arm.c   [plain text]


#include <stdlib.h>
#include <string.h>
#include <mach-o/arm/reloc.h>
#include "as.h"
#include "flonum.h"
#include "md.h"
#include "obstack.h"
#include "xmalloc.h"
#include "symbols.h"
#include "messages.h"
#include "atof-ieee.h"
#include "input-scrub.h"
#include "sections.h"

#include "opcode/arm.h"

#define ISALNUM(xXx) (isalnum(xXx))

/*
 * These are the default cputype and cpusubtype for the arm architecture.
 */
const cpu_type_t md_cputype = CPU_TYPE_ARM;
cpu_subtype_t md_cpusubtype = CPU_SUBTYPE_ARM_V4T;

/* This is the byte sex for the arm architecture */
const enum byte_sex md_target_byte_sex = LITTLE_ENDIAN_BYTE_SEX;

/* These characters start a comment anywhere on the line */
const char md_comment_chars[] = "@";

/* These characters only start a comment at the beginning of a line */
const char md_line_comment_chars[] = "#";

/*
 * These characters can be used to separate mantissa decimal digits from 
 * exponent decimal digits in floating point numbers.
 */
const char md_EXP_CHARS[] = "eE";

/*
 * The characters after a leading 0 that means this number is a floating point
 * constant as in 0f123.456 or 0d1.234E-12 (see md_EXP_CHARS above).
 */
const char md_FLT_CHARS[] = "dDfF";

/* HACKS for bfd_* and BFD_RELOC_* These would come from bfd/reloc.c */
typedef int bfd_reloc_code_real_type;
typedef int bfd_boolean;
#define BFD_RELOC_UNUSED	0
enum {
  BFD_RELOC_ARM_IMMEDIATE = NO_RELOC+1,
  BFD_RELOC_ARM_ADRL_IMMEDIATE,
  BFD_RELOC_ARM_OFFSET_IMM,
  BFD_RELOC_ARM_SHIFT_IMM,
  BFD_RELOC_ARM_MULTI,
  BFD_RELOC_ARM_SMI,
  BFD_RELOC_ARM_SWI,
  BFD_RELOC_ARM_LITERAL,
  BFD_RELOC_ARM_OFFSET_IMM8,
  BFD_RELOC_ARM_HWLITERAL,
  BFD_RELOC_ARM_THUMB_ADD,
  BFD_RELOC_ARM_THUMB_IMM,
  BFD_RELOC_ARM_THUMB_SHIFT,
  BFD_RELOC_ARM_THUMB_OFFSET,
  BFD_RELOC_THUMB_PCREL_BRANCH9,
  BFD_RELOC_THUMB_PCREL_BRANCH12,
  BFD_RELOC_THUMB_PCREL_BLX,
  BFD_RELOC_ARM_PCREL_BLX,
  BFD_RELOC_ARM_CP_OFF_IMM,
  BFD_RELOC_ARM_CP_OFF_IMM_S2,
  BFD_RELOC_THUMB_PCREL_BRANCH23 = ARM_THUMB_RELOC_BR22,
  BFD_RELOC_ARM_PCREL_BRANCH = ARM_RELOC_BR24
};

/* HACKS for the change in gas/expr.h to change from X_seg to X_op (expr type)*/
#define X_op X_seg
#define X_op_symbol X_add_symbol
typedef enum {
  /* An illegal expression.  */
  O_illegal = SEG_NONE,
} operatorT;

/* HACKS for as_tsktsk() warning routine */
#define as_tsktsk as_warn

/* STUFF FROM gas/asintl.h */
# define _(String) (String)
# define N_(String) (String)

/* STUFF FROM gas/as.h */
#define COMMON
COMMON subsegT now_subseg;
COMMON segT now_seg;

/* STUFF FROM gas/config/tc-arm.h */
/* FROM line 109 */
#define ARM_FLAG_THUMB 		(1 << 0)	/* The symbol is a Thumb symbol rather than an Arm symbol.  */
#define ARM_FLAG_INTERWORK 	(1 << 1)	/* The symbol is attached to code that supports interworking.  */
#define THUMB_FLAG_FUNC		(1 << 2)	/* The symbol is attached to the start of a Thumb function.  */

#define ARM_GET_FLAG(s)   	(*symbol_get_tc (s))
#define ARM_SET_FLAG(s,v) 	(*symbol_get_tc (s) |= (v))
#define ARM_RESET_FLAG(s,v) 	(*symbol_get_tc (s) &= ~(v))

#define ARM_IS_THUMB(s)		(ARM_GET_FLAG (s) & ARM_FLAG_THUMB)
#define ARM_IS_INTERWORK(s)	(ARM_GET_FLAG (s) & ARM_FLAG_INTERWORK)
#define THUMB_IS_FUNC(s)	(ARM_GET_FLAG (s) & THUMB_FLAG_FUNC)

#define ARM_SET_THUMB(s,t)      ((t) ? ARM_SET_FLAG (s, ARM_FLAG_THUMB)     : ARM_RESET_FLAG (s, ARM_FLAG_THUMB))
#define ARM_SET_INTERWORK(s,t)  ((t) ? ARM_SET_FLAG (s, ARM_FLAG_INTERWORK) : ARM_RESET_FLAG (s, ARM_FLAG_INTERWORK))
#define THUMB_SET_FUNC(s,t)     ((t) ? ARM_SET_FLAG (s, THUMB_FLAG_FUNC)    : ARM_RESET_FLAG (s, THUMB_FLAG_FUNC))

/* STUFF FROM gas/config/tc-arm.c */
/* line 30 is #include "safe-ctype.h" to avoid this these HACKS are used */
#include <ctype.h>
#define ISALPHA(c) isalpha(c)
#define ISDIGIT(c) isdigit(c)
#define TOUPPER(c) toupper(c)

/* FROM line 137 */
#define streq(a, b)           (strcmp (a, b) == 0)
#define skip_whitespace(str)  while (*(str) == ' ') ++(str)

/* On darwin, default to arm 920 for now.  */
static unsigned long cpu_variant /* HACK */ = ARM_ARCH_V4T | FPU_ARCH_FPA;

/* FROM line 190 */
/* Prefix characters that indicate the start of an immediate
   value.  */
#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')

/* FROM line 202 */
/* 0: assemble for ARM,
   1: assemble for Thumb,
   2: assemble for Thumb even though target CPU does not support thumb
      instructions.  */
static int thumb_mode = 0;

typedef struct arm_fix
{  
  int thumb_mode;
} arm_fix_data;

struct arm_it
{
  const char *  error;
  unsigned long instruction;
  int           size;
  struct
  {
    bfd_reloc_code_real_type type;
    expressionS              exp;
    int                      pc_rel;
    /* HACK_GUESS, force relocation entry to support scatteed loading */
    int                      pcrel_reloc;
  } reloc;
};

struct arm_it inst;

enum asm_shift_index
{
  SHIFT_LSL = 0,
  SHIFT_LSR,
  SHIFT_ASR,
  SHIFT_ROR,
  SHIFT_RRX
};

struct asm_shift_properties
{
  enum asm_shift_index index;
  unsigned long        bit_field;
  unsigned int         allows_0  : 1;
  unsigned int         allows_32 : 1;
};

static const struct asm_shift_properties shift_properties [] =
{
  { SHIFT_LSL, 0,    1, 0},
  { SHIFT_LSR, 0x20, 0, 1},
  { SHIFT_ASR, 0x40, 0, 1},
  { SHIFT_ROR, 0x60, 0, 0},
  { SHIFT_RRX, 0x60, 0, 0}
};

struct asm_shift_name
{
  const char *                        name;
  const struct asm_shift_properties * properties;
};

static const struct asm_shift_name shift_names [] =
{
  { "asl", shift_properties + SHIFT_LSL },
  { "lsl", shift_properties + SHIFT_LSL },
  { "lsr", shift_properties + SHIFT_LSR },
  { "asr", shift_properties + SHIFT_ASR },
  { "ror", shift_properties + SHIFT_ROR },
  { "rrx", shift_properties + SHIFT_RRX },
  { "ASL", shift_properties + SHIFT_LSL },
  { "LSL", shift_properties + SHIFT_LSL },
  { "LSR", shift_properties + SHIFT_LSR },
  { "ASR", shift_properties + SHIFT_ASR },
  { "ROR", shift_properties + SHIFT_ROR },
  { "RRX", shift_properties + SHIFT_RRX }
};

/* Any kind of shift is accepted.  */
#define NO_SHIFT_RESTRICT 1
/* The shift operand must be an immediate value, not a register.  */
#define SHIFT_IMMEDIATE	  0
/* The shift must be LSL or ASR and the operand must be an immediate.  */
#define SHIFT_LSL_OR_ASR_IMMEDIATE 2
/* The shift must be ASR and the operand must be an immediate.  */
#define SHIFT_ASR_IMMEDIATE 3
/* The shift must be LSL and the operand must be an immediate.  */
#define SHIFT_LSL_IMMEDIATE 4

/* FROM line 287 */
#define NUM_FLOAT_VALS 8

const char * fp_const[] =
{
  "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
};

/* Number of littlenums required to hold an extended precision number.  */
#define MAX_LITTLENUMS 6

LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];

#define FAIL	(-1)
#define SUCCESS (0)

/* Whether a Co-processor load/store operation accepts write-back forms.  */
#define CP_WB_OK 1
#define CP_NO_WB 0

#define SUFF_S 1
#define SUFF_D 2
#define SUFF_E 3
#define SUFF_P 4

#define CP_T_X   0x00008000
#define CP_T_Y   0x00400000
#define CP_T_Pre 0x01000000
#define CP_T_UD  0x00800000
#define CP_T_WB  0x00200000

#define CONDS_BIT        0x00100000
#define LOAD_BIT         0x00100000

#define DOUBLE_LOAD_FLAG 0x00000001

/* FROM line 322 */
struct asm_cond
{
  const char *  template;
  unsigned long value;
};

#define COND_ALWAYS 0xe0000000
#define COND_MASK   0xf0000000

static const struct asm_cond conds[] =
{
  {"eq", 0x00000000},
  {"ne", 0x10000000},
  {"cs", 0x20000000}, {"hs", 0x20000000},
  {"cc", 0x30000000}, {"ul", 0x30000000}, {"lo", 0x30000000},
  {"mi", 0x40000000},
  {"pl", 0x50000000},
  {"vs", 0x60000000},
  {"vc", 0x70000000},
  {"hi", 0x80000000},
  {"ls", 0x90000000},
  {"ge", 0xa0000000},
  {"lt", 0xb0000000},
  {"gt", 0xc0000000},
  {"le", 0xd0000000},
  {"al", 0xe0000000},
  {"nv", 0xf0000000}
};

struct asm_psr
{
  const char *template;
  bfd_boolean cpsr;
  unsigned long field;
};

/* The bit that distinguishes CPSR and SPSR.  */
#define SPSR_BIT   (1 << 22)

/* How many bits to shift the PSR_xxx bits up by.  */
#define PSR_SHIFT  16

#define PSR_c   (1 << 0)
#define PSR_x   (1 << 1)
#define PSR_s   (1 << 2)
#define PSR_f   (1 << 3)

