each
  // iteration (e.g., it is foldable into a constant).
  if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
    EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
    // Emit calculation of the iterations count.
    EmitIgnoredExpr(S.getCalcLastIteration());
  }

  auto &RT = CGM.getOpenMPRuntime();

  bool HasLastprivateClause;
  // Check pre-condition.
  {
    // Skip the entire loop if we don't meet the precondition.
    // If the condition constant folds and can be elided, avoid emitting the
    // whole loop.
    bool CondConstant;
    llvm::BasicBlock *ContBlock = nullptr;
    if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) {
      if (!CondConstant)
        return false;
    } else {
      auto *ThenBlock = createBasicBlock("omp.precond.then");
      ContBlock = createBasicBlock("omp.precond.end");
      emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock,
                  getProfileCount(&S));
      EmitBlock(ThenBlock);
      incrementProfileCounter(&S);
    }

    emitAlignedClause(*this, S);
    EmitOMPLinearClauseInit(S);
    // Emit 'then' code.
    {
      // Emit helper vars inits.
      LValue LB =
          EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
      LValue UB =
          EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
      LValue ST =
          EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
      LValue IL =
          EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));

      OMPPrivateScope LoopScope(*this);
      if (EmitOMPFirstprivateClause(S, LoopScope)) {
        // Emit implicit barrier to synchronize threads and avoid data races on
        // initialization of firstprivate variables.
        CGM.getOpenMPRuntime().emitBarrierCall(
            *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
            /*ForceSimpleCall=*/true);
      }
      EmitOMPPrivateClause(S, LoopScope);
      HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope);
      EmitOMPReductionClauseInit(S, LoopScope);
      emitPrivateLoopCounters(*this, LoopScope, S.counters(),
                              S.private_counters());
      emitPrivateLinearVars(*this, S, LoopScope);
      (void)LoopScope.Privatize();

      // Detect the loop schedule kind and chunk.
      llvm::Value *Chunk;
      OpenMPScheduleClauseKind ScheduleKind;
      auto ScheduleInfo =
          emitScheduleClause(*this, S, /*OuterRegion=*/false);
      Chunk = ScheduleInfo.first;
      ScheduleKind = ScheduleInfo.second.Kind;
      const OpenMPScheduleClauseModifier M1 = ScheduleInfo.second.M1;
      const OpenMPScheduleClauseModifier M2 = ScheduleInfo.second.M2;
      const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
      const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
      const bool Ordered = S.getSingleClause<OMPOrderedClause>() != nullptr;
      // OpenMP 4.5, 2.7.1 Loop Construct, Description.
      // If the static schedule kind is specified or if the ordered clause is
      // specified, and if no monotonic modifier is specified, the effect will
      // be as if the monotonic modifier was specified.
      if (RT.isStaticNonchunked(ScheduleKind,
                                /* Chunked */ Chunk != nullptr) &&
          !Ordered) {
        if (isOpenMPSimdDirective(S.getDirectiveKind()))
          EmitOMPSimdInit(S, /*IsMonotonic=*/true);
        // OpenMP [2.7.1, Loop Construct, Description, table 2-1]
        // When no chunk_size is specified, the iteration space is divided into
        // chunks that are approximately equal in size, and at most one chunk is
        // distributed to each thread. Note that the size of the chunks is
        // unspecified in this case.
        RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind,
                             IVSize, IVSigned, Ordered,
                             IL.getAddress(), LB.getAddress(),
                             UB.getAddress(), ST.getAddress());
        auto LoopExit =
            getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit"));
        // UB = min(UB, GlobalUB);
        EmitIgnoredExpr(S.getEnsureUpperBound());
        // IV = LB;
        EmitIgnoredExpr(S.getInit());
        // while (idx <= UB) { BODY; ++idx; }
        EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(),
                         S.getInc(),
                         [&S, LoopExit](CodeGenFunction &CGF) {
                           CGF.EmitOMPLoopBody(S, LoopExit);
                           CGF.EmitStopPoint(&S);
                         },
                         [](CodeGenFunction &) {});
        EmitBlock(LoopExit.getBlock());
        // Tell the runtime we are done.
        RT.emitForStaticFinish(*this, S.getLocStart());
      } else {
        const bool IsMonotonic = Ordered ||
                                 ScheduleKind == OMPC_SCHEDULE_static ||
                                 ScheduleKind == OMPC_SCHEDULE_unknown ||
                                 M1 == OMPC_SCHEDULE_MODIFIER_monotonic ||
                                 M2 == OMPC_SCHEDULE_MODIFIER_monotonic;
        // Emit the outer loop, which requests its work chunk [LB..UB] from
        // runtime and runs the inner loop to process it.
        EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered,
                            LB.getAddress(), UB.getAddress(), ST.getAddress(),
                            IL.getAddress(), Chunk);
      }
      EmitOMPReductionClauseFinal(S);
      // Emit final copy of the lastprivate variables if IsLastIter != 0.
      if (HasLastprivateClause)
        EmitOMPLastprivateClauseFinal(
            S, Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart())));
    }
    if (isOpenMPSimdDirective(S.getDirectiveKind())) {
      EmitOMPSimdFinal(S);
    }
    // We're now done with the loop, so jump to the continuation block.
    if (ContBlock) {
      EmitBranch(ContBlock);
      EmitBlock(ContBlock, true);
    }
  }
  return HasLastprivateClause;
}

void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
  LexicalScope Scope(*this, S.getSourceRange());
  bool HasLastprivates = false;
  auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
    HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
  };
  CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen,
                                              S.hasCancel());

