Verifier.cpp   [plain text]


//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
//  * Both of a binary operator's parameters are of the same type
//  * Verify that the indices of mem access instructions match other operands
//  * Verify that arithmetic and other things are only performed on first-class
//    types.  Verify that shifts & logicals only happen on integrals f.e.
//  * All of the constants in a switch statement are of the correct type
//  * The code is in valid SSA form
//  * It should be illegal to put a label into any other type (like a structure)
//    or to return one. [except constant arrays!]
//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
//  * PHI nodes must have an entry for each predecessor, with no extras.
//  * PHI nodes must be the first thing in a basic block, all grouped together
//  * PHI nodes must have at least one entry
//  * All basic blocks should only end with terminator insts, not contain them
//  * The entry node to a function must not have predecessors
//  * All Instructions must be embedded into a basic block
//  * Functions cannot take a void-typed parameter
//  * Verify that a function's argument list agrees with it's declared type.
//  * It is illegal to specify a name for a void value.
//  * It is illegal to have a internal global value with no initializer
//  * It is illegal to have a ret instruction that returns a value that does not
//    agree with the function return value type.
//  * Function call argument types match the function prototype
//  * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Verifier.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Metadata.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdarg>
using namespace llvm;

namespace {  // Anonymous namespace for class
  struct PreVerifier : public FunctionPass {
    static char ID; // Pass ID, replacement for typeid

    PreVerifier() : FunctionPass(ID) {
      initializePreVerifierPass(*PassRegistry::getPassRegistry());
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
    }

    // Check that the prerequisites for successful DominatorTree construction
    // are satisfied.
    bool runOnFunction(Function &F) {
      bool Broken = false;

      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
        if (I->empty() || !I->back().isTerminator()) {
          dbgs() << "Basic Block in function '" << F.getName() 
                 << "' does not have terminator!\n";
          WriteAsOperand(dbgs(), I, true);
          dbgs() << "\n";
          Broken = true;
        }
      }

      if (Broken)
        report_fatal_error("Broken module, no Basic Block terminator!");

      return false;
    }
  };
}

char PreVerifier::ID = 0;
INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification", 
                false, false)
static char &PreVerifyID = PreVerifier::ID;

namespace {
  class TypeSet : public AbstractTypeUser {
  public:
    TypeSet() {}

    /// Insert a type into the set of types.
    bool insert(const Type *Ty) {
      if (!Types.insert(Ty))
        return false;
      if (Ty->isAbstract())
        Ty->addAbstractTypeUser(this);
      return true;
    }

    // Remove ourselves as abstract type listeners for any types that remain
    // abstract when the TypeSet is destroyed.
    ~TypeSet() {
      for (SmallSetVector<const Type *, 16>::iterator I = Types.begin(),
             E = Types.end(); I != E; ++I) {
        const Type *Ty = *I;
        if (Ty->isAbstract())
          Ty->removeAbstractTypeUser(this);
      }
    }

    // Abstract type user interface.

    /// Remove types from the set when refined. Do not insert the type it was
    /// refined to because that type hasn't been verified yet.
    void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
      Types.remove(OldTy);
      OldTy->removeAbstractTypeUser(this);
    }

    /// Stop listening for changes to a type which is no longer abstract.
    void typeBecameConcrete(const DerivedType *AbsTy) {
      AbsTy->removeAbstractTypeUser(this);
    }

    void dump() const {}

  private:
    SmallSetVector<const Type *, 16> Types;

    // Disallow copying.
    TypeSet(const TypeSet &);
    TypeSet &operator=(const TypeSet &);
  };

  struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
    static char ID; // Pass ID, replacement for typeid
    bool Broken;          // Is this module found to be broken?
    bool RealPass;        // Are we not being run by a PassManager?
    VerifierFailureAction action;
                          // What to do if verification fails.
    Module *Mod;          // Module we are verifying right now
    LLVMContext *Context; // Context within which we are verifying
    DominatorTree *DT;    // Dominator Tree, caution can be null!

    std::string Messages;
    raw_string_ostream MessagesStr;

    /// InstInThisBlock - when verifying a basic block, keep track of all of the
    /// instructions we have seen so far.  This allows us to do efficient
    /// dominance checks for the case when an instruction has an operand that is
    /// an instruction in the same block.
    SmallPtrSet<Instruction*, 16> InstsInThisBlock;

    /// Types - keep track of the types that have been checked already.
    TypeSet Types;

    /// MDNodes - keep track of the metadata nodes that have been checked
    /// already.
    SmallPtrSet<MDNode *, 32> MDNodes;

    Verifier()
      : FunctionPass(ID), 
      Broken(false), RealPass(true), action(AbortProcessAction),
      Mod(0), Context(0), DT(0), MessagesStr(Messages) {
        initializeVerifierPass(*PassRegistry::getPassRegistry());
      }
    explicit Verifier(VerifierFailureAction ctn)
      : FunctionPass(ID), 
      Broken(false), RealPass(true), action(ctn), Mod(0), Context(0), DT(0),
      MessagesStr(Messages) {
        initializeVerifierPass(*PassRegistry::getPassRegistry());
      }

    bool doInitialization(Module &M) {
      Mod = &M;
      Context = &M.getContext();
      verifyTypeSymbolTable(M.getTypeSymbolTable());

      // If this is a real pass, in a pass manager, we must abort before
      // returning back to the pass manager, or else the pass manager may try to
      // run other passes on the broken module.
      if (RealPass)
        return abortIfBroken();
      return false;
    }

    bool runOnFunction(Function &F) {
      // Get dominator information if we are being run by PassManager
      if (RealPass) DT = &getAnalysis<DominatorTree>();

      Mod = F.getParent();
      if (!Context) Context = &F.getContext();

      visit(F);
      InstsInThisBlock.clear();

      // If this is a real pass, in a pass manager, we must abort before
      // returning back to the pass manager, or else the pass manager may try to
      // run other passes on the broken module.
      if (RealPass)
        return abortIfBroken();

      return false;
    }

    bool doFinalization(Module &M) {
      // Scan through, checking all of the external function's linkage now...
      for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
        visitGlobalValue(*I);

        // Check to make sure function prototypes are okay.
        if (I->isDeclaration()) visitFunction(*I);
      }

      for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 
           I != E; ++I)
        visitGlobalVariable(*I);

      for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 
           I != E; ++I)
        visitGlobalAlias(*I);

      for (Module::named_metadata_iterator I = M.named_metadata_begin(),
           E = M.named_metadata_end(); I != E; ++I)
        visitNamedMDNode(*I);

      // If the module is broken, abort at this time.
      return abortIfBroken();
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
      AU.addRequiredID(PreVerifyID);
      if (RealPass)
        AU.addRequired<DominatorTree>();
    }

