//===-- Type.cpp - Implement the Type class -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Type class for the VMCore library. // //===----------------------------------------------------------------------===// #include "llvm/DerivedTypes.h" #include "llvm/Constants.h" #include "llvm/Assembly/Writer.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; // DEBUG_MERGE_TYPES - Enable this #define to see how and when derived types are // created and later destroyed, all in an effort to make sure that there is only // a single canonical version of a type. // // #define DEBUG_MERGE_TYPES 1 AbstractTypeUser::~AbstractTypeUser() {} //===----------------------------------------------------------------------===// // Type Class Implementation //===----------------------------------------------------------------------===// // Concrete/Abstract TypeDescriptions - We lazily calculate type descriptions // for types as they are needed. Because resolution of types must invalidate // all of the abstract type descriptions, we keep them in a seperate map to make // this easy. static ManagedStatic ConcreteTypeDescriptions; static ManagedStatic AbstractTypeDescriptions; /// Because of the way Type subclasses are allocated, this function is necessary /// to use the correct kind of "delete" operator to deallocate the Type object. /// Some type objects (FunctionTy, StructTy) allocate additional space after /// the space for their derived type to hold the contained types array of /// PATypeHandles. Using this allocation scheme means all the PATypeHandles are /// allocated with the type object, decreasing allocations and eliminating the /// need for a std::vector to be used in the Type class itself. /// @brief Type destruction function void Type::destroy() const { // Structures and Functions allocate their contained types past the end of // the type object itself. These need to be destroyed differently than the // other types. if (isa(this) || isa(this)) { // First, make sure we destruct any PATypeHandles allocated by these // subclasses. They must be manually destructed. for (unsigned i = 0; i < NumContainedTys; ++i) ContainedTys[i].PATypeHandle::~PATypeHandle(); // Now call the destructor for the subclass directly because we're going // to delete this as an array of char. if (isa(this)) static_cast(this)->FunctionType::~FunctionType(); else static_cast(this)->StructType::~StructType(); // Finally, remove the memory as an array deallocation of the chars it was // constructed from. operator delete(const_cast(this)); return; } // For all the other type subclasses, there is either no contained types or // just one (all Sequentials). For Sequentials, the PATypeHandle is not // allocated past the type object, its included directly in the SequentialType // class. This means we can safely just do "normal" delete of this object and // all the destructors that need to run will be run. delete this; } const Type *Type::getPrimitiveType(TypeID IDNumber) { switch (IDNumber) { case VoidTyID : return VoidTy; case FloatTyID : return FloatTy; case DoubleTyID : return DoubleTy; case X86_FP80TyID : return X86_FP80Ty; case FP128TyID : return FP128Ty; case PPC_FP128TyID : return PPC_FP128Ty; case LabelTyID : return LabelTy; default: return 0; } } const Type *Type::getVAArgsPromotedType() const { if (ID == IntegerTyID && getSubclassData() < 32) return Type::Int32Ty; else if (ID == FloatTyID) return Type::DoubleTy; else return this; } /// isIntOrIntVector - Return true if this is an integer type or a vector of /// integer types. /// bool Type::isIntOrIntVector() const { if (isInteger()) return true; if (ID != Type::VectorTyID) return false; return cast(this)->getElementType()->isInteger(); } /// isFPOrFPVector - Return true if this is a FP type or a vector of FP types. /// bool Type::isFPOrFPVector() const { if (ID == Type::FloatTyID || ID == Type::DoubleTyID || ID == Type::FP128TyID || ID == Type::X86_FP80TyID || ID == Type::PPC_FP128TyID) return true; if (ID != Type::VectorTyID) return false; return cast(this)->getElementType()->isFloatingPoint(); } // canLosslesllyBitCastTo - Return true if this type can be converted to // 'Ty' without any reinterpretation of bits. For example, uint to int. // bool Type::canLosslesslyBitCastTo(const Type *Ty) const { // Identity cast means no change so return true if (this == Ty) return true; // They are not convertible unless they are at least first class types if (!this->isFirstClassType() || !Ty->isFirstClassType()) return false; // Vector -> Vector conversions are always lossless if the two vector types // have the same size, otherwise not. if (const VectorType *thisPTy = dyn_cast(this)) if (const VectorType *thatPTy = dyn_cast(Ty)) return thisPTy->getBitWidth() == thatPTy->getBitWidth(); // At this point we have only various mismatches of the first class types // remaining and ptr->ptr. Just select the lossless conversions. Everything // else is not lossless. if (isa(this)) return isa(Ty); return false; // Other types have no identity values } unsigned Type::getPrimitiveSizeInBits() const { switch (getTypeID()) { case Type::FloatTyID: return 32; case Type::DoubleTyID: return 64; case Type::X86_FP80TyID: return 80; case Type::FP128TyID: return 128; case Type::PPC_FP128TyID: return 128; case Type::IntegerTyID: return cast(this)->getBitWidth(); case Type::VectorTyID: return cast(this)->getBitWidth(); default: return 0; } } /// isSizedDerivedType - Derived types like structures and arrays are sized /// iff all of the members of the type are sized as well. Since asking for /// their size is relatively uncommon, move this operation out of line. bool Type::isSizedDerivedType() const { if (isa(this)) return true; if (const ArrayType *ATy = dyn_cast(this)) return ATy->getElementType()->isSized(); if (const VectorType *PTy = dyn_cast(this)) return PTy->getElementType()->isSized(); if (!isa(this)) return false; // Okay, our struct is sized if all of the elements are... for (subtype_iterator I = subtype_begin(), E = subtype_end(); I != E; ++I) if (!