//===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 Register file, defining the registers themselves, // aliases between the registers, and the register classes built out of the // registers. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Register definitions... // let Namespace = "X86" in { // In the register alias definitions below, we define which registers alias // which others. We only specify which registers the small registers alias, // because the register file generator is smart enough to figure out that // AL aliases AX if we tell it that AX aliased AL (for example). // Dwarf numbering is different for 32-bit and 64-bit, and there are // variations by target as well. Currently the first entry is for X86-64, // second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux // and debug information on X86-32/Darwin) // 8-bit registers // Low registers def AL : Register<"al">, DwarfRegNum<[0, 0, 0]>; def DL : Register<"dl">, DwarfRegNum<[1, 2, 2]>; def CL : Register<"cl">, DwarfRegNum<[2, 1, 1]>; def BL : Register<"bl">, DwarfRegNum<[3, 3, 3]>; // X86-64 only def SIL : Register<"sil">, DwarfRegNum<[4, 6, 6]>; def DIL : Register<"dil">, DwarfRegNum<[5, 7, 7]>; def BPL : Register<"bpl">, DwarfRegNum<[6, 4, 5]>; def SPL : Register<"spl">, DwarfRegNum<[7, 5, 4]>; def R8B : Register<"r8b">, DwarfRegNum<[8, -2, -2]>; def R9B : Register<"r9b">, DwarfRegNum<[9, -2, -2]>; def R10B : Register<"r10b">, DwarfRegNum<[10, -2, -2]>; def R11B : Register<"r11b">, DwarfRegNum<[11, -2, -2]>; def R12B : Register<"r12b">, DwarfRegNum<[12, -2, -2]>; def R13B : Register<"r13b">, DwarfRegNum<[13, -2, -2]>; def R14B : Register<"r14b">, DwarfRegNum<[14, -2, -2]>; def R15B : Register<"r15b">, DwarfRegNum<[15, -2, -2]>; // High registers. On x86-64, these cannot be used in any instruction // with a REX prefix. def AH : Register<"ah">, DwarfRegNum<[0, 0, 0]>; def DH : Register<"dh">, DwarfRegNum<[1, 2, 2]>; def CH : Register<"ch">, DwarfRegNum<[2, 1, 1]>; def BH : Register<"bh">, DwarfRegNum<[3, 3, 3]>; // 16-bit registers def AX : RegisterWithSubRegs<"ax", [AL,AH]>, DwarfRegNum<[0, 0, 0]>; def DX : RegisterWithSubRegs<"dx", [DL,DH]>, DwarfRegNum<[1, 2, 2]>; def CX : RegisterWithSubRegs<"cx", [CL,CH]>, DwarfRegNum<[2, 1, 1]>; def BX : RegisterWithSubRegs<"bx", [BL,BH]>, DwarfRegNum<[3, 3, 3]>; def SI : RegisterWithSubRegs<"si", [SIL]>, DwarfRegNum<[4, 6, 6]>; def DI : RegisterWithSubRegs<"di", [DIL]>, DwarfRegNum<[5, 7, 7]>; def BP : RegisterWithSubRegs<"bp", [BPL]>, DwarfRegNum<[6, 4, 5]>; def SP : RegisterWithSubRegs<"sp", [SPL]>, DwarfRegNum<[7, 5, 4]>; def IP : Register<"ip">, DwarfRegNum<[16]>; // X86-64 only def R8W : RegisterWithSubRegs<"r8w", [R8B]>, DwarfRegNum<[8, -2, -2]>; def R9W : RegisterWithSubRegs<"r9w", [R9B]>, DwarfRegNum<[9, -2, -2]>; def R10W : RegisterWithSubRegs<"r10w", [R10B]>, DwarfRegNum<[10, -2, -2]>; def R11W : RegisterWithSubRegs<"r11w", [R11B]>, DwarfRegNum<[11, -2, -2]>; def R12W : RegisterWithSubRegs<"r12w", [R12B]>, DwarfRegNum<[12, -2, -2]>; def R13W : RegisterWithSubRegs<"r13w", [R13B]>, DwarfRegNum<[13, -2, -2]>; def R14W : RegisterWithSubRegs<"r14w", [R14B]>, DwarfRegNum<[14, -2, -2]>; def R15W : RegisterWithSubRegs<"r15w", [R15B]>, DwarfRegNum<[15, -2, -2]>; // 32-bit registers def EAX : RegisterWithSubRegs<"eax", [AX]>, DwarfRegNum<[0, 0, 0]>; def EDX : RegisterWithSubRegs<"edx", [DX]>, DwarfRegNum<[1, 2, 2]>; def ECX : RegisterWithSubRegs<"ecx", [CX]>, DwarfRegNum<[2, 1, 1]>; def EBX : RegisterWithSubRegs<"ebx", [BX]>, DwarfRegNum<[3, 3, 3]>; def ESI : RegisterWithSubRegs<"esi", [SI]>, DwarfRegNum<[4, 6, 6]>; def EDI : RegisterWithSubRegs<"edi", [DI]>, DwarfRegNum<[5, 7, 7]>; def EBP : RegisterWithSubRegs<"ebp", [BP]>, DwarfRegNum<[6, 4, 5]>; def