static const struct asm_psr psrs[] =
{
  {"CPSR",	TRUE,  PSR_c | PSR_f},
  {"CPSR_all",	TRUE,  PSR_c | PSR_f},
  {"SPSR",	FALSE, PSR_c | PSR_f},
  {"SPSR_all",	FALSE, PSR_c | PSR_f},
  {"CPSR_flg",	TRUE,  PSR_f},
  {"CPSR_f",    TRUE,  PSR_f},
  {"SPSR_flg",	FALSE, PSR_f},
  {"SPSR_f",    FALSE, PSR_f},
  {"CPSR_c",	TRUE,  PSR_c},
  {"CPSR_ctl",	TRUE,  PSR_c},
  {"SPSR_c",	FALSE, PSR_c},
  {"SPSR_ctl",	FALSE, PSR_c},
  {"CPSR_x",    TRUE,  PSR_x},
  {"CPSR_s",    TRUE,  PSR_s},
  {"SPSR_x",    FALSE, PSR_x},
  {"SPSR_s",    FALSE, PSR_s},
  /* Combinations of flags.  */
  {"CPSR_fs",	TRUE, PSR_f | PSR_s},
  {"CPSR_fx",	TRUE, PSR_f | PSR_x},
  {"CPSR_fc",	TRUE, PSR_f | PSR_c},
  {"CPSR_sf",	TRUE, PSR_s | PSR_f},
  {"CPSR_sx",	TRUE, PSR_s | PSR_x},
  {"CPSR_sc",	TRUE, PSR_s | PSR_c},
  {"CPSR_xf",	TRUE, PSR_x | PSR_f},
  {"CPSR_xs",	TRUE, PSR_x | PSR_s},
  {"CPSR_xc",	TRUE, PSR_x | PSR_c},
  {"CPSR_cf",	TRUE, PSR_c | PSR_f},
  {"CPSR_cs",	TRUE, PSR_c | PSR_s},
  {"CPSR_cx",	TRUE, PSR_c | PSR_x},
  {"CPSR_fsx",	TRUE, PSR_f | PSR_s | PSR_x},
  {"CPSR_fsc",	TRUE, PSR_f | PSR_s | PSR_c},
  {"CPSR_fxs",	TRUE, PSR_f | PSR_x | PSR_s},
  {"CPSR_fxc",	TRUE, PSR_f | PSR_x | PSR_c},
  {"CPSR_fcs",	TRUE, PSR_f | PSR_c | PSR_s},
  {"CPSR_fcx",	TRUE, PSR_f | PSR_c | PSR_x},
  {"CPSR_sfx",	TRUE, PSR_s | PSR_f | PSR_x},
  {"CPSR_sfc",	TRUE, PSR_s | PSR_f | PSR_c},
  {"CPSR_sxf",	TRUE, PSR_s | PSR_x | PSR_f},
  {"CPSR_sxc",	TRUE, PSR_s | PSR_x | PSR_c},
  {"CPSR_scf",	TRUE, PSR_s | PSR_c | PSR_f},
  {"CPSR_scx",	TRUE, PSR_s | PSR_c | PSR_x},
  {"CPSR_xfs",	TRUE, PSR_x | PSR_f | PSR_s},
  {"CPSR_xfc",	TRUE, PSR_x | PSR_f | PSR_c},
  {"CPSR_xsf",	TRUE, PSR_x | PSR_s | PSR_f},
  {"CPSR_xsc",	TRUE, PSR_x | PSR_s | PSR_c},
  {"CPSR_xcf",	TRUE, PSR_x | PSR_c | PSR_f},
  {"CPSR_xcs",	TRUE, PSR_x | PSR_c | PSR_s},
  {"CPSR_cfs",	TRUE, PSR_c | PSR_f | PSR_s},
  {"CPSR_cfx",	TRUE, PSR_c | PSR_f | PSR_x},
  {"CPSR_csf",	TRUE, PSR_c | PSR_s | PSR_f},
  {"CPSR_csx",	TRUE, PSR_c | PSR_s | PSR_x},
  {"CPSR_cxf",	TRUE, PSR_c | PSR_x | PSR_f},
  {"CPSR_cxs",	TRUE, PSR_c | PSR_x | PSR_s},
  {"CPSR_fsxc",	TRUE, PSR_f | PSR_s | PSR_x | PSR_c},
  {"CPSR_fscx",	TRUE, PSR_f | PSR_s | PSR_c | PSR_x},
  {"CPSR_fxsc",	TRUE, PSR_f | PSR_x | PSR_s | PSR_c},
  {"CPSR_fxcs",	TRUE, PSR_f | PSR_x | PSR_c | PSR_s},
  {"CPSR_fcsx",	TRUE, PSR_f | PSR_c | PSR_s | PSR_x},
  {"CPSR_fcxs",	TRUE, PSR_f | PSR_c | PSR_x | PSR_s},
  {"CPSR_sfxc",	TRUE, PSR_s | PSR_f | PSR_x | PSR_c},
  {"CPSR_sfcx",	TRUE, PSR_s | PSR_f | PSR_c | PSR_x},
  {"CPSR_sxfc",	TRUE, PSR_s | PSR_x | PSR_f | PSR_c},
  {"CPSR_sxcf",	TRUE, PSR_s | PSR_x | PSR_c | PSR_f},
  {"CPSR_scfx",	TRUE, PSR_s | PSR_c | PSR_f | PSR_x},
  {"CPSR_scxf",	TRUE, PSR_s | PSR_c | PSR_x | PSR_f},
  {"CPSR_xfsc",	TRUE, PSR_x | PSR_f | PSR_s | PSR_c},
  {"CPSR_xfcs",	TRUE, PSR_x | PSR_f | PSR_c | PSR_s},
  {"CPSR_xsfc",	TRUE, PSR_x | PSR_s | PSR_f | PSR_c},
  {"CPSR_xscf",	TRUE, PSR_x | PSR_s | PSR_c | PSR_f},
  {"CPSR_xcfs",	TRUE, PSR_x | PSR_c | PSR_f | PSR_s},
  {"CPSR_xcsf",	TRUE, PSR_x | PSR_c | PSR_s | PSR_f},
  {"CPSR_cfsx",	TRUE, PSR_c | PSR_f | PSR_s | PSR_x},
  {"CPSR_cfxs",	TRUE, PSR_c | PSR_f | PSR_x | PSR_s},
  {"CPSR_csfx",	TRUE, PSR_c | PSR_s | PSR_f | PSR_x},
  {"CPSR_csxf",	TRUE, PSR_c | PSR_s | PSR_x | PSR_f},
  {"CPSR_cxfs",	TRUE, PSR_c | PSR_x | PSR_f | PSR_s},
  {"CPSR_cxsf",	TRUE, PSR_c | PSR_x | PSR_s | PSR_f},
  {"SPSR_fs",	FALSE, PSR_f | PSR_s},
  {"SPSR_fx",	FALSE, PSR_f | PSR_x},
  {"SPSR_fc",	FALSE, PSR_f | PSR_c},
  {"SPSR_sf",	FALSE, PSR_s | PSR_f},
  {"SPSR_sx",	FALSE, PSR_s | PSR_x},
  {"SPSR_sc",	FALSE, PSR_s | PSR_c},
  {"SPSR_xf",	FALSE, PSR_x | PSR_f},
  {"SPSR_xs",	FALSE, PSR_x | PSR_s},
  {"SPSR_xc",	FALSE, PSR_x | PSR_c},
  {"SPSR_cf",	FALSE, PSR_c | PSR_f},
  {"SPSR_cs",	FALSE, PSR_c | PSR_s},
  {"SPSR_cx",	FALSE, PSR_c | PSR_x},
  {"SPSR_fsx",	FALSE, PSR_f | PSR_s | PSR_x},
  {"SPSR_fsc",	FALSE, PSR_f | PSR_s | PSR_c},
  {"SPSR_fxs",	FALSE, PSR_f | PSR_x | PSR_s},
  {"SPSR_fxc",	FALSE, PSR_f | PSR_x | PSR_c},
  {"SPSR_fcs",	FALSE, PSR_f | PSR_c | PSR_s},
  {"SPSR_fcx",	FALSE, PSR_f | PSR_c | PSR_x},
  {"SPSR_sfx",	FALSE, PSR_s | PSR_f | PSR_x},
  {"SPSR_sfc",	FALSE, PSR_s | PSR_f | PSR_c},
  {"SPSR_sxf",	FALSE, PSR_s | PSR_x | PSR_f},
  {"SPSR_sxc",	FALSE, PSR_s | PSR_x | PSR_c},
  {"SPSR_scf",	FALSE, PSR_s | PSR_c | PSR_f},
  {"SPSR_scx",	FALSE, PSR_s | PSR_c | PSR_x},
  {"SPSR_xfs",	FALSE, PSR_x | PSR_f | PSR_s},
  {"SPSR_xfc",	FALSE, PSR_x | PSR_f | PSR_c},
  {"SPSR_xsf",	FALSE, PSR_x | PSR_s | PSR_f},
  {"SPSR_xsc",	FALSE, PSR_x | PSR_s | PSR_c},
  {"SPSR_xcf",	FALSE, PSR_x | PSR_c | PSR_f},
  {"SPSR_xcs",	FALSE, PSR_x | PSR_c | PSR_s},
  {"SPSR_cfs",	FALSE, PSR_c | PSR_f | PSR_s},
  {"SPSR_cfx",	FALSE, PSR_c | PSR_f | PSR_x},
  {"SPSR_csf",	FALSE, PSR_c | PSR_s | PSR_f},
  {"SPSR_csx",	FALSE, PSR_c | PSR_s | PSR_x},
  {"SPSR_cxf",	FALSE, PSR_c | PSR_x | PSR_f},
  {"SPSR_cxs",	FALSE, PSR_c | PSR_x | PSR_s},
  {"SPSR_fsxc",	FALSE, PSR_f | PSR_s | PSR_x | PSR_c},
  {"SPSR_fscx",	FALSE, PSR_f | PSR_s | PSR_c | PSR_x},
  {"SPSR_fxsc",	FALSE, PSR_f | PSR_x | PSR_s | PSR_c},
  {"SPSR_fxcs",	FALSE, PSR_f | PSR_x | PSR_c | PSR_s},
  {"SPSR_fcsx",	FALSE, PSR_f | PSR_c | PSR_s | PSR_x},
  {"SPSR_fcxs",	FALSE, PSR_f | PSR_c | PSR_x | PSR_s},
  {"SPSR_sfxc",	FALSE, PSR_s | PSR_f | PSR_x | PSR_c},
  {"SPSR_sfcx",	FALSE, PSR_s | PSR_f | PSR_c | PSR_x},
  {"SPSR_sxfc",	FALSE, PSR_s | PSR_x | PSR_f | PSR_c},
  {"SPSR_sxcf",	FALSE, PSR_s | PSR_x | PSR_c | PSR_f},
  {"SPSR_scfx",	FALSE, PSR_s | PSR_c | PSR_f | PSR_x},
  {"SPSR_scxf",	FALSE, PSR_s | PSR_c | PSR_x | PSR_f},
  {"SPSR_xfsc",	FALSE, PSR_x | PSR_f | PSR_s | PSR_c},
  {"SPSR_xfcs",	FALSE, PSR_x | PSR_f | PSR_c | PSR_s},
  {"SPSR_xsfc",	FALSE, PSR_x | PSR_s | PSR_f | PSR_c},
  {"SPSR_xscf",	FALSE, PSR_x | PSR_s | PSR_c | PSR_f},
  {"SPSR_xcfs",	FALSE, PSR_x | PSR_c | PSR_f | PSR_s},
  {"SPSR_xcsf",	FALSE, PSR_x | PSR_c | PSR_s | PSR_f},
  {"SPSR_cfsx",	FALSE, PSR_c | PSR_f | PSR_s | PSR_x},
  {"SPSR_cfxs",	FALSE, PSR_c | PSR_f | PSR_x | PSR_s},
  {"SPSR_csfx",	FALSE, PSR_c | PSR_s | PSR_f | PSR_x},
  {"SPSR_csxf",	FALSE, PSR_c | PSR_s | PSR_x | PSR_f},
  {"SPSR_cxfs",	FALSE, PSR_c | PSR_x | PSR_f | PSR_s},
  {"SPSR_cxsf",	FALSE, PSR_c | PSR_x | PSR_s | PSR_f},
};

enum wreg_type
  {
    IWMMXT_REG_WR = 0,
    IWMMXT_REG_WC = 1,
    IWMMXT_REG_WR_OR_WC = 2,
    IWMMXT_REG_WCG
  };

enum iwmmxt_insn_type
{
  check_rd,
  check_wr,
  check_wrwr,
  check_wrwrwr,
  check_wrwrwcg,
  check_tbcst,
  check_tmovmsk,
  check_tmia,
  check_tmcrr,
  check_tmrrc,
  check_tmcr,
  check_tmrc,
  check_tinsr,
  check_textrc,
  check_waligni,
  check_textrm,
  check_wshufh
};

enum vfp_dp_reg_pos
{
  VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
};

enum vfp_sp_reg_pos
{
  VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn
};

enum vfp_ldstm_type
{
  VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
};

/* VFP system registers.  */
struct vfp_reg
{
  const char *name;
  unsigned long regno;
};

static const struct vfp_reg vfp_regs[] =
{
  {"fpsid", 0x00000000},
  {"FPSID", 0x00000000},
  {"fpscr", 0x00010000},
  {"FPSCR", 0x00010000},
  {"fpexc", 0x00080000},
  {"FPEXC", 0x00080000}
};

/* Structure for a hash table entry for a register.  */
struct reg_entry
{
  const char * name;
  int          number;
  bfd_boolean  builtin;
};

/* Some well known registers that we refer to directly elsewhere.  */
#define REG_SP  13
#define REG_LR  14
#define REG_PC	15

#define wr_register(reg)  ((reg ^ WR_PREFIX) >= 0 && (reg ^ WR_PREFIX) <= 15)
#define wc_register(reg)  ((reg ^ WC_PREFIX) >= 0 && (reg ^ WC_PREFIX) <= 15)
#define wcg_register(reg) ((reg ^ WC_PREFIX) >= 8 && (reg ^ WC_PREFIX) <= 11)

/* These are the standard names.  Users can add aliases with .req.
   and delete them with .unreq.  */

/* Integer Register Numbers.  */
static const struct reg_entry rn_table[] =
{
  {"r0",  0, TRUE},  {"r1",  1, TRUE},      {"r2",  2, TRUE},      {"r3",  3, TRUE},
  {"r4",  4, TRUE},  {"r5",  5, TRUE},      {"r6",  6, TRUE},      {"r7",  7, TRUE},
  {"r8",  8, TRUE},  {"r9",  9, TRUE},      {"r10", 10, TRUE},     {"r11", 11, TRUE},
  {"r12", 12, TRUE}, {"r13", REG_SP, TRUE}, {"r14", REG_LR, TRUE}, {"r15", REG_PC, TRUE},
  /* ATPCS Synonyms.  */
  {"a1",  0, TRUE},  {"a2",  1, TRUE},      {"a3",  2, TRUE},      {"a4",  3, TRUE},
  {"v1",  4, TRUE},  {"v2",  5, TRUE},      {"v3",  6, TRUE},      {"v4",  7, TRUE},
  {"v5",  8, TRUE},  {"v6",  9, TRUE},      {"v7",  10, TRUE},     {"v8",  11, TRUE},
  /* Well-known aliases.  */
  {"wr",  7, TRUE},  {"sb",  9, TRUE},      {"sl",  10, TRUE},
/* LUNA platform uses a r7 instead of r11 for fp.  Don't recognize, to avoid confusion.  */
#ifdef NOTYET
  {"fp",  11, TRUE},
#endif
  {"ip",  12, TRUE}, {"sp",  REG_SP, TRUE}, {"lr",  REG_LR, TRUE}, {"pc",  REG_PC, TRUE},
  {NULL, 0, TRUE}
};

#define WR_PREFIX 0x200
#define WC_PREFIX 0x400

static const struct reg_entry iwmmxt_table[] =
{
  /* Intel Wireless MMX technology register names.  */
  {  "wr0", 0x0 | WR_PREFIX, TRUE},   {"wr1", 0x1 | WR_PREFIX, TRUE},
  {  "wr2", 0x2 | WR_PREFIX, TRUE},   {"wr3", 0x3 | WR_PREFIX, TRUE},
  {  "wr4", 0x4 | WR_PREFIX, TRUE},   {"wr5", 0x5 | WR_PREFIX, TRUE},
  {  "wr6", 0x6 | WR_PREFIX, TRUE},   {"wr7", 0x7 | WR_PREFIX, TRUE},
  {  "wr8", 0x8 | WR_PREFIX, TRUE},   {"wr9", 0x9 | WR_PREFIX, TRUE},
  { "wr10", 0xa | WR_PREFIX, TRUE},  {"wr11", 0xb | WR_PREFIX, TRUE},
  { "wr12", 0xc | WR_PREFIX, TRUE},  {"wr13", 0xd | WR_PREFIX, TRUE},
  { "wr14", 0xe | WR_PREFIX, TRUE},  {"wr15", 0xf | WR_PREFIX, TRUE},
  { "wcid", 0x0 | WC_PREFIX, TRUE},  {"wcon", 0x1 | WC_PREFIX, TRUE},
  {"wcssf", 0x2 | WC_PREFIX, TRUE}, {"wcasf", 0x3 | WC_PREFIX, TRUE},
  {"wcgr0", 0x8 | WC_PREFIX, TRUE}, {"wcgr1", 0x9 | WC_PREFIX, TRUE},
  {"wcgr2", 0xa | WC_PREFIX, TRUE}, {"wcgr3", 0xb | WC_PREFIX, TRUE},

  {  "wR0", 0x0 | WR_PREFIX, TRUE},   {"wR1", 0x1 | WR_PREFIX, TRUE},
  {  "wR2", 0x2 | WR_PREFIX, TRUE},   {"wR3", 0x3 | WR_PREFIX, TRUE},
  {  "wR4", 0x4 | WR_PREFIX, TRUE},   {"wR5", 0x5 | WR_PREFIX, TRUE},
  {  "wR6", 0x6 | WR_PREFIX, TRUE},   {"wR7", 0x7 | WR_PREFIX, TRUE},
  {  "wR8", 0x8 | WR_PREFIX, TRUE},   {"wR9", 0x9 | WR_PREFIX, TRUE},
  { "wR10", 0xa | WR_PREFIX, TRUE},  {"wR11", 0xb | WR_PREFIX, TRUE},
  { "wR12", 0xc | WR_PREFIX, TRUE},  {"wR13", 0xd | WR_PREFIX, TRUE},
  { "wR14", 0xe | WR_PREFIX, TRUE},  {"wR15", 0xf | WR_PREFIX, TRUE},
  { "wCID", 0x0 | WC_PREFIX, TRUE},  {"wCon", 0x1 | WC_PREFIX, TRUE},
  {"wCSSF", 0x2 | WC_PREFIX, TRUE}, {"wCASF", 0x3 | WC_PREFIX, TRUE},
  {"wCGR0", 0x8 | WC_PREFIX, TRUE}, {"wCGR1", 0x9 | WC_PREFIX, TRUE},
  {"wCGR2", 0xa | WC_PREFIX, TRUE}, {"wCGR3", 0xb | WC_PREFIX, TRUE},
  {NULL, 0, TRUE}
};

/* Co-processor Numbers.  */
static const struct reg_entry cp_table[] =
{
  {"p0",  0, TRUE},  {"p1",  1, TRUE},  {"p2",  2, TRUE},  {"p3", 3, TRUE},
  {"p4",  4, TRUE},  {"p5",  5, TRUE},  {"p6",  6, TRUE},  {"p7", 7, TRUE},
  {"p8",  8, TRUE},  {"p9",  9, TRUE},  {"p10", 10, TRUE}, {"p11", 11, TRUE},
  {"p12", 12, TRUE}, {"p13", 13, TRUE}, {"p14", 14, TRUE}, {"p15", 15, TRUE},
  {NULL, 0, TRUE}
};