(*I)->isSized()) return false; return true; } /// getForwardedTypeInternal - This method is used to implement the union-find /// algorithm for when a type is being forwarded to another type. const Type *Type::getForwardedTypeInternal() const { assert(ForwardType && "This type is not being forwarded to another type!"); // Check to see if the forwarded type has been forwarded on. If so, collapse // the forwarding links. const Type *RealForwardedType = ForwardType->getForwardedType(); if (!RealForwardedType) return ForwardType; // No it's not forwarded again // Yes, it is forwarded again. First thing, add the reference to the new // forward type. if (RealForwardedType->isAbstract()) cast(RealForwardedType)->addRef(); // Now drop the old reference. This could cause ForwardType to get deleted. cast(ForwardType)->dropRef(); // Return the updated type. ForwardType = RealForwardedType; return ForwardType; } void Type::refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { abort(); } void Type::typeBecameConcrete(const DerivedType *AbsTy) { abort(); } std::string Type::getDescription() const { TypePrinting &Map = isAbstract() ? *AbstractTypeDescriptions : *ConcreteTypeDescriptions; std::string DescStr; raw_string_ostream DescOS(DescStr); Map.print(this, DescOS); return DescOS.str(); } bool StructType::indexValid(const Value *V) const { // Structure indexes require 32-bit integer constants. if (V->getType() == Type::Int32Ty) if (const ConstantInt *CU = dyn_cast(V)) return indexValid(CU->getZExtValue()); return false; } bool StructType::indexValid(unsigned V) const { return V < NumContainedTys; } // getTypeAtIndex - Given an index value into the type, return the type of the // element. For a structure type, this must be a constant value... // const Type *StructType::getTypeAtIndex(const Value *V) const { unsigned Idx = (unsigned)cast(V)->getZExtValue(); return getTypeAtIndex(Idx); } const Type *StructType::getTypeAtIndex(unsigned Idx) const { assert(indexValid(Idx) && "Invalid structure index!"); return ContainedTys[Idx]; } //===----------------------------------------------------------------------===// // Primitive 'Type' data //===----------------------------------------------------------------------===// const Type *Type::VoidTy = new Type(Type::VoidTyID); const Type *Type::FloatTy = new Type(Type::FloatTyID); const Type *Type::DoubleTy = new Type(Type::DoubleTyID); const Type *Type::X86_FP80Ty = new Type(Type::X86_FP80TyID); const Type *Type::FP128Ty = new Type(Type::FP128TyID); const Type *Type::PPC_FP128Ty = new Type(Type::PPC_FP128TyID); const Type *Type::LabelTy = new Type(Type::LabelTyID); namespace { struct BuiltinIntegerType : public IntegerType { explicit BuiltinIntegerType(unsigned W) : IntegerType(W) {} }; } const IntegerType *Type::Int1Ty = new BuiltinIntegerType(1); const IntegerType *Type::Int8Ty = new BuiltinIntegerType(8); const IntegerType *Type::Int16Ty = new BuiltinIntegerType(16); const IntegerType *Type::Int32Ty = new BuiltinIntegerType(32); const IntegerType *Type::Int64Ty = new BuiltinIntegerType(64); const Type *Type::EmptyStructTy = StructType::get(NULL, NULL); //===----------------------------------------------------------------------===// // Derived Type Constructors //===----------------------------------------------------------------------===// /// isValidReturnType - Return true if the specified type is valid as a return /// type. bool FunctionType::isValidReturnType(const Type *RetTy) { if (RetTy->isFirstClassType()) return true; if (RetTy == Type::VoidTy || isa(RetTy)) return true; // If this is a multiple return case, verify that each return is a first class // value and that there is at least one value. const StructType *SRetTy = dyn_cast(RetTy); if (SRetTy == 0 || SRetTy->getNumElements() == 0) return false; for (unsigned i = 0, e = SRetTy->getNumElements(); i != e; ++i) if (!SRetTy->getElementType(i)->isFirstClassType()) return false; return true; } FunctionType::FunctionType(const Type *Result, const std::vector &Params, bool IsVarArgs) : DerivedType(FunctionTyID), isVarArgs(IsVarArgs) { ContainedTys = reinterpret_cast(this+1); NumContainedTys = Params.size() + 1; // + 1 for result type assert(isValidReturnType(Result) && "invalid return type for function"); bool isAbstract = Result->isAbstract(); new (&ContainedTys[0]) PATypeHandle(Result, this); for (unsigned i = 0; i != Params.size(); ++i) { assert((Params[i]->isFirstClassType() || isa(Params[i])) && "Function arguments must be value types!"); new (&ContainedTys[i+1]) PATypeHandle(Params[i],this); isAbstract |= Params[i]->isAbstract(); } // Calculate whether or not this type is abstract setAbstract(isAbstract); } StructType::StructType(const std::vector &Types, bool isPacked) : CompositeType(StructTyID) { ContainedTys = reinterpret_cast(this + 1); NumContainedTys = Types.size(); setSubclassData(isPacked); bool isAbstract = false; for (unsigned i = 0; i < Types.size(); ++i) { assert(Types[i] != Type::VoidTy && "Void type for structure field!!"); new (&ContainedTys[i]) PATypeHandle(Types[i], this); isAbstract |= Types[i]->isAbstract(); } // Calculate whether or not this type is abstract setAbstract(isAbstract); } ArrayType::ArrayType(const Type *ElType, uint64_t NumEl) : SequentialType(ArrayTyID, ElType) { NumElements = NumEl; // Calculate whether or not this type is abstract setAbstract(ElType->isAbstract()); } VectorType::VectorType(const Type *ElType, unsigned NumEl) : SequentialType(VectorTyID, ElType) { NumElements = NumEl; setAbstract(ElType->isAbstract()); assert(NumEl > 0 && "NumEl of a VectorType must be greater than 0"); assert((ElType->isInteger() || ElType->isFloatingPoint() || isa(ElType)) && "Elements of a VectorType must be a primitive type"); } PointerType::PointerType(const Type *E, unsigned AddrSpace) : SequentialType(PointerTyID, E) { AddressSpace = AddrSpace; // Calculate whether or not this type is abstract setAbstract(E->isAbstract()); } OpaqueType::OpaqueType() : DerivedType(OpaqueTyID) { setAbstract(true); #ifdef DEBUG_MERGE_TYPES DOUT << "Derived new type: " << *this << "\n"; #endif } void PATypeHolder::destroy() { Ty = 0; } // dropAllTypeUses - When this (abstract) type is resolved to be equal to // another (more concrete) type, we must eliminate all references to other // types, to avoid some circular reference problems. void DerivedType::dropAllTypeUses() { if (NumContainedTys != 0) { // The type must stay abstract. To do this, we insert a pointer to a type // that will never get resolved, thus will always be abstract. static Type *AlwaysOpaqueTy = OpaqueType::get(); static PATypeHolder Holder(AlwaysOpaqueTy); ContainedTys[0] = AlwaysOpaqueTy; // Change the rest of the types to be Int32Ty's. It doesn't matter what we // pick so long as it doesn't point back to this type. We choose something // concrete to avoid overhead for adding to AbstracTypeUser lists and stuff. for (unsigned i = 1, e = NumContainedTys; i != e; ++i) ContainedTys[i] = Type::Int32Ty; } } namespace { /// TypePromotionGraph and graph traits - this is designed to allow us to do /// efficient SCC processing of type graphs. This is the exact same as /// GraphTraits, except that we pretend that concrete types have no /// children to avoid processing them. struct TypePromotionGraph { Type *Ty; TypePromotionGraph(Type *T) : Ty(T) {} }; } namespace llvm { template <> struct GraphTraits { typedef Type NodeType; typedef Type::subtype_iterator ChildIteratorType; static inline NodeType *getEntryNode(TypePromotionGraph G) { return G.Ty; } static inline ChildIteratorType child_begin(NodeType *N) { if (N->isAbstract()) return N->subtype_begin(); else // No need to process children of concrete types. return N->subtype_end(); } static inline ChildIteratorType child_end(NodeType *N) { return N->subtype_end(); } }; } // PromoteAbstractToConcrete - This is a recursive function that walks a type // graph calculating whether or not a type is abstract. // void Type::PromoteAbstractToConcrete() { if (!isAbstract()) return; scc_iterator SI = scc_begin(TypePromotionGraph(this)); scc_iterator SE = scc_end (TypePromotionGraph(this)); for (; SI != SE; ++SI) { std::vector &SCC = *SI; // Concrete types are leaves in the tree. Since an SCC will either be all // abstract or all concrete, we only need to check one type. if (SCC[0]->isAbstract()) { if (isa(SCC[0])) return; // Not going to be concrete, sorry. // If all of the children of all of the types in this SCC are concrete, // then this SCC is now concrete as well. If not, neither this SCC, nor // any parent SCCs will be concrete, so we might as well just exit. for (unsigned i = 0, e = SCC.size(); i != e; ++i) for (Type::subtype_iterator CI = SCC[i]->subtype_begin(), E = SCC[i]->subtype_end(); CI != E; ++CI) if ((*CI)->isAbstract()) // If the child type is in our SCC, it doesn't make the entire SCC // abstract unless there is a non-SCC abstract type. if (std::find(SCC.begin(), SCC.end(), *CI) == SCC.end()) return; // Not going to be concrete, sorry. // Okay, we just discovered this whole SCC is now concrete, mark it as // such! for (unsigned i = 0, e = SCC.size(); i != e; ++i) { assert(SCC[i]->isAbstract() && "Why are we processing concrete types?"); SCC[i]->setAbstract(false); } for (unsigned i = 0, e = SCC.size(); i != e; ++i) { assert(!SCC[i]->isAbstract() && "Concrete type became abstract?"); // The type just became concrete, notify all users! cast(SCC[i])->notifyUsesThatTypeBecameConcrete(); } } } } //===----------------------------------------------------------------------===// // Type Structural Equality Testing //===----------------------------------------------------------------------===// // TypesEqual - Two types are considered structurally equal if they have the // same "shape": Every level and element of the types have identical primitive // ID's, and the graphs have the same edges/nodes in them. Nodes do not have to // be pointer equals to be equivalent though. This uses an optimistic algorithm // that assumes that two graphs are the same until proven otherwise. // static bool TypesEqual(const Type *Ty, const Type *Ty2, std::map &EqTypes) { if (Ty == Ty2) return true; if (Ty->getTypeID() != Ty2->getTypeID()) return false; if (isa(Ty)) return false; // Two unequal opaque types are never equal std::map::iterator It = EqTypes.find(Ty); if (It != EqTypes.end()) return It->second == Ty2; // Looping back on a type, check for equality // Otherwise, add the mapping to the table to make sure we don't get // recursion on the types... EqTypes.insert(It, std::make_pair(Ty, Ty2)); // Two really annoying special cases that breaks an otherwise nice