    /// abortIfBroken - If the module is broken and we are supposed to abort on
    /// this condition, do so.
    ///
    bool abortIfBroken() {
      if (!Broken) return false;
      MessagesStr << "Broken module found, ";
      switch (action) {
      default: llvm_unreachable("Unknown action");
      case AbortProcessAction:
        MessagesStr << "compilation aborted!\n";
        dbgs() << MessagesStr.str();
        // Client should choose different reaction if abort is not desired
        abort();
      case PrintMessageAction:
        MessagesStr << "verification continues.\n";
        dbgs() << MessagesStr.str();
        return false;
      case ReturnStatusAction:
        MessagesStr << "compilation terminated.\n";
        return true;
      }
    }


    // Verification methods...
    void verifyTypeSymbolTable(TypeSymbolTable &ST);
    void visitGlobalValue(GlobalValue &GV);
    void visitGlobalVariable(GlobalVariable &GV);
    void visitGlobalAlias(GlobalAlias &GA);
    void visitNamedMDNode(NamedMDNode &NMD);
    void visitMDNode(MDNode &MD, Function *F);
    void visitFunction(Function &F);
    void visitBasicBlock(BasicBlock &BB);
    using InstVisitor<Verifier>::visit;

    void visit(Instruction &I);

    void visitTruncInst(TruncInst &I);
    void visitZExtInst(ZExtInst &I);
    void visitSExtInst(SExtInst &I);
    void visitFPTruncInst(FPTruncInst &I);
    void visitFPExtInst(FPExtInst &I);
    void visitFPToUIInst(FPToUIInst &I);
    void visitFPToSIInst(FPToSIInst &I);
    void visitUIToFPInst(UIToFPInst &I);
    void visitSIToFPInst(SIToFPInst &I);
    void visitIntToPtrInst(IntToPtrInst &I);
    void visitPtrToIntInst(PtrToIntInst &I);
    void visitBitCastInst(BitCastInst &I);
    void visitPHINode(PHINode &PN);
    void visitBinaryOperator(BinaryOperator &B);
    void visitICmpInst(ICmpInst &IC);
    void visitFCmpInst(FCmpInst &FC);
    void visitExtractElementInst(ExtractElementInst &EI);
    void visitInsertElementInst(InsertElementInst &EI);
    void visitShuffleVectorInst(ShuffleVectorInst &EI);
    void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
    void visitCallInst(CallInst &CI);
    void visitInvokeInst(InvokeInst &II);
    void visitGetElementPtrInst(GetElementPtrInst &GEP);
    void visitLoadInst(LoadInst &LI);
    void visitStoreInst(StoreInst &SI);
    void visitInstruction(Instruction &I);
    void visitTerminatorInst(TerminatorInst &I);
    void visitBranchInst(BranchInst &BI);
    void visitReturnInst(ReturnInst &RI);
    void visitSwitchInst(SwitchInst &SI);
    void visitIndirectBrInst(IndirectBrInst &BI);
    void visitSelectInst(SelectInst &SI);
    void visitUserOp1(Instruction &I);
    void visitUserOp2(Instruction &I) { visitUserOp1(I); }
    void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
    void visitAllocaInst(AllocaInst &AI);
    void visitExtractValueInst(ExtractValueInst &EVI);
    void visitInsertValueInst(InsertValueInst &IVI);

    void VerifyCallSite(CallSite CS);
    bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
                          int VT, unsigned ArgNo, std::string &Suffix);
    void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
                                  unsigned RetNum, unsigned ParamNum, ...);
    void VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
                              bool isReturnValue, const Value *V);
    void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
                             const Value *V);
    void VerifyType(const Type *Ty);

    void WriteValue(const Value *V) {
      if (!V) return;
      if (isa<Instruction>(V)) {
        MessagesStr << *V << '\n';
      } else {
        WriteAsOperand(MessagesStr, V, true, Mod);
        MessagesStr << '\n';
      }
    }

    void WriteType(const Type *T) {
      if (!T) return;
      MessagesStr << ' ';
      WriteTypeSymbolic(MessagesStr, T, Mod);
    }


    // CheckFailed - A check failed, so print out the condition and the message
    // that failed.  This provides a nice place to put a breakpoint if you want
    // to see why something is not correct.
    void CheckFailed(const Twine &Message,
                     const Value *V1 = 0, const Value *V2 = 0,
                     const Value *V3 = 0, const Value *V4 = 0) {
      MessagesStr << Message.str() << "\n";
      WriteValue(V1);
      WriteValue(V2);
      WriteValue(V3);
      WriteValue(V4);
      Broken = true;
    }

    void CheckFailed(const Twine &Message, const Value *V1,
                     const Type *T2, const Value *V3 = 0) {
      MessagesStr << Message.str() << "\n";
      WriteValue(V1);
      WriteType(T2);
      WriteValue(V3);
      Broken = true;
    }

    void CheckFailed(const Twine &Message, const Type *T1,
                     const Type *T2 = 0, const Type *T3 = 0) {
      MessagesStr << Message.str() << "\n";
      WriteType(T1);
      WriteType(T2);
      WriteType(T3);
      Broken = true;
    }
  };
} // End anonymous namespace

char Verifier::ID = 0;
INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
INITIALIZE_PASS_DEPENDENCY(PreVerifier)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)

// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
  do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)

void Verifier::visit(Instruction &I) {
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    Assert1(I.getOperand(i) != 0, "Operand is null", &I);
  InstVisitor<Verifier>::visit(I);
}


void Verifier::visitGlobalValue(GlobalValue &GV) {
  Assert1(!GV.isDeclaration() ||
          GV.isMaterializable() ||
          GV.hasExternalLinkage() ||
          GV.hasDLLImportLinkage() ||
          GV.hasExternalWeakLinkage() ||
          (isa<GlobalAlias>(GV) &&
           (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
  "Global is external, but doesn't have external or dllimport or weak linkage!",
          &GV);

  Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
          "Global is marked as dllimport, but not external", &GV);

  Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
          "Only global variables can have appending linkage!", &GV);

  if (GV.hasAppendingLinkage()) {
    GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
    Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
            "Only global arrays can have appending linkage!", GVar);
  }

  Assert1(!GV.hasLinkerPrivateWeakDefAutoLinkage() || GV.hasDefaultVisibility(),
          "linker_private_weak_def_auto can only have default visibility!",
          &GV);
}

void Verifier::visitGlobalVariable(GlobalVariable &GV) {
  if (GV.hasInitializer()) {
    Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
            "Global variable initializer type does not match global "
            "variable type!", &GV);

    // If the global has common linkage, it must have a zero initializer and
    // cannot be constant.
    if (GV.hasCommonLinkage()) {
      Assert1(GV.getInitializer()->isNullValue(),
              "'common' global must have a zero initializer!", &GV);
      Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
              &GV);
    }
  } else {
    Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
            GV.hasExternalWeakLinkage(),
            "invalid linkage type for global declaration", &GV);
  }

