SIInstrInfo.cpp   [plain text]


//===-- SIInstrInfo.cpp - SI Instruction Information  ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief SI Implementation of TargetInstrInfo.
//
//===----------------------------------------------------------------------===//


#include "SIInstrInfo.h"
#include "AMDGPUTargetMachine.h"
#include "SIDefines.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

SIInstrInfo::SIInstrInfo(const AMDGPUSubtarget &st)
    : AMDGPUInstrInfo(st), RI() {}

//===----------------------------------------------------------------------===//
// TargetInstrInfo callbacks
//===----------------------------------------------------------------------===//

static unsigned getNumOperandsNoGlue(SDNode *Node) {
  unsigned N = Node->getNumOperands();
  while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
    --N;
  return N;
}

static SDValue findChainOperand(SDNode *Load) {
  SDValue LastOp = Load->getOperand(getNumOperandsNoGlue(Load) - 1);
  assert(LastOp.getValueType() == MVT::Other && "Chain missing from load node");
  return LastOp;
}

/// \brief Returns true if both nodes have the same value for the given
///        operand \p Op, or if both nodes do not have this operand.
static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) {
  unsigned Opc0 = N0->getMachineOpcode();
  unsigned Opc1 = N1->getMachineOpcode();

  int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName);
  int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName);

  if (Op0Idx == -1 && Op1Idx == -1)
    return true;


  if ((Op0Idx == -1 && Op1Idx != -1) ||
      (Op1Idx == -1 && Op0Idx != -1))
    return false;

  // getNamedOperandIdx returns the index for the MachineInstr's operands,
  // which includes the result as the first operand. We are indexing into the
  // MachineSDNode's operands, so we need to skip the result operand to get
  // the real index.
  --Op0Idx;
  --Op1Idx;

  return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx);
}

bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1,
                                          int64_t &Offset0,
                                          int64_t &Offset1) const {
  if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode())
    return false;

  unsigned Opc0 = Load0->getMachineOpcode();
  unsigned Opc1 = Load1->getMachineOpcode();

  // Make sure both are actually loads.
  if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad())
    return false;

  if (isDS(Opc0) && isDS(Opc1)) {

    // FIXME: Handle this case:
    if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1))
      return false;

    // Check base reg.
    if (Load0->getOperand(1) != Load1->getOperand(1))
      return false;

    // Check chain.
    if (findChainOperand(Load0) != findChainOperand(Load1))
      return false;

    // Skip read2 / write2 variants for simplicity.
    // TODO: We should report true if the used offsets are adjacent (excluded
    // st64 versions).
    if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::data1) != -1 ||
        AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::data1) != -1)
      return false;

    Offset0 = cast<ConstantSDNode>(Load0->getOperand(2))->getZExtValue();
    Offset1 = cast<ConstantSDNode>(Load1->getOperand(2))->getZExtValue();
    return true;
  }

  if (isSMRD(Opc0) && isSMRD(Opc1)) {
    assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1));

    // Check base reg.
    if (Load0->getOperand(0) != Load1->getOperand(0))
      return false;

    // Check chain.
    if (findChainOperand(Load0) != findChainOperand(Load1))
      return false;

    Offset0 = cast<ConstantSDNode>(Load0->getOperand(1))->getZExtValue();
    Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue();
    return true;
  }

  // MUBUF and MTBUF can access the same addresses.
  if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) {

    // MUBUF and MTBUF have vaddr at different indices.
    if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) ||
        findChainOperand(Load0) != findChainOperand(Load1) ||
        !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) ||
        !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc))
      return false;

    int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
    int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);

    if (OffIdx0 == -1 || OffIdx1 == -1)
      return false;

    // getNamedOperandIdx returns the index for MachineInstrs.  Since they
    // inlcude the output in the operand list, but SDNodes don't, we need to
    // subtract the index by one.
    --OffIdx0;
    --OffIdx1;

    SDValue Off0 = Load0->getOperand(OffIdx0);
    SDValue Off1 = Load1->getOperand(OffIdx1);

    // The offset might be a FrameIndexSDNode.
    if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1))
      return false;

    Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue();
    Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue();
    return true;
  }

  return false;
}

static bool isStride64(unsigned Opc) {
  switch (Opc) {
  case AMDGPU::DS_READ2ST64_B32:
  case AMDGPU::DS_READ2ST64_B64:
  case AMDGPU::DS_WRITE2ST64_B32:
  case AMDGPU::DS_WRITE2ST64_B64:
    return true;
  default:
    return false;
  }
}

bool SIInstrInfo::getLdStBaseRegImmOfs(MachineInstr *LdSt,
                                       unsigned &BaseReg, unsigned &Offset,
                                       const TargetRegisterInfo *TRI) const {
  unsigned Opc = LdSt->getOpcode();
  if (isDS(Opc)) {
    const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
                                                      AMDGPU::OpName::offset);
    if (OffsetImm) {
      // Normal, single offset LDS instruction.
      const MachineOperand *AddrReg = getNamedOperand(*LdSt,
                                                      AMDGPU::OpName::addr);

      BaseReg = AddrReg->getReg();
      Offset = OffsetImm->getImm();
      return true;
    }

    // The 2 offset instructions use offset0 and offset1 instead. We can treat
    // these as a load with a single offset if the 2 offsets are consecutive. We
    // will use this for some partially aligned loads.
    const MachineOperand *Offset0Imm = getNamedOperand(*LdSt,
                                                       AMDGPU::OpName::offset0);
    const MachineOperand *Offset1Imm = getNamedOperand(*LdSt,
                                                       AMDGPU::OpName::offset1);

    uint8_t Offset0 = Offset0Imm->getImm();
    uint8_t Offset1 = Offset1Imm->getImm();
    assert(Offset1 > Offset0);

    if (Offset1 - Offset0 == 1) {
      // Each of these offsets is in element sized units, so we need to convert
      // to bytes of the individual reads.

      unsigned EltSize;
      if (LdSt->mayLoad())
        EltSize = getOpRegClass(*LdSt, 0)->getSize() / 2;
      else {
        assert(LdSt->mayStore());
        int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
        EltSize = getOpRegClass(*LdSt, Data0Idx)->getSize();
      }

      if (isStride64(Opc))
        EltSize *= 64;

      const MachineOperand *AddrReg = getNamedOperand(*LdSt,
                                                      AMDGPU::OpName::addr);
      BaseReg = AddrReg->getReg();
      Offset = EltSize * Offset0;
      return true;
    }

    return false;
  }

  if (isMUBUF(Opc) || isMTBUF(Opc)) {
    if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::soffset) != -1)
      return false;

    const MachineOperand *AddrReg = getNamedOperand(*LdSt,
                                                    AMDGPU::OpName::vaddr);
    if (!AddrReg)
      return false;

    const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
                                                      AMDGPU::OpName::offset);
    BaseReg = AddrReg->getReg();
    Offset = OffsetImm->getImm();
    return true;
  }

  if (isSMRD(Opc)) {
    const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
                                                      AMDGPU::OpName::offset);
    if (!OffsetImm)
      return false;

    const MachineOperand *SBaseReg = getNamedOperand(*LdSt,
                                                     AMDGPU::OpName::sbase);
    BaseReg = SBaseReg->getReg();
    Offset = OffsetImm->getImm();
    return true;
  }

  return false;
}

bool SIInstrInfo::shouldClusterLoads(MachineInstr *FirstLdSt,
                                     MachineInstr *SecondLdSt,
                                     unsigned NumLoads) const {
  unsigned Opc0 = FirstLdSt->getOpcode();
  unsigned Opc1 = SecondLdSt->getOpcode();

  // TODO: This needs finer tuning
  if (NumLoads > 4)
    return false;

  if (isDS(Opc0) && isDS(Opc1))
    return true;

  if (isSMRD(Opc0) && isSMRD(Opc1))
    return true;

  if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1)))
    return true;

  return false;
}

void
SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                         MachineBasicBlock::iterator MI, DebugLoc DL,
                         unsigned DestReg, unsigned SrcReg,
                         bool KillSrc) const {

  // If we are trying to copy to or from SCC, there is a bug somewhere else in
  // the backend.  While it may be theoretically possible to do this, it should
  // never be necessary.
  assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC);

  static const int16_t Sub0_15[] = {
    AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
    AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
    AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
    AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, 0
  };

  static const int16_t Sub0_7[] = {
    AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
    AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 0
  };

  static const int16_t Sub0_3[] = {
    AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 0
  };

  static const int16_t Sub0_2[] = {
    AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, 0
  };

  static const int16_t Sub0_1[] = {
    AMDGPU::sub0, AMDGPU::sub1, 0
  };

  unsigned Opcode;
  const int16_t *SubIndices;

  if (AMDGPU::SReg_32RegClass.contains(DestReg)) {
    assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
    BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
            .addReg(SrcReg, getKillRegState(KillSrc));
    return;

  } else if (AMDGPU::SReg_64RegClass.contains(DestReg)) {
    if (DestReg == AMDGPU::VCC) {
      if (AMDGPU::SReg_64RegClass.contains(SrcReg)) {
        BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC)
          .addReg(SrcReg, getKillRegState(KillSrc));
      } else {
        // FIXME: Hack until VReg_1 removed.
        assert(AMDGPU::VGPR_32RegClass.contains(SrcReg));
        BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_I32_e32), AMDGPU::VCC)
          .addImm(0)
          .addReg(SrcReg, getKillRegState(KillSrc));
      }

      return;
    }

    assert(AMDGPU::SReg_64RegClass.contains(SrcReg));
    BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
            .addReg(SrcReg, getKillRegState(KillSrc));
    return;

  } else if (AMDGPU::SReg_128RegClass.contains(DestReg)) {
    assert(AMDGPU::SReg_128RegClass.contains(SrcReg));
    Opcode = AMDGPU::S_MOV_B32;
    SubIndices = Sub0_3;

  } else if (AMDGPU::SReg_256RegClass.contains(DestReg)) {
    assert(AMDGPU::SReg_256RegClass.contains(SrcReg));
    Opcode = AMDGPU::S_MOV_B32;
    SubIndices = Sub0_7;

  } else if (AMDGPU::SReg_512RegClass.contains(DestReg)) {
    assert(AMDGPU::SReg_512RegClass.contains(SrcReg));
    Opcode = AMDGPU::S_MOV_B32;
    SubIndices = Sub0_15;

  } else if (AMDGPU::VGPR_32RegClass.contains(DestReg)) {
    assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) ||
           AMDGPU::SReg_32RegClass.contains(SrcReg));
    BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
            .addReg(SrcReg, getKillRegState(KillSrc));
    return;

  } else if (AMDGPU::VReg_64RegClass.contains(DestReg)) {
    assert(AMDGPU::VReg_64RegClass.contains(SrcReg) ||
           AMDGPU::SReg_64RegClass.contains(SrcReg));
    Opcode = AMDGPU::V_MOV_B32_e32;
    SubIndices = Sub0_1;

  } else if (AMDGPU::VReg_96RegClass.contains(DestReg)) {
    assert(AMDGPU::VReg_96RegClass.contains(SrcReg));
    Opcode = AMDGPU::V_MOV_B32_e32;
    SubIndices = Sub0_2;

  } else if (AMDGPU::VReg_128RegClass.contains(DestReg)) {
    assert(AMDGPU::VReg_128RegClass.contains(SrcReg) ||
           AMDGPU::SReg_128RegClass.contains(SrcReg));
    Opcode = AMDGPU::V_MOV_B32_e32;
    SubIndices = Sub0_3;

  } else if (AMDGPU::VReg_256RegClass.contains(DestReg)) {
    assert(AMDGPU::VReg_256RegClass.contains(SrcReg) ||
           AMDGPU::SReg_256RegClass.contains(SrcReg));
    Opcode = AMDGPU::V_MOV_B32_e32;
    SubIndices = Sub0_7;