simple // algorithm is the fact that arraytypes have sizes that differentiates types, // and that function types can be varargs or not. Consider this now. // if (const IntegerType *ITy = dyn_cast(Ty)) { const IntegerType *ITy2 = cast(Ty2); return ITy->getBitWidth() == ITy2->getBitWidth(); } else if (const PointerType *PTy = dyn_cast(Ty)) { const PointerType *PTy2 = cast(Ty2); return PTy->getAddressSpace() == PTy2->getAddressSpace() && TypesEqual(PTy->getElementType(), PTy2->getElementType(), EqTypes); } else if (const StructType *STy = dyn_cast(Ty)) { const StructType *STy2 = cast(Ty2); if (STy->getNumElements() != STy2->getNumElements()) return false; if (STy->isPacked() != STy2->isPacked()) return false; for (unsigned i = 0, e = STy2->getNumElements(); i != e; ++i) if (!TypesEqual(STy->getElementType(i), STy2->getElementType(i), EqTypes)) return false; return true; } else if (const ArrayType *ATy = dyn_cast(Ty)) { const ArrayType *ATy2 = cast(Ty2); return ATy->getNumElements() == ATy2->getNumElements() && TypesEqual(ATy->getElementType(), ATy2->getElementType(), EqTypes); } else if (const VectorType *PTy = dyn_cast(Ty)) { const VectorType *PTy2 = cast(Ty2); return PTy->getNumElements() == PTy2->getNumElements() && TypesEqual(PTy->getElementType(), PTy2->getElementType(), EqTypes); } else if (const FunctionType *FTy = dyn_cast(Ty)) { const FunctionType *FTy2 = cast(Ty2); if (FTy->isVarArg() != FTy2->isVarArg() || FTy->getNumParams() != FTy2->getNumParams() || !TypesEqual(FTy->getReturnType(), FTy2->getReturnType(), EqTypes)) return false; for (unsigned i = 0, e = FTy2->getNumParams(); i != e; ++i) { if (!TypesEqual(FTy->getParamType(i), FTy2->getParamType(i), EqTypes)) return false; } return true; } else { assert(0 && "Unknown derived type!"); return false; } } static bool TypesEqual(const Type *Ty, const Type *Ty2) { std::map EqTypes; return TypesEqual(Ty, Ty2, EqTypes); } // AbstractTypeHasCycleThrough - Return true there is a path from CurTy to // TargetTy in the type graph. We know that Ty is an abstract type, so if we // ever reach a non-abstract type, we know that we don't need to search the // subgraph. static bool AbstractTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy, SmallPtrSet &VisitedTypes) { if (TargetTy == CurTy) return true; if (!CurTy->isAbstract()) return false; if (!VisitedTypes.insert(CurTy)) return false; // Already been here. for (Type::subtype_iterator I = CurTy->subtype_begin(), E = CurTy->subtype_end(); I != E; ++I) if (AbstractTypeHasCycleThrough(TargetTy, *I, VisitedTypes)) return true; return false; } static bool ConcreteTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy, SmallPtrSet &VisitedTypes) { if (TargetTy == CurTy) return true; if (!VisitedTypes.insert(CurTy)) return false; // Already been here. for (Type::subtype_iterator I = CurTy->subtype_begin(), E = CurTy->subtype_end(); I != E; ++I) if (ConcreteTypeHasCycleThrough(TargetTy, *I, VisitedTypes)) return true; return false; } /// TypeHasCycleThroughItself - Return true if the specified type has a cycle /// back to itself. static bool TypeHasCycleThroughItself(const Type *Ty) { SmallPtrSet VisitedTypes; if (Ty->isAbstract()) { // Optimized case for abstract types. for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); I != E; ++I) if (AbstractTypeHasCycleThrough(Ty, *I, VisitedTypes)) return true; } else { for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); I != E; ++I) if (ConcreteTypeHasCycleThrough(Ty, *I, VisitedTypes)) return true; } return false; } /// getSubElementHash - Generate a hash value for all of the SubType's of this /// type. The hash value is guaranteed to be zero if any of the subtypes are /// an opaque type. Otherwise we try to mix them in as well as possible, but do /// not look at the subtype's subtype's. static unsigned getSubElementHash(const Type *Ty) { unsigned HashVal = 0; for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); I != E; ++I) { HashVal *= 32; const Type *SubTy = I->get(); HashVal += SubTy->getTypeID(); switch (SubTy->getTypeID()) { default: break; case Type::OpaqueTyID: return 0; // Opaque -> hash = 0 no matter what. case Type::IntegerTyID: HashVal ^= (cast(SubTy)->getBitWidth() << 3); break; case Type::FunctionTyID: HashVal ^= cast(SubTy)->getNumParams()*2 + cast(SubTy)->isVarArg(); break; case Type::ArrayTyID: HashVal ^= cast(SubTy)->getNumElements(); break; case Type::VectorTyID: HashVal ^= cast(SubTy)->getNumElements(); break; case Type::StructTyID: HashVal ^= cast(SubTy)->getNumElements(); break; case Type::PointerTyID: HashVal ^= cast(SubTy)->getAddressSpace(); break; } } return HashVal ? HashVal : 1; // Do not return zero unless opaque subty. } //===----------------------------------------------------------------------===// // Derived Type Factory Functions //===----------------------------------------------------------------------===// namespace llvm { class TypeMapBase { protected: /// TypesByHash - Keep track of types by their structure hash value. Note /// that we only keep track of types that have cycles through themselves in /// this map. /// std::multimap TypesByHash; public: ~TypeMapBase() { // PATypeHolder won't destroy non-abstract types. // We can't destroy them by simply iterating, because // they may contain references to each-other. #if 0 for (std::multimap::iterator I = TypesByHash.begin(), E = TypesByHash.end(); I != E; ++I) { Type *Ty = const_cast(I->second.Ty); I->second.destroy(); // We can't invoke destroy or delete, because the type may // contain references to already freed