/* Co-processor Register Numbers.  */
static const struct reg_entry cn_table[] =
{
  {"c0",   0, TRUE},  {"c1",   1, TRUE},  {"c2",   2, TRUE},  {"c3",   3, TRUE},
  {"c4",   4, TRUE},  {"c5",   5, TRUE},  {"c6",   6, TRUE},  {"c7",   7, TRUE},
  {"c8",   8, TRUE},  {"c9",   9, TRUE},  {"c10",  10, TRUE}, {"c11",  11, TRUE},
  {"c12",  12, TRUE}, {"c13",  13, TRUE}, {"c14",  14, TRUE}, {"c15",  15, TRUE},
  /* Not really valid, but kept for back-wards compatibility.  */
  {"cr0",  0, TRUE},  {"cr1",  1, TRUE},  {"cr2",  2, TRUE},  {"cr3",  3, TRUE},
  {"cr4",  4, TRUE},  {"cr5",  5, TRUE},  {"cr6",  6, TRUE},  {"cr7",  7, TRUE},
  {"cr8",  8, TRUE},  {"cr9",  9, TRUE},  {"cr10", 10, TRUE}, {"cr11", 11, TRUE},
  {"cr12", 12, TRUE}, {"cr13", 13, TRUE}, {"cr14", 14, TRUE}, {"cr15", 15, TRUE},
  {NULL, 0, TRUE}
};

/* FPA Registers.  */
static const struct reg_entry fn_table[] =
{
  {"f0", 0, TRUE},   {"f1", 1, TRUE},   {"f2", 2, TRUE},   {"f3", 3, TRUE},
  {"f4", 4, TRUE},   {"f5", 5, TRUE},   {"f6", 6, TRUE},   {"f7", 7, TRUE},
  {NULL, 0, TRUE}
};

/* VFP SP Registers.  */
static const struct reg_entry sn_table[] =
{
  {"s0",  0, TRUE},  {"s1",  1, TRUE},  {"s2",  2, TRUE},  {"s3", 3, TRUE},
  {"s4",  4, TRUE},  {"s5",  5, TRUE},  {"s6",  6, TRUE},  {"s7", 7, TRUE},
  {"s8",  8, TRUE},  {"s9",  9, TRUE},  {"s10", 10, TRUE}, {"s11", 11, TRUE},
  {"s12", 12, TRUE}, {"s13", 13, TRUE}, {"s14", 14, TRUE}, {"s15", 15, TRUE},
  {"s16", 16, TRUE}, {"s17", 17, TRUE}, {"s18", 18, TRUE}, {"s19", 19, TRUE},
  {"s20", 20, TRUE}, {"s21", 21, TRUE}, {"s22", 22, TRUE}, {"s23", 23, TRUE},
  {"s24", 24, TRUE}, {"s25", 25, TRUE}, {"s26", 26, TRUE}, {"s27", 27, TRUE},
  {"s28", 28, TRUE}, {"s29", 29, TRUE}, {"s30", 30, TRUE}, {"s31", 31, TRUE},
  {NULL, 0, TRUE}
};

/* VFP DP Registers.  */
static const struct reg_entry dn_table[] =
{
  {"d0",  0, TRUE},  {"d1",  1, TRUE},  {"d2",  2, TRUE},  {"d3", 3, TRUE},
  {"d4",  4, TRUE},  {"d5",  5, TRUE},  {"d6",  6, TRUE},  {"d7", 7, TRUE},
  {"d8",  8, TRUE},  {"d9",  9, TRUE},  {"d10", 10, TRUE}, {"d11", 11, TRUE},
  {"d12", 12, TRUE}, {"d13", 13, TRUE}, {"d14", 14, TRUE}, {"d15", 15, TRUE},
  {NULL, 0, TRUE}
};

/* Maverick DSP coprocessor registers.  */
static const struct reg_entry mav_mvf_table[] =
{
  {"mvf0",  0, TRUE},  {"mvf1",  1, TRUE},  {"mvf2",  2, TRUE},  {"mvf3",  3, TRUE},
  {"mvf4",  4, TRUE},  {"mvf5",  5, TRUE},  {"mvf6",  6, TRUE},  {"mvf7",  7, TRUE},
  {"mvf8",  8, TRUE},  {"mvf9",  9, TRUE},  {"mvf10", 10, TRUE}, {"mvf11", 11, TRUE},
  {"mvf12", 12, TRUE}, {"mvf13", 13, TRUE}, {"mvf14", 14, TRUE}, {"mvf15", 15, TRUE},
  {NULL, 0, TRUE}
};

static const struct reg_entry mav_mvd_table[] =
{
  {"mvd0",  0, TRUE},  {"mvd1",  1, TRUE},  {"mvd2",  2, TRUE},  {"mvd3",  3, TRUE},
  {"mvd4",  4, TRUE},  {"mvd5",  5, TRUE},  {"mvd6",  6, TRUE},  {"mvd7",  7, TRUE},
  {"mvd8",  8, TRUE},  {"mvd9",  9, TRUE},  {"mvd10", 10, TRUE}, {"mvd11", 11, TRUE},
  {"mvd12", 12, TRUE}, {"mvd13", 13, TRUE}, {"mvd14", 14, TRUE}, {"mvd15", 15, TRUE},
  {NULL, 0, TRUE}
};

static const struct reg_entry mav_mvfx_table[] =
{
  {"mvfx0",  0, TRUE},  {"mvfx1",  1, TRUE},  {"mvfx2",  2, TRUE},  {"mvfx3",  3, TRUE},
  {"mvfx4",  4, TRUE},  {"mvfx5",  5, TRUE},  {"mvfx6",  6, TRUE},  {"mvfx7",  7, TRUE},
  {"mvfx8",  8, TRUE},  {"mvfx9",  9, TRUE},  {"mvfx10", 10, TRUE}, {"mvfx11", 11, TRUE},
  {"mvfx12", 12, TRUE}, {"mvfx13", 13, TRUE}, {"mvfx14", 14, TRUE}, {"mvfx15", 15, TRUE},
  {NULL, 0, TRUE}
};

static const struct reg_entry mav_mvdx_table[] =
{
  {"mvdx0",  0, TRUE},  {"mvdx1",  1, TRUE},  {"mvdx2",  2, TRUE},  {"mvdx3",  3, TRUE},
  {"mvdx4",  4, TRUE},  {"mvdx5",  5, TRUE},  {"mvdx6",  6, TRUE},  {"mvdx7",  7, TRUE},
  {"mvdx8",  8, TRUE},  {"mvdx9",  9, TRUE},  {"mvdx10", 10, TRUE}, {"mvdx11", 11, TRUE},
  {"mvdx12", 12, TRUE}, {"mvdx13", 13, TRUE}, {"mvdx14", 14, TRUE}, {"mvdx15", 15, TRUE},
  {NULL, 0, TRUE}
};

static const struct reg_entry mav_mvax_table[] =
{
  {"mvax0", 0, TRUE}, {"mvax1", 1, TRUE}, {"mvax2", 2, TRUE}, {"mvax3", 3, TRUE},
  {NULL, 0, TRUE}
};

static const struct reg_entry mav_dspsc_table[] =
{
  {"dspsc", 0, TRUE},
  {NULL, 0, TRUE}
};

struct reg_map
{
  const struct reg_entry * names;
  int                      max_regno;
  struct hash_control *    htab;
  const char *             expected;
};

struct reg_map all_reg_maps[] =
{
  {rn_table,        15, NULL, N_("ARM register expected")},
  {cp_table,        15, NULL, N_("bad or missing co-processor number")},
  {cn_table,        15, NULL, N_("co-processor register expected")},
  {fn_table,         7, NULL, N_("FPA register expected")},
  {sn_table,	    31, NULL, N_("VFP single precision register expected")},
  {dn_table,	    15, NULL, N_("VFP double precision register expected")},
  {mav_mvf_table,   15, NULL, N_("Maverick MVF register expected")},
  {mav_mvd_table,   15, NULL, N_("Maverick MVD register expected")},
  {mav_mvfx_table,  15, NULL, N_("Maverick MVFX register expected")},
  {mav_mvdx_table,  15, NULL, N_("Maverick MVDX register expected")},
  {mav_mvax_table,   3, NULL, N_("Maverick MVAX register expected")},
  {mav_dspsc_table,  0, NULL, N_("Maverick DSPSC register expected")},
  {iwmmxt_table,    23, NULL, N_("Intel Wireless MMX technology register expected")},
};

/* Enumeration matching entries in table above.  */
enum arm_reg_type
{
  REG_TYPE_RN = 0,
#define REG_TYPE_FIRST REG_TYPE_RN
  REG_TYPE_CP = 1,
  REG_TYPE_CN = 2,
  REG_TYPE_FN = 3,
  REG_TYPE_SN = 4,
  REG_TYPE_DN = 5,
  REG_TYPE_MVF = 6,
  REG_TYPE_MVD = 7,
  REG_TYPE_MVFX = 8,
  REG_TYPE_MVDX = 9,
  REG_TYPE_MVAX = 10,
  REG_TYPE_DSPSC = 11,
  REG_TYPE_IWMMXT = 12,

  REG_TYPE_MAX = 13
};

/* ARM instructions take 4bytes in the object file, Thumb instructions
   take 2:  */
#define INSN_SIZE       4

/* "INSN<cond> X,Y" where X:bit12, Y:bit16.  */
#define MAV_MODE1	0x100c

/* "INSN<cond> X,Y" where X:bit16, Y:bit12.  */
#define MAV_MODE2	0x0c10

/* "INSN<cond> X,Y" where X:bit12, Y:bit16.  */
#define MAV_MODE3	0x100c

/* "INSN<cond> X,Y,Z" where X:16, Y:0, Z:12.  */
#define MAV_MODE4	0x0c0010

/* "INSN<cond> X,Y,Z" where X:12, Y:16, Z:0.  */
#define MAV_MODE5	0x00100c

/* "INSN<cond> W,X,Y,Z" where W:5, X:12, Y:16, Z:0.  */
#define MAV_MODE6	0x00100c05

struct asm_opcode
{
  /* Basic string to match.  */
  const char * template;

  /* Basic instruction code.  */
  unsigned long value;

  /* Offset into the template where the condition code (if any) will be.
     If zero, then the instruction is never conditional.  */
  unsigned cond_offset;

  /* Which architecture variant provides this instruction.  */
  unsigned long variant;

  /* Function to call to parse args.  */
  void (* parms) (char *);
};

/* Defines for various bits that we will want to toggle.  */
#define INST_IMMEDIATE	0x02000000
#define OFFSET_REG	0x02000000
#define HWOFFSET_IMM    0x00400000
#define SHIFT_BY_REG	0x00000010
#define PRE_INDEX	0x01000000
#define INDEX_UP	0x00800000
#define WRITE_BACK	0x00200000
#define LDM_TYPE_2_OR_3	0x00400000
#define MMOD		0x00020000

#define LITERAL_MASK	0xf000f000
#define OPCODE_MASK	0xfe1fffff
#define V4_STR_BIT	0x00000020

#define DATA_OP_SHIFT	21

/* Codes to distinguish the arithmetic instructions.  */
#define OPCODE_AND	0
#define OPCODE_EOR	1
#define OPCODE_SUB	2
#define OPCODE_RSB	3
#define OPCODE_ADD	4
#define OPCODE_ADC	5
#define OPCODE_SBC	6
#define OPCODE_RSC	7
#define OPCODE_TST	8
#define OPCODE_TEQ	9
#define OPCODE_CMP	10
#define OPCODE_CMN	11
#define OPCODE_ORR	12
#define OPCODE_MOV	13
#define OPCODE_BIC	14
#define OPCODE_MVN	15

#define T_OPCODE_MUL 0x4340
#define T_OPCODE_TST 0x4200
#define T_OPCODE_CMN 0x42c0
#define T_OPCODE_NEG 0x4240
#define T_OPCODE_MVN 0x43c0

#define T_OPCODE_ADD_R3	0x1800
#define T_OPCODE_SUB_R3 0x1a00
#define T_OPCODE_ADD_HI 0x4400
#define T_OPCODE_ADD_ST 0xb000
#define T_OPCODE_SUB_ST 0xb080
#define T_OPCODE_ADD_SP 0xa800
#define T_OPCODE_ADD_PC 0xa000
#define T_OPCODE_ADD_I8 0x3000
#define T_OPCODE_SUB_I8 0x3800
#define T_OPCODE_ADD_I3 0x1c00
#define T_OPCODE_SUB_I3 0x1e00

#define T_OPCODE_ASR_R	0x4100
#define T_OPCODE_LSL_R	0x4080
#define T_OPCODE_LSR_R  0x40c0
#define T_OPCODE_ASR_I	0x1000
#define T_OPCODE_LSL_I	0x0000
#define T_OPCODE_LSR_I	0x0800

#define T_OPCODE_MOV_I8	0x2000
#define T_OPCODE_CMP_I8 0x2800
#define T_OPCODE_CMP_LR 0x4280
#define T_OPCODE_MOV_HR 0x4600
#define T_OPCODE_CMP_HR 0x4500

#define T_OPCODE_LDR_PC 0x4800
#define T_OPCODE_LDR_SP 0x9800
#define T_OPCODE_STR_SP 0x9000
#define T_OPCODE_LDR_IW 0x6800
#define T_OPCODE_STR_IW 0x6000
#define T_OPCODE_LDR_IH 0x8800
#define T_OPCODE_STR_IH 0x8000
#define T_OPCODE_LDR_IB 0x7800
#define T_OPCODE_STR_IB 0x7000
#define T_OPCODE_LDR_RW 0x5800
#define T_OPCODE_STR_RW 0x5000
#define T_OPCODE_LDR_RH 0x5a00
#define T_OPCODE_STR_RH 0x5200
#define T_OPCODE_LDR_RB 0x5c00
#define T_OPCODE_STR_RB 0x5400

#define T_OPCODE_PUSH	0xb400
#define T_OPCODE_POP	0xbc00

#define T_OPCODE_BRANCH 0xe7fe

#define THUMB_SIZE	2	/* Size of thumb instruction.  */
#define THUMB_REG_LO	0x1
#define THUMB_REG_HI	0x2
#define THUMB_REG_ANY	0x3

#define THUMB_H1	0x0080
#define THUMB_H2	0x0040

#define THUMB_ASR 0
#define THUMB_LSL 1
#define THUMB_LSR 2

#define THUMB_MOVE 0
#define THUMB_COMPARE 1
#define THUMB_CPY 2

#define THUMB_LOAD 0
#define THUMB_STORE 1

#define THUMB_PP_PC_LR 0x0100

/* These three are used for immediate shifts, do not alter.  */
#define THUMB_WORD 2
#define THUMB_HALFWORD 1
#define THUMB_BYTE 0

struct thumb_opcode
{
  /* Basic string to match.  */
  const char * template;

  /* Basic instruction code.  */
  unsigned long value;

  int size;

  /* Which CPU variants this exists for.  */
  unsigned long variant;

  /* Function to call to parse args.  */
  void (* parms) (char *);
};

#define BAD_ARGS 	_("bad arguments to instruction")
#define BAD_PC 		_("r15 not allowed here")
#define BAD_COND 	_("instruction is not conditional")
#define ERR_NO_ACCUM	_("acc0 expected")

static struct hash_control * arm_ops_hsh   = NULL;
static struct hash_control * arm_tops_hsh  = NULL;
static struct hash_control * arm_cond_hsh  = NULL;
static struct hash_control * arm_shift_hsh = NULL;
static struct hash_control * arm_psr_hsh   = NULL;

