//===-- llvm/BasicBlock.h - Represent a basic block in the VM ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declaration of the BasicBlock class. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_BASICBLOCK_H #define LLVM_IR_BASICBLOCK_H #include "llvm/ADT/Twine.h" #include "llvm/ADT/ilist.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/SymbolTableListTraits.h" #include "llvm/Support/CBindingWrapping.h" #include "llvm/Support/DataTypes.h" namespace llvm { class LandingPadInst; class TerminatorInst; class LLVMContext; class BlockAddress; template<> struct ilist_traits : public SymbolTableListTraits { /// \brief Return a node that marks the end of a list. /// /// The sentinel is relative to this instance, so we use a non-static /// method. Instruction *createSentinel() const { // Since i(p)lists always publicly derive from their corresponding traits, // placing a data member in this class will augment the i(p)list. But since // the NodeTy is expected to be publicly derive from ilist_node, // there is a legal viable downcast from it to NodeTy. We use this trick to // superimpose an i(p)list with a "ghostly" NodeTy, which becomes the // sentinel. Dereferencing the sentinel is forbidden (save the // ilist_node), so no one will ever notice the superposition. return static_cast(&Sentinel); } static void destroySentinel(Instruction*) {} Instruction *provideInitialHead() const { return createSentinel(); } Instruction *ensureHead(Instruction*) const { return createSentinel(); } static void noteHead(Instruction*, Instruction*) {} private: mutable ilist_half_node Sentinel; }; /// \brief LLVM Basic Block Representation /// /// This represents a single basic block in LLVM. A basic block is simply a /// container of instructions that execute sequentially. Basic blocks are Values /// because they are referenced by instructions such as branches and switch /// tables. The type of a BasicBlock is "Type::LabelTy" because the basic block /// represents a label to which a branch can jump. /// /// A well formed basic block is formed of a list of non-terminating /// instructions followed by a single TerminatorInst instruction. /// TerminatorInst's may not occur in the middle of basic blocks, and must /// terminate the blocks. The BasicBlock class allows malformed basic blocks to /// occur because it may be useful in the intermediate stage of constructing or /// modifying a program. However, the verifier will ensure that basic blocks /// are "well formed". class BasicBlock : public Value, // Basic blocks are data objects also public ilist_node { friend class BlockAddress; public: typedef iplist InstListType; private: InstListType InstList; Function *Parent; void setParent(Function *parent); friend class SymbolTableListTraits; BasicBlock(const BasicBlock &) LLVM_DELETED_FUNCTION; void operator=(const BasicBlock &) LLVM_DELETED_FUNCTION; /// \brief Constructor. /// /// If the function parameter is specified, the basic block is automatically /// inserted at either the end of the function (if InsertBefore is null), or /// before the specified basic block. explicit BasicBlock(LLVMContext &C, const Twine &Name = "", Function *Parent = 0, BasicBlock *InsertBefore = 0); public: /// \brief Get the context in which this basic block lives. LLVMContext &getContext() const; /// Instruction iterators... typedef InstListType::iterator iterator; typedef InstListType::const_iterator const_iterator; typedef InstListType::reverse_iterator reverse_iterator; typedef InstListType::const_reverse_iterator const_reverse_iterator; /// \brief Creates a new BasicBlock. /// /// If the Parent parameter is specified, the basic block is automatically /// inserted at either the end of the function (if InsertBefore is 0), or /// before the specified basic block. static BasicBlock *Create(LLVMContext &Context, const Twine &Name = "", Function *Parent = 0,BasicBlock *InsertBefore = 0) { return new BasicBlock(Context, Name, Parent, InsertBefore); } ~BasicBlock(); /// \brief Return the enclosing method, or null if none. const Function *getParent() const { return Parent; } Function *getParent() { return Parent; } /// \brief Returns the terminator instruction if the block is well formed or /// null if the block is not well formed. TerminatorInst *getTerminator(); const TerminatorInst *getTerminator() const; /// \brief Returns a pointer to the first instruction in this block that is /// not a PHINode instruction. /// /// When adding instructions to the beginning of the basic block, they should /// be added before the returned value, not before the first instruction, /// which might be PHI. Returns 0 is there's no non-PHI instruction. Instruction* getFirstNonPHI(); const Instruction* getFirstNonPHI() const { return const_cast(this)->getFirstNonPHI(); } /// \brief Returns a pointer to the first instruction in this block that is not /// a PHINode or a debug intrinsic. Instruction* getFirstNonPHIOrDbg(); const Instruction* getFirstNonPHIOrDbg() const { return const_cast(this)->getFirstNonPHIOrDbg(); } /// \brief Returns a pointer to the first instruction in this block that is not /// a PHINode, a debug intrinsic, or a lifetime intrinsic. Instruction* getFirstNonPHIOrDbgOrLifetime(); const Instruction* getFirstNonPHIOrDbgOrLifetime() const { return const_cast(this)->getFirstNonPHIOrDbgOrLifetime(); } /// \brief Returns an iterator to the first instruction in this block that is /// suitable for inserting a non-PHI instruction. /// /// In particular, it skips all PHIs and LandingPad instructions. iterator getFirstInsertionPt(); const_iterator getFirstInsertionPt() const { return const_cast(this)->getFirstInsertionPt(); } /// \brief Unlink 'this' from the containing function, but do not delete it. void removeFromParent(); /// \brief Unlink 'this' from the containing function and delete it. void eraseFromParent(); /// \brief Unlink this basic block from its current function and insert it /// into the function