  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
                       GV.getName() == "llvm.global_dtors")) {
    Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
            "invalid linkage for intrinsic global variable", &GV);
    // Don't worry about emitting an error for it not being an array,
    // visitGlobalValue will complain on appending non-array.
    if (const ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
      const PointerType *FuncPtrTy =
          FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
      Assert1(STy && STy->getNumElements() == 2 &&
              STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
              STy->getTypeAtIndex(1) == FuncPtrTy,
              "wrong type for intrinsic global variable", &GV);
    }
  }

  visitGlobalValue(GV);
}

void Verifier::visitGlobalAlias(GlobalAlias &GA) {
  Assert1(!GA.getName().empty(),
          "Alias name cannot be empty!", &GA);
  Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
          GA.hasWeakLinkage(),
          "Alias should have external or external weak linkage!", &GA);
  Assert1(GA.getAliasee(),
          "Aliasee cannot be NULL!", &GA);
  Assert1(GA.getType() == GA.getAliasee()->getType(),
          "Alias and aliasee types should match!", &GA);
  Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);

  if (!isa<GlobalValue>(GA.getAliasee())) {
    const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
    Assert1(CE && 
            (CE->getOpcode() == Instruction::BitCast ||
             CE->getOpcode() == Instruction::GetElementPtr) &&
            isa<GlobalValue>(CE->getOperand(0)),
            "Aliasee should be either GlobalValue or bitcast of GlobalValue",
            &GA);
  }

  const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
  Assert1(Aliasee,
          "Aliasing chain should end with function or global variable", &GA);

  visitGlobalValue(GA);
}

void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
    MDNode *MD = NMD.getOperand(i);
    if (!MD)
      continue;

    Assert1(!MD->isFunctionLocal(),
            "Named metadata operand cannot be function local!", MD);
    visitMDNode(*MD, 0);
  }
}

void Verifier::visitMDNode(MDNode &MD, Function *F) {
  // Only visit each node once.  Metadata can be mutually recursive, so this
  // avoids infinite recursion here, as well as being an optimization.
  if (!MDNodes.insert(&MD))
    return;

  for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
    Value *Op = MD.getOperand(i);
    if (!Op)
      continue;
    if (isa<Constant>(Op) || isa<MDString>(Op))
      continue;
    if (MDNode *N = dyn_cast<MDNode>(Op)) {
      Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
              "Global metadata operand cannot be function local!", &MD, N);
      visitMDNode(*N, F);
      continue;
    }
    Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);

    // If this was an instruction, bb, or argument, verify that it is in the
    // function that we expect.
    Function *ActualF = 0;
    if (Instruction *I = dyn_cast<Instruction>(Op))
      ActualF = I->getParent()->getParent();
    else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
      ActualF = BB->getParent();
    else if (Argument *A = dyn_cast<Argument>(Op))
      ActualF = A->getParent();
    assert(ActualF && "Unimplemented function local metadata case!");

    Assert2(ActualF == F, "function-local metadata used in wrong function",
            &MD, Op);
  }
}

void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
  for (TypeSymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I)
    VerifyType(I->second);
}

// VerifyParameterAttrs - Check the given attributes for an argument or return
// value of the specified type.  The value V is printed in error messages.
void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
                                    bool isReturnValue, const Value *V) {
  if (Attrs == Attribute::None)
    return;

  Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
  Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
          " only applies to the function!", V);

  if (isReturnValue) {
    Attributes RetI = Attrs & Attribute::ParameterOnly;
    Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
            " does not apply to return values!", V);
  }

  for (unsigned i = 0;
       i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
    Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
    Assert1(!(MutI & (MutI - 1)), "Attributes " +
            Attribute::getAsString(MutI) + " are incompatible!", V);
  }

  Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
  Assert1(!TypeI, "Wrong type for attribute " +
          Attribute::getAsString(TypeI), V);

  Attributes ByValI = Attrs & Attribute::ByVal;
  if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
    Assert1(!ByValI || PTy->getElementType()->isSized(),
            "Attribute " + Attribute::getAsString(ByValI) +
            " does not support unsized types!", V);
  } else {
    Assert1(!ByValI,
            "Attribute " + Attribute::getAsString(ByValI) +
            " only applies to parameters with pointer type!", V);
  }
}

// VerifyFunctionAttrs - Check parameter attributes against a function type.
// The value V is printed in error messages.
void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
                                   const AttrListPtr &Attrs,
                                   const Value *V) {
  if (Attrs.isEmpty())
    return;

  bool SawNest = false;

  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
    const AttributeWithIndex &Attr = Attrs.getSlot(i);

    const Type *Ty;
    if (Attr.Index == 0)
      Ty = FT->getReturnType();
    else if (Attr.Index-1 < FT->getNumParams())
      Ty = FT->getParamType(Attr.Index-1);
    else
      break;  // VarArgs attributes, verified elsewhere.

    VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);

    if (Attr.Attrs & Attribute::Nest) {
      Assert1(!SawNest, "More than one parameter has attribute nest!", V);
      SawNest = true;
    }

    if (Attr.Attrs & Attribute::StructRet)
      Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
  }

  Attributes FAttrs = Attrs.getFnAttributes();
  Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
  Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
          " does not apply to the function!", V);

  for (unsigned i = 0;
       i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
    Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
    Assert1(!(MutI & (MutI - 1)), "Attributes " +
            Attribute::getAsString(MutI) + " are incompatible!", V);
  }
}

static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
  if (Attrs.isEmpty())
    return true;

  unsigned LastSlot = Attrs.getNumSlots() - 1;
  unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
  if (LastIndex <= Params
      || (LastIndex == (unsigned)~0
          && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))  
    return true;

  return false;
}

// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(Function &F) {
  // Check function arguments.
  const FunctionType *FT = F.getFunctionType();
  unsigned NumArgs = F.arg_size();

  Assert1(Context == &F.getContext(),
          "Function context does not match Module context!", &F);

  Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
  Assert2(FT->getNumParams() == NumArgs,
          "# formal arguments must match # of arguments for function type!",
          &F, FT);
  Assert1(F.getReturnType()->isFirstClassType() ||
          F.getReturnType()->isVoidTy() || 
          F.getReturnType()->isStructTy(),
          "Functions cannot return aggregate values!", &F);

  Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
          "Invalid struct return type!", &F);

  const AttrListPtr &Attrs = F.getAttributes();

  Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
          "Attributes after last parameter!", &F);

  // Check function attributes.
  VerifyFunctionAttrs(FT, Attrs, &F);

  // Check that this function meets the restrictions on this calling convention.
  switch (F.getCallingConv()) {
  default:
    break;
  case CallingConv::C:
    break;
  case CallingConv::Fast:
  case CallingConv::Cold:
  case CallingConv::X86_FastCall:
  case CallingConv::X86_ThisCall:
  case CallingConv::PTX_Kernel:
  case CallingConv::PTX_Device:
    Assert1(!F.isVarArg(),
            "Varargs functions must have C calling conventions!", &F);
    break;
  }

  bool isLLVMdotName = F.getName().size() >= 5 &&
                       F.getName().substr(0, 5) == "llvm.";