/* FROM line 986 */
static int label_is_thumb_function_name = FALSE;

/* Literal Pool stuff.  */

#define MAX_LITERAL_POOL_SIZE 1024

/* Literal pool structure.  Held on a per-section
   and per-sub-section basis.  */

typedef struct literal_pool
{
  expressionS    literals [MAX_LITERAL_POOL_SIZE];
  unsigned int   next_free_entry;
  unsigned int   id;
  symbolS *      symbol;
  segT           section;
  subsegT        sub_section;
  struct literal_pool * next;
} literal_pool;

/* Pointer to a linked list of literal pools.  */
literal_pool * list_of_pools = NULL;

static literal_pool *
find_literal_pool (void)
{
  literal_pool * pool;

  for (pool = list_of_pools; pool != NULL; pool = pool->next)
    {
      if (pool->section == now_seg
	  && pool->sub_section == now_subseg)
	break;
    }

  return pool;
}

static literal_pool *
find_or_make_literal_pool (void)
{
  /* Next literal pool ID number.  */
  static unsigned int latest_pool_num = 1;
  literal_pool *      pool;

  pool = find_literal_pool ();

  if (pool == NULL)
    {
      /* Create a new pool.  */
      pool = xmalloc (sizeof (* pool));
      if (! pool)
	return NULL;

      pool->next_free_entry = 0;
      pool->section         = now_seg;
      pool->sub_section     = now_subseg;
      pool->next            = list_of_pools;
      pool->symbol          = NULL;

      /* Add it to the list.  */
      list_of_pools = pool;
    }

  /* New pools, and emptied pools, will have a NULL symbol.  */
  if (pool->symbol == NULL)
    {
      pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
				    (valueT) 0, &zero_address_frag);
      pool->id = latest_pool_num ++;
    }

  /* Done.  */
  return pool;
}

/* Add the literal in the global 'inst'
   structure to the relevent literal pool.  */

static int
add_to_lit_pool (void)
{
  literal_pool * pool;
  unsigned int entry;

  pool = find_or_make_literal_pool ();

  /* Check if this literal value is already in the pool.  */
  for (entry = 0; entry < pool->next_free_entry; entry ++)
    {
      if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
	  && (inst.reloc.exp.X_op == O_constant)
	  && (pool->literals[entry].X_add_number
	      == inst.reloc.exp.X_add_number)
#ifdef NOTYET
	  && (pool->literals[entry].X_unsigned
	      == inst.reloc.exp.X_unsigned))
#else
	)
#endif
	break;

      if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
          && (inst.reloc.exp.X_op == O_symbol)
          && (pool->literals[entry].X_add_number
	      == inst.reloc.exp.X_add_number)
          && (pool->literals[entry].X_add_symbol
	      == inst.reloc.exp.X_add_symbol)
          && (pool->literals[entry].X_op_symbol
	      == inst.reloc.exp.X_op_symbol))
        break;
    }

  /* Do we need to create a new entry?  */
  if (entry == pool->next_free_entry)
    {
      if (entry >= MAX_LITERAL_POOL_SIZE)
	{
	  inst.error = _("literal pool overflow");
	  return FAIL;
	}

      pool->literals[entry] = inst.reloc.exp;
      pool->next_free_entry += 1;
    }

  inst.reloc.exp.X_op         = O_symbol;
  inst.reloc.exp.X_add_number = ((int) entry) * 4 - 8;
  inst.reloc.exp.X_add_symbol = pool->symbol;

  return SUCCESS;
}

/* FROM line 1170 */
/* Check that an immediate is valid.
   If so, convert it to the right format.  */

static unsigned int
validate_immediate (unsigned int val)
{
  unsigned int a;
  unsigned int i;

#define rotate_left(v, n) (v << n | v >> (32 - n))

  for (i = 0; i < 32; i += 2)
    if ((a = rotate_left (val, i)) <= 0xff)
      return a | (i << 7); /* 12-bit pack: [shift-cnt,const].  */

  return FAIL;
}

/* Check to see if an immediate can be computed as two separate immediate
   values, added together.  We already know that this value cannot be
   computed by just one ARM instruction.  */

static unsigned int
validate_immediate_twopart (unsigned int   val,
			    unsigned int * highpart)
{
  unsigned int a;
  unsigned int i;

  for (i = 0; i < 32; i += 2)
    if (((a = rotate_left (val, i)) & 0xff) != 0)
      {
	if (a & 0xff00)
	  {
	    if (a & ~ 0xffff)
	      continue;
	    * highpart = (a  >> 8) | ((i + 24) << 7);
	  }
	else if (a & 0xff0000)
	  {
	    if (a & 0xff000000)
	      continue;
	    * highpart = (a >> 16) | ((i + 16) << 7);
	  }
	else
	  {
	    assert (a & 0xff000000);
	    * highpart = (a >> 24) | ((i + 8) << 7);
	  }

	return (a & 0xff) | (i << 7);
      }

  return FAIL;
}

static int
validate_offset_imm (unsigned int val, int hwse)
{
  if ((hwse && val > 255) || val > 4095)
    return FAIL;
  return val;
}

/* FROM line 1235 */
#ifdef OBJ_ELF
/* FROM line 1404 */
#else
#define mapping_state(a)
#endif /* OBJ_ELF */

/* FROM line 1408 */
/* arm_reg_parse () := if it looks like a register, return its token and
   advance the pointer.  */

static int
arm_reg_parse (char ** ccp, struct hash_control * htab)
{
  char * start = * ccp;
  char   c;
  char * p;
  struct reg_entry * reg;

#ifdef REGISTER_PREFIX
  if (*start != REGISTER_PREFIX)
    return FAIL;
  p = start + 1;
#else
  p = start;
#ifdef OPTIONAL_REGISTER_PREFIX
  if (*p == OPTIONAL_REGISTER_PREFIX)
    p++, start++;
#endif
#endif
  if (!ISALPHA (*p) || !is_name_beginner (*p))
    return FAIL;

  c = *p++;
  while (ISALPHA (c) || ISDIGIT (c) || c == '_')
    c = *p++;

  *--p = 0;
  reg = (struct reg_entry *) hash_find (htab, start);
  *p = c;

  if (reg)
    {
      *ccp = p;
      return reg->number;
    }

  return FAIL;
}

/* FROM line 1466 */
static void
opcode_select (int width)
{
  switch (width)
    {
    case 16:
      if (! thumb_mode)
	{
	  if (! (cpu_variant & ARM_EXT_V4T))
	    as_bad (_("selected processor does not support THUMB opcodes"));

	  thumb_mode = 1;
#ifdef NOTYET
	  /* No need to force the alignment, since we will have been
             coming from ARM mode, which is word-aligned.  */
	  record_alignment (now_seg, 1);
#endif NOTYET
	}
      mapping_state (MAP_THUMB);
      break;

    case 32:
      if (thumb_mode)
	{
	  if ((cpu_variant & ARM_ALL) == ARM_EXT_V4T)
	    as_bad (_("selected processor does not support ARM opcodes"));

	  thumb_mode = 0;
#ifdef NOTYET
	  if (!need_pass_2)
	    frag_align (2, 0, 0);

	  record_alignment (now_seg, 1);
#endif NOTYET
	}
      mapping_state (MAP_ARM);
      break;

    default:
      as_bad (_("invalid instruction size selected (%d)"), width);
    }
}

/* We will support '.thumb_func' a la binutils, but we will also support
   '.thumb_func /symbol_name/', to avoid the inherent pitfalls of
   looking for the next valid label.  */
static void
s_thumb_func (int ignore ATTRIBUTE_UNUSED)
{
  if (is_end_of_line(*input_line_pointer))
    {
      /* No symbol specified - we'll use the next one we find.  */
      if (! thumb_mode)
        opcode_select (16);

      /* The following label is the name/address of the start of a Thumb function.
	 We need to know this for the interworking support.  */
      label_is_thumb_function_name = TRUE;
    }
  else
    {
      /* Symbol name specified.  */
      char *name;
      int c;
      symbolS *symbolP;

      if (*input_line_pointer == '"')
	name = input_line_pointer + 1;
      else
	name = input_line_pointer;

      c = get_symbol_end();
      symbolP = symbol_find_or_make (name);
      *input_line_pointer = c;
      SKIP_WHITESPACE();

      THUMB_SET_FUNC (symbolP, 1);
      symbolP->sy_desc |= N_ARM_THUMB_DEF;
    }

  demand_empty_rest_of_line ();
}

/* FROM line 1808 */
static void
s_arm (int ignore ATTRIBUTE_UNUSED)
{
  opcode_select (32);
  demand_empty_rest_of_line ();
}

static void
s_thumb (int ignore ATTRIBUTE_UNUSED)
{
  opcode_select (16);
  demand_empty_rest_of_line ();
}

static void
s_code (int unused ATTRIBUTE_UNUSED)
{
  int temp;

  temp = get_absolute_expression ();
  switch (temp)
    {
    case 16:
    case 32:
      opcode_select (temp);
      break;

    default:
      as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
    }
}

static void
end_of_line (char * str)
{
  skip_whitespace (str);

  if (*str != '\0' && !inst.error)
    inst.error = _("garbage following instruction");
}

static int
skip_past_comma (char ** str)
{
  char * p = * str, c;
  int comma = 0;

  while ((c = *p) == ' ' || c == ',')
    {
      p++;
      if (c == ',' && comma++)
	return FAIL;
    }

  if (c == '\0')
    return FAIL;

  *str = p;
  return comma ? SUCCESS : FAIL;
}

/* FROM line 1869 */
/* Return TRUE if anything in the expression is a bignum.  */

static int
walk_no_bignums (symbolS * sp)
{
#ifdef NOTYET
  if (symbol_get_value_expression (sp)->X_op == O_big)
    return 1;

  if (symbol_get_value_expression (sp)->X_add_symbol)
    {
      return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
	      || (symbol_get_value_expression (sp)->X_op_symbol
		  && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
    }
#endif NOTYET

  return 0;
}

static int in_my_get_expression = 0;

static int
my_get_expression (expressionS * ep, char ** str)
{
  char * save_in;
  segT   seg;

  save_in = input_line_pointer;
  input_line_pointer = *str;
  in_my_get_expression = 1;
  seg = expression (ep);
  in_my_get_expression = 0;

  if (ep->X_op == O_illegal)
    {
      inst.error = _("bad expression");
      *str = input_line_pointer;
      input_line_pointer = save_in;
      return 1;
    }

#ifdef OBJ_AOUT
  if (seg != absolute_section
      && seg != text_section
      && seg != data_section
      && seg != bss_section
      && seg != undefined_section)
    {
      inst.error = _("bad_segment");
      *str = input_line_pointer;
      input_line_pointer = save_in;
      return 1;
    }
#endif

  /* Get rid of any bignums now, so that we don't generate an error for which
     we can't establish a line number later on.  Big numbers are never valid
     in instructions, which is where this routine is always called.  */
  if (ep->X_op == O_big
      || (ep->X_add_symbol
	  && (walk_no_bignums (ep->X_add_symbol)
	      || (ep->X_op_symbol
		  && walk_no_bignums (ep->X_op_symbol)))))
    {
      inst.error = _("invalid constant");
      *str = input_line_pointer;
      input_line_pointer = save_in;
      return 1;
    }

  *str = input_line_pointer;
  input_line_pointer = save_in;
  return 0;
}

/* FROM line 1943 */
/* A standard register must be given at this point.
   SHIFT is the place to put it in inst.instruction.
   Restores input start point on error.
   Returns the reg#, or FAIL.  */

static int
reg_required_here (char ** str, int shift)
{
  static char buff [128]; /* XXX  */
  int         reg;
  char *      start = * str;

  if ((reg = arm_reg_parse (str, all_reg_maps[REG_TYPE_RN].htab)) != FAIL)
    {
      if (shift >= 0)
	inst.instruction |= reg << shift;
      return reg;
    }

  /* Restore the start point, we may have got a reg of the wrong class.  */
  *str = start;

  /* In the few cases where we might be able to accept something else
     this error can be overridden.  */
  sprintf (buff, _("register expected, not '%.100s'"), start);
  inst.error = buff;

  return FAIL;
}

/* A Intel Wireless MMX technology register
   must be given at this point.
   Shift is the place to put it in inst.instruction.
   Restores input start point on err.
   Returns the reg#, or FAIL.  */

static int
wreg_required_here (char ** str,
		    int shift,
		    enum wreg_type reg_type)
{
  static char buff [128];
  int    reg;
  char * start = *str;

  if ((reg = arm_reg_parse (str, all_reg_maps[REG_TYPE_IWMMXT].htab)) != FAIL)
    {
      if (wr_register (reg)
	  && (reg_type == IWMMXT_REG_WR || reg_type == IWMMXT_REG_WR_OR_WC))
        {
          if (shift >= 0)
            inst.instruction |= (reg ^ WR_PREFIX) << shift;
          return reg;
        }
      else if (wc_register (reg)
	       && (reg_type == IWMMXT_REG_WC || reg_type == IWMMXT_REG_WR_OR_WC))
        {
          if (shift >= 0)
            inst.instruction |= (reg ^ WC_PREFIX) << shift;
          return reg;
        }
      else if ((wcg_register (reg) && reg_type == IWMMXT_REG_WCG))
        {
          if (shift >= 0)
            inst.instruction |= ((reg ^ WC_PREFIX) - 8) << shift;
          return reg;
        }
    }

  /* Restore the start point, we may have got a reg of the wrong class.  */
  *str = start;

  /* In the few cases where we might be able to accept
     something else this error can be overridden.  */
  sprintf (buff, _("Intel Wireless MMX technology register expected, not '%.100s'"), start);
  inst.error = buff;

  return FAIL;
}

static const struct asm_psr *
arm_psr_parse (char ** ccp)
{
  char * start = * ccp;
  char   c;
  char * p;
  const struct asm_psr * psr;

  p = start;

  /* Skip to the end of the next word in the input stream.  */
  do
    {
      c = *p++;
    }
  while (ISALPHA (c) || c == '_');

  /* Terminate the word.  */
  *--p = 0;

  /* CPSR's and SPSR's can now be lowercase.  This is just a convenience
     feature for ease of use and backwards compatibility.  */
  if (!strncmp (start, "cpsr", 4))
    strncpy (start, "CPSR", 4);
  else if (!strncmp (start, "spsr", 4))
    strncpy (start, "SPSR", 4);

  /* Now locate the word in the psr hash table.  */
  psr = (const struct asm_psr *) hash_find (arm_psr_hsh, start);

  /* Restore the input stream.  */
  *p = c;

  /* If we found a valid match, advance the
     stream pointer past the end of the word.  */
  *ccp = p;

  return psr;
}

/* Parse the input looking for a PSR flag.  */

static int
psr_required_here (char ** str)
{
  char * start = * str;
  const struct asm_psr * psr;

  psr = arm_psr_parse (str);

  if (psr)
    {
      /* If this is the SPSR that is being modified, set the R bit.  */
      if (! psr->cpsr)
	inst.instruction |= SPSR_BIT;

      /* Set the psr flags in the MSR instruction.  */
      inst.instruction |= psr->field << PSR_SHIFT;

      return SUCCESS;
    }

  /* In the few cases where we might be able to accept
     something else this error can be overridden.  */
  inst.error = _("flag for {c}psr instruction expected");

  /* Restore the start point.  */
  *str = start;
  return FAIL;
}

static int
co_proc_number (char ** str)
{
  int processor, pchar;
  char *start;

  skip_whitespace (*str);
  start = *str;