that \p MovePos lives in, right before \p MovePos. void moveBefore(BasicBlock *MovePos); /// \brief Unlink this basic block from its current function and insert it /// right after \p MovePos in the function \p MovePos lives in. void moveAfter(BasicBlock *MovePos); /// \brief Return this block if it has a single predecessor block. Otherwise /// return a null pointer. BasicBlock *getSinglePredecessor(); const BasicBlock *getSinglePredecessor() const { return const_cast(this)->getSinglePredecessor(); } /// \brief Return this block if it has a unique predecessor block. Otherwise return a null pointer. /// /// Note that unique predecessor doesn't mean single edge, there can be /// multiple edges from the unique predecessor to this block (for example a /// switch statement with multiple cases having the same destination). BasicBlock *getUniquePredecessor(); const BasicBlock *getUniquePredecessor() const { return const_cast(this)->getUniquePredecessor(); } //===--------------------------------------------------------------------===// /// Instruction iterator methods /// inline iterator begin() { return InstList.begin(); } inline const_iterator begin() const { return InstList.begin(); } inline iterator end () { return InstList.end(); } inline const_iterator end () const { return InstList.end(); } inline reverse_iterator rbegin() { return InstList.rbegin(); } inline const_reverse_iterator rbegin() const { return InstList.rbegin(); } inline reverse_iterator rend () { return InstList.rend(); } inline const_reverse_iterator rend () const { return InstList.rend(); } inline size_t size() const { return InstList.size(); } inline bool empty() const { return InstList.empty(); } inline const Instruction &front() const { return InstList.front(); } inline Instruction &front() { return InstList.front(); } inline const Instruction &back() const { return InstList.back(); } inline Instruction &back() { return InstList.back(); } /// \brief Return the underlying instruction list container. /// /// Currently you need to access the underlying instruction list container /// directly if you want to modify it. const InstListType &getInstList() const { return InstList; } InstListType &getInstList() { return InstList; } /// \brief Returns a pointer to a member of the instruction list. static iplist BasicBlock::*getSublistAccess(Instruction*) { return &BasicBlock::InstList; } /// \brief Returns a pointer to the symbol table if one exists. ValueSymbolTable *getValueSymbolTable(); /// \brief Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Value *V) { return V->getValueID() == Value::BasicBlockVal; } /// \brief Cause all subinstructions to "let go" of all the references that /// said subinstructions are maintaining. /// /// This allows one to 'delete' a whole class at a time, even though there may /// be circular references... first all references are dropped, and all use /// counts go to zero. Then everything is delete'd for real. Note that no /// operations are valid on an object that has "dropped all references", /// except operator delete. void dropAllReferences(); /// \brief Notify the BasicBlock that the predecessor \p Pred is no longer /// able to reach it. /// /// This is actually not used to update the Predecessor list, but is actually /// used to update the PHI nodes that reside in the block. Note that this /// should be called while the predecessor still refers to this block. void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs = false); /// \brief Split the basic block into two basic blocks at the specified /// instruction. /// /// Note that all instructions BEFORE the specified iterator stay as part of /// the original basic block, an unconditional branch is added to the original /// BB, and the rest of the instructions in the BB are moved to the new BB, /// including the old terminator. The newly formed BasicBlock is returned. /// This function invalidates the specified iterator. /// /// Note that this only works on well formed basic blocks (must have a /// terminator), and 'I' must not be the end of instruction list (which would /// cause a degenerate basic block to be formed, having a terminator inside of /// the basic block). /// /// Also note that this doesn't preserve any passes. To split blocks while /// keeping loop information consistent, use the SplitBlock utility function. BasicBlock *splitBasicBlock(iterator I, const Twine &BBName = ""); /// \brief Returns true if there are any uses of this basic block other than /// direct branches, switches, etc. to it. bool hasAddressTaken() const { return getSubclassDataFromValue() != 0; } /// \brief Update all phi nodes in this basic block's successors to refer to /// basic block \p New instead of to it. void replaceSuccessorsPhiUsesWith(BasicBlock *New); /// \brief Return true if this basic block is a landing pad. /// /// Being a ``landing pad'' means that the basic block is the destination of /// the 'unwind' edge of an invoke instruction. bool isLandingPad() const; /// \brief Return the landingpad instruction associated with the landing pad. LandingPadInst *getLandingPadInst(); const LandingPadInst *getLandingPadInst() const; private: /// \brief Increment the internal refcount of the number of BlockAddresses /// referencing this BasicBlock by \p Amt. /// /// This is almost always 0, sometimes one possibly, but almost never 2, and /// inconceivably 3 or more. void AdjustBlockAddressRefCount(int Amt) { setValueSubclassData(getSubclassDataFromValue()+Amt); assert((int)(signed char)getSubclassDataFromValue() >= 0 && "Refcount wrap-around"); } /// \brief Shadow Value::setValueSubclassData with a private forwarding method /// so that any future subclasses cannot accidentally use it. void setValueSubclassData(unsigned short D) { Value::setValueSubclassData(D); } }; // Create wrappers for C Binding types (see CBindingWrapping.h). DEFINE_SIMPLE_CONVERSION_FUNCTIONS(BasicBlock, LLVMBasicBlockRef) } // End llvm namespace #endif