  // Check that the argument values match the function type for this function...
  unsigned i = 0;
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
       I != E; ++I, ++i) {
    Assert2(I->getType() == FT->getParamType(i),
            "Argument value does not match function argument type!",
            I, FT->getParamType(i));
    Assert1(I->getType()->isFirstClassType(),
            "Function arguments must have first-class types!", I);
    if (!isLLVMdotName)
      Assert2(!I->getType()->isMetadataTy(),
              "Function takes metadata but isn't an intrinsic", I, &F);
  }

  if (F.isMaterializable()) {
    // Function has a body somewhere we can't see.
  } else if (F.isDeclaration()) {
    Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
            F.hasExternalWeakLinkage(),
            "invalid linkage type for function declaration", &F);
  } else {
    // Verify that this function (which has a body) is not named "llvm.*".  It
    // is not legal to define intrinsics.
    Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
    
    // Check the entry node
    BasicBlock *Entry = &F.getEntryBlock();
    Assert1(pred_begin(Entry) == pred_end(Entry),
            "Entry block to function must not have predecessors!", Entry);
    
    // The address of the entry block cannot be taken, unless it is dead.
    if (Entry->hasAddressTaken()) {
      Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
              "blockaddress may not be used with the entry block!", Entry);
    }
  }
 
  // If this function is actually an intrinsic, verify that it is only used in
  // direct call/invokes, never having its "address taken".
  if (F.getIntrinsicID()) {
    const User *U;
    if (F.hasAddressTaken(&U))
      Assert1(0, "Invalid user of intrinsic instruction!", U); 
  }
}

// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
  InstsInThisBlock.clear();

  // Ensure that basic blocks have terminators!
  Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);

  // Check constraints that this basic block imposes on all of the PHI nodes in
  // it.
  if (isa<PHINode>(BB.front())) {
    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
    std::sort(Preds.begin(), Preds.end());
    PHINode *PN;
    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
      // Ensure that PHI nodes have at least one entry!
      Assert1(PN->getNumIncomingValues() != 0,
              "PHI nodes must have at least one entry.  If the block is dead, "
              "the PHI should be removed!", PN);
      Assert1(PN->getNumIncomingValues() == Preds.size(),
              "PHINode should have one entry for each predecessor of its "
              "parent basic block!", PN);

      // Get and sort all incoming values in the PHI node...
      Values.clear();
      Values.reserve(PN->getNumIncomingValues());
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
                                        PN->getIncomingValue(i)));
      std::sort(Values.begin(), Values.end());

      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
        // Check to make sure that if there is more than one entry for a
        // particular basic block in this PHI node, that the incoming values are
        // all identical.
        //
        Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
                Values[i].second == Values[i-1].second,
                "PHI node has multiple entries for the same basic block with "
                "different incoming values!", PN, Values[i].first,
                Values[i].second, Values[i-1].second);

        // Check to make sure that the predecessors and PHI node entries are
        // matched up.
        Assert3(Values[i].first == Preds[i],
                "PHI node entries do not match predecessors!", PN,
                Values[i].first, Preds[i]);
      }
    }
  }
}

void Verifier::visitTerminatorInst(TerminatorInst &I) {
  // Ensure that terminators only exist at the end of the basic block.
  Assert1(&I == I.getParent()->getTerminator(),
          "Terminator found in the middle of a basic block!", I.getParent());
  visitInstruction(I);
}

void Verifier::visitBranchInst(BranchInst &BI) {
  if (BI.isConditional()) {
    Assert2(BI.getCondition()->getType()->isIntegerTy(1),
            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
  }
  visitTerminatorInst(BI);
}

void Verifier::visitReturnInst(ReturnInst &RI) {
  Function *F = RI.getParent()->getParent();
  unsigned N = RI.getNumOperands();
  if (F->getReturnType()->isVoidTy()) 
    Assert2(N == 0,
            "Found return instr that returns non-void in Function of void "
            "return type!", &RI, F->getReturnType());
  else
    Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
            "Function return type does not match operand "
            "type of return inst!", &RI, F->getReturnType());

  // Check to make sure that the return value has necessary properties for
  // terminators...
  visitTerminatorInst(RI);
}

void Verifier::visitSwitchInst(SwitchInst &SI) {
  // Check to make sure that all of the constants in the switch instruction
  // have the same type as the switched-on value.
  const Type *SwitchTy = SI.getCondition()->getType();
  SmallPtrSet<ConstantInt*, 32> Constants;
  for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) {
    Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
            "Switch constants must all be same type as switch value!", &SI);
    Assert2(Constants.insert(SI.getCaseValue(i)),
            "Duplicate integer as switch case", &SI, SI.getCaseValue(i));
  }

  visitTerminatorInst(SI);
}

void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
  Assert1(BI.getAddress()->getType()->isPointerTy(),
          "Indirectbr operand must have pointer type!", &BI);
  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
    Assert1(BI.getDestination(i)->getType()->isLabelTy(),
            "Indirectbr destinations must all have pointer type!", &BI);

  visitTerminatorInst(BI);
}

void Verifier::visitSelectInst(SelectInst &SI) {
  Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
                                          SI.getOperand(2)),
          "Invalid operands for select instruction!", &SI);

  Assert1(SI.getTrueValue()->getType() == SI.getType(),
          "Select values must have same type as select instruction!", &SI);
  visitInstruction(SI);
}

/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
  Assert1(0, "User-defined operators should not live outside of a pass!", &I);
}

void Verifier::visitTruncInst(TruncInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
  Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
          "trunc source and destination must both be a vector or neither", &I);
  Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);

  visitInstruction(I);
}

void Verifier::visitZExtInst(ZExtInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
  Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
          "zext source and destination must both be a vector or neither", &I);
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);

  visitInstruction(I);
}

void Verifier::visitSExtInst(SExtInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
  Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
          "sext source and destination must both be a vector or neither", &I);
  Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);

  visitInstruction(I);
}

void Verifier::visitFPTruncInst(FPTruncInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();
  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
  Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
          "fptrunc source and destination must both be a vector or neither",&I);
  Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);

  visitInstruction(I);
}

void Verifier::visitFPExtInst(FPExtInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
  Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
          "fpext source and destination must both be a vector or neither", &I);
  Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);

  visitInstruction(I);
}

void Verifier::visitUIToFPInst(UIToFPInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert1(SrcVec == DstVec,
          "UIToFP source and dest must both be vector or scalar", &I);
  Assert1(SrcTy->isIntOrIntVectorTy(),
          "UIToFP source must be integer or integer vector", &I);
  Assert1(DestTy->isFPOrFPVectorTy(),
          "UIToFP result must be FP or FP vector", &I);

  if (SrcVec && DstVec)
    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
            cast<VectorType>(DestTy)->getNumElements(),
            "UIToFP source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitSIToFPInst(SIToFPInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert1(SrcVec == DstVec,
          "SIToFP source and dest must both be vector or scalar", &I);
  Assert1(SrcTy->isIntOrIntVectorTy(),
          "SIToFP source must be integer or integer vector", &I);
  Assert1(DestTy->isFPOrFPVectorTy(),
          "SIToFP result must be FP or FP vector", &I);

  if (SrcVec && DstVec)
    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
            cast<VectorType>(DestTy)->getNumElements(),
            "SIToFP source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitFPToUIInst(FPToUIInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert1(SrcVec == DstVec,
          "FPToUI source and dest must both be vector or scalar", &I);
  Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
          &I);
  Assert1(DestTy->isIntOrIntVectorTy(),
          "FPToUI result must be integer or integer vector", &I);