types. // So we have to destruct the object the ugly way. if (Ty) { Ty->AbstractTypeUsers.clear(); static_cast(Ty)->Type::~Type(); operator delete(Ty); } } #endif } void RemoveFromTypesByHash(unsigned Hash, const Type *Ty) { std::multimap::iterator I = TypesByHash.lower_bound(Hash); for (; I != TypesByHash.end() && I->first == Hash; ++I) { if (I->second == Ty) { TypesByHash.erase(I); return; } } // This must be do to an opaque type that was resolved. Switch down to hash // code of zero. assert(Hash && "Didn't find type entry!"); RemoveFromTypesByHash(0, Ty); } /// TypeBecameConcrete - When Ty gets a notification that TheType just became /// concrete, drop uses and make Ty non-abstract if we should. void TypeBecameConcrete(DerivedType *Ty, const DerivedType *TheType) { // If the element just became concrete, remove 'ty' from the abstract // type user list for the type. Do this for as many times as Ty uses // OldType. for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); I != E; ++I) if (I->get() == TheType) TheType->removeAbstractTypeUser(Ty); // If the type is currently thought to be abstract, rescan all of our // subtypes to see if the type has just become concrete! Note that this // may send out notifications to AbstractTypeUsers that types become // concrete. if (Ty->isAbstract()) Ty->PromoteAbstractToConcrete(); } }; } // TypeMap - Make sure that only one instance of a particular type may be // created on any given run of the compiler... note that this involves updating // our map if an abstract type gets refined somehow. // namespace llvm { template class TypeMap : public TypeMapBase { std::map Map; public: typedef typename std::map::iterator iterator; ~TypeMap() { print("ON EXIT"); } inline TypeClass *get(const ValType &V) { iterator I = Map.find(V); return I != Map.end() ? cast((Type*)I->second.get()) : 0; } inline void add(const ValType &V, TypeClass *Ty) { Map.insert(std::make_pair(V, Ty)); // If this type has a cycle, remember it. TypesByHash.insert(std::make_pair(ValType::hashTypeStructure(Ty), Ty)); print("add"); } /// RefineAbstractType - This method is called after we have merged a type /// with another one. We must now either merge the type away with /// some other type or reinstall it in the map with it's new configuration. void RefineAbstractType(TypeClass *Ty, const DerivedType *OldType, const Type *NewType) { #ifdef DEBUG_MERGE_TYPES DOUT << "RefineAbstractType(" << (void*)OldType << "[" << *OldType << "], " << (void*)NewType << " [" << *NewType << "])\n"; #endif // Otherwise, we are changing one subelement type into another. Clearly the // OldType must have been abstract, making us abstract. assert(Ty->isAbstract() && "Refining a non-abstract type!"); assert(OldType != NewType); // Make a temporary type holder for the type so that it doesn't disappear on // us when we erase the entry from the map. PATypeHolder TyHolder = Ty; // The old record is now out-of-date, because one of the children has been // updated. Remove the obsolete entry from the map. unsigned NumErased = Map.erase(ValType::get(Ty)); assert(NumErased && "Element not found!"); NumErased = NumErased; // Remember the structural hash for the type before we start hacking on it, // in case we need it later. unsigned OldTypeHash = ValType::hashTypeStructure(Ty); // Find the type element we are refining... and change it now! for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) if (Ty->ContainedTys[i] == OldType) Ty->ContainedTys[i] = NewType; unsigned NewTypeHash = ValType::hashTypeStructure(Ty); // If there are no cycles going through this node, we can do a simple, // efficient lookup in the map, instead of an inefficient nasty linear // lookup. if (!TypeHasCycleThroughItself(Ty)) { typename std::map::iterator I; bool Inserted; tie(I, Inserted) = Map.insert(std::make_pair(ValType::get(Ty), Ty)); if (!Inserted) { // Refined to a different type altogether? RemoveFromTypesByHash(OldTypeHash, Ty); // We already have this type in the table. Get rid of the newly refined // type. TypeClass *NewTy = cast((Type*)I->second.get()); Ty->refineAbstractTypeTo(NewTy); return; } } else { // Now we check to see if there is an existing entry in the table which is // structurally identical to the newly refined type. If so, this type // gets refined to the pre-existing type. // std::multimap::iterator I, E, Entry; tie(I, E) = TypesByHash.equal_range(NewTypeHash); Entry = E; for (; I != E; ++I) { if (I->second == Ty) { // Remember the position of the old type if we see it in our scan. Entry = I; } else { if (TypesEqual(Ty, I->second)) { TypeClass *NewTy = cast((Type*)I->second.get()); // Remove the old entry form TypesByHash. If the hash values differ // now, remove it from the old place. Otherwise, continue scanning // withing this hashcode to reduce work. if (NewTypeHash != OldTypeHash) { RemoveFromTypesByHash(OldTypeHash, Ty); } else { if (Entry == E) { // Find the location of Ty in the TypesByHash structure if we // haven't seen it already. while (I->second != Ty) { ++I; assert(I != E && "Structure doesn't contain type??"); } Entry = I; } TypesByHash.erase(Entry); } Ty->refineAbstractTypeTo(NewTy); return; } } } // If there is no existing type of the same structure, we reinsert an // updated record into the map. Map.insert(std::make_pair(ValType::get(Ty), Ty)); } // If the hash codes differ, update TypesByHash if (NewTypeHash != OldTypeHash) { RemoveFromTypesByHash(OldTypeHash, Ty); TypesByHash.insert(std::make_pair(NewTypeHash, Ty)); } // If the type is currently thought to be abstract, rescan