  // Emit an implicit barrier at the end.
  if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
    CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
  }
}

void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) {
  LexicalScope Scope(*this, S.getSourceRange());
  bool HasLastprivates = false;
  auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) {
    HasLastprivates = CGF.EmitOMPWorksharingLoop(S);
  };
  CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen);

  // Emit an implicit barrier at the end.
  if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) {
    CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
  }
}

static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
                                const Twine &Name,
                                llvm::Value *Init = nullptr) {
  auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
  if (Init)
    CGF.EmitScalarInit(Init, LVal);
  return LVal;
}

OpenMPDirectiveKind
CodeGenFunction::EmitSections(const OMPExecutableDirective &S) {
  auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
  auto *CS = dyn_cast<CompoundStmt>(Stmt);
  if (CS && CS->size() > 1) {
    bool HasLastprivates = false;
    auto &&CodeGen = [&S, CS, &HasLastprivates](CodeGenFunction &CGF) {
      auto &C = CGF.CGM.getContext();
      auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
      // Emit helper vars inits.
      LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.",
                                    CGF.Builder.getInt32(0));
      auto *GlobalUBVal = CGF.Builder.getInt32(CS->size() - 1);
      LValue UB =
          createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
      LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.",
                                    CGF.Builder.getInt32(1));
      LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.",
                                    CGF.Builder.getInt32(0));
      // Loop counter.
      LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv.");
      OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
      CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV);
      OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
      CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB);
      // Generate condition for loop.
      BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
                          OK_Ordinary, S.getLocStart(),
                          /*fpContractable=*/false);
      // Increment for loop counter.
      UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue,
                        OK_Ordinary, S.getLocStart());
      auto BodyGen = [CS, &S, &IV](CodeGenFunction &CGF) {
        // Iterate through all sections and emit a switch construct:
        // switch (IV) {
        //   case 0:
        //     <SectionStmt[0]>;
        //     break;
        // ...
        //   case <NumSection> - 1:
        //     <SectionStmt[<NumSection> - 1]>;
        //     break;
        // }
        // .omp.sections.exit:
        auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit");
        auto *SwitchStmt = CGF.Builder.CreateSwitch(
            CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
            CS->size());
        unsigned CaseNumber = 0;
        for (auto *SubStmt : CS->children()) {
          auto CaseBB = CGF.createBasicBlock(".omp.sections.case");
          CGF.EmitBlock(CaseBB);
          SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB);
          CGF.EmitStmt(SubStmt);
          CGF.EmitBranch(ExitBB);
          ++CaseNumber;
        }
        CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
      };

      CodeGenFunction::OMPPrivateScope LoopScope(CGF);
      if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) {
        // Emit implicit barrier to synchronize threads and avoid data races on
        // initialization of firstprivate variables.
        CGF.CGM.getOpenMPRuntime().emitBarrierCall(
            CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false,
            /*ForceSimpleCall=*/true);
      }
      CGF.EmitOMPPrivateClause(S, LoopScope);
      HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope);
      CGF.EmitOMPReductionClauseInit(S, LoopScope);
      (void)LoopScope.Privatize();

      // Emit static non-chunked loop.
      CGF.CGM.getOpenMPRuntime().emitForStaticInit(
          CGF, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32,
          /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(),
          LB.getAddress(), UB.getAddress(), ST.getAddress());
      // UB = min(UB, GlobalUB);
      auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart());
      auto *MinUBGlobalUB = CGF.Builder.CreateSelect(
          CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
      CGF.EmitStoreOfScalar(MinUBGlobalUB, UB);
      // IV = LB;
      CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV);
      // while (idx <= UB) { BODY; ++idx; }
      CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen,
                           [](CodeGenFunction &) {});
      // Tell the runtime we are done.
      CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart());
      CGF.EmitOMPReductionClauseFinal(S);

      // Emit final copy of the lastprivate variables if IsLastIter != 0.
      if (HasLastprivates)
        CGF.EmitOMPLastprivateClauseFinal(
            S, CGF.Builder.CreateIsNotNull(
                   CGF.EmitLoadOfScalar(IL, S.getLocStart())));
    };