  if (SrcVec && DstVec)
    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
            cast<VectorType>(DestTy)->getNumElements(),
            "FPToUI source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitFPToSIInst(FPToSIInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Assert1(SrcVec == DstVec,
          "FPToSI source and dest must both be vector or scalar", &I);
  Assert1(SrcTy->isFPOrFPVectorTy(),
          "FPToSI source must be FP or FP vector", &I);
  Assert1(DestTy->isIntOrIntVectorTy(),
          "FPToSI result must be integer or integer vector", &I);

  if (SrcVec && DstVec)
    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
            cast<VectorType>(DestTy)->getNumElements(),
            "FPToSI source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  Assert1(SrcTy->isPointerTy(), "PtrToInt source must be pointer", &I);
  Assert1(DestTy->isIntegerTy(), "PtrToInt result must be integral", &I);

  visitInstruction(I);
}

void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  Assert1(SrcTy->isIntegerTy(), "IntToPtr source must be an integral", &I);
  Assert1(DestTy->isPointerTy(), "IntToPtr result must be a pointer",&I);

  visitInstruction(I);
}

void Verifier::visitBitCastInst(BitCastInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();

  // BitCast implies a no-op cast of type only. No bits change.
  // However, you can't cast pointers to anything but pointers.
  Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(),
          "Bitcast requires both operands to be pointer or neither", &I);
  Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);

  // Disallow aggregates.
  Assert1(!SrcTy->isAggregateType(),
          "Bitcast operand must not be aggregate", &I);
  Assert1(!DestTy->isAggregateType(),
          "Bitcast type must not be aggregate", &I);

  visitInstruction(I);
}

/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
  // Ensure that the PHI nodes are all grouped together at the top of the block.
  // This can be tested by checking whether the instruction before this is
  // either nonexistent (because this is begin()) or is a PHI node.  If not,
  // then there is some other instruction before a PHI.
  Assert2(&PN == &PN.getParent()->front() || 
          isa<PHINode>(--BasicBlock::iterator(&PN)),
          "PHI nodes not grouped at top of basic block!",
          &PN, PN.getParent());

  // Check that all of the values of the PHI node have the same type as the
  // result, and that the incoming blocks are really basic blocks.
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
            "PHI node operands are not the same type as the result!", &PN);
    Assert1(isa<BasicBlock>(PN.getOperand(
                PHINode::getOperandNumForIncomingBlock(i))),
            "PHI node incoming block is not a BasicBlock!", &PN);
  }

  // All other PHI node constraints are checked in the visitBasicBlock method.

  visitInstruction(PN);
}

void Verifier::VerifyCallSite(CallSite CS) {
  Instruction *I = CS.getInstruction();

  Assert1(CS.getCalledValue()->getType()->isPointerTy(),
          "Called function must be a pointer!", I);
  const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());

  Assert1(FPTy->getElementType()->isFunctionTy(),
          "Called function is not pointer to function type!", I);
  const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());

  // Verify that the correct number of arguments are being passed
  if (FTy->isVarArg())
    Assert1(CS.arg_size() >= FTy->getNumParams(),
            "Called function requires more parameters than were provided!",I);
  else
    Assert1(CS.arg_size() == FTy->getNumParams(),
            "Incorrect number of arguments passed to called function!", I);

  // Verify that all arguments to the call match the function type.
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
    Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
            "Call parameter type does not match function signature!",
            CS.getArgument(i), FTy->getParamType(i), I);

  const AttrListPtr &Attrs = CS.getAttributes();

  Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
          "Attributes after last parameter!", I);

  // Verify call attributes.
  VerifyFunctionAttrs(FTy, Attrs, I);

  if (FTy->isVarArg())
    // Check attributes on the varargs part.
    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
      Attributes Attr = Attrs.getParamAttributes(Idx);

      VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);

      Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
      Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
              " cannot be used for vararg call arguments!", I);
    }

  // Verify that there's no metadata unless it's a direct call to an intrinsic.
  if (!CS.getCalledFunction() ||
      !CS.getCalledFunction()->getName().startswith("llvm.")) {
    for (FunctionType::param_iterator PI = FTy->param_begin(),
           PE = FTy->param_end(); PI != PE; ++PI)
      Assert1(!PI->get()->isMetadataTy(),
              "Function has metadata parameter but isn't an intrinsic", I);
  }

  visitInstruction(*I);
}

void Verifier::visitCallInst(CallInst &CI) {
  VerifyCallSite(&CI);

  if (Function *F = CI.getCalledFunction())
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
      visitIntrinsicFunctionCall(ID, CI);
}

void Verifier::visitInvokeInst(InvokeInst &II) {
  VerifyCallSite(&II);
  visitTerminatorInst(II);
}

/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
  Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
          "Both operands to a binary operator are not of the same type!", &B);

  switch (B.getOpcode()) {
  // Check that integer arithmetic operators are only used with
  // integral operands.
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::SDiv:
  case Instruction::UDiv:
  case Instruction::SRem:
  case Instruction::URem:
    Assert1(B.getType()->isIntOrIntVectorTy(),
            "Integer arithmetic operators only work with integral types!", &B);
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Integer arithmetic operators must have same type "
            "for operands and result!", &B);
    break;
  // Check that floating-point arithmetic operators are only used with
  // floating-point operands.
  case Instruction::FAdd:
  case Instruction::FSub:
  case Instruction::FMul:
  case Instruction::FDiv:
  case Instruction::FRem:
    Assert1(B.getType()->isFPOrFPVectorTy(),
            "Floating-point arithmetic operators only work with "
            "floating-point types!", &B);
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Floating-point arithmetic operators must have same type "
            "for operands and result!", &B);
    break;
  // Check that logical operators are only used with integral operands.
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    Assert1(B.getType()->isIntOrIntVectorTy(),
            "Logical operators only work with integral types!", &B);
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Logical operators must have same type for operands and result!",
            &B);
    break;
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    Assert1(B.getType()->isIntOrIntVectorTy(),
            "Shifts only work with integral types!", &B);
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Shift return type must be same as operands!", &B);
    break;
  default:
    llvm_unreachable("Unknown BinaryOperator opcode!");
  }

  visitInstruction(B);
}

void Verifier::visitICmpInst(ICmpInst &IC) {
  // Check that the operands are the same type
  const Type *Op0Ty = IC.getOperand(0)->getType();
  const Type *Op1Ty = IC.getOperand(1)->getType();
  Assert1(Op0Ty == Op1Ty,
          "Both operands to ICmp instruction are not of the same type!", &IC);
  // Check that the operands are the right type
  Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPointerTy(),
          "Invalid operand types for ICmp instruction", &IC);
  // Check that the predicate is valid.
  Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
          IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
          "Invalid predicate in ICmp instruction!", &IC);