  } else if (AMDGPU::VReg_512RegClass.contains(DestReg)) {
    assert(AMDGPU::VReg_512RegClass.contains(SrcReg) ||
           AMDGPU::SReg_512RegClass.contains(SrcReg));
    Opcode = AMDGPU::V_MOV_B32_e32;
    SubIndices = Sub0_15;

  } else {
    llvm_unreachable("Can't copy register!");
  }

  while (unsigned SubIdx = *SubIndices++) {
    MachineInstrBuilder Builder = BuildMI(MBB, MI, DL,
      get(Opcode), RI.getSubReg(DestReg, SubIdx));

    Builder.addReg(RI.getSubReg(SrcReg, SubIdx), getKillRegState(KillSrc));

    if (*SubIndices)
      Builder.addReg(DestReg, RegState::Define | RegState::Implicit);
  }
}

unsigned SIInstrInfo::commuteOpcode(unsigned Opcode) const {
  int NewOpc;

  // Try to map original to commuted opcode
  NewOpc = AMDGPU::getCommuteRev(Opcode);
  // Check if the commuted (REV) opcode exists on the target.
  if (NewOpc != -1 && pseudoToMCOpcode(NewOpc) != -1)
    return NewOpc;

  // Try to map commuted to original opcode
  NewOpc = AMDGPU::getCommuteOrig(Opcode);
  // Check if the original (non-REV) opcode exists on the target.
  if (NewOpc != -1 && pseudoToMCOpcode(NewOpc) != -1)
    return NewOpc;

  return Opcode;
}

unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const {

  if (DstRC->getSize() == 4) {
    return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
  } else if (DstRC->getSize() == 8 && RI.isSGPRClass(DstRC)) {
    return AMDGPU::S_MOV_B64;
  } else if (DstRC->getSize() == 8 && !RI.isSGPRClass(DstRC)) {
    return  AMDGPU::V_MOV_B64_PSEUDO;
  }
  return AMDGPU::COPY;
}

void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
                                      MachineBasicBlock::iterator MI,
                                      unsigned SrcReg, bool isKill,
                                      int FrameIndex,
                                      const TargetRegisterClass *RC,
                                      const TargetRegisterInfo *TRI) const {
  MachineFunction *MF = MBB.getParent();
  SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
  MachineFrameInfo *FrameInfo = MF->getFrameInfo();
  DebugLoc DL = MBB.findDebugLoc(MI);
  int Opcode = -1;

  if (RI.isSGPRClass(RC)) {
    // We are only allowed to create one new instruction when spilling
    // registers, so we need to use pseudo instruction for spilling
    // SGPRs.
    switch (RC->getSize() * 8) {
      case 32:  Opcode = AMDGPU::SI_SPILL_S32_SAVE;  break;
      case 64:  Opcode = AMDGPU::SI_SPILL_S64_SAVE;  break;
      case 128: Opcode = AMDGPU::SI_SPILL_S128_SAVE; break;
      case 256: Opcode = AMDGPU::SI_SPILL_S256_SAVE; break;
      case 512: Opcode = AMDGPU::SI_SPILL_S512_SAVE; break;
    }
  } else if(RI.hasVGPRs(RC) && ST.isVGPRSpillingEnabled(MFI)) {
    MFI->setHasSpilledVGPRs();

    switch(RC->getSize() * 8) {
      case 32: Opcode = AMDGPU::SI_SPILL_V32_SAVE; break;
      case 64: Opcode = AMDGPU::SI_SPILL_V64_SAVE; break;
      case 96: Opcode = AMDGPU::SI_SPILL_V96_SAVE; break;
      case 128: Opcode = AMDGPU::SI_SPILL_V128_SAVE; break;
      case 256: Opcode = AMDGPU::SI_SPILL_V256_SAVE; break;
      case 512: Opcode = AMDGPU::SI_SPILL_V512_SAVE; break;
    }
  }

  if (Opcode != -1) {
    FrameInfo->setObjectAlignment(FrameIndex, 4);
    BuildMI(MBB, MI, DL, get(Opcode))
            .addReg(SrcReg)
            .addFrameIndex(FrameIndex)
            // Place-holder registers, these will be filled in by
            // SIPrepareScratchRegs.
            .addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Undef)
            .addReg(AMDGPU::SGPR0, RegState::Undef);
  } else {
    LLVMContext &Ctx = MF->getFunction()->getContext();
    Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Do not know how to"
                  " spill register");
    BuildMI(MBB, MI, DL, get(AMDGPU::KILL))
            .addReg(SrcReg);
  }
}

void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
                                       MachineBasicBlock::iterator MI,
                                       unsigned DestReg, int FrameIndex,
                                       const TargetRegisterClass *RC,
                                       const TargetRegisterInfo *TRI) const {
  MachineFunction *MF = MBB.getParent();
  const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
  MachineFrameInfo *FrameInfo = MF->getFrameInfo();
  DebugLoc DL = MBB.findDebugLoc(MI);
  int Opcode = -1;

  if (RI.isSGPRClass(RC)){
    switch(RC->getSize() * 8) {
      case 32:  Opcode = AMDGPU::SI_SPILL_S32_RESTORE; break;
      case 64:  Opcode = AMDGPU::SI_SPILL_S64_RESTORE;  break;
      case 128: Opcode = AMDGPU::SI_SPILL_S128_RESTORE; break;
      case 256: Opcode = AMDGPU::SI_SPILL_S256_RESTORE; break;
      case 512: Opcode = AMDGPU::SI_SPILL_S512_RESTORE; break;
    }
  } else if(RI.hasVGPRs(RC) && ST.isVGPRSpillingEnabled(MFI)) {
    switch(RC->getSize() * 8) {
      case 32: Opcode = AMDGPU::SI_SPILL_V32_RESTORE; break;
      case 64: Opcode = AMDGPU::SI_SPILL_V64_RESTORE; break;
      case 96: Opcode = AMDGPU::SI_SPILL_V96_RESTORE; break;
      case 128: Opcode = AMDGPU::SI_SPILL_V128_RESTORE; break;
      case 256: Opcode = AMDGPU::SI_SPILL_V256_RESTORE; break;
      case 512: Opcode = AMDGPU::SI_SPILL_V512_RESTORE; break;
    }
  }

  if (Opcode != -1) {
    FrameInfo->setObjectAlignment(FrameIndex, 4);
    BuildMI(MBB, MI, DL, get(Opcode), DestReg)
            .addFrameIndex(FrameIndex)
            // Place-holder registers, these will be filled in by
            // SIPrepareScratchRegs.
            .addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Undef)
            .addReg(AMDGPU::SGPR0, RegState::Undef);

  } else {
    LLVMContext &Ctx = MF->getFunction()->getContext();
    Ctx.emitError("SIInstrInfo::loadRegFromStackSlot - Do not know how to"
                  " restore register");
    BuildMI(MBB, MI, DL, get(AMDGPU::IMPLICIT_DEF), DestReg);
  }
}

/// \param @Offset Offset in bytes of the FrameIndex being spilled
unsigned SIInstrInfo::calculateLDSSpillAddress(MachineBasicBlock &MBB,
                                               MachineBasicBlock::iterator MI,
                                               RegScavenger *RS, unsigned TmpReg,
                                               unsigned FrameOffset,
                                               unsigned Size) const {
  MachineFunction *MF = MBB.getParent();
  SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
  const AMDGPUSubtarget &ST = MF->getSubtarget<AMDGPUSubtarget>();
  const SIRegisterInfo *TRI =
      static_cast<const SIRegisterInfo*>(ST.getRegisterInfo());
  DebugLoc DL = MBB.findDebugLoc(MI);
  unsigned WorkGroupSize = MFI->getMaximumWorkGroupSize(*MF);
  unsigned WavefrontSize = ST.getWavefrontSize();

  unsigned TIDReg = MFI->getTIDReg();
  if (!MFI->hasCalculatedTID()) {
    MachineBasicBlock &Entry = MBB.getParent()->front();
    MachineBasicBlock::iterator Insert = Entry.front();
    DebugLoc DL = Insert->getDebugLoc();

    TIDReg = RI.findUnusedRegister(MF->getRegInfo(), &AMDGPU::VGPR_32RegClass);
    if (TIDReg == AMDGPU::NoRegister)
      return TIDReg;


    if (MFI->getShaderType() == ShaderType::COMPUTE &&
        WorkGroupSize > WavefrontSize) {

      unsigned TIDIGXReg = TRI->getPreloadedValue(*MF, SIRegisterInfo::TIDIG_X);
      unsigned TIDIGYReg = TRI->getPreloadedValue(*MF, SIRegisterInfo::TIDIG_Y);
      unsigned TIDIGZReg = TRI->getPreloadedValue(*MF, SIRegisterInfo::TIDIG_Z);
      unsigned InputPtrReg =
          TRI->getPreloadedValue(*MF, SIRegisterInfo::INPUT_PTR);
      static const unsigned TIDIGRegs[3] = {
        TIDIGXReg, TIDIGYReg, TIDIGZReg
      };
      for (unsigned Reg : TIDIGRegs) {
        if (!Entry.isLiveIn(Reg))
          Entry.addLiveIn(Reg);
      }

      RS->enterBasicBlock(&Entry);
      unsigned STmp0 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
      unsigned STmp1 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
      BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp0)
              .addReg(InputPtrReg)
              .addImm(SI::KernelInputOffsets::NGROUPS_Z);
      BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp1)
              .addReg(InputPtrReg)
              .addImm(SI::KernelInputOffsets::NGROUPS_Y);

      // NGROUPS.X * NGROUPS.Y
      BuildMI(Entry, Insert, DL, get(AMDGPU::S_MUL_I32), STmp1)
              .addReg(STmp1)
              .addReg(STmp0);
      // (NGROUPS.X * NGROUPS.Y) * TIDIG.X
      BuildMI(Entry, Insert, DL, get(AMDGPU::V_MUL_U32_U24_e32), TIDReg)
              .addReg(STmp1)
              .addReg(TIDIGXReg);
      // NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)
      BuildMI(Entry, Insert, DL, get(AMDGPU::V_MAD_U32_U24), TIDReg)
              .addReg(STmp0)
              .addReg(TIDIGYReg)
              .addReg(TIDReg);
      // (NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)) + TIDIG.Z
      BuildMI(Entry, Insert, DL, get(AMDGPU::V_ADD_I32_e32), TIDReg)
              .addReg(TIDReg)
              .addReg(TIDIGZReg);
    } else {
      // Get the wave id
      BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_LO_U32_B32_e64),
              TIDReg)
              .addImm(-1)
              .addImm(0);

      BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_HI_U32_B32_e64),
              TIDReg)
              .addImm(-1)
              .addReg(TIDReg);
    }

    BuildMI(Entry, Insert, DL, get(AMDGPU::V_LSHLREV_B32_e32),
            TIDReg)
            .addImm(2)
            .addReg(TIDReg);
    MFI->setTIDReg(TIDReg);
  }

  // Add FrameIndex to LDS offset
  unsigned LDSOffset = MFI->LDSSize + (FrameOffset * WorkGroupSize);
  BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), TmpReg)
          .addImm(LDSOffset)
          .addReg(TIDReg);

  return TmpReg;
}

void SIInstrInfo::insertNOPs(MachineBasicBlock::iterator MI,
                             int Count) const {
  while (Count > 0) {
    int Arg;
    if (Count >= 8)
      Arg = 7;
    else
      Arg = Count - 1;
    Count -= 8;
    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(AMDGPU::S_NOP))
            .addImm(Arg);
  }
}

bool SIInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
  MachineBasicBlock &MBB = *MI->getParent();
  DebugLoc DL = MBB.findDebugLoc(MI);
  switch (MI->getOpcode()) {
  default: return AMDGPUInstrInfo::expandPostRAPseudo(MI);

  case AMDGPU::SI_CONSTDATA_PTR: {
    unsigned Reg = MI->getOperand(0).getReg();
    unsigned RegLo = RI.getSubReg(Reg, AMDGPU::sub0);
    unsigned RegHi = RI.getSubReg(Reg, AMDGPU::sub1);