ESP : RegisterWithSubRegs<"esp", [SP]>, DwarfRegNum<[7, 5, 4]>; def EIP : RegisterWithSubRegs<"eip", [IP]>, DwarfRegNum<[16, 8, 8]>; // X86-64 only def R8D : RegisterWithSubRegs<"r8d", [R8W]>, DwarfRegNum<[8, -2, -2]>; def R9D : RegisterWithSubRegs<"r9d", [R9W]>, DwarfRegNum<[9, -2, -2]>; def R10D : RegisterWithSubRegs<"r10d", [R10W]>, DwarfRegNum<[10, -2, -2]>; def R11D : RegisterWithSubRegs<"r11d", [R11W]>, DwarfRegNum<[11, -2, -2]>; def R12D : RegisterWithSubRegs<"r12d", [R12W]>, DwarfRegNum<[12, -2, -2]>; def R13D : RegisterWithSubRegs<"r13d", [R13W]>, DwarfRegNum<[13, -2, -2]>; def R14D : RegisterWithSubRegs<"r14d", [R14W]>, DwarfRegNum<[14, -2, -2]>; def R15D : RegisterWithSubRegs<"r15d", [R15W]>, DwarfRegNum<[15, -2, -2]>; // 64-bit registers, X86-64 only def RAX : RegisterWithSubRegs<"rax", [EAX]>, DwarfRegNum<[0, -2, -2]>; def RDX : RegisterWithSubRegs<"rdx", [EDX]>, DwarfRegNum<[1, -2, -2]>; def RCX : RegisterWithSubRegs<"rcx", [ECX]>, DwarfRegNum<[2, -2, -2]>; def RBX : RegisterWithSubRegs<"rbx", [EBX]>, DwarfRegNum<[3, -2, -2]>; def RSI : RegisterWithSubRegs<"rsi", [ESI]>, DwarfRegNum<[4, -2, -2]>; def RDI : RegisterWithSubRegs<"rdi", [EDI]>, DwarfRegNum<[5, -2, -2]>; def RBP : RegisterWithSubRegs<"rbp", [EBP]>, DwarfRegNum<[6, -2, -2]>; def RSP : RegisterWithSubRegs<"rsp", [ESP]>, DwarfRegNum<[7, -2, -2]>; def R8 : RegisterWithSubRegs<"r8", [R8D]>, DwarfRegNum<[8, -2, -2]>; def R9 : RegisterWithSubRegs<"r9", [R9D]>, DwarfRegNum<[9, -2, -2]>; def R10 : RegisterWithSubRegs<"r10", [R10D]>, DwarfRegNum<[10, -2, -2]>; def R11 : RegisterWithSubRegs<"r11", [R11D]>, DwarfRegNum<[11, -2, -2]>; def R12 : RegisterWithSubRegs<"r12", [R12D]>, DwarfRegNum<[12, -2, -2]>; def R13 : RegisterWithSubRegs<"r13", [R13D]>, DwarfRegNum<[13, -2, -2]>; def R14 : RegisterWithSubRegs<"r14", [R14D]>, DwarfRegNum<[14, -2, -2]>; def R15 : RegisterWithSubRegs<"r15", [R15D]>, DwarfRegNum<[15, -2, -2]>; def RIP : RegisterWithSubRegs<"rip", [EIP]>, DwarfRegNum<[16, -2, -2]>; // MMX Registers. These are actually aliased to ST0 .. ST7 def MM0 : Register<"mm0">, DwarfRegNum<[41, 29, 29]>; def MM1 : Register<"mm1">, DwarfRegNum<[42, 30, 30]>; def MM2 : Register<"mm2">, DwarfRegNum<[43, 31, 31]>; def MM3 : Register<"mm3">, DwarfRegNum<[44, 32, 32]>; def MM4 : Register<"mm4">, DwarfRegNum<[45, 33, 33]>; def MM5 : Register<"mm5">, DwarfRegNum<[46, 34, 34]>; def MM6 : Register<"mm6">, DwarfRegNum<[47, 35, 35]>; def MM7 : Register<"mm7">, DwarfRegNum<[48, 36, 36]>; // Pseudo Floating Point registers def FP0 : Register<"fp0">; def FP1 : Register<"fp1">; def FP2 : Register<"fp2">; def FP3 : Register<"fp3">; def FP4 : Register<"fp4">; def FP5 : Register<"fp5">; def FP6 : Register<"fp6">; // XMM Registers, used by the various SSE instruction set extensions def XMM0: Register<"xmm0">, DwarfRegNum<[17, 21, 21]>; def XMM1: Register<"xmm1">, DwarfRegNum<[18, 22, 22]>; def XMM2: Register<"xmm2">, DwarfRegNum<[19, 23, 23]>; def XMM3: Register<"xmm3">, DwarfRegNum<[20, 24, 24]>; def XMM4: Register<"xmm4">, DwarfRegNum<[21, 25, 25]>; def XMM5: Register<"xmm5">, DwarfRegNum<[22, 26, 26]>; def XMM6: Register<"xmm6">, DwarfRegNum<[23, 27, 27]>; def XMM7: Register<"xmm7">, DwarfRegNum<[24, 28, 28]>; // X86-64 only def XMM8: Register<"xmm8">, DwarfRegNum<[25, -2, -2]>; def XMM9: Register<"xmm9">, DwarfRegNum<[26, -2, -2]>; def XMM10: Register<"xmm10">, DwarfRegNum<[27, -2, -2]>; def XMM11: Register<"xmm11">, DwarfRegNum<[28, -2, -2]>; def XMM12: Register<"xmm12">, DwarfRegNum<[29, -2, -2]>; def XMM13: Register<"xmm13">, DwarfRegNum<[30, -2, -2]>; def XMM14: Register<"xmm14">, DwarfRegNum<[31, -2, -2]>; def XMM15: Register<"xmm15">, DwarfRegNum<[32, -2, -2]>; // Floating point stack registers def ST0 : Register<"st(0)">, DwarfRegNum<[33, 12, 11]>; def ST1 : Register<"st(1)">, DwarfRegNum<[34, 13, 12]>; def ST2 : Register<"st(2)">, DwarfRegNum<[35, 14, 13]>; def ST3 : Register<"st(3)">, DwarfRegNum<[36, 15, 14]>; def ST4 : Register<"st(4)">, DwarfRegNum<[37, 16, 15]>; def ST5 : Register<"st(5)">, DwarfRegNum<[38, 17, 16]>; def ST6 : Register<"st(6)">, DwarfRegNum<[39, 18, 17]>; def ST7 : Register<"st(7)">, DwarfRegNum<[40, 19, 18]>; // Status flags register def EFLAGS : Register<"flags">; // Segment registers def CS : Register<"cs">; def DS : Register<"ds">; def SS : Register<"ss">; def ES : Register<"es">; def FS : Register<"fs">; def GS : Register<"gs">; } //===----------------------------------------------------------------------===// // Subregister Set Definitions... now that we have all of the pieces, define the // sub registers for each register. // def x86_subreg_8bit : PatLeaf<(i32 1)>; def x86_subreg_8bit_hi : PatLeaf<(i32 2)>; def x86_subreg_16bit : PatLeaf<(i32 3)>; def x86_subreg_32bit : PatLeaf<(i32 4)>; def : SubRegSet<1, [AX, CX, DX, BX, SP, BP, SI, DI, R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W], [AL, CL, DL, BL, SPL, BPL, SIL, DIL, R8B, R9B, R10B, R11B, R12B, R13B, R14B, R15B]>; def : SubRegSet<2, [AX, CX, DX, BX], [AH, CH, DH, BH]>; def : SubRegSet<1, [EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, R8D, R9D, R10D, R11D, R12D, R13D, R14D, R15D], [AL, CL, DL, BL, SPL, BPL, SIL, DIL, R8B, R9B, R10B, R11B, R12B, R13B, R14B, R15B]>; def : SubRegSet<2, [EAX, ECX, EDX, EBX], [AH, CH, DH, BH]>; def : SubRegSet<3, [EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, R8D, R9D, R10D, R11D, R12D, R13D, R14D, R15D], [AX, CX, DX, BX, SP, BP, SI, DI, R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W]>; def : SubRegSet<1, [RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15], [AL, CL, DL, BL, SPL, BPL, SIL, DIL, R8B, R9B, R10B, R11B, R12B, R13B, R14B, R15B]>; def : SubRegSet<2, [RAX, RCX, RDX, RBX], [AH, CH, DH, BH]>; def : SubRegSet<3, [RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15], [AX, CX, DX, BX, SP, BP, SI, DI, R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W]>; def : SubRegSet<4, [RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15], [EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, R8D, R9D, R10D, R11D, R12D, R13D, R14D, R15D]>; //===----------------------------------------------------------------------===// // Register Class Definitions... now that we have all of the pieces, define the // top-level register classes. The order specified in the register list is // implicitly defined to be the register allocation order. // // List call-clobbered registers before callee-save registers. RBX, RBP, (and // R12, R13, R14, and R15 for X86-64) are callee-save registers. // In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and // R8B, ... R15B. // Allocate R12 and R13 last, as these require an extra byte when // encoded in x86_64 instructions. // FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in // 64-bit mode. The main complication is that they cannot be encoded in an // instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc. // require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d" // cannot be encoded. def GR8 : RegisterClass<"X86", [i8], 8, [AL, CL, DL, BL, AH, CH, DH, BH, SIL, DIL, BPL, SPL, R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B]> { let MethodProtos = [{ iterator allocation_order_begin(const MachineFunction &MF) const; iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ // Does the function dedicate RBP / EBP to being a frame ptr? // If so, don't allocate SPL or BPL. static const unsigned