//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the X86 specific subclass of TargetMachine. // //===----------------------------------------------------------------------===// #include "X86TargetAsmInfo.h" #include "X86TargetMachine.h" #include "X86.h" #include "llvm/Module.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetMachineRegistry.h" using namespace llvm; /// X86TargetMachineModule - Note that this is used on hosts that cannot link /// in a library unless there are references into the library. In particular, /// it seems that it is not possible to get things to work on Win32 without /// this. Though it is unused, do not remove it. extern "C" int X86TargetMachineModule; int X86TargetMachineModule = 0; // Register the target. static RegisterTarget X("x86", "32-bit X86: Pentium-Pro and above"); static RegisterTarget Y("x86-64", "64-bit X86: EM64T and AMD64"); // No assembler printer by default X86TargetMachine::AsmPrinterCtorFn X86TargetMachine::AsmPrinterCtor = 0; const TargetAsmInfo *X86TargetMachine::createTargetAsmInfo() const { if (Subtarget.isFlavorIntel()) return new X86WinTargetAsmInfo(*this); else switch (Subtarget.TargetType) { case X86Subtarget::isDarwin: return new X86DarwinTargetAsmInfo(*this); case X86Subtarget::isELF: return new X86ELFTargetAsmInfo(*this); case X86Subtarget::isMingw: case X86Subtarget::isCygwin: return new X86COFFTargetAsmInfo(*this); case X86Subtarget::isWindows: return new X86WinTargetAsmInfo(*this); default: return new X86GenericTargetAsmInfo(*this); } } unsigned X86_32TargetMachine::getJITMatchQuality() { #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) return 10; #endif return 0; } unsigned X86_64TargetMachine::getJITMatchQuality() { #if defined(__x86_64__) || defined(_M_AMD64) return 10; #endif return 0; } unsigned X86_32TargetMachine::getModuleMatchQuality(const Module &M) { // We strongly match "i[3-9]86-*". std::string TT = M.getTargetTriple(); if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && TT[4] == '-' && TT[1] - '3' < 6) return 20; // If the target triple is something non-X86, we don't match. if (!TT.empty()) return 0; if (M.getEndianness() == Module::LittleEndian && M.getPointerSize() == Module::Pointer32) return 10; // Weak match else if (M.getEndianness() != Module::AnyEndianness || M.getPointerSize() != Module::AnyPointerSize) return 0; // Match for some other target return getJITMatchQuality()/2; } unsigned X86_64TargetMachine::getModuleMatchQuality(const Module &M) { // We strongly match "x86_64-*". std::string TT = M.getTargetTriple(); if (TT.size() >= 7 && TT[0] == 'x' && TT[1] == '8' && TT[2] == '6' && TT[3] == '_' && TT[4] == '6' && TT[5] == '4' && TT[6] == '-') return 20; // We strongly match "amd64-*". if (TT.size() >= 6 && TT[0] == 'a' && TT[1] == 'm' && TT[2] == 'd' && TT[3] == '6' && TT[4] == '4' && TT[5] == '-') return 20; // If the target triple is something non-X86-64, we don't match. if (!TT.empty()) return 0; if (M.getEndianness() == Module::LittleEndian && M.getPointerSize() == Module::Pointer64) return 10; // Weak match else if (M.getEndianness() != Module::AnyEndianness || M.getPointerSize() != Module::AnyPointerSize) return 0; // Match for some other target return getJITMatchQuality()/2; } X86_32TargetMachine::X86_32TargetMachine(const Module &M, const std::string &FS) : X86TargetMachine(M, FS, false) { } X86_64TargetMachine::X86_64TargetMachine(const Module &M, const std::string &FS) : X86TargetMachine(M, FS, true) { } /// X86TargetMachine ctor - Create an ILP32 architecture model /// X86TargetMachine::X86TargetMachine(const Module &M, const std::string &FS, bool is64Bit) : Subtarget(M, FS, is64Bit), DataLayout(Subtarget.getDataLayout()), FrameInfo(TargetFrameInfo::StackGrowsDown, Subtarget.getStackAlignment(), Subtarget.is64Bit() ? -8 : -4), InstrInfo(*this), JITInfo(*this), TLInfo(*this) { DefRelocModel = getRelocationModel(); // FIXME: Correctly select PIC model for Win64 stuff if (getRelocationModel() == Reloc::Default) { if (Subtarget.isTargetDarwin() || (Subtarget.isTargetCygMing() && !Subtarget.isTargetWin64())) setRelocationModel(Reloc::DynamicNoPIC); else