    bool HasCancel = false;
    if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S))
      HasCancel = OSD->hasCancel();
    else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S))
      HasCancel = OPSD->hasCancel();
    CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen,
                                                HasCancel);
    // Emit barrier for lastprivates only if 'sections' directive has 'nowait'
    // clause. Otherwise the barrier will be generated by the codegen for the
    // directive.
    if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) {
      // Emit implicit barrier to synchronize threads and avoid data races on
      // initialization of firstprivate variables.
      CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
                                             OMPD_unknown);
    }
    return OMPD_sections;
  }
  // If only one section is found - no need to generate loop, emit as a single
  // region.
  bool HasFirstprivates;
  // No need to generate reductions for sections with single section region, we
  // can use original shared variables for all operations.
  bool HasReductions = S.hasClausesOfKind<OMPReductionClause>();
  // No need to generate lastprivates for sections with single section region,
  // we can use original shared variable for all calculations with barrier at
  // the end of the sections.
  bool HasLastprivates = S.hasClausesOfKind<OMPLastprivateClause>();
  auto &&CodeGen = [Stmt, &S, &HasFirstprivates](CodeGenFunction &CGF) {
    CodeGenFunction::OMPPrivateScope SingleScope(CGF);
    HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
    CGF.EmitOMPPrivateClause(S, SingleScope);
    (void)SingleScope.Privatize();

    CGF.EmitStmt(Stmt);
  };
  CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
                                          llvm::None, llvm::None, llvm::None,
                                          llvm::None);
  // Emit barrier for firstprivates, lastprivates or reductions only if
  // 'sections' directive has 'nowait' clause. Otherwise the barrier will be
  // generated by the codegen for the directive.
  if ((HasFirstprivates || HasLastprivates || HasReductions) &&
      S.getSingleClause<OMPNowaitClause>()) {
    // Emit implicit barrier to synchronize threads and avoid data races on
    // initialization of firstprivate variables.
    CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_unknown,
                                           /*EmitChecks=*/false,
                                           /*ForceSimpleCall=*/true);
  }
  return OMPD_single;
}

void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
  LexicalScope Scope(*this, S.getSourceRange());
  OpenMPDirectiveKind EmittedAs = EmitSections(S);
  // Emit an implicit barrier at the end.
  if (!S.getSingleClause<OMPNowaitClause>()) {
    CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), EmittedAs);
  }
}

void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
  LexicalScope Scope(*this, S.getSourceRange());
  auto &&CodeGen = [&S](CodeGenFunction &CGF) {
    CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
  };
  CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen,
                                              S.hasCancel());
}

void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
  llvm::SmallVector<const Expr *, 8> CopyprivateVars;
  llvm::SmallVector<const Expr *, 8> DestExprs;
  llvm::SmallVector<const Expr *, 8> SrcExprs;
  llvm::SmallVector<const Expr *, 8> AssignmentOps;
  // Check if there are any 'copyprivate' clauses associated with this
  // 'single'
  // construct.
  // Build a list of copyprivate variables along with helper expressions
  // (<source>, <destination>, <destination>=<source> expressions)
  for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) {
    CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
    DestExprs.append(C->destination_exprs().begin(),
                     C->destination_exprs().end());
    SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
    AssignmentOps.append(C->assignment_ops().begin(),
                         C->assignment_ops().end());
  }
  LexicalScope Scope(*this, S.getSourceRange());
  // Emit code for 'single' region along with 'copyprivate' clauses
  bool HasFirstprivates;
  auto &&CodeGen = [&S, &HasFirstprivates](CodeGenFunction &CGF) {
    CodeGenFunction::OMPPrivateScope SingleScope(CGF);
    HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope);
    CGF.EmitOMPPrivateClause(S, SingleScope);
    (void)SingleScope.Privatize();

    CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
  };
  CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(),
                                          CopyprivateVars, DestExprs, SrcExprs,
                                          AssignmentOps);
  // Emit an implicit barrier at the end (to avoid data race on firstprivate
  // init or if no 'nowait' clause was specified and no 'copyprivate' clause).
  if ((!S.getSingleClause<OMPNowaitClause>() || HasFirstprivates) &&
      CopyprivateVars.empty()) {
    CGM.getOpenMPRuntime().emitBarrierCall(
        *this, S.getLocStart(),
        S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single);
  }
}

void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
  LexicalScope Scope(*this, S.getSourceRange());
  auto &&CodeGen = [&S](CodeGenFunction &CGF) {
    CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
  };
  CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart());
}

void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
  LexicalScope Scope(*this, S.getSourceRange());
  auto &&CodeGen = [&S](CodeGenFunction &CGF) {
    CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
  };
  Expr *Hint = nullptr;
  if (auto *HintClause = S.getSingleClause<OMPHintClause>())
    Hint = HintClause->getHint();
  CGM.getOpenMPRuntime().emitCriticalRegion(*this,
                                            S.getDirectiveName().getAsString(),
                                            CodeGen, S.getLocStart(), Hint);
}

void CodeGenFunction::EmitOMPParallelForDirective(
    const OMPParallelForDirective &S) {
  // Emit directive as a combined directive that consists of two implicit
  // directives: 'parallel' with 'for' directive.
  LexicalScope Scope(*this, S.getSourceRange());
  (void)emitScheduleClause(*this, S, /*OuterRegion=*/true);
  auto &&CodeGen = [&S](CodeGenFunction &CGF) {
    CGF.EmitOMPWorksharingLoop(S);
  };
  emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen);
}