all of our // subtypes to see if the type has just become concrete! Note that this // may send out notifications to AbstractTypeUsers that types become // concrete. if (Ty->isAbstract()) Ty->PromoteAbstractToConcrete(); } void print(const char *Arg) const { #ifdef DEBUG_MERGE_TYPES DOUT << "TypeMap<>::" << Arg << " table contents:\n"; unsigned i = 0; for (typename std::map::const_iterator I = Map.begin(), E = Map.end(); I != E; ++I) DOUT << " " << (++i) << ". " << (void*)I->second.get() << " " << *I->second.get() << "\n"; #endif } void dump() const { print("dump output"); } }; } //===----------------------------------------------------------------------===// // Function Type Factory and Value Class... // //===----------------------------------------------------------------------===// // Integer Type Factory... // namespace llvm { class IntegerValType { uint32_t bits; public: IntegerValType(uint16_t numbits) : bits(numbits) {} static IntegerValType get(const IntegerType *Ty) { return IntegerValType(Ty->getBitWidth()); } static unsigned hashTypeStructure(const IntegerType *Ty) { return (unsigned)Ty->getBitWidth(); } inline bool operator<(const IntegerValType &IVT) const { return bits < IVT.bits; } }; } static ManagedStatic > IntegerTypes; const IntegerType *IntegerType::get(unsigned NumBits) { assert(NumBits >= MIN_INT_BITS && "bitwidth too small"); assert(NumBits <= MAX_INT_BITS && "bitwidth too large"); // Check for the built-in integer types switch (NumBits) { case 1: return cast(Type::Int1Ty); case 8: return cast(Type::Int8Ty); case 16: return cast(Type::Int16Ty); case 32: return cast(Type::Int32Ty); case 64: return cast(Type::Int64Ty); default: break; } IntegerValType IVT(NumBits); IntegerType *ITy = IntegerTypes->get(IVT); if (ITy) return ITy; // Found a match, return it! // Value not found. Derive a new type! ITy = new IntegerType(NumBits); IntegerTypes->add(IVT, ITy); #ifdef DEBUG_MERGE_TYPES DOUT << "Derived new type: " << *ITy << "\n"; #endif return ITy; } bool IntegerType::isPowerOf2ByteWidth() const { unsigned BitWidth = getBitWidth(); return (BitWidth > 7) && isPowerOf2_32(BitWidth); } APInt IntegerType::getMask() const { return APInt::getAllOnesValue(getBitWidth()); } // FunctionValType - Define a class to hold the key that goes into the TypeMap // namespace llvm { class FunctionValType { const Type *RetTy; std::vector ArgTypes; bool isVarArg; public: FunctionValType(const Type *ret, const std::vector &args, bool isVA) : RetTy(ret), ArgTypes(args), isVarArg(isVA) {} static FunctionValType get(const FunctionType *FT); static unsigned hashTypeStructure(const FunctionType *FT) { unsigned Result = FT->getNumParams()*2 + FT->isVarArg(); return Result; } inline bool operator<(const FunctionValType &MTV) const { if (RetTy < MTV.RetTy) return true; if (RetTy > MTV.RetTy) return false; if (isVarArg < MTV.isVarArg) return true; if (isVarArg > MTV.isVarArg) return false; if (ArgTypes < MTV.ArgTypes) return true; if (ArgTypes > MTV.ArgTypes) return false; return false; } }; } // Define the actual map itself now... static ManagedStatic > FunctionTypes; FunctionValType FunctionValType::get(const FunctionType *FT) { // Build up a FunctionValType std::vector ParamTypes; ParamTypes.reserve(FT->getNumParams()); for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) ParamTypes.push_back(FT->getParamType(i)); return FunctionValType(FT->getReturnType(), ParamTypes, FT->isVarArg()); } // FunctionType::get - The factory function for the FunctionType class... FunctionType *FunctionType::get(const Type *ReturnType, const std::vector &Params, bool isVarArg) { FunctionValType VT(ReturnType, Params, isVarArg); FunctionType *FT = FunctionTypes->get(VT); if (FT) return FT; FT = (FunctionType*) operator new(sizeof(FunctionType) + sizeof(PATypeHandle)*(Params.size()+1)); new (FT) FunctionType(ReturnType, Params, isVarArg); FunctionTypes->add(VT, FT); #ifdef DEBUG_MERGE_TYPES DOUT << "Derived new type: " << FT << "\n"; #endif return FT; } //===----------------------------------------------------------------------===// // Array Type Factory... // namespace llvm { class ArrayValType { const Type *ValTy; uint64_t Size; public: ArrayValType(const Type *val, uint64_t sz) : ValTy(val), Size(sz) {} static ArrayValType get(const ArrayType *AT) { return ArrayValType(AT->getElementType(), AT->getNumElements()); } static unsigned hashTypeStructure(const ArrayType *AT) { return (unsigned)AT->getNumElements(); } inline bool operator<(const ArrayValType &MTV) const { if (Size < MTV.Size) return true; return Size == MTV.Size && ValTy < MTV.ValTy; } }; } static ManagedStatic > ArrayTypes; ArrayType *ArrayType::get(const Type *ElementType, uint64_t NumElements) { assert(ElementType && "Can't get array of null types!"); ArrayValType AVT(ElementType, NumElements); ArrayType *AT = ArrayTypes->get(AVT); if (AT) return AT; // Found a match, return it! // Value not found. Derive a new type! ArrayTypes->add(AVT, AT = new ArrayType(ElementType, NumElements)); #ifdef DEBUG_MERGE_TYPES DOUT << "Derived new type: " << *AT << "\n"; #endif return AT; } //===----------------------------------------------------------------------===// // Vector Type Factory... // namespace llvm { class VectorValType { const Type *ValTy; unsigned Size; public: VectorValType(const Type *val, int sz) : ValTy(val), Size(sz) {} static VectorValType get(const VectorType *PT) { return VectorValType(PT->getElementType(), PT->getNumElements()); } static unsigned hashTypeStructure(const VectorType *PT) { return PT->getNumElements(); } inline