setRelocationModel(Reloc::Static); } // ELF doesn't have a distinct dynamic-no-PIC model. Dynamic-no-PIC // is defined as a model for code which may be used in static or // dynamic executables but not necessarily a shared library. On ELF // implement this by using the Static model. if (Subtarget.isTargetELF() && getRelocationModel() == Reloc::DynamicNoPIC) setRelocationModel(Reloc::Static); if (Subtarget.is64Bit()) { // No DynamicNoPIC support under X86-64. if (getRelocationModel() == Reloc::DynamicNoPIC) setRelocationModel(Reloc::PIC_); // Default X86-64 code model is small. if (getCodeModel() == CodeModel::Default) setCodeModel(CodeModel::Small); } if (Subtarget.isTargetCygMing()) Subtarget.setPICStyle(PICStyles::WinPIC); else if (Subtarget.isTargetDarwin()) { if (Subtarget.is64Bit()) Subtarget.setPICStyle(PICStyles::RIPRel); else Subtarget.setPICStyle(PICStyles::Stub); } else if (Subtarget.isTargetELF()) { if (Subtarget.is64Bit()) Subtarget.setPICStyle(PICStyles::RIPRel); else Subtarget.setPICStyle(PICStyles::GOT); } } //===----------------------------------------------------------------------===// // Pass Pipeline Configuration //===----------------------------------------------------------------------===// bool X86TargetMachine::addInstSelector(PassManagerBase &PM, CodeGenOpt::Level OptLevel) { // Install an instruction selector. PM.add(createX86ISelDag(*this, OptLevel)); // If we're using Fast-ISel, clean up the mess. if (EnableFastISel) PM.add(createDeadMachineInstructionElimPass()); // Install a pass to insert x87 FP_REG_KILL instructions, as needed. PM.add(createX87FPRegKillInserterPass()); return false; } bool X86TargetMachine::addPreRegAlloc(PassManagerBase &PM, CodeGenOpt::Level OptLevel) { // Calculate and set max stack object alignment early, so we can decide // whether we will need stack realignment (and thus FP). PM.add(createX86MaxStackAlignmentCalculatorPass()); return false; // -print-machineinstr shouldn't print after this. } bool X86TargetMachine::addPostRegAlloc(PassManagerBase &PM, CodeGenOpt::Level OptLevel) { PM.add(createX86FloatingPointStackifierPass()); return true; // -print-machineinstr should print after this. } bool X86TargetMachine::addAssemblyEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel, bool Verbose, raw_ostream &Out) { assert(AsmPrinterCtor && "AsmPrinter was not linked in"); if (AsmPrinterCtor) PM.add(AsmPrinterCtor(Out, *this, OptLevel, Verbose)); return false; } bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel, bool DumpAsm, MachineCodeEmitter &MCE) { // FIXME: Move this to TargetJITInfo! // On Darwin, do not override 64-bit setting made in X86TargetMachine(). if (DefRelocModel == Reloc::Default && (!Subtarget.isTargetDarwin() || !Subtarget.is64Bit())) setRelocationModel(Reloc::Static); // 64-bit JIT places everything in the same buffer except external functions. // On Darwin, use small code model but hack the call instruction for // externals. Elsewhere, do not assume globals are in the lower 4G. if (Subtarget.is64Bit()) { if (Subtarget.isTargetDarwin()) setCodeModel(CodeModel::Small); else setCodeModel(CodeModel::Large); } PM.add(createX86CodeEmitterPass(*this, MCE)); if (DumpAsm) { assert(AsmPrinterCtor && "AsmPrinter was not linked in"); if (AsmPrinterCtor) PM.add(AsmPrinterCtor(errs(), *this, OptLevel, true)); } return false; } bool X86TargetMachine::addSimpleCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel, bool DumpAsm, MachineCodeEmitter &MCE) { PM.add(createX86CodeEmitterPass(*this, MCE)); if (DumpAsm) { assert(AsmPrinterCtor && "AsmPrinter was not linked in"); if (AsmPrinterCtor) PM.add(AsmPrinterCtor(errs(), *this, OptLevel, true)); } return false; } /// symbolicAddressesAreRIPRel - Return true if symbolic addresses are /// RIP-relative on this machine, taking into consideration the relocation /// model and subtarget. RIP-relative addresses cannot have a separate /// base or index register. bool X86TargetMachine::symbolicAddressesAreRIPRel() const { return getRelocationModel() != Reloc::Static && Subtarget.isPICStyleRIPRel(); }