void CodeGenFunction::EmitOMPParallelForSimdDirective(
    const OMPParallelForSimdDirective &S) {
  // Emit directive as a combined directive that consists of two implicit
  // directives: 'parallel' with 'for' directive.
  LexicalScope Scope(*this, S.getSourceRange());
  (void)emitScheduleClause(*this, S, /*OuterRegion=*/true);
  auto &&CodeGen = [&S](CodeGenFunction &CGF) {
    CGF.EmitOMPWorksharingLoop(S);
  };
  emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen);
}

void CodeGenFunction::EmitOMPParallelSectionsDirective(
    const OMPParallelSectionsDirective &S) {
  // Emit directive as a combined directive that consists of two implicit
  // directives: 'parallel' with 'sections' directive.
  LexicalScope Scope(*this, S.getSourceRange());
  auto &&CodeGen = [&S](CodeGenFunction &CGF) {
    (void)CGF.EmitSections(S);
  };
  emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen);
}

void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
  // Emit outlined function for task construct.
  LexicalScope Scope(*this, S.getSourceRange());
  auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
  auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
  auto *I = CS->getCapturedDecl()->param_begin();
  auto *PartId = std::next(I);
  // The first function argument for tasks is a thread id, the second one is a
  // part id (0 for tied tasks, >=0 for untied task).
  llvm::DenseSet<const VarDecl *> EmittedAsPrivate;
  // Get list of private variables.
  llvm::SmallVector<const Expr *, 8> PrivateVars;
  llvm::SmallVector<const Expr *, 8> PrivateCopies;
  for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
    auto IRef = C->varlist_begin();
    for (auto *IInit : C->private_copies()) {
      auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
      if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
        PrivateVars.push_back(*IRef);
        PrivateCopies.push_back(IInit);
      }
      ++IRef;
    }
  }
  EmittedAsPrivate.clear();
  // Get list of firstprivate variables.
  llvm::SmallVector<const Expr *, 8> FirstprivateVars;
  llvm::SmallVector<const Expr *, 8> FirstprivateCopies;
  llvm::SmallVector<const Expr *, 8> FirstprivateInits;
  for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
    auto IRef = C->varlist_begin();
    auto IElemInitRef = C->inits().begin();
    for (auto *IInit : C->private_copies()) {
      auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
      if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) {
        FirstprivateVars.push_back(*IRef);
        FirstprivateCopies.push_back(IInit);
        FirstprivateInits.push_back(*IElemInitRef);
      }
      ++IRef, ++IElemInitRef;
    }
  }
  // Build list of dependences.
  llvm::SmallVector<std::pair<OpenMPDependClauseKind, const Expr *>, 8>
      Dependences;
  for (const auto *C : S.getClausesOfKind<OMPDependClause>()) {
    for (auto *IRef : C->varlists()) {
      Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef));
    }
  }
  auto &&CodeGen = [PartId, &S, &PrivateVars, &FirstprivateVars](
      CodeGenFunction &CGF) {
    // Set proper addresses for generated private copies.
    auto *CS = cast<CapturedStmt>(S.getAssociatedStmt());
    OMPPrivateScope Scope(CGF);
    if (!PrivateVars.empty() || !FirstprivateVars.empty()) {
      auto *CopyFn = CGF.Builder.CreateLoad(
          CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3)));
      auto *PrivatesPtr = CGF.Builder.CreateLoad(
          CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2)));
      // Map privates.
      llvm::SmallVector<std::pair<const VarDecl *, Address>, 16>
          PrivatePtrs;
      llvm::SmallVector<llvm::Value *, 16> CallArgs;
      CallArgs.push_back(PrivatesPtr);
      for (auto *E : PrivateVars) {
        auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
        Address PrivatePtr =
            CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
        PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
        CallArgs.push_back(PrivatePtr.getPointer());
      }
      for (auto *E : FirstprivateVars) {
        auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
        Address PrivatePtr =
            CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()));
        PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr));
        CallArgs.push_back(PrivatePtr.getPointer());
      }
      CGF.EmitRuntimeCall(CopyFn, CallArgs);
      for (auto &&Pair : PrivatePtrs) {
        Address Replacement(CGF.Builder.CreateLoad(Pair.second),
                            CGF.getContext().getDeclAlign(Pair.first));
        Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; });
      }
    }
    (void)Scope.Privatize();
    if (*PartId) {
      // TODO: emit code for untied tasks.
    }
    CGF.EmitStmt(CS->getCapturedStmt());
  };
  auto OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction(
      S, *I, OMPD_task, CodeGen);
  // Check if we should emit tied or untied task.
  bool Tied = !S.getSingleClause<OMPUntiedClause>();
  // Check if the task is final
  llvm::PointerIntPair<llvm::Value *, 1, bool> Final;
  if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) {
    // If the condition constant folds and can be elided, try to avoid emitting
    // the condition and the dead arm of the if/else.
    auto *Cond = Clause->getCondition();
    bool CondConstant;
    if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
      Final.setInt(CondConstant);
    else
      Final.setPointer(EvaluateExprAsBool(Cond));
  } else {
    // By default the task is not final.
    Final.setInt(/*IntVal=*/false);
  }
  auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
  const Expr *IfCond = nullptr;
  for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
    if (C->getNameModifier() == OMPD_unknown ||
        C->getNameModifier() == OMPD_task) {
      IfCond = C->getCondition();
      break;
    }
  }
  CGM.getOpenMPRuntime().emitTaskCall(
      *this, S.getLocStart(), S, Tied, Final, OutlinedFn, SharedsTy,
      CapturedStruct, IfCond, PrivateVars, PrivateCopies, FirstprivateVars,
      FirstprivateCopies, FirstprivateInits, Dependences);
}