    BuildMI(MBB, MI, DL, get(AMDGPU::S_GETPC_B64), Reg);

    // Add 32-bit offset from this instruction to the start of the constant data.
    BuildMI(MBB, MI, DL, get(AMDGPU::S_ADD_U32), RegLo)
            .addReg(RegLo)
            .addTargetIndex(AMDGPU::TI_CONSTDATA_START)
            .addReg(AMDGPU::SCC, RegState::Define | RegState::Implicit);
    BuildMI(MBB, MI, DL, get(AMDGPU::S_ADDC_U32), RegHi)
            .addReg(RegHi)
            .addImm(0)
            .addReg(AMDGPU::SCC, RegState::Define | RegState::Implicit)
            .addReg(AMDGPU::SCC, RegState::Implicit);
    MI->eraseFromParent();
    break;
  }
  case AMDGPU::SGPR_USE:
    // This is just a placeholder for register allocation.
    MI->eraseFromParent();
    break;

  case AMDGPU::V_MOV_B64_PSEUDO: {
    unsigned Dst = MI->getOperand(0).getReg();
    unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
    unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1);

    const MachineOperand &SrcOp = MI->getOperand(1);
    // FIXME: Will this work for 64-bit floating point immediates?
    assert(!SrcOp.isFPImm());
    if (SrcOp.isImm()) {
      APInt Imm(64, SrcOp.getImm());
      BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
              .addImm(Imm.getLoBits(32).getZExtValue())
              .addReg(Dst, RegState::Implicit);
      BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
              .addImm(Imm.getHiBits(32).getZExtValue())
              .addReg(Dst, RegState::Implicit);
    } else {
      assert(SrcOp.isReg());
      BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
              .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0))
              .addReg(Dst, RegState::Implicit);
      BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
              .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1))
              .addReg(Dst, RegState::Implicit);
    }
    MI->eraseFromParent();
    break;
  }
  }
  return true;
}

MachineInstr *SIInstrInfo::commuteInstruction(MachineInstr *MI,
                                              bool NewMI) const {

  if (MI->getNumOperands() < 3)
    return nullptr;

  int Src0Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
                                           AMDGPU::OpName::src0);
  assert(Src0Idx != -1 && "Should always have src0 operand");

  MachineOperand &Src0 = MI->getOperand(Src0Idx);
  if (!Src0.isReg())
    return nullptr;

  int Src1Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
                                           AMDGPU::OpName::src1);
  if (Src1Idx == -1)
    return nullptr;

  MachineOperand &Src1 = MI->getOperand(Src1Idx);

  // Make sure it's legal to commute operands for VOP2.
  if (isVOP2(MI->getOpcode()) &&
      (!isOperandLegal(MI, Src0Idx, &Src1) ||
       !isOperandLegal(MI, Src1Idx, &Src0))) {
    return nullptr;
  }

  if (!Src1.isReg()) {
    // Allow commuting instructions with Imm operands.
    if (NewMI || !Src1.isImm() ||
       (!isVOP2(MI->getOpcode()) && !isVOP3(MI->getOpcode()))) {
      return nullptr;
    }

    // Be sure to copy the source modifiers to the right place.
    if (MachineOperand *Src0Mods
          = getNamedOperand(*MI, AMDGPU::OpName::src0_modifiers)) {
      MachineOperand *Src1Mods
        = getNamedOperand(*MI, AMDGPU::OpName::src1_modifiers);

      int Src0ModsVal = Src0Mods->getImm();
      if (!Src1Mods && Src0ModsVal != 0)
        return nullptr;

      // XXX - This assert might be a lie. It might be useful to have a neg
      // modifier with 0.0.
      int Src1ModsVal = Src1Mods->getImm();
      assert((Src1ModsVal == 0) && "Not expecting modifiers with immediates");

      Src1Mods->setImm(Src0ModsVal);
      Src0Mods->setImm(Src1ModsVal);
    }

    unsigned Reg = Src0.getReg();
    unsigned SubReg = Src0.getSubReg();
    if (Src1.isImm())
      Src0.ChangeToImmediate(Src1.getImm());
    else
      llvm_unreachable("Should only have immediates");

    Src1.ChangeToRegister(Reg, false);
    Src1.setSubReg(SubReg);
  } else {
    MI = TargetInstrInfo::commuteInstruction(MI, NewMI);
  }

  if (MI)
    MI->setDesc(get(commuteOpcode(MI->getOpcode())));

  return MI;
}

// This needs to be implemented because the source modifiers may be inserted
// between the true commutable operands, and the base
// TargetInstrInfo::commuteInstruction uses it.
bool SIInstrInfo::findCommutedOpIndices(MachineInstr *MI,
                                        unsigned &SrcOpIdx1,
                                        unsigned &SrcOpIdx2) const {
  const MCInstrDesc &MCID = MI->getDesc();
  if (!MCID.isCommutable())
    return false;

  unsigned Opc = MI->getOpcode();
  int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
  if (Src0Idx == -1)
    return false;

  // FIXME: Workaround TargetInstrInfo::commuteInstruction asserting on
  // immediate.
  if (!MI->getOperand(Src0Idx).isReg())
    return false;

  int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
  if (Src1Idx == -1)
    return false;

  if (!MI->getOperand(Src1Idx).isReg())
    return false;

  // If any source modifiers are set, the generic instruction commuting won't
  // understand how to copy the source modifiers.
  if (hasModifiersSet(*MI, AMDGPU::OpName::src0_modifiers) ||
      hasModifiersSet(*MI, AMDGPU::OpName::src1_modifiers))
    return false;

  SrcOpIdx1 = Src0Idx;
  SrcOpIdx2 = Src1Idx;
  return true;
}

MachineInstr *SIInstrInfo::buildMovInstr(MachineBasicBlock *MBB,
                                         MachineBasicBlock::iterator I,
                                         unsigned DstReg,
                                         unsigned SrcReg) const {
  return BuildMI(*MBB, I, MBB->findDebugLoc(I), get(AMDGPU::V_MOV_B32_e32),
                 DstReg) .addReg(SrcReg);
}

bool SIInstrInfo::isMov(unsigned Opcode) const {
  switch(Opcode) {
  default: return false;
  case AMDGPU::S_MOV_B32:
  case AMDGPU::S_MOV_B64:
  case AMDGPU::V_MOV_B32_e32:
  case AMDGPU::V_MOV_B32_e64:
    return true;
  }
}

bool
SIInstrInfo::isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
  return RC != &AMDGPU::EXECRegRegClass;
}

static void removeModOperands(MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc,
                                              AMDGPU::OpName::src0_modifiers);
  int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc,
                                              AMDGPU::OpName::src1_modifiers);
  int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc,
                                              AMDGPU::OpName::src2_modifiers);

  MI.RemoveOperand(Src2ModIdx);
  MI.RemoveOperand(Src1ModIdx);
  MI.RemoveOperand(Src0ModIdx);
}

bool SIInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
                                unsigned Reg, MachineRegisterInfo *MRI) const {
  if (!MRI->hasOneNonDBGUse(Reg))
    return false;

  unsigned Opc = UseMI->getOpcode();
  if (Opc == AMDGPU::V_MAD_F32) {
    // Don't fold if we are using source modifiers. The new VOP2 instructions
    // don't have them.
    if (hasModifiersSet(*UseMI, AMDGPU::OpName::src0_modifiers) ||
        hasModifiersSet(*UseMI, AMDGPU::OpName::src1_modifiers) ||
        hasModifiersSet(*UseMI, AMDGPU::OpName::src2_modifiers)) {
      return false;
    }

    MachineOperand *Src0 = getNamedOperand(*UseMI, AMDGPU::OpName::src0);
    MachineOperand *Src1 = getNamedOperand(*UseMI, AMDGPU::OpName::src1);
    MachineOperand *Src2 = getNamedOperand(*UseMI, AMDGPU::OpName::src2);

    // Multiplied part is the constant: Use v_madmk_f32
    // We should only expect these to be on src0 due to canonicalizations.
    if (Src0->isReg() && Src0->getReg() == Reg) {
      if (!Src1->isReg() ||
          (Src1->isReg() && RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))))
        return false;

      if (!Src2->isReg() ||
          (Src2->isReg() && RI.isSGPRClass(MRI->getRegClass(Src2->getReg()))))
        return false;

      // We need to do some weird looking operand shuffling since the madmk
      // operands are out of the normal expected order with the multiplied
      // constant as the last operand.
      //
      // v_mad_f32 src0, src1, src2 -> v_madmk_f32 src0 * src2K + src1
      // src0 -> src2 K
      // src1 -> src0
      // src2 -> src1

      const int64_t Imm = DefMI->getOperand(1).getImm();

      // FIXME: This would be a lot easier if we could return a new instruction
      // instead of having to modify in place.

      // Remove these first since they are at the end.
      UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(AMDGPU::V_MAD_F32,
                                                      AMDGPU::OpName::omod));
      UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(AMDGPU::V_MAD_F32,
                                                      AMDGPU::OpName::clamp));

      unsigned Src1Reg = Src1->getReg();
      unsigned Src1SubReg = Src1->getSubReg();
      unsigned Src2Reg = Src2->getReg();
      unsigned Src2SubReg = Src2->getSubReg();
      Src0->setReg(Src1Reg);
      Src0->setSubReg(Src1SubReg);
      Src1->setReg(Src2Reg);
      Src1->setSubReg(Src2SubReg);

      Src2->ChangeToImmediate(Imm);

      removeModOperands(*UseMI);
      UseMI->setDesc(get(AMDGPU::V_MADMK_F32));

      bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
      if (DeleteDef)
        DefMI->eraseFromParent();

      return true;
    }

    // Added part is the constant: Use v_madak_f32
    if (Src2->isReg() && Src2->getReg() == Reg) {
      // Not allowed to use constant bus for another operand.
      // We can however allow an inline immediate as src0.
      if (!Src0->isImm() &&
          (Src0->isReg() && RI.isSGPRClass(MRI->getRegClass(Src0->getReg()))))
        return false;

      if (!Src1->isReg() ||
          (Src1->isReg() && RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))))
        return false;

      const int64_t Imm = DefMI->getOperand(1).getImm();

      // FIXME: This would be a lot easier if we could return a new instruction
      // instead of having to modify in place.