  visitInstruction(IC);
}

void Verifier::visitFCmpInst(FCmpInst &FC) {
  // Check that the operands are the same type
  const Type *Op0Ty = FC.getOperand(0)->getType();
  const Type *Op1Ty = FC.getOperand(1)->getType();
  Assert1(Op0Ty == Op1Ty,
          "Both operands to FCmp instruction are not of the same type!", &FC);
  // Check that the operands are the right type
  Assert1(Op0Ty->isFPOrFPVectorTy(),
          "Invalid operand types for FCmp instruction", &FC);
  // Check that the predicate is valid.
  Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
          FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
          "Invalid predicate in FCmp instruction!", &FC);

  visitInstruction(FC);
}

void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
  Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
                                              EI.getOperand(1)),
          "Invalid extractelement operands!", &EI);
  visitInstruction(EI);
}

void Verifier::visitInsertElementInst(InsertElementInst &IE) {
  Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
                                             IE.getOperand(1),
                                             IE.getOperand(2)),
          "Invalid insertelement operands!", &IE);
  visitInstruction(IE);
}

void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
  Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
                                             SV.getOperand(2)),
          "Invalid shufflevector operands!", &SV);
  visitInstruction(SV);
}

void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
  const Type *ElTy =
    GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
                                      Idxs.begin(), Idxs.end());
  Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
  Assert2(GEP.getType()->isPointerTy() &&
          cast<PointerType>(GEP.getType())->getElementType() == ElTy,
          "GEP is not of right type for indices!", &GEP, ElTy);
  visitInstruction(GEP);
}

void Verifier::visitLoadInst(LoadInst &LI) {
  const PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
  Assert1(PTy, "Load operand must be a pointer.", &LI);
  const Type *ElTy = PTy->getElementType();
  Assert2(ElTy == LI.getType(),
          "Load result type does not match pointer operand type!", &LI, ElTy);
  visitInstruction(LI);
}

void Verifier::visitStoreInst(StoreInst &SI) {
  const PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
  Assert1(PTy, "Store operand must be a pointer.", &SI);
  const Type *ElTy = PTy->getElementType();
  Assert2(ElTy == SI.getOperand(0)->getType(),
          "Stored value type does not match pointer operand type!",
          &SI, ElTy);
  visitInstruction(SI);
}

void Verifier::visitAllocaInst(AllocaInst &AI) {
  const PointerType *PTy = AI.getType();
  Assert1(PTy->getAddressSpace() == 0, 
          "Allocation instruction pointer not in the generic address space!",
          &AI);
  Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
          &AI);
  Assert1(AI.getArraySize()->getType()->isIntegerTy(),
          "Alloca array size must have integer type", &AI);
  visitInstruction(AI);
}

void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
  Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
                                           EVI.idx_begin(), EVI.idx_end()) ==
          EVI.getType(),
          "Invalid ExtractValueInst operands!", &EVI);
  
  visitInstruction(EVI);
}

void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
  Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
                                           IVI.idx_begin(), IVI.idx_end()) ==
          IVI.getOperand(1)->getType(),
          "Invalid InsertValueInst operands!", &IVI);
  
  visitInstruction(IVI);
}

/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
  BasicBlock *BB = I.getParent();
  Assert1(BB, "Instruction not embedded in basic block!", &I);

  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
         UI != UE; ++UI)
      Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
              "Only PHI nodes may reference their own value!", &I);
  }

  // Check that void typed values don't have names
  Assert1(!I.getType()->isVoidTy() || !I.hasName(),
          "Instruction has a name, but provides a void value!", &I);

  // Check that the return value of the instruction is either void or a legal
  // value type.
  Assert1(I.getType()->isVoidTy() || 
          I.getType()->isFirstClassType(),
          "Instruction returns a non-scalar type!", &I);

  // Check that the instruction doesn't produce metadata. Calls are already
  // checked against the callee type.
  Assert1(!I.getType()->isMetadataTy() ||
          isa<CallInst>(I) || isa<InvokeInst>(I),
          "Invalid use of metadata!", &I);

  // Check that all uses of the instruction, if they are instructions
  // themselves, actually have parent basic blocks.  If the use is not an
  // instruction, it is an error!
  for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
       UI != UE; ++UI) {
    if (Instruction *Used = dyn_cast<Instruction>(*UI))
      Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
              " embedded in a basic block!", &I, Used);
    else {
      CheckFailed("Use of instruction is not an instruction!", *UI);
      return;
    }
  }

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);

    // Check to make sure that only first-class-values are operands to
    // instructions.
    if (!I.getOperand(i)->getType()->isFirstClassType()) {
      Assert1(0, "Instruction operands must be first-class values!", &I);
    }

    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
      // Check to make sure that the "address of" an intrinsic function is never
      // taken.
      Assert1(!F->isIntrinsic() || (i + 1 == e && isa<CallInst>(I)),
              "Cannot take the address of an intrinsic!", &I);
      Assert1(F->getParent() == Mod, "Referencing function in another module!",
              &I);
    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
      Assert1(OpBB->getParent() == BB->getParent(),
              "Referring to a basic block in another function!", &I);
    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
      Assert1(OpArg->getParent() == BB->getParent(),
              "Referring to an argument in another function!", &I);
    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
      Assert1(GV->getParent() == Mod, "Referencing global in another module!",
              &I);
    } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
      BasicBlock *OpBlock = Op->getParent();

      // Check that a definition dominates all of its uses.
      if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
        // Invoke results are only usable in the normal destination, not in the
        // exceptional destination.
        BasicBlock *NormalDest = II->getNormalDest();

        Assert2(NormalDest != II->getUnwindDest(),
                "No uses of invoke possible due to dominance structure!",
                Op, &I);

        // PHI nodes differ from other nodes because they actually "use" the
        // value in the predecessor basic blocks they correspond to.
        BasicBlock *UseBlock = BB;
        if (isa<PHINode>(I))
          UseBlock = dyn_cast<BasicBlock>(I.getOperand(i+1));
        Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB",
                Op, &I);

        if (isa<PHINode>(I) && UseBlock == OpBlock) {
          // Special case of a phi node in the normal destination or the unwind
          // destination.
          Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock),
                  "Invoke result not available in the unwind destination!",
                  Op, &I);
        } else {
          Assert2(DT->dominates(NormalDest, UseBlock) ||
                  !DT->isReachableFromEntry(UseBlock),
                  "Invoke result does not dominate all uses!", Op, &I);

          // If the normal successor of an invoke instruction has multiple
          // predecessors, then the normal edge from the invoke is critical,
          // so the invoke value can only be live if the destination block
          // dominates all of it's predecessors (other than the invoke).
          if (!NormalDest->getSinglePredecessor() &&
              DT->isReachableFromEntry(UseBlock))
            // If it is used by something non-phi, then the other case is that
            // 'NormalDest' dominates all of its predecessors other than the
            // invoke.  In this case, the invoke value can still be used.
            for (pred_iterator PI = pred_begin(NormalDest),
                 E = pred_end(NormalDest); PI != E; ++PI)
              if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) &&
                  DT->isReachableFromEntry(*PI)) {
                CheckFailed("Invoke result does not dominate all uses!", Op,&I);
                return;
              }
        }
      } else if (isa<PHINode>(I)) {
        // PHI nodes are more difficult than other nodes because they actually
        // "use" the value in the predecessor basic blocks they correspond to.
        BasicBlock *PredBB = dyn_cast<BasicBlock>(I.getOperand(i+1));
        Assert2(PredBB && (DT->dominates(OpBlock, PredBB) ||
                           !DT->isReachableFromEntry(PredBB)),
                "Instruction does not dominate all uses!", Op, &I);
      } else {
        if (OpBlock == BB) {
          // If they are in the same basic block, make sure that the definition
          // comes before the use.
          Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB),
                  "Instruction does not dominate all uses!", Op, &I);
        }