void CodeGenFunction::EmitOMPTaskyieldDirective(
    const OMPTaskyieldDirective &S) {
  CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
}

void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
  CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
}

void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) {
  CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart());
}

void CodeGenFunction::EmitOMPTaskgroupDirective(
    const OMPTaskgroupDirective &S) {
  LexicalScope Scope(*this, S.getSourceRange());
  auto &&CodeGen = [&S](CodeGenFunction &CGF) {
    CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
  };
  CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart());
}

void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
  CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
    if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) {
      return llvm::makeArrayRef(FlushClause->varlist_begin(),
                                FlushClause->varlist_end());
    }
    return llvm::None;
  }(), S.getLocStart());
}

void CodeGenFunction::EmitOMPDistributeDirective(
    const OMPDistributeDirective &S) {
  llvm_unreachable("CodeGen for 'omp distribute' is not supported yet.");
}

static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM,
                                                   const CapturedStmt *S) {
  CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
  CodeGenFunction::CGCapturedStmtInfo CapStmtInfo;
  CGF.CapturedStmtInfo = &CapStmtInfo;
  auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S);
  Fn->addFnAttr(llvm::Attribute::NoInline);
  return Fn;
}

void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) {
  if (!S.getAssociatedStmt())
    return;
  LexicalScope Scope(*this, S.getSourceRange());
  auto *C = S.getSingleClause<OMPSIMDClause>();
  auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF) {
    if (C) {
      auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
      llvm::SmallVector<llvm::Value *, 16> CapturedVars;
      CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars);
      auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS);
      CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars);
    } else {
      CGF.EmitStmt(
          cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
    }
  };
  CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C);
}

static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
                                         QualType SrcType, QualType DestType,
                                         SourceLocation Loc) {
  assert(CGF.hasScalarEvaluationKind(DestType) &&
         "DestType must have scalar evaluation kind.");
  assert(!Val.isAggregate() && "Must be a scalar or complex.");
  return Val.isScalar()
             ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType,
                                        Loc)
             : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
                                                 DestType, Loc);
}

static CodeGenFunction::ComplexPairTy
convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
                      QualType DestType, SourceLocation Loc) {
  assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
         "DestType must have complex evaluation kind.");
  CodeGenFunction::ComplexPairTy ComplexVal;
  if (Val.isScalar()) {
    // Convert the input element to the element type of the complex.
    auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
    auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType,
                                              DestElementType, Loc);
    ComplexVal = CodeGenFunction::ComplexPairTy(
        ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
  } else {
    assert(Val.isComplex() && "Must be a scalar or complex.");
    auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
    auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
    ComplexVal.first = CGF.EmitScalarConversion(
        Val.getComplexVal().first, SrcElementType, DestElementType, Loc);
    ComplexVal.second = CGF.EmitScalarConversion(
        Val.getComplexVal().second, SrcElementType, DestElementType, Loc);
  }
  return ComplexVal;
}

static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
                                  LValue LVal, RValue RVal) {
  if (LVal.isGlobalReg()) {
    CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal);
  } else {
    CGF.EmitAtomicStore(RVal, LVal, IsSeqCst ? llvm::SequentiallyConsistent
                                             : llvm::Monotonic,
                        LVal.isVolatile(), /*IsInit=*/false);
  }
}

static void emitSimpleStore(CodeGenFunction &CGF, LValue LVal, RValue RVal,
                            QualType RValTy, SourceLocation Loc) {
  switch (CGF.getEvaluationKind(LVal.getType())) {
  case TEK_Scalar:
    CGF.EmitStoreThroughLValue(RValue::get(convertToScalarValue(
                                   CGF, RVal, RValTy, LVal.getType(), Loc)),
                               LVal);
    break;
  case TEK_Complex:
    CGF.EmitStoreOfComplex(
        convertToComplexValue(CGF, RVal, RValTy, LVal.getType(), Loc), LVal,
        /*isInit=*/false);
    break;
  case TEK_Aggregate:
    llvm_unreachable("Must be a scalar or complex.");
  }
}

static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
                                  const Expr *X, const Expr *V,
                                  SourceLocation Loc) {
  // v = x;
  assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
  assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
  LValue XLValue = CGF.EmitLValue(X);
  LValue VLValue = CGF.EmitLValue(V);
  RValue Res = XLValue.isGlobalReg()
                   ? CGF.EmitLoadOfLValue(XLValue, Loc)
                   : CGF.EmitAtomicLoad(XLValue, Loc,
                                        IsSeqCst ? llvm::SequentiallyConsistent
                                                 : llvm::Monotonic,
                                        XLValue.isVolatile());
  // OpenMP, 2.12.6, atomic Construct
  // Any atomic construct with a seq_cst clause forces the atomically
  // performed operation to include an implicit flush operation without a
  // list.
  if (IsSeqCst)
    CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
  emitSimpleStore(CGF, VLValue, Res, X->getType().getNonReferenceType(), Loc);
}