bool operator<(const VectorValType &MTV) const { if (Size < MTV.Size) return true; return Size == MTV.Size && ValTy < MTV.ValTy; } }; } static ManagedStatic > VectorTypes; VectorType *VectorType::get(const Type *ElementType, unsigned NumElements) { assert(ElementType && "Can't get vector of null types!"); VectorValType PVT(ElementType, NumElements); VectorType *PT = VectorTypes->get(PVT); if (PT) return PT; // Found a match, return it! // Value not found. Derive a new type! VectorTypes->add(PVT, PT = new VectorType(ElementType, NumElements)); #ifdef DEBUG_MERGE_TYPES DOUT << "Derived new type: " << *PT << "\n"; #endif return PT; } //===----------------------------------------------------------------------===// // Struct Type Factory... // namespace llvm { // StructValType - Define a class to hold the key that goes into the TypeMap // class StructValType { std::vector ElTypes; bool packed; public: StructValType(const std::vector &args, bool isPacked) : ElTypes(args), packed(isPacked) {} static StructValType get(const StructType *ST) { std::vector ElTypes; ElTypes.reserve(ST->getNumElements()); for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) ElTypes.push_back(ST->getElementType(i)); return StructValType(ElTypes, ST->isPacked()); } static unsigned hashTypeStructure(const StructType *ST) { return ST->getNumElements(); } inline bool operator<(const StructValType &STV) const { if (ElTypes < STV.ElTypes) return true; else if (ElTypes > STV.ElTypes) return false; else return (int)packed < (int)STV.packed; } }; } static ManagedStatic > StructTypes; StructType *StructType::get(const std::vector &ETypes, bool isPacked) { StructValType STV(ETypes, isPacked); StructType *ST = StructTypes->get(STV); if (ST) return ST; // Value not found. Derive a new type! ST = (StructType*) operator new(sizeof(StructType) + sizeof(PATypeHandle) * ETypes.size()); new (ST) StructType(ETypes, isPacked); StructTypes->add(STV, ST); #ifdef DEBUG_MERGE_TYPES DOUT << "Derived new type: " << *ST << "\n"; #endif return ST; } StructType *StructType::get(const Type *type, ...) { va_list ap; std::vector StructFields; va_start(ap, type); while (type) { StructFields.push_back(type); type = va_arg(ap, llvm::Type*); } return llvm::StructType::get(StructFields); } //===----------------------------------------------------------------------===// // Pointer Type Factory... // // PointerValType - Define a class to hold the key that goes into the TypeMap // namespace llvm { class PointerValType { const Type *ValTy; unsigned AddressSpace; public: PointerValType(const Type *val, unsigned as) : ValTy(val), AddressSpace(as) {} static PointerValType get(const PointerType *PT) { return PointerValType(PT->getElementType(), PT->getAddressSpace()); } static unsigned hashTypeStructure(const PointerType *PT) { return getSubElementHash(PT); } bool operator<(const PointerValType &MTV) const { if (AddressSpace < MTV.AddressSpace) return true; return AddressSpace == MTV.AddressSpace && ValTy < MTV.ValTy; } }; } static ManagedStatic > PointerTypes; PointerType *PointerType::get(const Type *ValueType, unsigned AddressSpace) { assert(ValueType && "Can't get a pointer to type!"); assert(ValueType != Type::VoidTy && "Pointer to void is not valid, use sbyte* instead!"); assert(ValueType != Type::LabelTy && "Pointer to label is not valid!"); PointerValType PVT(ValueType, AddressSpace); PointerType *PT = PointerTypes->get(PVT); if (PT) return PT; // Value not found. Derive a new type! PointerTypes->add(PVT, PT = new PointerType(ValueType, AddressSpace)); #ifdef DEBUG_MERGE_TYPES DOUT << "Derived new type: " << *PT << "\n"; #endif return PT; } PointerType *Type::getPointerTo(unsigned addrs) const { return PointerType::get(this, addrs); } //===----------------------------------------------------------------------===// // Derived Type Refinement Functions //===----------------------------------------------------------------------===// // removeAbstractTypeUser - Notify an abstract type that a user of the class // no longer has a handle to the type. This function is called primarily by // the PATypeHandle class. When there are no users of the abstract type, it // is annihilated, because there is no way to get a reference to it ever again. // void Type::removeAbstractTypeUser(AbstractTypeUser *U) const { // Search from back to front because we will notify users from back to // front. Also, it is likely that there will be a stack like behavior to // users that register and unregister users. // unsigned i; for (i = AbstractTypeUsers.size(); AbstractTypeUsers[i-1] != U; --i) assert(i != 0 && "AbstractTypeUser not in user list!"); --i; // Convert to be in range 0 <= i < size() assert(i < AbstractTypeUsers.size() && "Index out of range!"); // Wraparound? AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i); #ifdef DEBUG_MERGE_TYPES DOUT << " remAbstractTypeUser[" << (void*)this << ", " << *this << "][" << i << "] User = " << U << "\n"; #endif if (AbstractTypeUsers.empty() && getRefCount() == 0 && isAbstract()) { #ifdef DEBUG_MERGE_TYPES DOUT << "DELETEing unused abstract type: <" << *this << ">[" << (void*)this << "]" << "\n"; #endif this->destroy(); } } // refineAbstractTypeTo - This function is used when it is discovered that // the 'this' abstract type is actually equivalent to the NewType specified. // This causes all users of 'this' to switch to reference the more concrete type // NewType and for 'this' to be deleted. // void DerivedType::refineAbstractTypeTo(const Type *NewType) { assert(isAbstract() && "refineAbstractTypeTo: Current type is not abstract!"); assert(this != NewType && "Can't refine to myself!"); assert(ForwardType == 0 && "This type has already been refined!"); // The descriptions may be out of date. Conservatively clear them all! if (AbstractTypeDescriptions.isConstructed()) AbstractTypeDescriptions->clear(); #ifdef DEBUG_MERGE_TYPES DOUT << "REFINING abstract type [" << (void*)this << " " << *this << "] to [" << (void*)NewType << " " << *NewType << "]!