  /* The data sheet seems to imply that just a number on its own is valid
     here, but the RISC iX assembler seems to accept a prefix 'p'.  We will
     accept either.  */
  if ((processor = arm_reg_parse (str, all_reg_maps[REG_TYPE_CP].htab))
      == FAIL)
    {
      *str = start;

      pchar = *(*str)++;
      if (pchar >= '0' && pchar <= '9')
	{
	  processor = pchar - '0';
	  if (**str >= '0' && **str <= '9')
	    {
	      processor = processor * 10 + *(*str)++ - '0';
	      if (processor > 15)
		{
		  inst.error = _("illegal co-processor number");
		  return FAIL;
		}
	    }
	}
      else
	{
	  inst.error = all_reg_maps[REG_TYPE_CP].expected;
	  return FAIL;
	}
    }

  inst.instruction |= processor << 8;
  return SUCCESS;
}

static int
cp_opc_expr (char ** str, int where, int length)
{
  expressionS expr;

  skip_whitespace (* str);

  memset (&expr, '\0', sizeof (expr));

  if (my_get_expression (&expr, str))
    return FAIL;
  if (expr.X_op != O_constant)
    {
      inst.error = _("bad or missing expression");
      return FAIL;
    }

  if ((expr.X_add_number & ((1 << length) - 1)) != expr.X_add_number)
    {
      inst.error = _("immediate co-processor expression too large");
      return FAIL;
    }

  inst.instruction |= expr.X_add_number << where;
  return SUCCESS;
}

static int
cp_reg_required_here (char ** str, int where)
{
  int    reg;
  char * start = *str;

  if ((reg = arm_reg_parse (str, all_reg_maps[REG_TYPE_CN].htab)) != FAIL)
    {
      inst.instruction |= reg << where;
      return reg;
    }

  /* In the few cases where we might be able to accept something else
     this error can be overridden.  */
  inst.error = all_reg_maps[REG_TYPE_CN].expected;

  /* Restore the start point.  */
  *str = start;
  return FAIL;
}

static int
fp_reg_required_here (char ** str, int where)
{
  int    reg;
  char * start = * str;

  if ((reg = arm_reg_parse (str, all_reg_maps[REG_TYPE_FN].htab)) != FAIL)
    {
      inst.instruction |= reg << where;
      return reg;
    }

  /* In the few cases where we might be able to accept something else
     this error can be overridden.  */
  inst.error = all_reg_maps[REG_TYPE_FN].expected;

  /* Restore the start point.  */
  *str = start;
  return FAIL;
}

static int
cp_address_offset (char ** str)
{
  int offset;

  skip_whitespace (* str);

  if (! is_immediate_prefix (**str))
    {
      inst.error = _("immediate expression expected");
      return FAIL;
    }

  (*str)++;

  if (my_get_expression (& inst.reloc.exp, str))
    return FAIL;

  if (inst.reloc.exp.X_op == O_constant)
    {
      offset = inst.reloc.exp.X_add_number;

      if (offset & 3)
	{
	  inst.error = _("co-processor address must be word aligned");
	  return FAIL;
	}

      if (offset > 1023 || offset < -1023)
	{
	  inst.error = _("offset too large");
	  return FAIL;
	}

      if (offset >= 0)
	inst.instruction |= INDEX_UP;
      else
	offset = -offset;

      inst.instruction |= offset >> 2;
    }
  else
    inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;

  return SUCCESS;
}

static int
cp_address_required_here (char ** str, int wb_ok)
{
  char * p = * str;
  int    pre_inc = 0;
  int    write_back = 0;

  if (*p == '[')
    {
      int reg;

      p++;
      skip_whitespace (p);

      if ((reg = reg_required_here (& p, 16)) == FAIL)
	return FAIL;

      skip_whitespace (p);

      if (*p == ']')
	{
	  p++;

	  skip_whitespace (p);

	  if (*p == '\0')
	    {
	      /* As an extension to the official ARM syntax we allow:
		   [Rn]
	         as a short hand for:
		   [Rn,#0]  */
	      inst.instruction |= PRE_INDEX | INDEX_UP;
	      *str = p;
	      return SUCCESS;
	    }

	  if (skip_past_comma (& p) == FAIL)
	    {
	      inst.error = _("comma expected after closing square bracket");
	      return FAIL;
	    }

	  skip_whitespace (p);

	  if (*p == '#')
	    {
	      if (wb_ok)
		{
		  /* [Rn], #expr  */
		  write_back = WRITE_BACK;

		  if (reg == REG_PC)
		    {
		      inst.error = _("pc may not be used in post-increment");
		      return FAIL;
		    }

		  if (cp_address_offset (& p) == FAIL)
		    return FAIL;
		}
	      else
		pre_inc = PRE_INDEX | INDEX_UP;
	    }
	  else if (*p == '{')
	    {
	      int option;

	      /* [Rn], {<expr>}  */
	      p++;

	      skip_whitespace (p);

	      if (my_get_expression (& inst.reloc.exp, & p))
		return FAIL;

	      if (inst.reloc.exp.X_op == O_constant)
		{
		  option = inst.reloc.exp.X_add_number;

		  if (option > 255 || option < 0)
		    {
		      inst.error = _("'option' field too large");
		      return FAIL;
		    }

		  skip_whitespace (p);

		  if (*p != '}')
		    {
		      inst.error = _("'}' expected at end of 'option' field");
		      return FAIL;
		    }
		  else
		    {
		      p++;
		      inst.instruction |= option;
		      inst.instruction |= INDEX_UP;
		    }
		}
	      else
		{
		  inst.error = _("non-constant expressions for 'option' field not supported");
		  return FAIL;
		}
	    }
	  else
	    {
	      inst.error = _("# or { expected after comma");
	      return FAIL;
	    }
	}
      else
	{
	  /* '['Rn, #expr']'[!]  */

	  if (skip_past_comma (& p) == FAIL)
	    {
	      inst.error = _("pre-indexed expression expected");
	      return FAIL;
	    }

	  pre_inc = PRE_INDEX;

	  if (cp_address_offset (& p) == FAIL)
	    return FAIL;

	  skip_whitespace (p);

	  if (*p++ != ']')
	    {
	      inst.error = _("missing ]");
	      return FAIL;
	    }

	  skip_whitespace (p);

	  if (wb_ok && *p == '!')
	    {
	      if (reg == REG_PC)
		{
		  inst.error = _("pc may not be used with write-back");
		  return FAIL;
		}

	      p++;
	      write_back = WRITE_BACK;
	    }
	}
    }
  else
    {
      if (my_get_expression (&inst.reloc.exp, &p))
	return FAIL;

      inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
      inst.reloc.exp.X_add_number -= 8;  /* PC rel adjust.  */
      inst.reloc.pc_rel = 1;
      inst.instruction |= (REG_PC << 16);
      pre_inc = PRE_INDEX;
    }

  inst.instruction |= write_back | pre_inc;
  *str = p;
  return SUCCESS;
}

static int
cp_byte_address_offset (char ** str)
{
  int offset;

  skip_whitespace (* str);

  if (! is_immediate_prefix (**str))
    {
      inst.error = _("immediate expression expected");
      return FAIL;
    }

  (*str)++;

  if (my_get_expression (& inst.reloc.exp, str))
    return FAIL;

  if (inst.reloc.exp.X_op == O_constant)
    {
      offset = inst.reloc.exp.X_add_number;

      if (offset > 255 || offset < -255)
        {
          inst.error = _("offset too large");
          return FAIL;
        }

      if (offset >= 0)
        inst.instruction |= INDEX_UP;
      else
        offset = -offset;

      inst.instruction |= offset;
    }
  else
    inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM_S2;

  return SUCCESS;
}

static int
cp_byte_address_required_here (char ** str)
{
  char * p = * str;
  int    pre_inc = 0;
  int    write_back = 0;

  if (*p == '[')
    {
      int reg;

      p++;
      skip_whitespace (p);

      if ((reg = reg_required_here (& p, 16)) == FAIL)
        return FAIL;

      skip_whitespace (p);

      if (*p == ']')
        {
          p++;

          if (skip_past_comma (& p) == SUCCESS)
            {
              /* [Rn], #expr */
              write_back = WRITE_BACK;

              if (reg == REG_PC)
                {
                  inst.error = _("pc may not be used in post-increment");
                  return FAIL;
                }

              if (cp_byte_address_offset (& p) == FAIL)
                return FAIL;
            }
          else
            pre_inc = PRE_INDEX | INDEX_UP;
        }
      else
        {
          /* '['Rn, #expr']'[!] */

          if (skip_past_comma (& p) == FAIL)
            {
              inst.error = _("pre-indexed expression expected");
              return FAIL;
            }

          pre_inc = PRE_INDEX;

          if (cp_byte_address_offset (& p) == FAIL)
            return FAIL;

          skip_whitespace (p);

          if (*p++ != ']')
            {
              inst.error = _("missing ]");
              return FAIL;
            }

          skip_whitespace (p);

          if (*p == '!')
            {
              if (reg == REG_PC)
                {
                  inst.error = _("pc may not be used with write-back");
                  return FAIL;
                }

              p++;
              write_back = WRITE_BACK;
            }
        }
    }
  else
    {
      if (my_get_expression (&inst.reloc.exp, &p))
        return FAIL;

      inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM_S2;
      inst.reloc.exp.X_add_number -= 8;  /* PC rel adjust.  */
      inst.reloc.pc_rel = 1;
      inst.instruction |= (REG_PC << 16);
      pre_inc = PRE_INDEX;
    }

  inst.instruction |= write_back | pre_inc;
  *str = p;
  return SUCCESS;
}

static void
do_nop (char * str)
{
  skip_whitespace (str);
  if (*str == '{')
    {
      str++;

      if (my_get_expression (&inst.reloc.exp, &str))
	inst.reloc.exp.X_op = O_illegal;
      else
	{
	  skip_whitespace (str);
	  if (*str == '}')
	    str++;
	  else
	    inst.reloc.exp.X_op = O_illegal;
	}

      if (inst.reloc.exp.X_op != O_constant
	  || inst.reloc.exp.X_add_number > 255
	  || inst.reloc.exp.X_add_number < 0)
	{
	  inst.error = _("Invalid NOP hint");
	  return;
	}

      /* Arcitectural NOP hints are CPSR sets with no bits selected.  */
      inst.instruction &= 0xf0000000;
      inst.instruction |= 0x0320f000 + inst.reloc.exp.X_add_number;
    }

  end_of_line (str);
}

static void
do_empty (char * str)
{
  /* Do nothing really.  */
  end_of_line (str);
}

static void
do_mrs (char * str)
{
  int skip = 0;

  /* Only one syntax.  */
  skip_whitespace (str);

  if (reg_required_here (&str, 12) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL)
    {
      inst.error = _("comma expected after register name");
      return;
    }

  skip_whitespace (str);

  if (   streq (str, "CPSR")
      || streq (str, "SPSR")
	 /* Lower case versions for backwards compatibility.  */
      || streq (str, "cpsr")
      || streq (str, "spsr"))
    skip = 4;

  /* This is for backwards compatibility with older toolchains.  */
  else if (   streq (str, "cpsr_all")
	   || streq (str, "spsr_all"))
    skip = 8;
  else
    {
      inst.error = _("CPSR or SPSR expected");
      return;
    }

  if (* str == 's' || * str == 'S')
    inst.instruction |= SPSR_BIT;
  str += skip;

  end_of_line (str);
}

/* Two possible forms:
      "{C|S}PSR_<field>, Rm",
      "{C|S}PSR_f, #expression".  */

static void
do_msr (char * str)
{
  skip_whitespace (str);

  if (psr_required_here (& str) == FAIL)
    return;

  if (skip_past_comma (& str) == FAIL)
    {
      inst.error = _("comma missing after psr flags");
      return;
    }

  skip_whitespace (str);

  if (reg_required_here (& str, 0) != FAIL)
    {
      inst.error = NULL;
      end_of_line (str);
      return;
    }

  if (! is_immediate_prefix (* str))
    {
      inst.error =
	_("only a register or immediate value can follow a psr flag");
      return;
    }

  str ++;
  inst.error = NULL;

  if (my_get_expression (& inst.reloc.exp, & str))
    {
      inst.error =
	_("only a register or immediate value can follow a psr flag");
      return;
    }

  inst.instruction |= INST_IMMEDIATE;

  if (inst.reloc.exp.X_add_symbol)
    {
      inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
      inst.reloc.pc_rel = 0;
    }
  else
    {
      unsigned value = validate_immediate (inst.reloc.exp.X_add_number);

      if (value == (unsigned) FAIL)
	{
	  inst.error = _("invalid constant");
	  return;
	}

      inst.instruction |= value;
    }

  inst.error = NULL;
  end_of_line (str);
}

/* Long Multiply Parser
   UMULL RdLo, RdHi, Rm, Rs
   SMULL RdLo, RdHi, Rm, Rs
   UMLAL RdLo, RdHi, Rm, Rs
   SMLAL RdLo, RdHi, Rm, Rs.  */

static void
do_mull (char * str)
{
  int rdlo, rdhi, rm, rs;

  /* Only one format "rdlo, rdhi, rm, rs".  */
  skip_whitespace (str);

  if ((rdlo = reg_required_here (&str, 12)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || (rdhi = reg_required_here (&str, 16)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || (rm = reg_required_here (&str, 0)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  /* Only restrict rm on pre-V4 architectures - radar 4474226 */
  if ((cpu_variant & ARM_EXT_V4)
      || force_cpusubtype_ALL)
    {
      if (rdlo == rdhi)
	as_tsktsk (_("rdhi and rdlo must be different"));
    }
  else
    {
      /* rdhi, rdlo and rm must all be different.  */
      if (rdlo == rdhi || rdlo == rm || rdhi == rm)
	as_tsktsk (_("rdhi, rdlo and rm must all be different"));
    }

  if (skip_past_comma (&str) == FAIL
      || (rs = reg_required_here (&str, 8)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (rdhi == REG_PC || rdhi == REG_PC || rdhi == REG_PC || rdhi == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  end_of_line (str);
}

static void
do_mul (char * str)
{
  int rd, rm;

  /* Only one format "rd, rm, rs".  */
  skip_whitespace (str);

  if ((rd = reg_required_here (&str, 16)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (rd == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || (rm = reg_required_here (&str, 0)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (rm == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  /* Only restrict on pre-V4 architectures - radar 4474226 */
  if ((rm == rd)
      && (cpu_variant & ARM_EXT_V4) == 0
      && !force_cpusubtype_ALL)
    as_tsktsk (_("rd and rm should be different in mul"));

  if (skip_past_comma (&str) == FAIL
      || (rm = reg_required_here (&str, 8)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (rm == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  end_of_line (str);
}

static void
do_mla (char * str)
{
  int rd, rm;

  /* Only one format "rd, rm, rs, rn".  */
  skip_whitespace (str);

  if ((rd = reg_required_here (&str, 16)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (rd == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || (rm = reg_required_here (&str, 0)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (rm == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  /* Only restrict on pre-V4 architectures - radar 4474226 */
  if ((rm == rd)
      && (cpu_variant & ARM_EXT_V4) == 0
      && !force_cpusubtype_ALL)
    as_tsktsk (_("rd and rm should be different in mla"));

  if (skip_past_comma (&str) == FAIL
      || (rd = reg_required_here (&str, 8)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rm = reg_required_here (&str, 12)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (rd == REG_PC || rm == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  end_of_line (str);
}

/* Expects *str -> the characters "acc0", possibly with leading blanks.
   Advances *str to the next non-alphanumeric.
   Returns 0, or else FAIL (in which case sets inst.error).