static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
                                   const Expr *X, const Expr *E,
                                   SourceLocation Loc) {
  // x = expr;
  assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
  emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E));
  // OpenMP, 2.12.6, atomic Construct
  // Any atomic construct with a seq_cst clause forces the atomically
  // performed operation to include an implicit flush operation without a
  // list.
  if (IsSeqCst)
    CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
}

static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X,
                                                RValue Update,
                                                BinaryOperatorKind BO,
                                                llvm::AtomicOrdering AO,
                                                bool IsXLHSInRHSPart) {
  auto &Context = CGF.CGM.getContext();
  // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x'
  // expression is simple and atomic is allowed for the given type for the
  // target platform.
  if (BO == BO_Comma || !Update.isScalar() ||
      !Update.getScalarVal()->getType()->isIntegerTy() ||
      !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) &&
                        (Update.getScalarVal()->getType() !=
                         X.getAddress().getElementType())) ||
      !X.getAddress().getElementType()->isIntegerTy() ||
      !Context.getTargetInfo().hasBuiltinAtomic(
          Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment())))
    return std::make_pair(false, RValue::get(nullptr));

  llvm::AtomicRMWInst::BinOp RMWOp;
  switch (BO) {
  case BO_Add:
    RMWOp = llvm::AtomicRMWInst::Add;
    break;
  case BO_Sub:
    if (!IsXLHSInRHSPart)
      return std::make_pair(false, RValue::get(nullptr));
    RMWOp = llvm::AtomicRMWInst::Sub;
    break;
  case BO_And:
    RMWOp = llvm::AtomicRMWInst::And;
    break;
  case BO_Or:
    RMWOp = llvm::AtomicRMWInst::Or;
    break;
  case BO_Xor:
    RMWOp = llvm::AtomicRMWInst::Xor;
    break;
  case BO_LT:
    RMWOp = X.getType()->hasSignedIntegerRepresentation()
                ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min
                                   : llvm::AtomicRMWInst::Max)
                : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin
                                   : llvm::AtomicRMWInst::UMax);
    break;
  case BO_GT:
    RMWOp = X.getType()->hasSignedIntegerRepresentation()
                ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max
                                   : llvm::AtomicRMWInst::Min)
                : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax
                                   : llvm::AtomicRMWInst::UMin);
    break;
  case BO_Assign:
    RMWOp = llvm::AtomicRMWInst::Xchg;
    break;
  case BO_Mul:
  case BO_Div:
  case BO_Rem:
  case BO_Shl:
  case BO_Shr:
  case BO_LAnd:
  case BO_LOr:
    return std::make_pair(false, RValue::get(nullptr));
  case BO_PtrMemD:
  case BO_PtrMemI:
  case BO_LE:
  case BO_GE:
  case BO_EQ:
  case BO_NE:
  case BO_AddAssign:
  case BO_SubAssign:
  case BO_AndAssign:
  case BO_OrAssign:
  case BO_XorAssign:
  case BO_MulAssign:
  case BO_DivAssign:
  case BO_RemAssign:
  case BO_ShlAssign:
  case BO_ShrAssign:
  case BO_Comma:
    llvm_unreachable("Unsupported atomic update operation");
  }
  auto *UpdateVal = Update.getScalarVal();
  if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) {
    UpdateVal = CGF.Builder.CreateIntCast(
        IC, X.getAddress().getElementType(),
        X.getType()->hasSignedIntegerRepresentation());
  }
  auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO);
  return std::make_pair(true, RValue::get(Res));
}

std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr(
    LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
    llvm::AtomicOrdering AO, SourceLocation Loc,
    const llvm::function_ref<RValue(RValue)> &CommonGen) {
  // Update expressions are allowed to have the following forms:
  // x binop= expr; -> xrval + expr;
  // x++, ++x -> xrval + 1;
  // x--, --x -> xrval - 1;
  // x = x binop expr; -> xrval binop expr
  // x = expr Op x; - > expr binop xrval;
  auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart);
  if (!Res.first) {
    if (X.isGlobalReg()) {
      // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
      // 'xrval'.
      EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X);
    } else {
      // Perform compare-and-swap procedure.
      EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified());
    }
  }
  return Res;
}