\n"; #endif // Make sure to put the type to be refined to into a holder so that if IT gets // refined, that we will not continue using a dead reference... // PATypeHolder NewTy(NewType); // Any PATypeHolders referring to this type will now automatically forward to // the type we are resolved to. ForwardType = NewType; if (NewType->isAbstract()) cast(NewType)->addRef(); // Add a self use of the current type so that we don't delete ourself until // after the function exits. // PATypeHolder CurrentTy(this); // To make the situation simpler, we ask the subclass to remove this type from // the type map, and to replace any type uses with uses of non-abstract types. // This dramatically limits the amount of recursive type trouble we can find // ourselves in. dropAllTypeUses(); // Iterate over all of the uses of this type, invoking callback. Each user // should remove itself from our use list automatically. We have to check to // make sure that NewTy doesn't _become_ 'this'. If it does, resolving types // will not cause users to drop off of the use list. If we resolve to ourself // we succeed! // while (!AbstractTypeUsers.empty() && NewTy != this) { AbstractTypeUser *User = AbstractTypeUsers.back(); unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize; #ifdef DEBUG_MERGE_TYPES DOUT << " REFINING user " << OldSize-1 << "[" << (void*)User << "] of abstract type [" << (void*)this << " " << *this << "] to [" << (void*)NewTy.get() << " " << *NewTy << "]!\n"; #endif User->refineAbstractType(this, NewTy); assert(AbstractTypeUsers.size() != OldSize && "AbsTyUser did not remove self from user list!"); } // If we were successful removing all users from the type, 'this' will be // deleted when the last PATypeHolder is destroyed or updated from this type. // This may occur on exit of this function, as the CurrentTy object is // destroyed. } // notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type that // the current type has transitioned from being abstract to being concrete. // void DerivedType::notifyUsesThatTypeBecameConcrete() { #ifdef DEBUG_MERGE_TYPES DOUT << "typeIsREFINED type: " << (void*)this << " " << *this << "\n"; #endif unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize; while (!AbstractTypeUsers.empty()) { AbstractTypeUser *ATU = AbstractTypeUsers.back(); ATU->typeBecameConcrete(this); assert(AbstractTypeUsers.size() < OldSize-- && "AbstractTypeUser did not remove itself from the use list!"); } } // refineAbstractType - Called when a contained type is found to be more // concrete - this could potentially change us from an abstract type to a // concrete type. // void FunctionType::refineAbstractType(const DerivedType *OldType, const Type *NewType) { FunctionTypes->RefineAbstractType(this, OldType, NewType); } void FunctionType::typeBecameConcrete(const DerivedType *AbsTy) { FunctionTypes->TypeBecameConcrete(this, AbsTy); } // refineAbstractType - Called when a contained type is found to be more // concrete - this could potentially change us from an abstract type to a // concrete type. // void ArrayType::refineAbstractType(const DerivedType *OldType, const Type *NewType) { ArrayTypes->RefineAbstractType(this, OldType, NewType); } void ArrayType::typeBecameConcrete(const DerivedType *AbsTy) { ArrayTypes->TypeBecameConcrete(this, AbsTy); } // refineAbstractType - Called when a contained type is found to be more // concrete - this could potentially change us from an abstract type to a // concrete type. // void VectorType::refineAbstractType(const DerivedType *OldType, const Type *NewType) { VectorTypes->RefineAbstractType(this, OldType, NewType); } void VectorType::typeBecameConcrete(const DerivedType *AbsTy) { VectorTypes->TypeBecameConcrete(this, AbsTy); } // refineAbstractType - Called when a contained type is found to be more // concrete - this could potentially change us from an abstract type to a // concrete type. // void StructType::refineAbstractType(const DerivedType *OldType, const Type *NewType) { StructTypes->RefineAbstractType(this, OldType, NewType); } void StructType::typeBecameConcrete(const DerivedType *AbsTy) { StructTypes->TypeBecameConcrete(this, AbsTy); } // refineAbstractType - Called when a contained type is found to be more // concrete - this could potentially change us from an abstract type to a // concrete type. // void PointerType::refineAbstractType(const DerivedType *OldType, const Type *NewType) { PointerTypes->RefineAbstractType(this, OldType, NewType); } void PointerType::typeBecameConcrete(const DerivedType *AbsTy) { PointerTypes->TypeBecameConcrete(this, AbsTy); } bool SequentialType::indexValid(const Value *V) const { if (const IntegerType *IT = dyn_cast(V->getType())) return IT->getBitWidth() == 16 || IT->getBitWidth() == 32 || IT->getBitWidth() == 64; return false; } namespace llvm { std::ostream &operator<<(std::ostream &OS, const Type *T) { if (T == 0) OS << " value!\n"; else T->print(OS); return OS; } std::ostream &operator<<(std::ostream &OS, const Type &T) { T.print(OS); return OS; } raw_ostream &operator<<(raw_ostream &OS, const Type &T) { T.print(OS); return OS; } }