      // Remove these first since they are at the end.
      UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(AMDGPU::V_MAD_F32,
                                                      AMDGPU::OpName::omod));
      UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(AMDGPU::V_MAD_F32,
                                                      AMDGPU::OpName::clamp));

      Src2->ChangeToImmediate(Imm);

      // These come before src2.
      removeModOperands(*UseMI);
      UseMI->setDesc(get(AMDGPU::V_MADAK_F32));

      bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
      if (DeleteDef)
        DefMI->eraseFromParent();

      return true;
    }
  }

  return false;
}

bool
SIInstrInfo::isTriviallyReMaterializable(const MachineInstr *MI,
                                         AliasAnalysis *AA) const {
  switch(MI->getOpcode()) {
  default: return AMDGPUInstrInfo::isTriviallyReMaterializable(MI, AA);
  case AMDGPU::S_MOV_B32:
  case AMDGPU::S_MOV_B64:
  case AMDGPU::V_MOV_B32_e32:
    return MI->getOperand(1).isImm();
  }
}

static bool offsetsDoNotOverlap(int WidthA, int OffsetA,
                                int WidthB, int OffsetB) {
  int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
  int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
  int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
  return LowOffset + LowWidth <= HighOffset;
}

bool SIInstrInfo::checkInstOffsetsDoNotOverlap(MachineInstr *MIa,
                                               MachineInstr *MIb) const {
  unsigned BaseReg0, Offset0;
  unsigned BaseReg1, Offset1;

  if (getLdStBaseRegImmOfs(MIa, BaseReg0, Offset0, &RI) &&
      getLdStBaseRegImmOfs(MIb, BaseReg1, Offset1, &RI)) {
    assert(MIa->hasOneMemOperand() && MIb->hasOneMemOperand() &&
           "read2 / write2 not expected here yet");
    unsigned Width0 = (*MIa->memoperands_begin())->getSize();
    unsigned Width1 = (*MIb->memoperands_begin())->getSize();
    if (BaseReg0 == BaseReg1 &&
        offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1)) {
      return true;
    }
  }

  return false;
}

bool SIInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
                                                  MachineInstr *MIb,
                                                  AliasAnalysis *AA) const {
  unsigned Opc0 = MIa->getOpcode();
  unsigned Opc1 = MIb->getOpcode();

  assert(MIa && (MIa->mayLoad() || MIa->mayStore()) &&
         "MIa must load from or modify a memory location");
  assert(MIb && (MIb->mayLoad() || MIb->mayStore()) &&
         "MIb must load from or modify a memory location");

  if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects())
    return false;

  // XXX - Can we relax this between address spaces?
  if (MIa->hasOrderedMemoryRef() || MIb->hasOrderedMemoryRef())
    return false;

  // TODO: Should we check the address space from the MachineMemOperand? That
  // would allow us to distinguish objects we know don't alias based on the
  // underlying addres space, even if it was lowered to a different one,
  // e.g. private accesses lowered to use MUBUF instructions on a scratch
  // buffer.
  if (isDS(Opc0)) {
    if (isDS(Opc1))
      return checkInstOffsetsDoNotOverlap(MIa, MIb);

    return !isFLAT(Opc1);
  }

  if (isMUBUF(Opc0) || isMTBUF(Opc0)) {
    if (isMUBUF(Opc1) || isMTBUF(Opc1))
      return checkInstOffsetsDoNotOverlap(MIa, MIb);

    return !isFLAT(Opc1) && !isSMRD(Opc1);
  }

  if (isSMRD(Opc0)) {
    if (isSMRD(Opc1))
      return checkInstOffsetsDoNotOverlap(MIa, MIb);

    return !isFLAT(Opc1) && !isMUBUF(Opc0) && !isMTBUF(Opc0);
  }

  if (isFLAT(Opc0)) {
    if (isFLAT(Opc1))
      return checkInstOffsetsDoNotOverlap(MIa, MIb);

    return false;
  }

  return false;
}

bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
  int64_t SVal = Imm.getSExtValue();
  if (SVal >= -16 && SVal <= 64)
    return true;

  if (Imm.getBitWidth() == 64) {
    uint64_t Val = Imm.getZExtValue();
    return (DoubleToBits(0.0) == Val) ||
           (DoubleToBits(1.0) == Val) ||
           (DoubleToBits(-1.0) == Val) ||
           (DoubleToBits(0.5) == Val) ||
           (DoubleToBits(-0.5) == Val) ||
           (DoubleToBits(2.0) == Val) ||
           (DoubleToBits(-2.0) == Val) ||
           (DoubleToBits(4.0) == Val) ||
           (DoubleToBits(-4.0) == Val);
  }

  // The actual type of the operand does not seem to matter as long
  // as the bits match one of the inline immediate values.  For example:
  //
  // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
  // so it is a legal inline immediate.
  //
  // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
  // floating-point, so it is a legal inline immediate.
  uint32_t Val = Imm.getZExtValue();

  return (FloatToBits(0.0f) == Val) ||
         (FloatToBits(1.0f) == Val) ||
         (FloatToBits(-1.0f) == Val) ||
         (FloatToBits(0.5f) == Val) ||
         (FloatToBits(-0.5f) == Val) ||
         (FloatToBits(2.0f) == Val) ||
         (FloatToBits(-2.0f) == Val) ||
         (FloatToBits(4.0f) == Val) ||
         (FloatToBits(-4.0f) == Val);
}

bool SIInstrInfo::isInlineConstant(const MachineOperand &MO,
                                   unsigned OpSize) const {
  if (MO.isImm()) {
    // MachineOperand provides no way to tell the true operand size, since it
    // only records a 64-bit value. We need to know the size to determine if a
    // 32-bit floating point immediate bit pattern is legal for an integer
    // immediate. It would be for any 32-bit integer operand, but would not be
    // for a 64-bit one.

    unsigned BitSize = 8 * OpSize;
    return isInlineConstant(APInt(BitSize, MO.getImm(), true));
  }

  return false;
}

bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO,
                                    unsigned OpSize) const {
  return MO.isImm() && !isInlineConstant(MO, OpSize);
}

static bool compareMachineOp(const MachineOperand &Op0,
                             const MachineOperand &Op1) {
  if (Op0.getType() != Op1.getType())
    return false;

  switch (Op0.getType()) {
  case MachineOperand::MO_Register:
    return Op0.getReg() == Op1.getReg();
  case MachineOperand::MO_Immediate:
    return Op0.getImm() == Op1.getImm();
  default:
    llvm_unreachable("Didn't expect to be comparing these operand types");
  }
}

bool SIInstrInfo::isImmOperandLegal(const MachineInstr *MI, unsigned OpNo,
                                 const MachineOperand &MO) const {
  const MCOperandInfo &OpInfo = get(MI->getOpcode()).OpInfo[OpNo];

  assert(MO.isImm() || MO.isTargetIndex() || MO.isFI());

  if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE)
    return true;

  if (OpInfo.RegClass < 0)
    return false;

  unsigned OpSize = RI.getRegClass(OpInfo.RegClass)->getSize();
  if (isLiteralConstant(MO, OpSize))
    return RI.opCanUseLiteralConstant(OpInfo.OperandType);

  return RI.opCanUseInlineConstant(OpInfo.OperandType);
}

bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const {
  int Op32 = AMDGPU::getVOPe32(Opcode);
  if (Op32 == -1)
    return false;

  return pseudoToMCOpcode(Op32) != -1;
}

bool SIInstrInfo::hasModifiers(unsigned Opcode) const {
  // The src0_modifier operand is present on all instructions
  // that have modifiers.

  return AMDGPU::getNamedOperandIdx(Opcode,
                                    AMDGPU::OpName::src0_modifiers) != -1;
}

bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI,
                                  unsigned OpName) const {
  const MachineOperand *Mods = getNamedOperand(MI, OpName);
  return Mods && Mods->getImm();
}

bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI,
                                  const MachineOperand &MO,
                                  unsigned OpSize) const {
  // Literal constants use the constant bus.
  if (isLiteralConstant(MO, OpSize))
    return true;

  if (!MO.isReg() || !MO.isUse())
    return false;

  if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
    return RI.isSGPRClass(MRI.getRegClass(MO.getReg()));

  // FLAT_SCR is just an SGPR pair.
  if (!MO.isImplicit() && (MO.getReg() == AMDGPU::FLAT_SCR))
    return true;

  // EXEC register uses the constant bus.
  if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC)
    return true;

  // SGPRs use the constant bus
  if (MO.getReg() == AMDGPU::M0 || MO.getReg() == AMDGPU::VCC ||
      (!MO.isImplicit() &&
      (AMDGPU::SGPR_32RegClass.contains(MO.getReg()) ||
       AMDGPU::SGPR_64RegClass.contains(MO.getReg())))) {
    return true;
  }

  return false;
}

bool SIInstrInfo::verifyInstruction(const MachineInstr *MI,
                                    StringRef &ErrInfo) const {
  uint16_t Opcode = MI->getOpcode();
  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
  int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
  int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
  int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);

  // Make sure the number of operands is correct.
  const MCInstrDesc &Desc = get(Opcode);
  if (!Desc.isVariadic() &&
      Desc.getNumOperands() != MI->getNumExplicitOperands()) {
     ErrInfo = "Instruction has wrong number of operands.";
     return false;
  }

  // Make sure the register classes are correct
  for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) {
    if (MI->getOperand(i).isFPImm()) {
      ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast "
                "all fp values to integers.";
      return false;
    }

    int RegClass = Desc.OpInfo[i].RegClass;

    switch (Desc.OpInfo[i].OperandType) {
    case MCOI::OPERAND_REGISTER:
      if (MI->getOperand(i).isImm()) {
        ErrInfo = "Illegal immediate value for operand.";
        return false;
      }
      break;
    case AMDGPU::OPERAND_REG_IMM32:
      break;
    case AMDGPU::OPERAND_REG_INLINE_C:
      if (isLiteralConstant(MI->getOperand(i),
                            RI.getRegClass(RegClass)->getSize())) {
        ErrInfo = "Illegal immediate value for operand.";
        return false;
      }
      break;
    case MCOI::OPERAND_IMMEDIATE:
      // Check if this operand is an immediate.
      // FrameIndex operands will be replaced by immediates, so they are
      // allowed.
      if (!MI->getOperand(i).isImm() && !MI->getOperand(i).isFI()) {
        ErrInfo = "Expected immediate, but got non-immediate";
        return false;
      }
      // Fall-through
    default:
      continue;
    }

    if (!MI->getOperand(i).isReg())
      continue;

    if (RegClass != -1) {
      unsigned Reg = MI->getOperand(i).getReg();
      if (TargetRegisterInfo::isVirtualRegister(Reg))
        continue;

      const TargetRegisterClass *RC = RI.getRegClass(RegClass);
      if (!RC->contains(Reg)) {
        ErrInfo = "Operand has incorrect register class.";
        return false;
      }
    }
  }


  // Verify VOP*
  if (isVOP1(Opcode) || isVOP2(Opcode) || isVOP3(Opcode) || isVOPC(Opcode)) {
    // Only look at the true operands. Only a real operand can use the constant
    // bus, and we don't want to check pseudo-operands like the source modifier
    // flags.
    const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx };

    unsigned ConstantBusCount = 0;
    unsigned SGPRUsed = AMDGPU::NoRegister;
    for (int OpIdx : OpIndices) {
      if (OpIdx == -1)
        break;
      const MachineOperand &MO = MI->getOperand(OpIdx);
      if (usesConstantBus(MRI, MO, getOpSize(Opcode, OpIdx))) {
        if (MO.isReg()) {
          if (MO.getReg() != SGPRUsed)
            ++ConstantBusCount;
          SGPRUsed = MO.getReg();
        } else {
          ++ConstantBusCount;
        }
      }
    }
    if (ConstantBusCount > 1) {
      ErrInfo = "VOP* instruction uses the constant bus more than once";
      return false;
    }
  }