  (In a future XScale, there may be accumulators other than zero.
  At that time this routine and its callers can be upgraded to suit.)  */

static int
accum0_required_here (char ** str)
{
  static char buff [128];	/* Note the address is taken.  Hence, static.  */
  char * p = * str;
  char   c;
  int result = 0;		/* The accum number.  */

  skip_whitespace (p);

  *str = p;			/* Advance caller's string pointer too.  */
  c = *p++;
  while (ISALNUM (c))
    c = *p++;

  *--p = 0;			/* Aap nul into input buffer at non-alnum.  */

  if (! ( streq (*str, "acc0") || streq (*str, "ACC0")))
    {
      sprintf (buff, _("acc0 expected, not '%.100s'"), *str);
      inst.error = buff;
      result = FAIL;
    }

  *p = c;			/* Unzap.  */
  *str = p;			/* Caller's string pointer to after match.  */
  return result;
}

static int
ldst_extend_v4 (char ** str)
{
  int add = INDEX_UP;

  switch (**str)
    {
    case '#':
    case '$':
      (*str)++;
      if (my_get_expression (& inst.reloc.exp, str))
	return FAIL;

      if (inst.reloc.exp.X_op == O_constant)
	{
	  int value = inst.reloc.exp.X_add_number;

	  if (value < -255 || value > 255)
	    {
	      inst.error = _("address offset too large");
	      return FAIL;
	    }

	  if (value < 0)
	    {
	      value = -value;
	      add = 0;
	    }

	  /* Halfword and signextension instructions have the
             immediate value split across bits 11..8 and bits 3..0.  */
	  inst.instruction |= (add | HWOFFSET_IMM
			       | ((value >> 4) << 8) | (value & 0xF));
	}
      else
	{
	  inst.instruction |= HWOFFSET_IMM;
	  inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
	  inst.reloc.pc_rel = 0;
	}
      return SUCCESS;

    case '-':
      add = 0;
      /* Fall through.  */

    case '+':
      (*str)++;
      /* Fall through.  */

    default:
      if (reg_required_here (str, 0) == FAIL)
	return FAIL;

      inst.instruction |= add;
      return SUCCESS;
    }
}

/* Expects **str -> after a comma. May be leading blanks.
   Advances *str, recognizing a load  mode, and setting inst.instruction.
   Returns rn, or else FAIL (in which case may set inst.error
   and not advance str)

   Note: doesn't know Rd, so no err checks that require such knowledge.  */

static int
ld_mode_required_here (char ** string)
{
  char * str = * string;
  int    rn;
  int    pre_inc = 0;

  skip_whitespace (str);

  if (* str == '[')
    {
      str++;

      skip_whitespace (str);

      if ((rn = reg_required_here (& str, 16)) == FAIL)
	return FAIL;

      skip_whitespace (str);

      if (* str == ']')
	{
	  str ++;

	  if (skip_past_comma (& str) == SUCCESS)
	    {
	      /* [Rn],... (post inc) */
	      if (ldst_extend_v4 (&str) == FAIL)
		return FAIL;
	    }
	  else 	      /* [Rn] */
	    {
	      skip_whitespace (str);

	      if (* str == '!')
		{
		  str ++;
		  inst.instruction |= WRITE_BACK;
		}

	      inst.instruction |= INDEX_UP | HWOFFSET_IMM;
	      pre_inc = 1;
	    }
	}
      else	  /* [Rn,...] */
	{
	  if (skip_past_comma (& str) == FAIL)
	    {
	      inst.error = _("pre-indexed expression expected");
	      return FAIL;
	    }

	  pre_inc = 1;

	  if (ldst_extend_v4 (&str) == FAIL)
	    return FAIL;

	  skip_whitespace (str);

	  if (* str ++ != ']')
	    {
	      inst.error = _("missing ]");
	      return FAIL;
	    }

	  skip_whitespace (str);

	  if (* str == '!')
	    {
	      str ++;
	      inst.instruction |= WRITE_BACK;
	    }
	}
    }
  else if (* str == '=')	/* ldr's "r,=label" syntax */
    /* We should never reach here, because <text> = <expression> is
       caught gas/read.c read_a_source_file() as a .set operation.  */
    return FAIL;
  else				/* PC +- 8 bit immediate offset.  */
    {
      if (my_get_expression (& inst.reloc.exp, & str))
	return FAIL;

      inst.instruction            |= HWOFFSET_IMM;	/* The I bit.  */
      inst.reloc.type              = BFD_RELOC_ARM_OFFSET_IMM8;
      inst.reloc.exp.X_add_number -= 8;  		/* PC rel adjust.  */
      inst.reloc.pc_rel            = 1;
      inst.instruction            |= (REG_PC << 16);

      rn = REG_PC;
      pre_inc = 1;
    }

  inst.instruction |= (pre_inc ? PRE_INDEX : 0);
  * string = str;

  return rn;
}

/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
   SMLAxy{cond} Rd,Rm,Rs,Rn
   SMLAWy{cond} Rd,Rm,Rs,Rn
   Error if any register is R15.  */

static void
do_smla (char * str)
{
  int rd, rm, rs, rn;

  skip_whitespace (str);

  if ((rd = reg_required_here (& str, 16)) == FAIL
      || skip_past_comma (& str) == FAIL
      || (rm = reg_required_here (& str, 0)) == FAIL
      || skip_past_comma (& str) == FAIL
      || (rs = reg_required_here (& str, 8)) == FAIL
      || skip_past_comma (& str) == FAIL
      || (rn = reg_required_here (& str, 12)) == FAIL)
    inst.error = BAD_ARGS;

  else if (rd == REG_PC || rm == REG_PC || rs == REG_PC || rn == REG_PC)
    inst.error = BAD_PC;

  else
    end_of_line (str);
}

/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
   SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
   Error if any register is R15.
   Warning if Rdlo == Rdhi.  */

static void
do_smlal (char * str)
{
  int rdlo, rdhi, rm, rs;

  skip_whitespace (str);

  if ((rdlo = reg_required_here (& str, 12)) == FAIL
      || skip_past_comma (& str) == FAIL
      || (rdhi = reg_required_here (& str, 16)) == FAIL
      || skip_past_comma (& str) == FAIL
      || (rm = reg_required_here (& str, 0)) == FAIL
      || skip_past_comma (& str) == FAIL
      || (rs = reg_required_here (& str, 8)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (rdlo == REG_PC || rdhi == REG_PC || rm == REG_PC || rs == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  if (rdlo == rdhi)
    as_tsktsk (_("rdhi and rdlo must be different"));

  end_of_line (str);
}

/* ARM V5E (El Segundo) signed-multiply (argument parse)
   SMULxy{cond} Rd,Rm,Rs
   Error if any register is R15.  */

static void
do_smul (char * str)
{
  int rd, rm, rs;

  skip_whitespace (str);

  if ((rd = reg_required_here (& str, 16)) == FAIL
      || skip_past_comma (& str) == FAIL
      || (rm = reg_required_here (& str, 0)) == FAIL
      || skip_past_comma (& str) == FAIL
      || (rs = reg_required_here (& str, 8)) == FAIL)
    inst.error = BAD_ARGS;

  else if (rd == REG_PC || rm == REG_PC || rs == REG_PC)
    inst.error = BAD_PC;

  else
    end_of_line (str);
}

/* ARM V5E (El Segundo) saturating-add/subtract (argument parse)
   Q[D]{ADD,SUB}{cond} Rd,Rm,Rn
   Error if any register is R15.  */

static void
do_qadd (char * str)
{
  int rd, rm, rn;

  skip_whitespace (str);

  if ((rd = reg_required_here (& str, 12)) == FAIL
      || skip_past_comma (& str) == FAIL
      || (rm = reg_required_here (& str, 0)) == FAIL
      || skip_past_comma (& str) == FAIL
      || (rn = reg_required_here (& str, 16)) == FAIL)
    inst.error = BAD_ARGS;

  else if (rd == REG_PC || rm == REG_PC || rn == REG_PC)
    inst.error = BAD_PC;

  else
    end_of_line (str);
}

/* ARM V5E (el Segundo)
   MCRRcc <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
   MRRCcc <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.

   These are equivalent to the XScale instructions MAR and MRA,
   respectively, when coproc == 0, opcode == 0, and CRm == 0.

   Result unpredicatable if Rd or Rn is R15.  */

static void
do_co_reg2c (char * str)
{
  int rd, rn;

  skip_whitespace (str);

  if (co_proc_number (& str) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == FAIL
      || cp_opc_expr (& str, 4, 4) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == FAIL
      || (rd = reg_required_here (& str, 12)) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == FAIL
      || (rn = reg_required_here (& str, 16)) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  /* Unpredictable result if rd or rn is R15.  */
  if (rd == REG_PC || rn == REG_PC)
    as_tsktsk
      (_("Warning: instruction unpredictable when using r15"));

  if (skip_past_comma (& str) == FAIL
      || cp_reg_required_here (& str, 0) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

/* ARM V5 count-leading-zeroes instruction (argument parse)
     CLZ{<cond>} <Rd>, <Rm>
     Condition defaults to COND_ALWAYS.
     Error if Rd or Rm are R15.  */

static void
do_clz (char * str)
{
  int rd, rm;

  skip_whitespace (str);

  if (((rd = reg_required_here (& str, 12)) == FAIL)
      || (skip_past_comma (& str) == FAIL)
      || ((rm = reg_required_here (& str, 0)) == FAIL))
    inst.error = BAD_ARGS;

  else if (rd == REG_PC || rm == REG_PC )
    inst.error = BAD_PC;

  else
    end_of_line (str);
}

/* ARM V5 (argument parse)
     LDC2{L} <coproc>, <CRd>, <addressing mode>
     STC2{L} <coproc>, <CRd>, <addressing mode>
     Instruction is not conditional, and has 0xf in the condition field.
     Otherwise, it's the same as LDC/STC.  */

static void
do_lstc2 (char * str)
{
  skip_whitespace (str);

  if (co_proc_number (& str) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
    }
  else if (skip_past_comma (& str) == FAIL
	   || cp_reg_required_here (& str, 12) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
    }
  else if (skip_past_comma (& str) == FAIL
	   || cp_address_required_here (&str, CP_WB_OK) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
    }
  else
    end_of_line (str);
}

/* ARM V5 (argument parse)
     CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>, <opcode_2>
     Instruction is not conditional, and has 0xf in the condition field.
     Otherwise, it's the same as CDP.  */

static void
do_cdp2 (char * str)
{
  skip_whitespace (str);

  if (co_proc_number (& str) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == FAIL
      || cp_opc_expr (& str, 20,4) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == FAIL
      || cp_reg_required_here (& str, 12) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == FAIL
      || cp_reg_required_here (& str, 16) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == FAIL
      || cp_reg_required_here (& str, 0) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == SUCCESS)
    {
      if (cp_opc_expr (& str, 5, 3) == FAIL)
	{
	  if (!inst.error)
	    inst.error = BAD_ARGS;
	  return;
	}
    }

  end_of_line (str);
}

/* ARM V5 (argument parse)
     MCR2 <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>, <opcode_2>
     MRC2 <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>, <opcode_2>
     Instruction is not conditional, and has 0xf in the condition field.
     Otherwise, it's the same as MCR/MRC.  */

static void
do_co_reg2 (char * str)
{
  skip_whitespace (str);

  if (co_proc_number (& str) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == FAIL
      || cp_opc_expr (& str, 21, 3) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == FAIL
      || reg_required_here (& str, 12) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == FAIL
      || cp_reg_required_here (& str, 16) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == FAIL
      || cp_reg_required_here (& str, 0) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == SUCCESS)
    {
      if (cp_opc_expr (& str, 5, 3) == FAIL)
	{
	  if (!inst.error)
	    inst.error = BAD_ARGS;
	  return;
	}
    }

  end_of_line (str);
}

static void
do_bx (char * str)
{
  int reg;

  skip_whitespace (str);

  if ((reg = reg_required_here (&str, 0)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  /* Note - it is not illegal to do a "bx pc".  Useless, but not illegal.  */
  if (reg == REG_PC)
    as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));

  end_of_line (str);
}

/* ARM v5TEJ.  Jump to Jazelle code.  */

static void
do_bxj (char * str)
{
  int reg;

  skip_whitespace (str);

  if ((reg = reg_required_here (&str, 0)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  /* Note - it is not illegal to do a "bxj pc".  Useless, but not illegal.  */
  if (reg == REG_PC)
    as_tsktsk (_("use of r15 in bxj is not really useful"));

  end_of_line (str);
}

/* ARM V6 umaal (argument parse).  */

static void
do_umaal (char * str)
{
  int rdlo, rdhi, rm, rs;

  skip_whitespace (str);
  if ((rdlo = reg_required_here (& str, 12)) == FAIL
      || skip_past_comma (& str) == FAIL
      || (rdhi = reg_required_here (& str, 16)) == FAIL
      || skip_past_comma (& str) == FAIL
      || (rm = reg_required_here (& str, 0)) == FAIL
      || skip_past_comma (& str) == FAIL
      || (rs = reg_required_here (& str, 8)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (rdlo == REG_PC || rdhi == REG_PC || rm == REG_PC || rs == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  end_of_line (str);
}

/* ARM V6 strex (argument parse).  */

static void
do_strex (char * str)
{
  int rd, rm, rn;

  /* Parse Rd, Rm,.  */
  skip_whitespace (str);
  if ((rd = reg_required_here (& str, 12)) == FAIL
      || skip_past_comma (& str) == FAIL
      || (rm = reg_required_here (& str, 0)) == FAIL
      || skip_past_comma (& str) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }
  if (rd == REG_PC || rm == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }
  if (rd == rm)
    {
      inst.error = _("Rd equal to Rm or Rn yields unpredictable results");
      return;
    }

  /* Skip past '['.  */
  if ((strlen (str) >= 1)
      && strncmp (str, "[", 1) == 0)
    str += 1;

  skip_whitespace (str);

  /* Parse Rn.  */
  if ((rn = reg_required_here (& str, 16)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }
  else if (rn == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }
  if (rd == rn)
    {
      inst.error = _("Rd equal to Rm or Rn yields unpredictable results");
      return;
    }
  skip_whitespace (str);

  /* Skip past ']'.  */
  if ((strlen (str) >= 1)
      && strncmp (str, "]", 1) == 0)
    str += 1;

  end_of_line (str);
}

/* KIND indicates what kind of shifts are accepted.  */

static int
decode_shift (char ** str, int kind)
{
  const struct asm_shift_name * shift;
  char * p;
  char   c;

  skip_whitespace (* str);

  for (p = * str; ISALPHA (* p); p ++)
    ;

  if (p == * str)
    {
      inst.error = _("shift expression expected");
      return FAIL;
    }

  c = * p;
  * p = '\0';
  shift = (const struct asm_shift_name *) hash_find (arm_shift_hsh, * str);
  * p = c;

  if (shift == NULL)
    {
      inst.error = _("shift expression expected");
      return FAIL;
    }

  assert (shift->properties->index == shift_properties[shift->properties->index].index);

  if (kind == SHIFT_LSL_OR_ASR_IMMEDIATE
      && shift->properties->index != SHIFT_LSL
      && shift->properties->index != SHIFT_ASR)
    {
      inst.error = _("'LSL' or 'ASR' required");
      return FAIL;
    }
  else if (kind == SHIFT_LSL_IMMEDIATE
	   && shift->properties->index != SHIFT_LSL)
    {
      inst.error = _("'LSL' required");
      return FAIL;
    }
  else if (kind == SHIFT_ASR_IMMEDIATE
	   && shift->properties->index != SHIFT_ASR)
    {
      inst.error = _("'ASR' required");
      return FAIL;
    }

  if (shift->properties->index == SHIFT_RRX)
    {
      * str = p;
      inst.instruction |= shift->properties->bit_field;
      return SUCCESS;
    }

  skip_whitespace (p);

  if (kind == NO_SHIFT_RESTRICT && reg_required_here (& p, 8) != FAIL)
    {
      inst.instruction |= shift->properties->bit_field | SHIFT_BY_REG;
      * str = p;
      return SUCCESS;
    }
  else if (! is_immediate_prefix (* p))
    {
      inst.error = (NO_SHIFT_RESTRICT
		    ? _("shift requires register or #expression")
		    : _("shift requires #expression"));
      * str = p;
      return FAIL;
    }

  inst.error = NULL;
  p ++;

  if (my_get_expression (& inst.reloc.exp, & p))
    return FAIL;