X86_GR8_AO_64_fp[] = { X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL, X86::R8B, X86::R9B, X86::R10B, X86::R11B, X86::BL, X86::R14B, X86::R15B, X86::R12B, X86::R13B }; // If not, just don't allocate SPL. static const unsigned X86_GR8_AO_64[] = { X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL, X86::R8B, X86::R9B, X86::R10B, X86::R11B, X86::BL, X86::R14B, X86::R15B, X86::R12B, X86::R13B, X86::BPL }; // In 32-mode, none of the 8-bit registers aliases EBP or ESP. static const unsigned X86_GR8_AO_32[] = { X86::AL, X86::CL, X86::DL, X86::AH, X86::CH, X86::DH, X86::BL, X86::BH }; GR8Class::iterator GR8Class::allocation_order_begin(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); const X86Subtarget &Subtarget = TM.getSubtarget(); if (!Subtarget.is64Bit()) return X86_GR8_AO_32; else if (RI->hasFP(MF)) return X86_GR8_AO_64_fp; else return X86_GR8_AO_64; } GR8Class::iterator GR8Class::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); const X86Subtarget &Subtarget = TM.getSubtarget(); if (!Subtarget.is64Bit()) return X86_GR8_AO_32 + (sizeof(X86_GR8_AO_32) / sizeof(unsigned)); else if (RI->hasFP(MF)) return X86_GR8_AO_64_fp + (sizeof(X86_GR8_AO_64_fp) / sizeof(unsigned)); else return X86_GR8_AO_64 + (sizeof(X86_GR8_AO_64) / sizeof(unsigned)); } }]; } def GR16 : RegisterClass<"X86", [i16], 16, [AX, CX, DX, SI, DI, BX, BP, SP, R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W]> { let SubRegClassList = [GR8, GR8]; let MethodProtos = [{ iterator allocation_order_begin(const MachineFunction &MF) const; iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ // Does the function dedicate RBP / EBP to being a frame ptr? // If so, don't allocate SP or BP. static const unsigned X86_GR16_AO_64_fp[] = { X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::R8W, X86::R9W, X86::R10W, X86::R11W, X86::BX, X86::R14W, X86::R15W, X86::R12W, X86::R13W }; static const unsigned X86_GR16_AO_32_fp[] = { X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::BX }; // If not, just don't allocate SP. static const unsigned X86_GR16_AO_64[] = { X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::R8W, X86::R9W, X86::R10W, X86::R11W, X86::BX, X86::R14W, X86::R15W, X86::R12W, X86::R13W, X86::BP }; static const unsigned X86_GR16_AO_32[] = { X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::BX, X86::BP }; GR16Class::iterator GR16Class::allocation_order_begin(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); const X86Subtarget &Subtarget = TM.getSubtarget(); if (Subtarget.is64Bit()) { if (RI->hasFP(MF)) return X86_GR16_AO_64_fp; else return X86_GR16_AO_64; } else { if (RI->hasFP(MF)) return X86_GR16_AO_32_fp; else return X86_GR16_AO_32; } } GR16Class::iterator GR16Class::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); const X86Subtarget &Subtarget = TM.getSubtarget(); if (Subtarget.is64Bit()) { if (RI->hasFP(MF)) return X86_GR16_AO_64_fp+(sizeof(X86_GR16_AO_64_fp)/sizeof(unsigned)); else return X86_GR16_AO_64 + (sizeof(X86_GR16_AO_64) / sizeof(unsigned)); } else { if (RI->hasFP(MF)) return X86_GR16_AO_32_fp+(sizeof(X86_GR16_AO_32_fp)/sizeof(unsigned)); else return X86_GR16_AO_32 + (sizeof(X86_GR16_AO_32) / sizeof(unsigned)); } } }]; } def GR32 : RegisterClass<"X86", [i32], 32, [EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP, R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D]> { let SubRegClassList = [GR8, GR8, GR16]; let MethodProtos = [{ iterator allocation_order_begin(const MachineFunction &MF) const; iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ // Does the function dedicate RBP / EBP to being a frame ptr? // If so, don't allocate ESP or EBP. static const unsigned X86_GR32_AO_64_fp[] = { X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::R8D, X86::R9D, X86::R10D, X86::R11D, X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D }; static const unsigned X86_GR32_AO_32_fp[] = { X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBX }; // If not, just don't allocate ESP. static const unsigned X86_GR32_AO_64[] = { X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::R8D, X86::R9D, X86::R10D, X86::R11D, X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D, X86::EBP }; static const unsigned X86_GR32_AO_32[] = { X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP }; GR32Class::iterator GR32Class::allocation_order_begin(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); const X86Subtarget &Subtarget = TM.getSubtarget(); if (Subtarget.is64Bit()) { if (RI->hasFP(MF)) return X86_GR32_AO_64_fp; else return X86_GR32_AO_64; } else { if (RI->hasFP(MF)) return X86_GR32_AO_32_fp; else return X86_GR32_AO_32; } } GR32Class::iterator GR32Class::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); const X86Subtarget &Subtarget = TM.getSubtarget(); if (Subtarget.is64Bit()) { if (RI->hasFP(MF)) return X86_GR32_AO_64_fp+(sizeof(X86_GR32_AO_64_fp)/sizeof(unsigned)); else return X86_GR32_AO_64 + (sizeof(X86_GR32_AO_64) / sizeof(unsigned)); } else { if (RI->hasFP(MF)) return X86_GR32_AO_32_fp+(sizeof(X86_GR32_AO_32_fp)/sizeof(unsigned)); else return X86_GR32_AO_32 + (sizeof(X86_GR32_AO_32) / sizeof(unsigned)); } } }]; } def GR64 : RegisterClass<"X86", [i64], 64, [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, RBX, R14, R15, R12, R13, RBP, RSP]> { let SubRegClassList = [GR8, GR8, GR16, GR32]; let MethodProtos = [{ iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ GR64Class::iterator GR64Class::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); const X86Subtarget &Subtarget = TM.getSubtarget(); if (!Subtarget.is64Bit()) return begin(); // None of these are allocatable in 32-bit. if (RI->hasFP(MF)) // Does the function dedicate RBP to being a frame ptr? return end()-2; // If so, don't allocate RSP or RBP else return end()-1; // If not, just don't allocate RSP } }]; } // GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of // GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d" // registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers // that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD, // and GR64_ABCD are classes for registers that support 8-bit h-register // operations. def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, [AL, CL, DL, BL]> { } def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, [AH, CH, DH, BH]> { } def GR16_ABCD : RegisterClass<"X86", [i16], 16, [AX, CX, DX, BX]> { let SubRegClassList = [GR8_ABCD_L, GR8_ABCD_H]; } def GR32_ABCD : RegisterClass<"X86", [i32], 32, [EAX, ECX, EDX, EBX]> { let SubRegClassList = [GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD]; } def GR64_ABCD : RegisterClass<"X86", [i64], 64, [RAX, RCX, RDX, RBX]> { let SubRegClassList = [GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD]; } // GR8_NOREX, GR16_NOREX, GR32_NOREX, GR64_NOREX - Subclasses of // GR8, GR16, GR32, and GR64 which contain only the first 8 GPRs. // On x86-64, GR64_NOREX, GR32_NOREX and GR16_NOREX are the classes // of registers which do not by themselves require a REX prefix. def GR8_NOREX : RegisterClass<"X86", [i8], 8, [AL, CL, DL, BL, AH, CH, DH, BH, SIL, DIL, BPL, SPL]> { let MethodProtos = [{ iterator allocation_order_begin(const MachineFunction &MF) const; iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ // Does the function dedicate RBP / EBP to being a frame ptr? // If so, don't allocate SPL or BPL. static const unsigned X86_GR8_NOREX_AO_64_fp[] = { X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL, X86::BL }; // If not, just don't allocate SPL. static const unsigned