  // Verify misc. restrictions on specific instructions.
  if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32 ||
      Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64) {
    const MachineOperand &Src0 = MI->getOperand(Src0Idx);
    const MachineOperand &Src1 = MI->getOperand(Src1Idx);
    const MachineOperand &Src2 = MI->getOperand(Src2Idx);
    if (Src0.isReg() && Src1.isReg() && Src2.isReg()) {
      if (!compareMachineOp(Src0, Src1) &&
          !compareMachineOp(Src0, Src2)) {
        ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2";
        return false;
      }
    }
  }

  return true;
}

unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) {
  switch (MI.getOpcode()) {
  default: return AMDGPU::INSTRUCTION_LIST_END;
  case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE;
  case AMDGPU::COPY: return AMDGPU::COPY;
  case AMDGPU::PHI: return AMDGPU::PHI;
  case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG;
  case AMDGPU::S_MOV_B32:
    return MI.getOperand(1).isReg() ?
           AMDGPU::COPY : AMDGPU::V_MOV_B32_e32;
  case AMDGPU::S_ADD_I32:
  case AMDGPU::S_ADD_U32: return AMDGPU::V_ADD_I32_e32;
  case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32;
  case AMDGPU::S_SUB_I32:
  case AMDGPU::S_SUB_U32: return AMDGPU::V_SUB_I32_e32;
  case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32;
  case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_I32;
  case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32;
  case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32;
  case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32;
  case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e32;
  case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e32;
  case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e32;
  case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e32;
  case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32;
  case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64;
  case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32;
  case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64;
  case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32;
  case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64;
  case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32;
  case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32;
  case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32;
  case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32;
  case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32;
  case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32;
  case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32;
  case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e32;
  case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e32;
  case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e32;
  case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e32;
  case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e32;
  case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e32;
  case AMDGPU::S_LOAD_DWORD_IMM:
  case AMDGPU::S_LOAD_DWORD_SGPR: return AMDGPU::BUFFER_LOAD_DWORD_ADDR64;
  case AMDGPU::S_LOAD_DWORDX2_IMM:
  case AMDGPU::S_LOAD_DWORDX2_SGPR: return AMDGPU::BUFFER_LOAD_DWORDX2_ADDR64;
  case AMDGPU::S_LOAD_DWORDX4_IMM:
  case AMDGPU::S_LOAD_DWORDX4_SGPR: return AMDGPU::BUFFER_LOAD_DWORDX4_ADDR64;
  case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64;
  case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32;
  case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32;
  case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64;
  }
}

bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const {
  return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END;
}

const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI,
                                                      unsigned OpNo) const {
  const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
  const MCInstrDesc &Desc = get(MI.getOpcode());
  if (MI.isVariadic() || OpNo >= Desc.getNumOperands() ||
      Desc.OpInfo[OpNo].RegClass == -1) {
    unsigned Reg = MI.getOperand(OpNo).getReg();

    if (TargetRegisterInfo::isVirtualRegister(Reg))
      return MRI.getRegClass(Reg);
    return RI.getPhysRegClass(Reg);
  }

  unsigned RCID = Desc.OpInfo[OpNo].RegClass;
  return RI.getRegClass(RCID);
}

bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const {
  switch (MI.getOpcode()) {
  case AMDGPU::COPY:
  case AMDGPU::REG_SEQUENCE:
  case AMDGPU::PHI:
  case AMDGPU::INSERT_SUBREG:
    return RI.hasVGPRs(getOpRegClass(MI, 0));
  default:
    return RI.hasVGPRs(getOpRegClass(MI, OpNo));
  }
}

void SIInstrInfo::legalizeOpWithMove(MachineInstr *MI, unsigned OpIdx) const {
  MachineBasicBlock::iterator I = MI;
  MachineBasicBlock *MBB = MI->getParent();
  MachineOperand &MO = MI->getOperand(OpIdx);
  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
  unsigned RCID = get(MI->getOpcode()).OpInfo[OpIdx].RegClass;
  const TargetRegisterClass *RC = RI.getRegClass(RCID);
  unsigned Opcode = AMDGPU::V_MOV_B32_e32;
  if (MO.isReg())
    Opcode = AMDGPU::COPY;
  else if (RI.isSGPRClass(RC))
    Opcode = AMDGPU::S_MOV_B32;


  const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC);
  if (RI.getCommonSubClass(&AMDGPU::VReg_64RegClass, VRC))
    VRC = &AMDGPU::VReg_64RegClass;
  else
    VRC = &AMDGPU::VGPR_32RegClass;

  unsigned Reg = MRI.createVirtualRegister(VRC);
  DebugLoc DL = MBB->findDebugLoc(I);
  BuildMI(*MI->getParent(), I, DL, get(Opcode), Reg)
    .addOperand(MO);
  MO.ChangeToRegister(Reg, false);
}

unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI,
                                         MachineRegisterInfo &MRI,
                                         MachineOperand &SuperReg,
                                         const TargetRegisterClass *SuperRC,
                                         unsigned SubIdx,
                                         const TargetRegisterClass *SubRC)
                                         const {
  assert(SuperReg.isReg());

  unsigned NewSuperReg = MRI.createVirtualRegister(SuperRC);
  unsigned SubReg = MRI.createVirtualRegister(SubRC);

  // Just in case the super register is itself a sub-register, copy it to a new
  // value so we don't need to worry about merging its subreg index with the
  // SubIdx passed to this function. The register coalescer should be able to
  // eliminate this extra copy.
  MachineBasicBlock *MBB = MI->getParent();
  DebugLoc DL = MI->getDebugLoc();

  BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg)
    .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg());

  BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
    .addReg(NewSuperReg, 0, SubIdx);

  return SubReg;
}

MachineOperand SIInstrInfo::buildExtractSubRegOrImm(
  MachineBasicBlock::iterator MII,
  MachineRegisterInfo &MRI,
  MachineOperand &Op,
  const TargetRegisterClass *SuperRC,
  unsigned SubIdx,
  const TargetRegisterClass *SubRC) const {
  if (Op.isImm()) {
    // XXX - Is there a better way to do this?
    if (SubIdx == AMDGPU::sub0)
      return MachineOperand::CreateImm(Op.getImm() & 0xFFFFFFFF);
    if (SubIdx == AMDGPU::sub1)
      return MachineOperand::CreateImm(Op.getImm() >> 32);

    llvm_unreachable("Unhandled register index for immediate");
  }

  unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC,
                                       SubIdx, SubRC);
  return MachineOperand::CreateReg(SubReg, false);
}

unsigned SIInstrInfo::split64BitImm(SmallVectorImpl<MachineInstr *> &Worklist,
                                    MachineBasicBlock::iterator MI,
                                    MachineRegisterInfo &MRI,
                                    const TargetRegisterClass *RC,
                                    const MachineOperand &Op) const {
  MachineBasicBlock *MBB = MI->getParent();
  DebugLoc DL = MI->getDebugLoc();
  unsigned LoDst = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
  unsigned HiDst = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
  unsigned Dst = MRI.createVirtualRegister(RC);

  MachineInstr *Lo = BuildMI(*MBB, MI, DL, get(AMDGPU::S_MOV_B32),
                             LoDst)
    .addImm(Op.getImm() & 0xFFFFFFFF);
  MachineInstr *Hi = BuildMI(*MBB, MI, DL, get(AMDGPU::S_MOV_B32),
                             HiDst)
    .addImm(Op.getImm() >> 32);

  BuildMI(*MBB, MI, DL, get(TargetOpcode::REG_SEQUENCE), Dst)
    .addReg(LoDst)
    .addImm(AMDGPU::sub0)
    .addReg(HiDst)
    .addImm(AMDGPU::sub1);

  Worklist.push_back(Lo);
  Worklist.push_back(Hi);

  return Dst;
}

// Change the order of operands from (0, 1, 2) to (0, 2, 1)
void SIInstrInfo::swapOperands(MachineBasicBlock::iterator Inst) const {
  assert(Inst->getNumExplicitOperands() == 3);
  MachineOperand Op1 = Inst->getOperand(1);
  Inst->RemoveOperand(1);
  Inst->addOperand(Op1);
}

bool SIInstrInfo::isOperandLegal(const MachineInstr *MI, unsigned OpIdx,
                                 const MachineOperand *MO) const {
  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
  const MCInstrDesc &InstDesc = get(MI->getOpcode());
  const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx];
  const TargetRegisterClass *DefinedRC =
      OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr;
  if (!MO)
    MO = &MI->getOperand(OpIdx);

  if (isVALU(InstDesc.Opcode) &&
      usesConstantBus(MRI, *MO, DefinedRC->getSize())) {
    unsigned SGPRUsed =
        MO->isReg() ? MO->getReg() : (unsigned)AMDGPU::NoRegister;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      if (i == OpIdx)
        continue;
      const MachineOperand &Op = MI->getOperand(i);
      if (Op.isReg() && Op.getReg() != SGPRUsed &&
          usesConstantBus(MRI, Op, getOpSize(*MI, i))) {
        return false;
      }
    }
  }

  if (MO->isReg()) {
    assert(DefinedRC);
    const TargetRegisterClass *RC = MRI.getRegClass(MO->getReg());

    // In order to be legal, the common sub-class must be equal to the
    // class of the current operand.  For example:
    //
    // v_mov_b32 s0 ; Operand defined as vsrc_32
    //              ; RI.getCommonSubClass(s0,vsrc_32) = sgpr ; LEGAL
    //
    // s_sendmsg 0, s0 ; Operand defined as m0reg
    //                 ; RI.getCommonSubClass(s0,m0reg) = m0reg ; NOT LEGAL

    return RI.getCommonSubClass(RC, RI.getRegClass(OpInfo.RegClass)) == RC;
  }


  // Handle non-register types that are treated like immediates.
  assert(MO->isImm() || MO->isTargetIndex() || MO->isFI());

  if (!DefinedRC) {
    // This operand expects an immediate.
    return true;
  }

  return isImmOperandLegal(MI, OpIdx, *MO);
}

void SIInstrInfo::legalizeOperands(MachineInstr *MI) const {
  MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();

  int Src0Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
                                           AMDGPU::OpName::src0);
  int Src1Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
                                           AMDGPU::OpName::src1);
  int Src2Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
                                           AMDGPU::OpName::src2);

  // Legalize VOP2
  if (isVOP2(MI->getOpcode()) && Src1Idx != -1) {
    // Legalize src0
    if (!isOperandLegal(MI, Src0Idx))
      legalizeOpWithMove(MI, Src0Idx);

    // Legalize src1
    if (isOperandLegal(MI, Src1Idx))
      return;

    // Usually src0 of VOP2 instructions allow more types of inputs
    // than src1, so try to commute the instruction to decrease our
    // chances of having to insert a MOV instruction to legalize src1.
    if (MI->isCommutable()) {
      if (commuteInstruction(MI))
        // If we are successful in commuting, then we know MI is legal, so
        // we are done.
        return;
    }

    legalizeOpWithMove(MI, Src1Idx);
    return;
  }

  // XXX - Do any VOP3 instructions read VCC?
  // Legalize VOP3
  if (isVOP3(MI->getOpcode())) {
    int VOP3Idx[3] = { Src0Idx, Src1Idx, Src2Idx };

    // Find the one SGPR operand we are allowed to use.
    unsigned SGPRReg = findUsedSGPR(MI, VOP3Idx);

    for (unsigned i = 0; i < 3; ++i) {
      int Idx = VOP3Idx[i];
      if (Idx == -1)
        break;
      MachineOperand &MO = MI->getOperand(Idx);

      if (MO.isReg()) {
        if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg())))
          continue; // VGPRs are legal

        assert(MO.getReg() != AMDGPU::SCC && "SCC operand to VOP3 instruction");

        if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) {
          SGPRReg = MO.getReg();
          // We can use one SGPR in each VOP3 instruction.
          continue;
        }
      } else if (!isLiteralConstant(MO, getOpSize(MI->getOpcode(), Idx))) {
        // If it is not a register and not a literal constant, then it must be
        // an inline constant which is always legal.
        continue;
      }
      // If we make it this far, then the operand is not legal and we must
      // legalize it.
      legalizeOpWithMove(MI, Idx);
    }
  }

  // Legalize REG_SEQUENCE and PHI
  // The register class of the operands much be the same type as the register
  // class of the output.
  if (MI->getOpcode() == AMDGPU::REG_SEQUENCE ||
      MI->getOpcode() == AMDGPU::PHI) {
    const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr;
    for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
      if (!MI->getOperand(i).isReg() ||
          !TargetRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg()))
        continue;
      const TargetRegisterClass *OpRC =
              MRI.getRegClass(MI->getOperand(i).getReg());
      if (RI.hasVGPRs(OpRC)) {
        VRC = OpRC;
      } else {
        SRC = OpRC;
      }
    }

    // If any of the operands are VGPR registers, then they all most be
    // otherwise we will create illegal VGPR->SGPR copies when legalizing
    // them.
    if (VRC || !RI.isSGPRClass(getOpRegClass(*MI, 0))) {
      if (!VRC) {
        assert(SRC);
        VRC = RI.getEquivalentVGPRClass(SRC);
      }
      RC = VRC;
    } else {
      RC = SRC;
    }