  /* Validate some simple #expressions.  */
  if (inst.reloc.exp.X_op == O_constant)
    {
      unsigned num = inst.reloc.exp.X_add_number;

      /* Reject operations greater than 32.  */
      if (num > 32
	  /* Reject a shift of 0 unless the mode allows it.  */
	  || (num == 0 && shift->properties->allows_0 == 0)
	  /* Reject a shift of 32 unless the mode allows it.  */
	  || (num == 32 && shift->properties->allows_32 == 0)
	  )
	{
	  /* As a special case we allow a shift of zero for
	     modes that do not support it to be recoded as an
	     logical shift left of zero (ie nothing).  We warn
	     about this though.  */
	  if (num == 0)
	    {
	      as_warn (_("shift of 0 ignored."));
	      shift = & shift_names[0];
	      assert (shift->properties->index == SHIFT_LSL);
	    }
	  else
	    {
	      inst.error = _("invalid immediate shift");
	      return FAIL;
	    }
	}

      /* Shifts of 32 are encoded as 0, for those shifts that
	 support it.  */
      if (num == 32)
	num = 0;

      inst.instruction |= (num << 7) | shift->properties->bit_field;
    }
  else
    {
      inst.reloc.type   = BFD_RELOC_ARM_SHIFT_IMM;
      inst.reloc.pc_rel = 0;
      inst.instruction |= shift->properties->bit_field;
    }

  * str = p;
  return SUCCESS;
}

static void
do_sat (char ** str, int bias)
{
  int rd, rm;
  expressionS expr;

  skip_whitespace (*str);

  /* Parse <Rd>, field.  */
  if ((rd = reg_required_here (str, 12)) == FAIL
      || skip_past_comma (str) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }
  if (rd == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  /* Parse #<immed>,  field.  */
  if (is_immediate_prefix (**str))
    (*str)++;
  else
    {
      inst.error = _("immediate expression expected");
      return;
    }
  if (my_get_expression (&expr, str))
    {
      inst.error = _("bad expression");
      return;
    }
  if (expr.X_op != O_constant)
    {
      inst.error = _("constant expression expected");
      return;
    }
  if (expr.X_add_number + bias < 0
      || expr.X_add_number + bias > 31)
    {
      inst.error = _("immediate value out of range");
      return;
    }
  inst.instruction |= (expr.X_add_number + bias) << 16;
  if (skip_past_comma (str) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  /* Parse <Rm> field.  */
  if ((rm = reg_required_here (str, 0)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }
  if (rm == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  if (skip_past_comma (str) == SUCCESS)
    decode_shift (str, SHIFT_LSL_OR_ASR_IMMEDIATE);
}

/* ARM V6 ssat (argument parse).  */

static void
do_ssat (char * str)
{
  do_sat (&str, /*bias=*/-1);
  end_of_line (str);
}

/* ARM V6 usat (argument parse).  */

static void
do_usat (char * str)
{
  do_sat (&str, /*bias=*/0);
  end_of_line (str);
}

static void
do_sat16 (char ** str, int bias)
{
  int rd, rm;
  expressionS expr;

  skip_whitespace (*str);

  /* Parse the <Rd> field.  */
  if ((rd = reg_required_here (str, 12)) == FAIL
      || skip_past_comma (str) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }
  if (rd == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  /* Parse #<immed>, field.  */
  if (is_immediate_prefix (**str))
    (*str)++;
  else
    {
      inst.error = _("immediate expression expected");
      return;
    }
  if (my_get_expression (&expr, str))
    {
      inst.error = _("bad expression");
      return;
    }
  if (expr.X_op != O_constant)
    {
      inst.error = _("constant expression expected");
      return;
    }
  if (expr.X_add_number + bias < 0
      || expr.X_add_number + bias > 15)
    {
      inst.error = _("immediate value out of range");
      return;
    }
  inst.instruction |= (expr.X_add_number + bias) << 16;
  if (skip_past_comma (str) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  /* Parse <Rm> field.  */
  if ((rm = reg_required_here (str, 0)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }
  if (rm == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }
}

/* ARM V6 ssat16 (argument parse).  */

static void
do_ssat16 (char * str)
{
  do_sat16 (&str, /*bias=*/-1);
  end_of_line (str);
}

static void
do_usat16 (char * str)
{
  do_sat16 (&str, /*bias=*/0);
  end_of_line (str);
}

static void
do_cps_mode (char ** str)
{
  expressionS expr;

  skip_whitespace (*str);

  if (! is_immediate_prefix (**str))
    {
      inst.error = _("immediate expression expected");
      return;
    }

  (*str)++; /* Strip off the immediate signifier.  */
  if (my_get_expression (&expr, str))
    {
      inst.error = _("bad expression");
      return;
    }

  if (expr.X_op != O_constant)
    {
      inst.error = _("constant expression expected");
      return;
    }

  /* The mode is a 5 bit field.  Valid values are 0-31.  */
  if (((unsigned) expr.X_add_number) > 31
      || (inst.reloc.exp.X_add_number) < 0)
    {
      inst.error = _("invalid constant");
      return;
    }

  inst.instruction |= expr.X_add_number;
}

/* ARM V6 srs (argument parse).  */

static void
do_srs (char * str)
{
  char *exclam;
  skip_whitespace (str);
  exclam = strchr (str, '!');
  if (exclam)
    *exclam = '\0';
  do_cps_mode (&str);
  if (exclam)
    *exclam = '!';
  if (*str == '!')
    {
      inst.instruction |= WRITE_BACK;
      str++;
    }
  end_of_line (str);
}

/* ARM V6 SMMUL (argument parse).  */

static void
do_smmul (char * str)
{
  int rd, rm, rs;

  skip_whitespace (str);
  if ((rd = reg_required_here (&str, 16)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rm = reg_required_here (&str, 0)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rs = reg_required_here (&str, 8)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (   rd == REG_PC
      || rm == REG_PC
      || rs == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  end_of_line (str);
}

/* ARM V6 SMLALD (argument parse).  */

static void
do_smlald (char * str)
{
  int rdlo, rdhi, rm, rs;

  skip_whitespace (str);
  if ((rdlo = reg_required_here (&str, 12)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rdhi = reg_required_here (&str, 16)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rm = reg_required_here (&str, 0)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rs = reg_required_here (&str, 8)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (   rdlo == REG_PC
      || rdhi == REG_PC
      || rm == REG_PC
      || rs == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  end_of_line (str);
}

/* ARM V6 SMLAD (argument parse).  Signed multiply accumulate dual.
   smlad{x}{<cond>} Rd, Rm, Rs, Rn */

static void
do_smlad (char * str)
{
  int rd, rm, rs, rn;

  skip_whitespace (str);
  if ((rd = reg_required_here (&str, 16)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rm = reg_required_here (&str, 0)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rs = reg_required_here (&str, 8)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rn = reg_required_here (&str, 12)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (   rd == REG_PC
      || rn == REG_PC
      || rs == REG_PC
      || rm == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  end_of_line (str);
}

/* Returns true if the endian-specifier indicates big-endianness.  */

static int
do_endian_specifier (char * str)
{
  int big_endian = 0;

  skip_whitespace (str);
  if (strlen (str) < 2)
    inst.error = _("missing endian specifier");
  else if (strncasecmp (str, "BE", 2) == 0)
    {
      str += 2;
      big_endian = 1;
    }
  else if (strncasecmp (str, "LE", 2) == 0)
    str += 2;
  else
    inst.error = _("valid endian specifiers are be or le");

  end_of_line (str);

  return big_endian;
}

/* ARM V6 SETEND (argument parse).  Sets the E bit in the CPSR while
   preserving the other bits.

   setend <endian_specifier>, where <endian_specifier> is either
   BE or LE.  */

static void
do_setend (char * str)
{
  if (do_endian_specifier (str))
    inst.instruction |= 0x200;
}

/* ARM V6 SXTH.

   SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
   Condition defaults to COND_ALWAYS.
   Error if any register uses R15.  */

static void
do_sxth (char * str)
{
  int rd, rm;
  expressionS expr;
  int rotation_clear_mask = 0xfffff3ff;
  int rotation_eight_mask = 0x00000400;
  int rotation_sixteen_mask = 0x00000800;
  int rotation_twenty_four_mask = 0x00000c00;

  skip_whitespace (str);
  if ((rd = reg_required_here (&str, 12)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rm = reg_required_here (&str, 0)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  else if (rd == REG_PC || rm == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  /* Zero out the rotation field.  */
  inst.instruction &= rotation_clear_mask;

  /* Check for lack of optional rotation field.  */
  if (skip_past_comma (&str) == FAIL)
    {
      end_of_line (str);
      return;
    }

  /* Move past 'ROR'.  */
  skip_whitespace (str);
  if (strncasecmp (str, "ROR", 3) == 0)
    str += 3;
  else
    {
      inst.error = _("missing rotation field after comma");
      return;
    }

  /* Get the immediate constant.  */
  skip_whitespace (str);
  if (is_immediate_prefix (* str))
    str++;
  else
    {
      inst.error = _("immediate expression expected");
      return;
    }

  if (my_get_expression (&expr, &str))
    {
      inst.error = _("bad expression");
      return;
    }

  if (expr.X_op != O_constant)
    {
      inst.error = _("constant expression expected");
      return;
    }

  switch (expr.X_add_number)
    {
    case 0:
      /* Rotation field has already been zeroed.  */
      break;
    case 8:
      inst.instruction |= rotation_eight_mask;
      break;

    case 16:
      inst.instruction |= rotation_sixteen_mask;
      break;

    case 24:
      inst.instruction |= rotation_twenty_four_mask;
      break;

    default:
      inst.error = _("rotation can be 8, 16, 24 or 0 when field is ommited");
      break;
    }

  end_of_line (str);
}

/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
   extends it to 32-bits, and adds the result to a value in another
   register.  You can specify a rotation by 0, 8, 16, or 24 bits
   before extracting the 16-bit value.
   SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
   Condition defaults to COND_ALWAYS.
   Error if any register uses R15.  */

static void
do_sxtah (char * str)
{
  int rd, rn, rm;
  expressionS expr;
  int rotation_clear_mask = 0xfffff3ff;
  int rotation_eight_mask = 0x00000400;
  int rotation_sixteen_mask = 0x00000800;
  int rotation_twenty_four_mask = 0x00000c00;

  skip_whitespace (str);
  if ((rd = reg_required_here (&str, 12)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rn = reg_required_here (&str, 16)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rm = reg_required_here (&str, 0)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  else if (rd == REG_PC || rn == REG_PC || rm == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  /* Zero out the rotation field.  */
  inst.instruction &= rotation_clear_mask;

  /* Check for lack of optional rotation field.  */
  if (skip_past_comma (&str) == FAIL)
    {
      end_of_line (str);
      return;
    }

  /* Move past 'ROR'.  */
  skip_whitespace (str);
  if (strncasecmp (str, "ROR", 3) == 0)
    str += 3;
  else
    {
      inst.error = _("missing rotation field after comma");
      return;
    }

  /* Get the immediate constant.  */
  skip_whitespace (str);
  if (is_immediate_prefix (* str))
    str++;
  else
    {
      inst.error = _("immediate expression expected");
      return;
    }

  if (my_get_expression (&expr, &str))
    {
      inst.error = _("bad expression");
      return;
    }

  if (expr.X_op != O_constant)
    {
      inst.error = _("constant expression expected");
      return;
    }

  switch (expr.X_add_number)
    {
    case 0:
      /* Rotation field has already been zeroed.  */
      break;

    case 8:
      inst.instruction |= rotation_eight_mask;
      break;

    case 16:
      inst.instruction |= rotation_sixteen_mask;
      break;

    case 24:
      inst.instruction |= rotation_twenty_four_mask;
      break;

    default:
      inst.error = _("rotation can be 8, 16, 24 or 0 when field is ommited");
      break;
    }

  end_of_line (str);
}


/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
   word at the specified address and the following word
   respectively.
   Unconditionally executed.
   Error if Rn is R15.  */

static void
do_rfe (char * str)
{
  int rn;

  skip_whitespace (str);

  if ((rn = reg_required_here (&str, 16)) == FAIL)
    return;

  if (rn == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  skip_whitespace (str);

  if (*str == '!')
    {
      inst.instruction |= WRITE_BACK;
      str++;
    }
  end_of_line (str);
}

/* ARM V6 REV (Byte Reverse Word) reverses the byte order in a 32-bit
   register (argument parse).
   REV{<cond>} Rd, Rm.
   Condition defaults to COND_ALWAYS.
   Error if Rd or Rm are R15.  */

static void
do_rev (char * str)
{
  int rd, rm;

  skip_whitespace (str);

  if ((rd = reg_required_here (&str, 12)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rm = reg_required_here (&str, 0)) == FAIL)
    inst.error = BAD_ARGS;

  else if (rd == REG_PC || rm == REG_PC)
    inst.error = BAD_PC;

  else
    end_of_line (str);
}

/* ARM V6 Perform Two Sixteen Bit Integer Additions. (argument parse).
   QADD16{<cond>} <Rd>, <Rn>, <Rm>
   Condition defaults to COND_ALWAYS.
   Error if Rd, Rn or Rm are R15.  */

static void
do_qadd16 (char * str)
{
  int rd, rm, rn;

  skip_whitespace (str);

  if ((rd = reg_required_here (&str, 12)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rn = reg_required_here (&str, 16)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (rm = reg_required_here (&str, 0)) == FAIL)
    inst.error = BAD_ARGS;

  else if (rd == REG_PC || rm == REG_PC || rn == REG_PC)
    inst.error = BAD_PC;

  else
    end_of_line (str);
}

static void
do_pkh_core (char * str, int shift)
{
  int rd, rn, rm;

  skip_whitespace (str);
  if (((rd = reg_required_here (&str, 12)) == FAIL)
      || (skip_past_comma (&str) == FAIL)
      || ((rn = reg_required_here (&str, 16)) == FAIL)
      || (skip_past_comma (&str) == FAIL)
      || ((rm = reg_required_here (&str, 0)) == FAIL))
    {
      inst.error = BAD_ARGS;
      return;
    }

  else if (rd == REG_PC || rn == REG_PC || rm == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  /* Check for optional shift immediate constant.  */
  if (skip_past_comma (&str) == FAIL)
    {
      if (shift == SHIFT_ASR_IMMEDIATE)
	{
	  /* If the shift specifier is ommited, turn the instruction
	     into pkhbt rd, rm, rn.  First, switch the instruction
	     code, and clear the rn and rm fields.  */
	  inst.instruction &= 0xfff0f010;
	  /* Now, re-encode the registers.  */
	  inst.instruction |= (rm << 16) | rn;
	}
      return;
    }

  decode_shift (&str, shift);
}

/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
   PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
   Condition defaults to COND_ALWAYS.
   Error if Rd, Rn or Rm are R15.  */

static void
do_pkhbt (char * str)
{
  do_pkh_core (str, SHIFT_LSL_IMMEDIATE);
}

/* ARM V6 PKHTB (Argument Parse).  */

static void
do_pkhtb (char * str)
{
  do_pkh_core (str, SHIFT_ASR_IMMEDIATE);
}

/* ARM V6 Load Register Exclusive instruction (argument parse).
   LDREX{,B,D,H}{<cond>} <Rd, [<Rn>]
   Condition defaults to COND_ALWAYS.
   Error if Rd or Rn are R15.
   See ARMARMv6 A4.1.27: LDREX.  */

static void
do_ldrex (char * str)
{
  int rd, rn;

  skip_whitespace (str);