        // Definition must dominate use unless use is unreachable!
        Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
                !DT->isReachableFromEntry(BB),
                "Instruction does not dominate all uses!", Op, &I);
      }
    } else if (isa<InlineAsm>(I.getOperand(i))) {
      Assert1((i + 1 == e && isa<CallInst>(I)) ||
              (i + 3 == e && isa<InvokeInst>(I)),
              "Cannot take the address of an inline asm!", &I);
    }
  }
  InstsInThisBlock.insert(&I);

  VerifyType(I.getType());
}

/// VerifyType - Verify that a type is well formed.
///
void Verifier::VerifyType(const Type *Ty) {
  if (!Types.insert(Ty)) return;

  Assert1(Context == &Ty->getContext(),
          "Type context does not match Module context!", Ty);

  switch (Ty->getTypeID()) {
  case Type::FunctionTyID: {
    const FunctionType *FTy = cast<FunctionType>(Ty);

    const Type *RetTy = FTy->getReturnType();
    Assert2(FunctionType::isValidReturnType(RetTy),
            "Function type with invalid return type", RetTy, FTy);
    VerifyType(RetTy);

    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
      const Type *ElTy = FTy->getParamType(i);
      Assert2(FunctionType::isValidArgumentType(ElTy),
              "Function type with invalid parameter type", ElTy, FTy);
      VerifyType(ElTy);
    }
    break;
  }
  case Type::StructTyID: {
    const StructType *STy = cast<StructType>(Ty);
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
      const Type *ElTy = STy->getElementType(i);
      Assert2(StructType::isValidElementType(ElTy),
              "Structure type with invalid element type", ElTy, STy);
      VerifyType(ElTy);
    }
    break;
  }
  case Type::ArrayTyID: {
    const ArrayType *ATy = cast<ArrayType>(Ty);
    Assert1(ArrayType::isValidElementType(ATy->getElementType()),
            "Array type with invalid element type", ATy);
    VerifyType(ATy->getElementType());
    break;
  }
  case Type::PointerTyID: {
    const PointerType *PTy = cast<PointerType>(Ty);
    Assert1(PointerType::isValidElementType(PTy->getElementType()),
            "Pointer type with invalid element type", PTy);
    VerifyType(PTy->getElementType());
    break;
  }
  case Type::VectorTyID: {
    const VectorType *VTy = cast<VectorType>(Ty);
    Assert1(VectorType::isValidElementType(VTy->getElementType()),
            "Vector type with invalid element type", VTy);
    VerifyType(VTy->getElementType());
    break;
  }
  default:
    break;
  }
}

// Flags used by TableGen to mark intrinsic parameters with the
// LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
static const unsigned ExtendedElementVectorType = 0x40000000;
static const unsigned TruncatedElementVectorType = 0x20000000;

/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
///
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
  Function *IF = CI.getCalledFunction();
  Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
          IF);

#define GET_INTRINSIC_VERIFIER
#include "llvm/Intrinsics.gen"
#undef GET_INTRINSIC_VERIFIER

  // If the intrinsic takes MDNode arguments, verify that they are either global
  // or are local to *this* function.
  for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
    if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
      visitMDNode(*MD, CI.getParent()->getParent());

  switch (ID) {
  default:
    break;
  case Intrinsic::dbg_declare: {  // llvm.dbg.declare
    Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
                "invalid llvm.dbg.declare intrinsic call 1", &CI);
    MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
    Assert1(MD->getNumOperands() == 1,
                "invalid llvm.dbg.declare intrinsic call 2", &CI);
  } break;
  case Intrinsic::memcpy:
  case Intrinsic::memmove:
  case Intrinsic::memset:
    Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
            "alignment argument of memory intrinsics must be a constant int",
            &CI);
    break;
  case Intrinsic::gcroot:
  case Intrinsic::gcwrite:
  case Intrinsic::gcread:
    if (ID == Intrinsic::gcroot) {
      AllocaInst *AI =
        dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
      Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
      Assert1(isa<Constant>(CI.getArgOperand(1)),
              "llvm.gcroot parameter #2 must be a constant.", &CI);
      if (!AI->getType()->getElementType()->isPointerTy()) {
        Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
                "llvm.gcroot parameter #1 must either be a pointer alloca, "
                "or argument #2 must be a non-null constant.", &CI);
      }
    }

    Assert1(CI.getParent()->getParent()->hasGC(),
            "Enclosing function does not use GC.", &CI);
    break;
  case Intrinsic::init_trampoline:
    Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
            "llvm.init_trampoline parameter #2 must resolve to a function.",
            &CI);
    break;
  case Intrinsic::prefetch:
    Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
            isa<ConstantInt>(CI.getArgOperand(2)) &&
            cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
            cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
            "invalid arguments to llvm.prefetch",
            &CI);
    break;
  case Intrinsic::stackprotector:
    Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
            "llvm.stackprotector parameter #2 must resolve to an alloca.",
            &CI);
    break;
  case Intrinsic::lifetime_start:
  case Intrinsic::lifetime_end:
  case Intrinsic::invariant_start:
    Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
            "size argument of memory use markers must be a constant integer",
            &CI);
    break;
  case Intrinsic::invariant_end:
    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
            "llvm.invariant.end parameter #2 must be a constant integer", &CI);
    break;
  }
}

/// Produce a string to identify an intrinsic parameter or return value.
/// The ArgNo value numbers the return values from 0 to NumRets-1 and the
/// parameters beginning with NumRets.
///
static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
  if (ArgNo >= NumRets)
    return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
  if (NumRets == 1)
    return "Intrinsic result type";
  return "Intrinsic result type #" + utostr(ArgNo);
}

bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
                                int VT, unsigned ArgNo, std::string &Suffix) {
  const FunctionType *FTy = F->getFunctionType();

  unsigned NumElts = 0;
  const Type *EltTy = Ty;
  const VectorType *VTy = dyn_cast<VectorType>(Ty);
  if (VTy) {
    EltTy = VTy->getElementType();
    NumElts = VTy->getNumElements();
  }

  const Type *RetTy = FTy->getReturnType();
  const StructType *ST = dyn_cast<StructType>(RetTy);
  unsigned NumRetVals;
  if (RetTy->isVoidTy())
    NumRetVals = 0;
  else if (ST)
    NumRetVals = ST->getNumElements();
  else
    NumRetVals = 1;

  if (VT < 0) {
    int Match = ~VT;