    // Update all the operands so they have the same type.
    for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
      if (!MI->getOperand(i).isReg() ||
          !TargetRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg()))
        continue;
      unsigned DstReg = MRI.createVirtualRegister(RC);
      MachineBasicBlock *InsertBB;
      MachineBasicBlock::iterator Insert;
      if (MI->getOpcode() == AMDGPU::REG_SEQUENCE) {
        InsertBB = MI->getParent();
        Insert = MI;
      } else {
        // MI is a PHI instruction.
        InsertBB = MI->getOperand(i + 1).getMBB();
        Insert = InsertBB->getFirstTerminator();
      }
      BuildMI(*InsertBB, Insert, MI->getDebugLoc(),
              get(AMDGPU::COPY), DstReg)
              .addOperand(MI->getOperand(i));
      MI->getOperand(i).setReg(DstReg);
    }
  }

  // Legalize INSERT_SUBREG
  // src0 must have the same register class as dst
  if (MI->getOpcode() == AMDGPU::INSERT_SUBREG) {
    unsigned Dst = MI->getOperand(0).getReg();
    unsigned Src0 = MI->getOperand(1).getReg();
    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
    const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0);
    if (DstRC != Src0RC) {
      MachineBasicBlock &MBB = *MI->getParent();
      unsigned NewSrc0 = MRI.createVirtualRegister(DstRC);
      BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::COPY), NewSrc0)
              .addReg(Src0);
      MI->getOperand(1).setReg(NewSrc0);
    }
    return;
  }

  // Legalize MUBUF* instructions
  // FIXME: If we start using the non-addr64 instructions for compute, we
  // may need to legalize them here.
  int SRsrcIdx =
      AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::srsrc);
  if (SRsrcIdx != -1) {
    // We have an MUBUF instruction
    MachineOperand *SRsrc = &MI->getOperand(SRsrcIdx);
    unsigned SRsrcRC = get(MI->getOpcode()).OpInfo[SRsrcIdx].RegClass;
    if (RI.getCommonSubClass(MRI.getRegClass(SRsrc->getReg()),
                                             RI.getRegClass(SRsrcRC))) {
      // The operands are legal.
      // FIXME: We may need to legalize operands besided srsrc.
      return;
    }

    MachineBasicBlock &MBB = *MI->getParent();
    // Extract the the ptr from the resource descriptor.

    // SRsrcPtrLo = srsrc:sub0
    unsigned SRsrcPtrLo = buildExtractSubReg(MI, MRI, *SRsrc,
        &AMDGPU::VReg_128RegClass, AMDGPU::sub0, &AMDGPU::VGPR_32RegClass);

    // SRsrcPtrHi = srsrc:sub1
    unsigned SRsrcPtrHi = buildExtractSubReg(MI, MRI, *SRsrc,
        &AMDGPU::VReg_128RegClass, AMDGPU::sub1, &AMDGPU::VGPR_32RegClass);

    // Create an empty resource descriptor
    unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
    unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
    unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
    unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass);
    uint64_t RsrcDataFormat = getDefaultRsrcDataFormat();

    // Zero64 = 0
    BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B64),
            Zero64)
            .addImm(0);

    // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
    BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
            SRsrcFormatLo)
            .addImm(RsrcDataFormat & 0xFFFFFFFF);

    // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
    BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
            SRsrcFormatHi)
            .addImm(RsrcDataFormat >> 32);

    // NewSRsrc = {Zero64, SRsrcFormat}
    BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
            NewSRsrc)
            .addReg(Zero64)
            .addImm(AMDGPU::sub0_sub1)
            .addReg(SRsrcFormatLo)
            .addImm(AMDGPU::sub2)
            .addReg(SRsrcFormatHi)
            .addImm(AMDGPU::sub3);

    MachineOperand *VAddr = getNamedOperand(*MI, AMDGPU::OpName::vaddr);
    unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
    unsigned NewVAddrLo;
    unsigned NewVAddrHi;
    if (VAddr) {
      // This is already an ADDR64 instruction so we need to add the pointer
      // extracted from the resource descriptor to the current value of VAddr.
      NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
      NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);

      // NewVaddrLo = SRsrcPtrLo + VAddr:sub0
      BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::V_ADD_I32_e32),
              NewVAddrLo)
              .addReg(SRsrcPtrLo)
              .addReg(VAddr->getReg(), 0, AMDGPU::sub0)
              .addReg(AMDGPU::VCC, RegState::ImplicitDefine);

      // NewVaddrHi = SRsrcPtrHi + VAddr:sub1
      BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::V_ADDC_U32_e32),
              NewVAddrHi)
              .addReg(SRsrcPtrHi)
              .addReg(VAddr->getReg(), 0, AMDGPU::sub1)
              .addReg(AMDGPU::VCC, RegState::ImplicitDefine)
              .addReg(AMDGPU::VCC, RegState::Implicit);

    } else {
      // This instructions is the _OFFSET variant, so we need to convert it to
      // ADDR64.
      MachineOperand *VData = getNamedOperand(*MI, AMDGPU::OpName::vdata);
      MachineOperand *Offset = getNamedOperand(*MI, AMDGPU::OpName::offset);
      MachineOperand *SOffset = getNamedOperand(*MI, AMDGPU::OpName::soffset);

      // Create the new instruction.
      unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI->getOpcode());
      MachineInstr *Addr64 =
          BuildMI(MBB, MI, MI->getDebugLoc(), get(Addr64Opcode))
                  .addOperand(*VData)
                  .addOperand(*SRsrc)
                  .addReg(AMDGPU::NoRegister) // Dummy value for vaddr.
                                              // This will be replaced later
                                              // with the new value of vaddr.
                  .addOperand(*SOffset)
                  .addOperand(*Offset)
                  .addImm(0) // glc
                  .addImm(0) // slc
                  .addImm(0); // tfe

      MI->removeFromParent();
      MI = Addr64;

      NewVAddrLo = SRsrcPtrLo;
      NewVAddrHi = SRsrcPtrHi;
      VAddr = getNamedOperand(*MI, AMDGPU::OpName::vaddr);
      SRsrc = getNamedOperand(*MI, AMDGPU::OpName::srsrc);
    }

    // NewVaddr = {NewVaddrHi, NewVaddrLo}
    BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
            NewVAddr)
            .addReg(NewVAddrLo)
            .addImm(AMDGPU::sub0)
            .addReg(NewVAddrHi)
            .addImm(AMDGPU::sub1);


    // Update the instruction to use NewVaddr
    VAddr->setReg(NewVAddr);
    // Update the instruction to use NewSRsrc
    SRsrc->setReg(NewSRsrc);
  }
}

void SIInstrInfo::splitSMRD(MachineInstr *MI,
                            const TargetRegisterClass *HalfRC,
                            unsigned HalfImmOp, unsigned HalfSGPROp,
                            MachineInstr *&Lo, MachineInstr *&Hi) const {

  DebugLoc DL = MI->getDebugLoc();
  MachineBasicBlock *MBB = MI->getParent();
  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
  unsigned RegLo = MRI.createVirtualRegister(HalfRC);
  unsigned RegHi = MRI.createVirtualRegister(HalfRC);
  unsigned HalfSize = HalfRC->getSize();
  const MachineOperand *OffOp =
      getNamedOperand(*MI, AMDGPU::OpName::offset);
  const MachineOperand *SBase = getNamedOperand(*MI, AMDGPU::OpName::sbase);

  // The SMRD has an 8-bit offset in dwords on SI and a 20-bit offset in bytes
  // on VI.
  if (OffOp) {
    bool isVI =
        MBB->getParent()->getSubtarget<AMDGPUSubtarget>().getGeneration() >=
        AMDGPUSubtarget::VOLCANIC_ISLANDS;
    unsigned OffScale = isVI ? 1 : 4;
    // Handle the _IMM variant
    unsigned LoOffset = OffOp->getImm() * OffScale;
    unsigned HiOffset = LoOffset + HalfSize;
    Lo = BuildMI(*MBB, MI, DL, get(HalfImmOp), RegLo)
                  .addOperand(*SBase)
                  .addImm(LoOffset / OffScale);

    if (!isUInt<20>(HiOffset) || (!isVI && !isUInt<8>(HiOffset / OffScale))) {
      unsigned OffsetSGPR =
          MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
      BuildMI(*MBB, MI, DL, get(AMDGPU::S_MOV_B32), OffsetSGPR)
              .addImm(HiOffset); // The offset in register is in bytes.
      Hi = BuildMI(*MBB, MI, DL, get(HalfSGPROp), RegHi)
                    .addOperand(*SBase)
                    .addReg(OffsetSGPR);
    } else {
      Hi = BuildMI(*MBB, MI, DL, get(HalfImmOp), RegHi)
                     .addOperand(*SBase)
                     .addImm(HiOffset / OffScale);
    }
  } else {
    // Handle the _SGPR variant
    MachineOperand *SOff = getNamedOperand(*MI, AMDGPU::OpName::soff);
    Lo = BuildMI(*MBB, MI, DL, get(HalfSGPROp), RegLo)
                  .addOperand(*SBase)
                  .addOperand(*SOff);
    unsigned OffsetSGPR = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
    BuildMI(*MBB, MI, DL, get(AMDGPU::S_ADD_I32), OffsetSGPR)
            .addOperand(*SOff)
            .addImm(HalfSize);
    Hi = BuildMI(*MBB, MI, DL, get(HalfSGPROp))
                  .addOperand(*SBase)
                  .addReg(OffsetSGPR);
  }

  unsigned SubLo, SubHi;
  switch (HalfSize) {
    case 4:
      SubLo = AMDGPU::sub0;
      SubHi = AMDGPU::sub1;
      break;
    case 8:
      SubLo = AMDGPU::sub0_sub1;
      SubHi = AMDGPU::sub2_sub3;
      break;
    case 16:
      SubLo = AMDGPU::sub0_sub1_sub2_sub3;
      SubHi = AMDGPU::sub4_sub5_sub6_sub7;
      break;
    case 32:
      SubLo = AMDGPU::sub0_sub1_sub2_sub3_sub4_sub5_sub6_sub7;
      SubHi = AMDGPU::sub8_sub9_sub10_sub11_sub12_sub13_sub14_sub15;
      break;
    default:
      llvm_unreachable("Unhandled HalfSize");
  }

  BuildMI(*MBB, MI, DL, get(AMDGPU::REG_SEQUENCE))
          .addOperand(MI->getOperand(0))
          .addReg(RegLo)
          .addImm(SubLo)
          .addReg(RegHi)
          .addImm(SubHi);
}

void SIInstrInfo::moveSMRDToVALU(MachineInstr *MI, MachineRegisterInfo &MRI) const {
  MachineBasicBlock *MBB = MI->getParent();
  switch (MI->getOpcode()) {
    case AMDGPU::S_LOAD_DWORD_IMM:
    case AMDGPU::S_LOAD_DWORD_SGPR:
    case AMDGPU::S_LOAD_DWORDX2_IMM:
    case AMDGPU::S_LOAD_DWORDX2_SGPR:
    case AMDGPU::S_LOAD_DWORDX4_IMM:
    case AMDGPU::S_LOAD_DWORDX4_SGPR: {
      unsigned NewOpcode = getVALUOp(*MI);
      unsigned RegOffset;
      unsigned ImmOffset;

      if (MI->getOperand(2).isReg()) {
        RegOffset = MI->getOperand(2).getReg();
        ImmOffset = 0;
      } else {
        assert(MI->getOperand(2).isImm());
        // SMRD instructions take a dword offsets on SI and byte offset on VI
        // and MUBUF instructions always take a byte offset.
        ImmOffset = MI->getOperand(2).getImm();
        if (MBB->getParent()->getSubtarget<AMDGPUSubtarget>().getGeneration() <=
            AMDGPUSubtarget::SEA_ISLANDS)
          ImmOffset <<= 2;
        RegOffset = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);

        if (isUInt<12>(ImmOffset)) {
          BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
                  RegOffset)
                  .addImm(0);
        } else {
          BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
                  RegOffset)
                  .addImm(ImmOffset);
          ImmOffset = 0;
        }
      }

      unsigned SRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass);
      unsigned DWord0 = RegOffset;
      unsigned DWord1 = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
      unsigned DWord2 = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
      unsigned DWord3 = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
      uint64_t RsrcDataFormat = getDefaultRsrcDataFormat();

      BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), DWord1)
              .addImm(0);
      BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), DWord2)
              .addImm(RsrcDataFormat & 0xFFFFFFFF);
      BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), DWord3)
              .addImm(RsrcDataFormat >> 32);
      BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), SRsrc)
              .addReg(DWord0)
              .addImm(AMDGPU::sub0)
              .addReg(DWord1)
              .addImm(AMDGPU::sub1)
              .addReg(DWord2)
              .addImm(AMDGPU::sub2)
              .addReg(DWord3)
              .addImm(AMDGPU::sub3);
      MI->setDesc(get(NewOpcode));
      if (MI->getOperand(2).isReg()) {
        MI->getOperand(2).setReg(MI->getOperand(1).getReg());
      } else {
        MI->getOperand(2).ChangeToRegister(MI->getOperand(1).getReg(), false);
      }
      MI->getOperand(1).setReg(SRsrc);
      MI->addOperand(*MBB->getParent(), MachineOperand::CreateImm(0));
      MI->addOperand(*MBB->getParent(), MachineOperand::CreateImm(ImmOffset));
      MI->addOperand(*MBB->getParent(), MachineOperand::CreateImm(0)); // glc
      MI->addOperand(*MBB->getParent(), MachineOperand::CreateImm(0)); // slc
      MI->addOperand(*MBB->getParent(), MachineOperand::CreateImm(0)); // tfe

      const TargetRegisterClass *NewDstRC =
          RI.getRegClass(get(NewOpcode).OpInfo[0].RegClass);

      unsigned DstReg = MI->getOperand(0).getReg();
      unsigned NewDstReg = MRI.createVirtualRegister(NewDstRC);
      MRI.replaceRegWith(DstReg, NewDstReg);
      break;
    }
    case AMDGPU::S_LOAD_DWORDX8_IMM:
    case AMDGPU::S_LOAD_DWORDX8_SGPR: {
      MachineInstr *Lo, *Hi;
      splitSMRD(MI, &AMDGPU::SReg_128RegClass, AMDGPU::S_LOAD_DWORDX4_IMM,
                AMDGPU::S_LOAD_DWORDX4_SGPR, Lo, Hi);
      MI->eraseFromParent();
      moveSMRDToVALU(Lo, MRI);
      moveSMRDToVALU(Hi, MRI);
      break;
    }

    case AMDGPU::S_LOAD_DWORDX16_IMM:
    case AMDGPU::S_LOAD_DWORDX16_SGPR: {
      MachineInstr *Lo, *Hi;
      splitSMRD(MI, &AMDGPU::SReg_256RegClass, AMDGPU::S_LOAD_DWORDX8_IMM,
                AMDGPU::S_LOAD_DWORDX8_SGPR, Lo, Hi);
      MI->eraseFromParent();
      moveSMRDToVALU(Lo, MRI);
      moveSMRDToVALU(Hi, MRI);
      break;
    }
  }
}

void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const {
  SmallVector<MachineInstr *, 128> Worklist;
  Worklist.push_back(&TopInst);

  while (!Worklist.empty()) {
    MachineInstr *Inst = Worklist.pop_back_val();
    MachineBasicBlock *MBB = Inst->getParent();
    MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();

    unsigned Opcode = Inst->getOpcode();
    unsigned NewOpcode = getVALUOp(*Inst);

    // Handle some special cases
    switch (Opcode) {
    default:
      if (isSMRD(Inst->getOpcode())) {
        moveSMRDToVALU(Inst, MRI);
      }
      break;
    case AMDGPU::S_MOV_B64: {
      DebugLoc DL = Inst->getDebugLoc();

      // If the source operand is a register we can replace this with a
      // copy.
      if (Inst->getOperand(1).isReg()) {
        MachineInstr *Copy = BuildMI(*MBB, Inst, DL, get(TargetOpcode::COPY))
          .addOperand(Inst->getOperand(0))
          .addOperand(Inst->getOperand(1));
        Worklist.push_back(Copy);
      } else {
        // Otherwise, we need to split this into two movs, because there is
        // no 64-bit VALU move instruction.
        unsigned Reg = Inst->getOperand(0).getReg();
        unsigned Dst = split64BitImm(Worklist,
                                     Inst,
                                     MRI,
                                     MRI.getRegClass(Reg),
                                     Inst->getOperand(1));
        MRI.replaceRegWith(Reg, Dst);
      }
      Inst->eraseFromParent();
      continue;
    }
    case AMDGPU::S_AND_B64:
      splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_AND_B32);
      Inst->eraseFromParent();
      continue;

    case AMDGPU::S_OR_B64:
      splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_OR_B32);
      Inst->eraseFromParent();
      continue;

    case AMDGPU::S_XOR_B64:
      splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XOR_B32);
      Inst->eraseFromParent();
      continue;

    case AMDGPU::S_NOT_B64:
      splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_NOT_B32);
      Inst->eraseFromParent();
      continue;

    case AMDGPU::S_BCNT1_I32_B64:
      splitScalar64BitBCNT(Worklist, Inst);
      Inst->eraseFromParent();
      continue;

    case AMDGPU::S_BFE_I64: {
      splitScalar64BitBFE(Worklist, Inst);
      Inst->eraseFromParent();
      continue;
    }

    case AMDGPU::S_LSHL_B32:
      if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
        NewOpcode = AMDGPU::V_LSHLREV_B32_e64;
        swapOperands(Inst);
      }
      break;
    case AMDGPU::S_ASHR_I32:
      if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
        NewOpcode = AMDGPU::V_ASHRREV_I32_e64;
        swapOperands(Inst);
      }
      break;
    case AMDGPU::S_LSHR_B32:
      if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
        NewOpcode = AMDGPU::V_LSHRREV_B32_e64;
        swapOperands(Inst);
      }
      break;
    case AMDGPU::S_LSHL_B64:
      if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
        NewOpcode = AMDGPU::V_LSHLREV_B64;
        swapOperands(Inst);
      }
      break;
    case AMDGPU::S_ASHR_I64:
      if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
        NewOpcode = AMDGPU::V_ASHRREV_I64;
        swapOperands(Inst);
      }
      break;
    case AMDGPU::S_LSHR_B64:
      if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
        NewOpcode = AMDGPU::V_LSHRREV_B64;
        swapOperands(Inst);
      }
      break;

    case AMDGPU::S_BFE_U64:
    case AMDGPU::S_BFM_B64:
      llvm_unreachable("Moving this op to VALU not implemented");
    }

    if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) {
      // We cannot move this instruction to the VALU, so we should try to
      // legalize its operands instead.
      legalizeOperands(Inst);
      continue;
    }

    // Use the new VALU Opcode.
    const MCInstrDesc &NewDesc = get(NewOpcode);
    Inst->setDesc(NewDesc);

    // Remove any references to SCC. Vector instructions can't read from it, and
    // We're just about to add the implicit use / defs of VCC, and we don't want
    // both.
    for (unsigned i = Inst->getNumOperands() - 1; i > 0; --i) {
      MachineOperand &Op = Inst->getOperand(i);
      if (Op.isReg() && Op.getReg() == AMDGPU::SCC)
        Inst->RemoveOperand(i);
    }

    if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) {
      // We are converting these to a BFE, so we need to add the missing
      // operands for the size and offset.
      unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16;
      Inst->addOperand(MachineOperand::CreateImm(0));
      Inst->addOperand(MachineOperand::CreateImm(Size));

    } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) {
      // The VALU version adds the second operand to the result, so insert an
      // extra 0 operand.
      Inst->addOperand(MachineOperand::CreateImm(0));
    }

    addDescImplicitUseDef(NewDesc, Inst);

    if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) {
      const MachineOperand &OffsetWidthOp = Inst->getOperand(2);
      // If we need to move this to VGPRs, we need to unpack the second operand
      // back into the 2 separate ones for bit offset and width.
      assert(OffsetWidthOp.isImm() &&
             "Scalar BFE is only implemented for constant width and offset");
      uint32_t Imm = OffsetWidthOp.getImm();

      uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
      uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
      Inst->RemoveOperand(2); // Remove old immediate.
      Inst->addOperand(MachineOperand::CreateImm(Offset));
      Inst->addOperand(MachineOperand::CreateImm(BitWidth));
    }

    // Update the destination register class.

    const TargetRegisterClass *NewDstRC = getOpRegClass(*Inst, 0);

    switch (Opcode) {
      // For target instructions, getOpRegClass just returns the virtual
      // register class associated with the operand, so we need to find an
      // equivalent VGPR register class in order to move the instruction to the
      // VALU.
    case AMDGPU::COPY:
    case AMDGPU::PHI:
    case AMDGPU::REG_SEQUENCE:
    case AMDGPU::INSERT_SUBREG:
      if (RI.hasVGPRs(NewDstRC))
        continue;
      NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
      if (!NewDstRC)
        continue;
      break;
    default:
      break;
    }

    unsigned DstReg = Inst->getOperand(0).getReg();
    unsigned NewDstReg = MRI.createVirtualRegister(NewDstRC);
    MRI.replaceRegWith(DstReg, NewDstReg);

    // Legalize the operands
    legalizeOperands(Inst);

    for (MachineRegisterInfo::use_iterator I = MRI.use_begin(NewDstReg),
           E = MRI.use_end(); I != E; ++I) {
      MachineInstr &UseMI = *I->getParent();
      if (!canReadVGPR(UseMI, I.getOperandNo())) {
        Worklist.push_back(&UseMI);
      }
    }
  }
}

//===----------------------------------------------------------------------===//
// Indirect addressing callbacks
//===----------------------------------------------------------------------===//

unsigned SIInstrInfo::calculateIndirectAddress(unsigned RegIndex,
                                                 unsigned Channel) const {
  assert(Channel == 0);
  return RegIndex;
}

const TargetRegisterClass *SIInstrInfo::getIndirectAddrRegClass() const {
  return &AMDGPU::VGPR_32RegClass;
}

void SIInstrInfo::splitScalar64BitUnaryOp(
  SmallVectorImpl<MachineInstr *> &Worklist,
  MachineInstr *Inst,
  unsigned Opcode) const {
  MachineBasicBlock &MBB = *Inst->getParent();
  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();

  MachineOperand &Dest = Inst->getOperand(0);
  MachineOperand &Src0 = Inst->getOperand(1);
  DebugLoc DL = Inst->getDebugLoc();

  MachineBasicBlock::iterator MII = Inst;

  const MCInstrDesc &InstDesc = get(Opcode);
  const TargetRegisterClass *Src0RC = Src0.isReg() ?
    MRI.getRegClass(Src0.getReg()) :
    &AMDGPU::SGPR_32RegClass;

  const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);

  MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
                                                       AMDGPU::sub0, Src0SubRC);

  const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
  const TargetRegisterClass *DestSubRC = RI.getSubRegClass(DestRC, AMDGPU::sub0);

  unsigned DestSub0 = MRI.createVirtualRegister(DestRC);
  MachineInstr *LoHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub0)
    .addOperand(SrcReg0Sub0);

  MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
                                                       AMDGPU::sub1, Src0SubRC);

  unsigned DestSub1 = MRI.createVirtualRegister(DestSubRC);
  MachineInstr *HiHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub1)
    .addOperand(SrcReg0Sub1);

  unsigned FullDestReg = MRI.createVirtualRegister(DestRC);
  BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
    .addReg(DestSub0)
    .addImm(AMDGPU::sub0)
    .addReg(DestSub1)
    .addImm(AMDGPU::sub1);