X86_GR8_NOREX_AO_64[] = { X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL, X86::BL, X86::BPL }; // In 32-mode, none of the 8-bit registers aliases EBP or ESP. static const unsigned X86_GR8_NOREX_AO_32[] = { X86::AL, X86::CL, X86::DL, X86::AH, X86::CH, X86::DH, X86::BL, X86::BH }; GR8_NOREXClass::iterator GR8_NOREXClass::allocation_order_begin(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); const X86Subtarget &Subtarget = TM.getSubtarget(); if (!Subtarget.is64Bit()) return X86_GR8_NOREX_AO_32; else if (RI->hasFP(MF)) return X86_GR8_NOREX_AO_64_fp; else return X86_GR8_NOREX_AO_64; } GR8_NOREXClass::iterator GR8_NOREXClass::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); const X86Subtarget &Subtarget = TM.getSubtarget(); if (!Subtarget.is64Bit()) return X86_GR8_NOREX_AO_32 + (sizeof(X86_GR8_NOREX_AO_32) / sizeof(unsigned)); else if (RI->hasFP(MF)) return X86_GR8_NOREX_AO_64_fp + (sizeof(X86_GR8_NOREX_AO_64_fp) / sizeof(unsigned)); else return X86_GR8_NOREX_AO_64 + (sizeof(X86_GR8_NOREX_AO_64) / sizeof(unsigned)); } }]; } def GR16_NOREX : RegisterClass<"X86", [i16], 16, [AX, CX, DX, SI, DI, BX, BP, SP]> { let SubRegClassList = [GR8_NOREX, GR8_NOREX]; let MethodProtos = [{ iterator allocation_order_begin(const MachineFunction &MF) const; iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ // Does the function dedicate RBP / EBP to being a frame ptr? // If so, don't allocate SP or BP. static const unsigned X86_GR16_AO_fp[] = { X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::BX }; // If not, just don't allocate SP. static const unsigned X86_GR16_AO[] = { X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::BX, X86::BP }; GR16_NOREXClass::iterator GR16_NOREXClass::allocation_order_begin(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); if (RI->hasFP(MF)) return X86_GR16_AO_fp; else return X86_GR16_AO; } GR16_NOREXClass::iterator GR16_NOREXClass::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); if (RI->hasFP(MF)) return X86_GR16_AO_fp+(sizeof(X86_GR16_AO_fp)/sizeof(unsigned)); else return X86_GR16_AO + (sizeof(X86_GR16_AO) / sizeof(unsigned)); } }]; } // GR32_NOREX - GR32 registers which do not require a REX prefix. def GR32_NOREX : RegisterClass<"X86", [i32], 32, [EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP]> { let SubRegClassList = [GR8_NOREX, GR8_NOREX, GR16_NOREX]; let MethodProtos = [{ iterator allocation_order_begin(const MachineFunction &MF) const; iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ // Does the function dedicate RBP / EBP to being a frame ptr? // If so, don't allocate ESP or EBP. static const unsigned X86_GR32_NOREX_AO_fp[] = { X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBX }; // If not, just don't allocate ESP. static const unsigned X86_GR32_NOREX_AO[] = { X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP }; GR32_NOREXClass::iterator GR32_NOREXClass::allocation_order_begin(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); if (RI->hasFP(MF)) return X86_GR32_NOREX_AO_fp; else return X86_GR32_NOREX_AO; } GR32_NOREXClass::iterator GR32_NOREXClass::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); if (RI->hasFP(MF)) return X86_GR32_NOREX_AO_fp + (sizeof(X86_GR32_NOREX_AO_fp) / sizeof(unsigned)); else return X86_GR32_NOREX_AO + (sizeof(X86_GR32_NOREX_AO) / sizeof(unsigned)); } }]; } // GR64_NOREX - GR64 registers which do not require a REX prefix. def GR64_NOREX : RegisterClass<"X86", [i64], 64, [RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP]> { let SubRegClassList = [GR8_NOREX, GR8_NOREX, GR16_NOREX, GR32_NOREX]; let MethodProtos = [{ iterator allocation_order_begin(const MachineFunction &MF) const; iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ // Does the function dedicate RBP / EBP to being a frame ptr? // If so, don't allocate RSP or RBP. static const unsigned X86_GR64_NOREX_AO_fp[] = { X86::RAX, X86::RCX, X86::RDX, X86::RSI, X86::RDI, X86::RBX }; // If not, just don't allocate RSP. static const unsigned X86_GR64_NOREX_AO[] = { X86::RAX, X86::RCX, X86::RDX, X86::RSI, X86::RDI, X86::RBX, X86::RBP }; GR64_NOREXClass::iterator GR64_NOREXClass::allocation_order_begin(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); if (RI->hasFP(MF)) return X86_GR64_NOREX_AO_fp; else return X86_GR64_NOREX_AO; } GR64_NOREXClass::iterator GR64_NOREXClass::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); if (RI->hasFP(MF)) return X86_GR64_NOREX_AO_fp + (sizeof(X86_GR64_NOREX_AO_fp) / sizeof(unsigned)); else return X86_GR64_NOREX_AO + (sizeof(X86_GR64_NOREX_AO) / sizeof(unsigned)); } }]; } // A class to support the 'A' assembler constraint: EAX then EDX. def GRAD : RegisterClass<"X86", [i32], 32, [EAX, EDX]>; // Scalar SSE2 floating point registers. def FR32 : RegisterClass<"X86", [f32], 32, [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15]> { let MethodProtos = [{ iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ FR32Class::iterator FR32Class::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const X86Subtarget &Subtarget = TM.getSubtarget(); if (!Subtarget.is64Bit()) return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode. else return end(); } }]; } def FR64 : RegisterClass<"X86", [f64], 64, [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15]> { let MethodProtos = [{ iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ FR64Class::iterator FR64Class::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const X86Subtarget &Subtarget = TM.getSubtarget(); if (!Subtarget.is64Bit()) return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode. else return end(); } }]; } // FIXME: This sets up the floating point register files as though they are f64 // values, though they really are f80 values. This will cause us to spill // values as 64-bit quantities instead of 80-bit quantities, which is much much // faster on common hardware. In reality, this should be controlled by a // command line option or something. def RFP32 : RegisterClass<"X86",[f32], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>; def RFP64 : RegisterClass<"X86",[f64], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>; def RFP80 : RegisterClass<"X86",[f80], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>; // Floating point stack registers (these are not allocatable by the // register allocator - the floating point stackifier is responsible // for transforming FPn allocations to STn registers) def RST : RegisterClass<"X86", [f80, f64, f32], 32, [ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7]> { let MethodProtos = [{ iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ RSTClass::iterator RSTClass::allocation_order_end(const MachineFunction &MF) const { return begin(); } }]; } // Generic vector registers: VR64 and VR128. def VR64 : RegisterClass<"X86", [v8i8, v4i16, v2i32, v1i64, v2f32], 64, [MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7]>; def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],128, [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15]> { let MethodProtos = [{ iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ VR128Class::iterator VR128Class::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const X86Subtarget &Subtarget = TM.getSubtarget(); if (!Subtarget.is64Bit()) return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode. else return end(); } }]; } // Status flags registers. def CCR : RegisterClass<"X86", [i32], 32, [EFLAGS]> { let CopyCost = -1; // Don't allow copying of status registers. }