static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
                                    const Expr *X, const Expr *E,
                                    const Expr *UE, bool IsXLHSInRHSPart,
                                    SourceLocation Loc) {
  assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
         "Update expr in 'atomic update' must be a binary operator.");
  auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
  // Update expressions are allowed to have the following forms:
  // x binop= expr; -> xrval + expr;
  // x++, ++x -> xrval + 1;
  // x--, --x -> xrval - 1;
  // x = x binop expr; -> xrval binop expr
  // x = expr Op x; - > expr binop xrval;
  assert(X->isLValue() && "X of 'omp atomic update' is not lvalue");
  LValue XLValue = CGF.EmitLValue(X);
  RValue ExprRValue = CGF.EmitAnyExpr(E);
  auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
  auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
  auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
  auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
  auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
  auto Gen =
      [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue {
        CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
        CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
        return CGF.EmitAnyExpr(UE);
      };
  (void)CGF.EmitOMPAtomicSimpleUpdateExpr(
      XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
  // OpenMP, 2.12.6, atomic Construct
  // Any atomic construct with a seq_cst clause forces the atomically
  // performed operation to include an implicit flush operation without a
  // list.
  if (IsSeqCst)
    CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
}

static RValue convertToType(CodeGenFunction &CGF, RValue Value,
                            QualType SourceType, QualType ResType,
                            SourceLocation Loc) {
  switch (CGF.getEvaluationKind(ResType)) {
  case TEK_Scalar:
    return RValue::get(
        convertToScalarValue(CGF, Value, SourceType, ResType, Loc));
  case TEK_Complex: {
    auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc);
    return RValue::getComplex(Res.first, Res.second);
  }
  case TEK_Aggregate:
    break;
  }
  llvm_unreachable("Must be a scalar or complex.");
}

static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
                                     bool IsPostfixUpdate, const Expr *V,
                                     const Expr *X, const Expr *E,
                                     const Expr *UE, bool IsXLHSInRHSPart,
                                     SourceLocation Loc) {
  assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue");
  assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue");
  RValue NewVVal;
  LValue VLValue = CGF.EmitLValue(V);
  LValue XLValue = CGF.EmitLValue(X);
  RValue ExprRValue = CGF.EmitAnyExpr(E);
  auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
  QualType NewVValType;
  if (UE) {
    // 'x' is updated with some additional value.
    assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
           "Update expr in 'atomic capture' must be a binary operator.");
    auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
    // Update expressions are allowed to have the following forms:
    // x binop= expr; -> xrval + expr;
    // x++, ++x -> xrval + 1;
    // x--, --x -> xrval - 1;
    // x = x binop expr; -> xrval binop expr
    // x = expr Op x; - > expr binop xrval;
    auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
    auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
    auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
    NewVValType = XRValExpr->getType();
    auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS;
    auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr,
                  IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue {
      CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
      CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue);
      RValue Res = CGF.EmitAnyExpr(UE);
      NewVVal = IsPostfixUpdate ? XRValue : Res;
      return Res;
    };
    auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
        XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen);
    if (Res.first) {
      // 'atomicrmw' instruction was generated.
      if (IsPostfixUpdate) {
        // Use old value from 'atomicrmw'.
        NewVVal = Res.second;
      } else {
        // 'atomicrmw' does not provide new value, so evaluate it using old
        // value of 'x'.
        CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue);
        CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second);
        NewVVal = CGF.EmitAnyExpr(UE);
      }
    }
  } else {
    // 'x' is simply rewritten with some 'expr'.
    NewVValType = X->getType().getNonReferenceType();
    ExprRValue = convertToType(CGF, ExprRValue, E->getType(),
                               X->getType().getNonReferenceType(), Loc);
    auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue {
      NewVVal = XRValue;
      return ExprRValue;
    };
    // Try to perform atomicrmw xchg, otherwise simple exchange.
    auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr(
        XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO,
        Loc, Gen);
    if (Res.first) {
      // 'atomicrmw' instruction was generated.
      NewVVal = IsPostfixUpdate ? Res.second : ExprRValue;
    }
  }
  // Emit post-update store to 'v' of old/new 'x' value.
  emitSimpleStore(CGF, VLValue, NewVVal, NewVValType, Loc);
  // OpenMP, 2.12.6, atomic Construct
  // Any atomic construct with a seq_cst clause forces the atomically
  // performed operation to include an implicit flush operation without a
  // list.
  if (IsSeqCst)
    CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
}

static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
                              bool IsSeqCst, bool IsPostfixUpdate,
                              const Expr *X, const Expr *V, const Expr *E,
                              const Expr *UE, bool IsXLHSInRHSPart,
                              SourceLocation Loc) {
  switch (Kind) {
  case OMPC_read:
    EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
    break;
  case OMPC_write:
    EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
    break;
  case OMPC_unknown:
  case OMPC_update:
    EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
    break;
  case OMPC_capture:
    EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE,
                             IsXLHSInRHSPart, Loc);
    break;
  case OMPC_if:
  case OMPC_final:
  case OMPC_num_threads:
  case OMPC_private:
  case OMPC_firstprivate:
  case OMPC_lastprivate:
  case OMPC_reduction:
  case OMPC_safelen:
  case OMPC_simdlen:
  case OMPC_collapse:
  case OMPC_default:
  case OMPC_seq_cst:
  case OMPC_shared:
  case OMPC_linear:
  case OMPC_aligned:
  case OMPC_copyin:
  case OMPC_copyprivate:
  case OMPC_flush:
  case OMPC_proc_bind:
  case OMPC_schedule:
  case OMPC_ordered:
  case OMPC_nowait:
  case OMPC_untied:
  case OMPC_threadprivate:
  case OMPC_depend:
  case OMPC_mergeable:
  case OMPC_device:
  case OMPC_threads:
  case OMPC_simd:
  case OMPC_map:
  case OMPC_num_teams:
  case OMPC_thread_limit:
  case OMPC_priority:
  case OMPC_grainsize:
  case OMPC_nogroup:
  case OMPC_num_tasks:
  case OMPC_hint:
  case OMPC_dist_schedule:
    llvm_unreachable("Clause is not allowed in 'omp atomic'.");
  }
}