  MRI.replaceRegWith(Dest.getReg(), FullDestReg);

  // Try to legalize the operands in case we need to swap the order to keep it
  // valid.
  Worklist.push_back(LoHalf);
  Worklist.push_back(HiHalf);
}

void SIInstrInfo::splitScalar64BitBinaryOp(
  SmallVectorImpl<MachineInstr *> &Worklist,
  MachineInstr *Inst,
  unsigned Opcode) const {
  MachineBasicBlock &MBB = *Inst->getParent();
  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();

  MachineOperand &Dest = Inst->getOperand(0);
  MachineOperand &Src0 = Inst->getOperand(1);
  MachineOperand &Src1 = Inst->getOperand(2);
  DebugLoc DL = Inst->getDebugLoc();

  MachineBasicBlock::iterator MII = Inst;

  const MCInstrDesc &InstDesc = get(Opcode);
  const TargetRegisterClass *Src0RC = Src0.isReg() ?
    MRI.getRegClass(Src0.getReg()) :
    &AMDGPU::SGPR_32RegClass;

  const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
  const TargetRegisterClass *Src1RC = Src1.isReg() ?
    MRI.getRegClass(Src1.getReg()) :
    &AMDGPU::SGPR_32RegClass;

  const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0);

  MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
                                                       AMDGPU::sub0, Src0SubRC);
  MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
                                                       AMDGPU::sub0, Src1SubRC);

  const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
  const TargetRegisterClass *DestSubRC = RI.getSubRegClass(DestRC, AMDGPU::sub0);

  unsigned DestSub0 = MRI.createVirtualRegister(DestRC);
  MachineInstr *LoHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub0)
    .addOperand(SrcReg0Sub0)
    .addOperand(SrcReg1Sub0);

  MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
                                                       AMDGPU::sub1, Src0SubRC);
  MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
                                                       AMDGPU::sub1, Src1SubRC);

  unsigned DestSub1 = MRI.createVirtualRegister(DestSubRC);
  MachineInstr *HiHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub1)
    .addOperand(SrcReg0Sub1)
    .addOperand(SrcReg1Sub1);

  unsigned FullDestReg = MRI.createVirtualRegister(DestRC);
  BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
    .addReg(DestSub0)
    .addImm(AMDGPU::sub0)
    .addReg(DestSub1)
    .addImm(AMDGPU::sub1);

  MRI.replaceRegWith(Dest.getReg(), FullDestReg);

  // Try to legalize the operands in case we need to swap the order to keep it
  // valid.
  Worklist.push_back(LoHalf);
  Worklist.push_back(HiHalf);
}

void SIInstrInfo::splitScalar64BitBCNT(SmallVectorImpl<MachineInstr *> &Worklist,
                                       MachineInstr *Inst) const {
  MachineBasicBlock &MBB = *Inst->getParent();
  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();

  MachineBasicBlock::iterator MII = Inst;
  DebugLoc DL = Inst->getDebugLoc();

  MachineOperand &Dest = Inst->getOperand(0);
  MachineOperand &Src = Inst->getOperand(1);

  const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64);
  const TargetRegisterClass *SrcRC = Src.isReg() ?
    MRI.getRegClass(Src.getReg()) :
    &AMDGPU::SGPR_32RegClass;

  unsigned MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
  unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);

  const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0);

  MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
                                                      AMDGPU::sub0, SrcSubRC);
  MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
                                                      AMDGPU::sub1, SrcSubRC);

  MachineInstr *First = BuildMI(MBB, MII, DL, InstDesc, MidReg)
    .addOperand(SrcRegSub0)
    .addImm(0);

  MachineInstr *Second = BuildMI(MBB, MII, DL, InstDesc, ResultReg)
    .addOperand(SrcRegSub1)
    .addReg(MidReg);

  MRI.replaceRegWith(Dest.getReg(), ResultReg);

  Worklist.push_back(First);
  Worklist.push_back(Second);
}

void SIInstrInfo::splitScalar64BitBFE(SmallVectorImpl<MachineInstr *> &Worklist,
                                      MachineInstr *Inst) const {
  MachineBasicBlock &MBB = *Inst->getParent();
  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  MachineBasicBlock::iterator MII = Inst;
  DebugLoc DL = Inst->getDebugLoc();

  MachineOperand &Dest = Inst->getOperand(0);
  uint32_t Imm = Inst->getOperand(2).getImm();
  uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
  uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].

  (void) Offset;

  // Only sext_inreg cases handled.
  assert(Inst->getOpcode() == AMDGPU::S_BFE_I64 &&
         BitWidth <= 32 &&
         Offset == 0 &&
         "Not implemented");

  if (BitWidth < 32) {
    unsigned MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
    unsigned MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
    unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);

    BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32), MidRegLo)
      .addReg(Inst->getOperand(1).getReg(), 0, AMDGPU::sub0)
      .addImm(0)
      .addImm(BitWidth);

    BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi)
      .addImm(31)
      .addReg(MidRegLo);

    BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
      .addReg(MidRegLo)
      .addImm(AMDGPU::sub0)
      .addReg(MidRegHi)
      .addImm(AMDGPU::sub1);

    MRI.replaceRegWith(Dest.getReg(), ResultReg);
    return;
  }

  MachineOperand &Src = Inst->getOperand(1);
  unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
  unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);

  BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg)
    .addImm(31)
    .addReg(Src.getReg(), 0, AMDGPU::sub0);

  BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
    .addReg(Src.getReg(), 0, AMDGPU::sub0)
    .addImm(AMDGPU::sub0)
    .addReg(TmpReg)
    .addImm(AMDGPU::sub1);

  MRI.replaceRegWith(Dest.getReg(), ResultReg);
}

void SIInstrInfo::addDescImplicitUseDef(const MCInstrDesc &NewDesc,
                                        MachineInstr *Inst) const {
  // Add the implict and explicit register definitions.
  if (NewDesc.ImplicitUses) {
    for (unsigned i = 0; NewDesc.ImplicitUses[i]; ++i) {
      unsigned Reg = NewDesc.ImplicitUses[i];
      Inst->addOperand(MachineOperand::CreateReg(Reg, false, true));
    }
  }

  if (NewDesc.ImplicitDefs) {
    for (unsigned i = 0; NewDesc.ImplicitDefs[i]; ++i) {
      unsigned Reg = NewDesc.ImplicitDefs[i];
      Inst->addOperand(MachineOperand::CreateReg(Reg, true, true));
    }
  }
}

unsigned SIInstrInfo::findUsedSGPR(const MachineInstr *MI,
                                   int OpIndices[3]) const {
  const MCInstrDesc &Desc = get(MI->getOpcode());

  // Find the one SGPR operand we are allowed to use.
  unsigned SGPRReg = AMDGPU::NoRegister;

  // First we need to consider the instruction's operand requirements before
  // legalizing. Some operands are required to be SGPRs, such as implicit uses
  // of VCC, but we are still bound by the constant bus requirement to only use
  // one.
  //
  // If the operand's class is an SGPR, we can never move it.

  for (const MachineOperand &MO : MI->implicit_operands()) {
    // We only care about reads.
    if (MO.isDef())
      continue;

    if (MO.getReg() == AMDGPU::VCC)
      return AMDGPU::VCC;

    if (MO.getReg() == AMDGPU::FLAT_SCR)
      return AMDGPU::FLAT_SCR;
  }

  unsigned UsedSGPRs[3] = { AMDGPU::NoRegister };
  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();

  for (unsigned i = 0; i < 3; ++i) {
    int Idx = OpIndices[i];
    if (Idx == -1)
      break;

    const MachineOperand &MO = MI->getOperand(Idx);
    if (RI.isSGPRClassID(Desc.OpInfo[Idx].RegClass))
      SGPRReg = MO.getReg();

    if (MO.isReg() && RI.isSGPRClass(MRI.getRegClass(MO.getReg())))
      UsedSGPRs[i] = MO.getReg();
  }

  if (SGPRReg != AMDGPU::NoRegister)
    return SGPRReg;

  // We don't have a required SGPR operand, so we have a bit more freedom in
  // selecting operands to move.

  // Try to select the most used SGPR. If an SGPR is equal to one of the
  // others, we choose that.
  //
  // e.g.
  // V_FMA_F32 v0, s0, s0, s0 -> No moves
  // V_FMA_F32 v0, s0, s1, s0 -> Move s1

  if (UsedSGPRs[0] != AMDGPU::NoRegister) {
    if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2])
      SGPRReg = UsedSGPRs[0];
  }

  if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) {
    if (UsedSGPRs[1] == UsedSGPRs[2])
      SGPRReg = UsedSGPRs[1];
  }

  return SGPRReg;
}

MachineInstrBuilder SIInstrInfo::buildIndirectWrite(
                                   MachineBasicBlock *MBB,
                                   MachineBasicBlock::iterator I,
                                   unsigned ValueReg,
                                   unsigned Address, unsigned OffsetReg) const {
  const DebugLoc &DL = MBB->findDebugLoc(I);
  unsigned IndirectBaseReg = AMDGPU::VGPR_32RegClass.getRegister(
                                      getIndirectIndexBegin(*MBB->getParent()));

  return BuildMI(*MBB, I, DL, get(AMDGPU::SI_INDIRECT_DST_V1))
          .addReg(IndirectBaseReg, RegState::Define)
          .addOperand(I->getOperand(0))
          .addReg(IndirectBaseReg)
          .addReg(OffsetReg)
          .addImm(0)
          .addReg(ValueReg);
}

MachineInstrBuilder SIInstrInfo::buildIndirectRead(
                                   MachineBasicBlock *MBB,
                                   MachineBasicBlock::iterator I,
                                   unsigned ValueReg,
                                   unsigned Address, unsigned OffsetReg) const {
  const DebugLoc &DL = MBB->findDebugLoc(I);
  unsigned IndirectBaseReg = AMDGPU::VGPR_32RegClass.getRegister(
                                      getIndirectIndexBegin(*MBB->getParent()));

  return BuildMI(*MBB, I, DL, get(AMDGPU::SI_INDIRECT_SRC))
          .addOperand(I->getOperand(0))
          .addOperand(I->getOperand(1))
          .addReg(IndirectBaseReg)
          .addReg(OffsetReg)
          .addImm(0);

}

void SIInstrInfo::reserveIndirectRegisters(BitVector &Reserved,
                                            const MachineFunction &MF) const {
  int End = getIndirectIndexEnd(MF);
  int Begin = getIndirectIndexBegin(MF);

  if (End == -1)
    return;


  for (int Index = Begin; Index <= End; ++Index)
    Reserved.set(AMDGPU::VGPR_32RegClass.getRegister(Index));

  for (int Index = std::max(0, Begin - 1); Index <= End; ++Index)
    Reserved.set(AMDGPU::VReg_64RegClass.getRegister(Index));

  for (int Index = std::max(0, Begin - 2); Index <= End; ++Index)
    Reserved.set(AMDGPU::VReg_96RegClass.getRegister(Index));

  for (int Index = std::max(0, Begin - 3); Index <= End; ++Index)
    Reserved.set(AMDGPU::VReg_128RegClass.getRegister(Index));

  for (int Index = std::max(0, Begin - 7); Index <= End; ++Index)
    Reserved.set(AMDGPU::VReg_256RegClass.getRegister(Index));

  for (int Index = std::max(0, Begin - 15); Index <= End; ++Index)
    Reserved.set(AMDGPU::VReg_512RegClass.getRegister(Index));
}

MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI,
                                             unsigned OperandName) const {
  int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName);
  if (Idx == -1)
    return nullptr;

  return &MI.getOperand(Idx);
}

uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const {
  uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT;
  if (ST.isAmdHsaOS())
    RsrcDataFormat |= (1ULL << 56);

  return RsrcDataFormat;
}