    // Check flags that indicate a type that is an integral vector type with
    // elements that are larger or smaller than the elements of the matched
    // type.
    if ((Match & (ExtendedElementVectorType |
                  TruncatedElementVectorType)) != 0) {
      const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
      if (!VTy || !IEltTy) {
        CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
                    "an integral vector type.", F);
        return false;
      }
      // Adjust the current Ty (in the opposite direction) rather than
      // the type being matched against.
      if ((Match & ExtendedElementVectorType) != 0) {
        if ((IEltTy->getBitWidth() & 1) != 0) {
          CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " vector "
                      "element bit-width is odd.", F);
          return false;
        }
        Ty = VectorType::getTruncatedElementVectorType(VTy);
      } else
        Ty = VectorType::getExtendedElementVectorType(VTy);
      Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
    }

    if (Match <= static_cast<int>(NumRetVals - 1)) {
      if (ST)
        RetTy = ST->getElementType(Match);

      if (Ty != RetTy) {
        CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
                    "match return type.", F);
        return false;
      }
    } else {
      if (Ty != FTy->getParamType(Match - NumRetVals)) {
        CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
                    "match parameter %" + utostr(Match - NumRetVals) + ".", F);
        return false;
      }
    }
  } else if (VT == MVT::iAny) {
    if (!EltTy->isIntegerTy()) {
      CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
                  "an integer type.", F);
      return false;
    }

    unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
    Suffix += ".";

    if (EltTy != Ty)
      Suffix += "v" + utostr(NumElts);

    Suffix += "i" + utostr(GotBits);

    // Check some constraints on various intrinsics.
    switch (ID) {
    default: break; // Not everything needs to be checked.
    case Intrinsic::bswap:
      if (GotBits < 16 || GotBits % 16 != 0) {
        CheckFailed("Intrinsic requires even byte width argument", F);
        return false;
      }
      break;
    }
  } else if (VT == MVT::fAny) {
    if (!EltTy->isFloatingPointTy()) {
      CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
                  "a floating-point type.", F);
      return false;
    }

    Suffix += ".";

    if (EltTy != Ty)
      Suffix += "v" + utostr(NumElts);

    Suffix += EVT::getEVT(EltTy).getEVTString();
  } else if (VT == MVT::vAny) {
    if (!VTy) {
      CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a vector type.",
                  F);
      return false;
    }
    Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString();
  } else if (VT == MVT::iPTR) {
    if (!Ty->isPointerTy()) {
      CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
                  "pointer and a pointer is required.", F);
      return false;
    }
  } else if (VT == MVT::iPTRAny) {
    // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
    // and iPTR. In the verifier, we can not distinguish which case we have so
    // allow either case to be legal.
    if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
      EVT PointeeVT = EVT::getEVT(PTyp->getElementType(), true);
      if (PointeeVT == MVT::Other) {
        CheckFailed("Intrinsic has pointer to complex type.");
        return false;
      }
      Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
        PointeeVT.getEVTString();
    } else {
      CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
                  "pointer and a pointer is required.", F);
      return false;
    }
  } else if (EVT((MVT::SimpleValueType)VT).isVector()) {
    EVT VVT = EVT((MVT::SimpleValueType)VT);

    // If this is a vector argument, verify the number and type of elements.
    if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) {
      CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
      return false;
    }

    if (VVT.getVectorNumElements() != NumElts) {
      CheckFailed("Intrinsic prototype has incorrect number of "
                  "vector elements!", F);
      return false;
    }
  } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) != 
             EltTy) {
    CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is wrong!", F);
    return false;
  } else if (EltTy != Ty) {
    CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is a vector "
                "and a scalar is required.", F);
    return false;
  }

  return true;
}

/// VerifyIntrinsicPrototype - TableGen emits calls to this function into
/// Intrinsics.gen.  This implements a little state machine that verifies the
/// prototype of intrinsics.
void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
                                        unsigned NumRetVals,
                                        unsigned NumParams, ...) {
  va_list VA;
  va_start(VA, NumParams);
  const FunctionType *FTy = F->getFunctionType();

  // For overloaded intrinsics, the Suffix of the function name must match the
  // types of the arguments. This variable keeps track of the expected
  // suffix, to be checked at the end.
  std::string Suffix;

  if (FTy->getNumParams() + FTy->isVarArg() != NumParams) {
    CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
    return;
  }

  const Type *Ty = FTy->getReturnType();
  const StructType *ST = dyn_cast<StructType>(Ty);

  if (NumRetVals == 0 && !Ty->isVoidTy()) {
    CheckFailed("Intrinsic should return void", F);
    return;
  }
  
  // Verify the return types.
  if (ST && ST->getNumElements() != NumRetVals) {
    CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
    return;
  }
  
  for (unsigned ArgNo = 0; ArgNo != NumRetVals; ++ArgNo) {
    int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.

    if (ST) Ty = ST->getElementType(ArgNo);
    if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
      break;
  }

  // Verify the parameter types.
  for (unsigned ArgNo = 0; ArgNo != NumParams; ++ArgNo) {
    int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.

    if (VT == MVT::isVoid && ArgNo > 0) {
      if (!FTy->isVarArg())
        CheckFailed("Intrinsic prototype has no '...'!", F);
      break;
    }

    if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT,
                          ArgNo + NumRetVals, Suffix))
      break;
  }

  va_end(VA);

  // For intrinsics without pointer arguments, if we computed a Suffix then the
  // intrinsic is overloaded and we need to make sure that the name of the
  // function is correct. We add the suffix to the name of the intrinsic and
  // compare against the given function name. If they are not the same, the
  // function name is invalid. This ensures that overloading of intrinsics
  // uses a sane and consistent naming convention.  Note that intrinsics with
  // pointer argument may or may not be overloaded so we will check assuming it
  // has a suffix and not.
  if (!Suffix.empty()) {
    std::string Name(Intrinsic::getName(ID));
    if (Name + Suffix != F->getName()) {
      CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
                  F->getName().substr(Name.length()) + "'. It should be '" +
                  Suffix + "'", F);
    }
  }

  // Check parameter attributes.
  Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
          "Intrinsic has wrong parameter attributes!", F);
}


//===----------------------------------------------------------------------===//
//  Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//

FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
  return new Verifier(action);
}


/// verifyFunction - Check a function for errors, printing messages on stderr.
/// Return true if the function is corrupt.
///
bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
  Function &F = const_cast<Function&>(f);
  assert(!F.isDeclaration() && "Cannot verify external functions");

  FunctionPassManager FPM(F.getParent());
  Verifier *V = new Verifier(action);
  FPM.add(V);
  FPM.run(F);
  return V->Broken;
}

/// verifyModule - Check a module for errors, printing messages on stderr.
/// Return true if the module is corrupt.
///
bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
                        std::string *ErrorInfo) {
  PassManager PM;
  Verifier *V = new Verifier(action);
  PM.add(V);
  PM.run(const_cast<Module&>(M));

  if (ErrorInfo && V->Broken)
    *ErrorInfo = V->MessagesStr.str();
  return V->Broken;
}