void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
  bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>();
  OpenMPClauseKind Kind = OMPC_unknown;
  for (auto *C : S.clauses()) {
    // Find first clause (skip seq_cst clause, if it is first).
    if (C->getClauseKind() != OMPC_seq_cst) {
      Kind = C->getClauseKind();
      break;
    }
  }

  const auto *CS =
      S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
  if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) {
    enterFullExpression(EWC);
  }
  // Processing for statements under 'atomic capture'.
  if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) {
    for (const auto *C : Compound->body()) {
      if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) {
        enterFullExpression(EWC);
      }
    }
  }

  LexicalScope Scope(*this, S.getSourceRange());
  auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF) {
    CGF.EmitStopPoint(CS);
    EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(),
                      S.getV(), S.getExpr(), S.getUpdateExpr(),
                      S.isXLHSInRHSPart(), S.getLocStart());
  };
  CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen);
}

void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) {
  LexicalScope Scope(*this, S.getSourceRange());
  const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt());

  llvm::SmallVector<llvm::Value *, 16> CapturedVars;
  GenerateOpenMPCapturedVars(CS, CapturedVars);

  llvm::Function *Fn = nullptr;
  llvm::Constant *FnID = nullptr;

  // Check if we have any if clause associated with the directive.
  const Expr *IfCond = nullptr;

  if (auto *C = S.getSingleClause<OMPIfClause>()) {
    IfCond = C->getCondition();
  }

  // Check if we have any device clause associated with the directive.
  const Expr *Device = nullptr;
  if (auto *C = S.getSingleClause<OMPDeviceClause>()) {
    Device = C->getDevice();
  }

  // Check if we have an if clause whose conditional always evaluates to false
  // or if we do not have any targets specified. If so the target region is not
  // an offload entry point.
  bool IsOffloadEntry = true;
  if (IfCond) {
    bool Val;
    if (ConstantFoldsToSimpleInteger(IfCond, Val) && !Val)
      IsOffloadEntry = false;
  }
  if (CGM.getLangOpts().OMPTargetTriples.empty())
    IsOffloadEntry = false;

  assert(CurFuncDecl && "No parent declaration for target region!");
  StringRef ParentName;
  // In case we have Ctors/Dtors we use the complete type variant to produce
  // the mangling of the device outlined kernel.
  if (auto *D = dyn_cast<CXXConstructorDecl>(CurFuncDecl))
    ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete));
  else if (auto *D = dyn_cast<CXXDestructorDecl>(CurFuncDecl))
    ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete));
  else
    ParentName =
        CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CurFuncDecl)));

  CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID,
                                                    IsOffloadEntry);

  CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, FnID, IfCond, Device,
                                        CapturedVars);
}

void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) {
  llvm_unreachable("CodeGen for 'omp teams' is not supported yet.");
}

void CodeGenFunction::EmitOMPCancellationPointDirective(
    const OMPCancellationPointDirective &S) {
  CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(),
                                                   S.getCancelRegion());
}

void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) {
  const Expr *IfCond = nullptr;
  for (const auto *C : S.getClausesOfKind<OMPIfClause>()) {
    if (C->getNameModifier() == OMPD_unknown ||
        C->getNameModifier() == OMPD_cancel) {
      IfCond = C->getCondition();
      break;
    }
  }
  CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond,
                                        S.getCancelRegion());
}

CodeGenFunction::JumpDest
CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) {
  if (Kind == OMPD_parallel || Kind == OMPD_task)
    return ReturnBlock;
  assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections ||
         Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for);
  return BreakContinueStack.back().BreakBlock;
}

// Generate the instructions for '#pragma omp target data' directive.
void CodeGenFunction::EmitOMPTargetDataDirective(
    const OMPTargetDataDirective &S) {
  // emit the code inside the construct for now
  auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
  CGM.getOpenMPRuntime().emitInlinedDirective(
      *this, OMPD_target_data,
      [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); });
}

void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) {
  // emit the code inside the construct for now
  auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
  CGM.getOpenMPRuntime().emitInlinedDirective(
      *this, OMPD_taskloop,
      [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); });
}

void CodeGenFunction::EmitOMPTaskLoopSimdDirective(
    const OMPTaskLoopSimdDirective &S) {
  // emit the code inside the construct for now
  auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
  CGM.getOpenMPRuntime().emitInlinedDirective(
      *this, OMPD_taskloop_simd,
      [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); });
}