  /* Parse Rd.  */
  if (((rd = reg_required_here (&str, 12)) == FAIL)
      || (skip_past_comma (&str) == FAIL))
    {
      inst.error = BAD_ARGS;
      return;
    }
  else if (rd == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }
  skip_whitespace (str);

  /* Skip past '['.  */
  if ((strlen (str) >= 1)
      &&strncmp (str, "[", 1) == 0)
    str += 1;
  skip_whitespace (str);

  /* Parse Rn.  */
  if ((rn = reg_required_here (&str, 16)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }
  else if (rn == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }
  skip_whitespace (str);

  /* Skip past ']'.  */
  if ((strlen (str) >= 1)
      && strncmp (str, "]", 1) == 0)
    str += 1;

  end_of_line (str);
}

/* ARM V6 change processor state instruction (argument parse)
      CPS, CPSIE, CSPID .  */

static void
do_cps (char * str)
{
  do_cps_mode (&str);
  end_of_line (str);
}

static void
do_cps_flags (char ** str, int thumb_p)
{
  struct cps_flag
  {
    char character;
    unsigned long arm_value;
    unsigned long thumb_value;
  };
  static struct cps_flag flag_table[] =
  {
    {'a', 0x100, 0x4 },
    {'i', 0x080, 0x2 },
    {'f', 0x040, 0x1 }
  };

  int saw_a_flag = 0;

  skip_whitespace (*str);

  /* Get the a, f and i flags.  */
  while (**str && **str != ',')
    {
      struct cps_flag *p;
      struct cps_flag *q = flag_table + sizeof (flag_table)/sizeof (*p);

      for (p = flag_table; p < q; ++p)
	if (strncasecmp (*str, &p->character, 1) == 0)
	  {
	    inst.instruction |= (thumb_p ? p->thumb_value : p->arm_value);
	    saw_a_flag = 1;
	    break;
	  }
      if (p == q)
	{
	  inst.error = _("unrecognized flag");
	  return;
	}
      (*str)++;
    }

  if (!saw_a_flag)
    inst.error = _("no 'a', 'i', or 'f' flags for 'cps'");
}

static void
do_cpsi (char * str)
{
  do_cps_flags (&str, /*thumb_p=*/0);

  if (skip_past_comma (&str) == SUCCESS)
    {
      skip_whitespace (str);
      do_cps_mode (&str);
      inst.instruction |= MMOD;
    }
  end_of_line (str);
}

/* THUMB V5 breakpoint instruction (argument parse)
	BKPT <immed_8>.  */

static void
do_t_bkpt (char * str)
{
  expressionS expr;
  unsigned long number;

  skip_whitespace (str);

  /* Allow optional leading '#'.  */
  if (is_immediate_prefix (*str))
    str ++;

  memset (& expr, '\0', sizeof (expr));
  if (my_get_expression (& expr, & str)
      || (expr.X_op != O_constant
	  /* As a convenience we allow 'bkpt' without an operand.  */
	  && expr.X_op != O_absent))
    {
      inst.error = _("bad expression");
      return;
    }

  number = expr.X_add_number;

  /* Check it fits an 8 bit unsigned.  */
  if (number != (number & 0xff))
    {
      inst.error = _("immediate value out of range");
      return;
    }

  inst.instruction |= number;

  end_of_line (str);
}

/* ARM V5 branch-link-exchange (argument parse) for BLX(1) only.
   Expects inst.instruction is set for BLX(1).
   Note: this is cloned from do_branch, and the reloc changed to be a
	new one that can cope with setting one extra bit (the H bit).  */

static void
do_branch25 (char * str)
{
  if (my_get_expression (& inst.reloc.exp, & str))
    return;

#ifdef OBJ_ELF
  {
    char * save_in;

    /* ScottB: February 5, 1998 */
    /* Check to see of PLT32 reloc required for the instruction.  */

    /* arm_parse_reloc() works on input_line_pointer.
       We actually want to parse the operands to the branch instruction
       passed in 'str'.  Save the input pointer and restore it later.  */
    save_in = input_line_pointer;
    input_line_pointer = str;

    if (inst.reloc.exp.X_op == O_symbol
	&& *str == '('
	&& arm_parse_reloc () == BFD_RELOC_ARM_PLT32)
      {
	inst.reloc.type   = BFD_RELOC_ARM_PLT32;
	inst.reloc.pc_rel = 0;
	/* Modify str to point to after parsed operands, otherwise
	   end_of_line() will complain about the (PLT) left in str.  */
	str = input_line_pointer;
      }
    else
      {
	inst.reloc.type   = BFD_RELOC_ARM_PCREL_BLX;
	inst.reloc.pc_rel = 1;
      }

    input_line_pointer = save_in;
  }
#else
  inst.reloc.type   = BFD_RELOC_ARM_PCREL_BLX;
  inst.reloc.pc_rel = 1;
#endif /* OBJ_ELF */

  end_of_line (str);
}

/* ARM V5 branch-link-exchange instruction (argument parse)
     BLX <target_addr>		ie BLX(1)
     BLX{<condition>} <Rm>	ie BLX(2)
   Unfortunately, there are two different opcodes for this mnemonic.
   So, the insns[].value is not used, and the code here zaps values
	into inst.instruction.
   Also, the <target_addr> can be 25 bits, hence has its own reloc.  */

static void
do_blx (char * str)
{
  char * mystr = str;
  int rm;

  skip_whitespace (mystr);
  rm = reg_required_here (& mystr, 0);

  /* The above may set inst.error.  Ignore his opinion.  */
  inst.error = 0;

  if (rm != FAIL)
    {
      /* Arg is a register.
	 Use the condition code our caller put in inst.instruction.
	 Pass ourselves off as a BX with a funny opcode.  */
      inst.instruction |= 0x012fff30;
      do_bx (str);
    }
  else
    {
      /* This must be is BLX <target address>, no condition allowed.  */
      if (inst.instruction != COND_ALWAYS)
	{
	  inst.error = BAD_COND;
	  return;
	}

      inst.instruction = 0xfafffffe;

      /* Process like a B/BL, but with a different reloc.
	 Note that B/BL expecte fffffe, not 0, offset in the opcode table.  */
      do_branch25 (str);
    }
}

/* ARM V5 Thumb BLX (argument parse)
	BLX <target_addr>	which is BLX(1)
	BLX <Rm>		which is BLX(2)
   Unfortunately, there are two different opcodes for this mnemonic.
   So, the tinsns[].value is not used, and the code here zaps values
	into inst.instruction.	*/

static void
do_t_blx (char * str)
{
  char * mystr = str;
  int rm;

  skip_whitespace (mystr);
  inst.instruction = 0x4780;

  /* Note that this call is to the ARM register recognizer.  BLX(2)
     uses the ARM register space, not the Thumb one, so a call to
     thumb_reg() would be wrong.  */
  rm = reg_required_here (& mystr, 3);
  inst.error = 0;

  if (rm != FAIL)
    {
      /* It's BLX(2).  The .instruction was zapped with rm & is final.  */
      inst.size = 2;
    }
  else
    {
      /* No ARM register.  This must be BLX(1).  Change the .instruction.  */
      inst.instruction = 0xf7ffeffe;
      inst.size = 4;

      if (my_get_expression (& inst.reloc.exp, & mystr))
	return;

      inst.reloc.type   = BFD_RELOC_THUMB_PCREL_BLX;
      inst.reloc.pc_rel = 1;
    }

  end_of_line (mystr);
}

/* ARM V5 breakpoint instruction (argument parse)
     BKPT <16 bit unsigned immediate>
     Instruction is not conditional.
	The bit pattern given in insns[] has the COND_ALWAYS condition,
	and it is an error if the caller tried to override that.  */

static void
do_bkpt (char * str)
{
  expressionS expr;
  unsigned long number;

  skip_whitespace (str);

  /* Allow optional leading '#'.  */
  if (is_immediate_prefix (* str))
    str++;

  memset (& expr, '\0', sizeof (expr));

  if (my_get_expression (& expr, & str)
      || (expr.X_op != O_constant
	  /* As a convenience we allow 'bkpt' without an operand.  */
	  && expr.X_op != O_absent))
    {
      inst.error = _("bad expression");
      return;
    }

  number = expr.X_add_number;

  /* Check it fits a 16 bit unsigned.  */
  if (number != (number & 0xffff))
    {
      inst.error = _("immediate value out of range");
      return;
    }

  /* Top 12 of 16 bits to bits 19:8.  */
  inst.instruction |= (number & 0xfff0) << 4;

  /* Bottom 4 of 16 bits to bits 3:0.  */
  inst.instruction |= number & 0xf;

  end_of_line (str);
}

/* THUMB CPS instruction (argument parse).  */

static void
do_t_cps (char * str)
{
  do_cps_flags (&str, /*thumb_p=*/1);
  end_of_line (str);
}

/* Parse and validate that a register is of the right form, this saves
   repeated checking of this information in many similar cases.
   Unlike the 32-bit case we do not insert the register into the opcode
   here, since the position is often unknown until the full instruction
   has been parsed.  */

static int
thumb_reg (char ** strp, int hi_lo)
{
  int reg;

  if ((reg = reg_required_here (strp, -1)) == FAIL)
    return FAIL;

  switch (hi_lo)
    {
    case THUMB_REG_LO:
      if (reg > 7)
	{
	  inst.error = _("lo register required");
	  return FAIL;
	}
      break;

    case THUMB_REG_HI:
      if (reg < 8)
	{
	  inst.error = _("hi register required");
	  return FAIL;
	}
      break;

    default:
      break;
    }

  return reg;
}

static void
thumb_mov_compare (char * str, int move)
{
  int Rd, Rs = FAIL;

  skip_whitespace (str);

  if ((Rd = thumb_reg (&str, THUMB_REG_ANY)) == FAIL
      || skip_past_comma (&str) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (move != THUMB_CPY && is_immediate_prefix (*str))
    {
      str++;
      if (my_get_expression (&inst.reloc.exp, &str))
	return;
    }
  else if ((Rs = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
    return;

  if (Rs != FAIL)
    {
      if (move != THUMB_CPY && Rs < 8 && Rd < 8)
	{
	  if (move == THUMB_MOVE)
	    /* A move of two lowregs is encoded as ADD Rd, Rs, #0
	       since a MOV instruction produces unpredictable results.  */
	    inst.instruction = T_OPCODE_ADD_I3;
	  else
	    inst.instruction = T_OPCODE_CMP_LR;
	  inst.instruction |= Rd | (Rs << 3);
	}
      else
	{
	  if (move == THUMB_MOVE)
	    inst.instruction = T_OPCODE_MOV_HR;
	  else if (move != THUMB_CPY)
	    inst.instruction = T_OPCODE_CMP_HR;

	  if (Rd > 7)
	    inst.instruction |= THUMB_H1;

	  if (Rs > 7)
	    inst.instruction |= THUMB_H2;

	  inst.instruction |= (Rd & 7) | ((Rs & 7) << 3);
	}
    }
  else
    {
      if (Rd > 7)
	{
	  inst.error = _("only lo regs allowed with immediate");
	  return;
	}

      if (move == THUMB_MOVE)
	inst.instruction = T_OPCODE_MOV_I8;
      else
	inst.instruction = T_OPCODE_CMP_I8;

      inst.instruction |= Rd << 8;

      if (inst.reloc.exp.X_op != O_constant)
	inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
      else
	{
	  unsigned value = inst.reloc.exp.X_add_number;

	  if (value > 255)
	    {
	      inst.error = _("invalid immediate");
	      return;
	    }

	  inst.instruction |= value;
	}
    }

  end_of_line (str);
}

/* THUMB CPY instruction (argument parse).  */

static void
do_t_cpy (char * str)
{
  thumb_mov_compare (str, THUMB_CPY);
}

/* THUMB SETEND instruction (argument parse).  */

#ifdef NOTYET
static void
do_t_setend (char * str)
{
  if (do_endian_specifier (str))
    inst.instruction |= 0x8;
}
#endif

/* Parse INSN_TYPE insn STR having a possible IMMEDIATE_SIZE immediate.  */

static unsigned long
check_iwmmxt_insn (char * str,
		   enum iwmmxt_insn_type insn_type,
		   int immediate_size)
{
  int reg = 0;
  const char *  inst_error;
  expressionS expr;
  unsigned long number;

  inst_error = inst.error;
  if (!inst.error)
    inst.error = BAD_ARGS;
  skip_whitespace (str);

  switch (insn_type)
    {
    case check_rd:
      if ((reg = reg_required_here (&str, 12)) == FAIL)
	return FAIL;
      break;

    case check_wr:
       if ((wreg_required_here (&str, 0, IWMMXT_REG_WR)) == FAIL)
	 return FAIL;
       break;

    case check_wrwr:
      if ((wreg_required_here (&str, 12, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL))
	return FAIL;
      break;

    case check_wrwrwr:
      if ((wreg_required_here (&str, 12, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || wreg_required_here (&str, 0, IWMMXT_REG_WR) == FAIL))
	return FAIL;
      break;

    case check_wrwrwcg:
      if ((wreg_required_here (&str, 12, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || wreg_required_here (&str, 0, IWMMXT_REG_WCG) == FAIL))
	return FAIL;
      break;

    case check_tbcst:
      if ((wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || reg_required_here (&str, 12) == FAIL))
	return FAIL;
      break;

    case check_tmovmsk:
      if ((reg_required_here (&str, 12) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL))
	return FAIL;
      break;

    case check_tmia:
      if ((wreg_required_here (&str, 5, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || reg_required_here (&str, 0) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || reg_required_here (&str, 12) == FAIL))
	return FAIL;
      break;

    case check_tmcrr:
      if ((wreg_required_here (&str, 0, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || reg_required_here (&str, 12) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || reg_required_here (&str, 16) == FAIL))
	return FAIL;
      break;

    case check_tmrrc:
      if ((reg_required_here (&str, 12) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || reg_required_here (&str, 16) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || wreg_required_here (&str, 0, IWMMXT_REG_WR) == FAIL))
	return FAIL;
      break;

    case check_tmcr:
      if ((wreg_required_here (&str, 16, IWMMXT_REG_WC) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || reg_required_here (&str, 12) == FAIL))
	return FAIL;
      break;

    case check_tmrc:
      if ((reg_required_here (&str, 12) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || wreg_required_here (&str, 16, IWMMXT_REG_WC) == FAIL))
	return FAIL;
      break;

    case check_tinsr:
      if ((wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || reg_required_here (&str, 12) == FAIL
	   || skip_past_comma (&str) == FAIL))
	return FAIL;
      break;

    case check_textrc:
      if ((reg_required_here (&str, 12) == FAIL
	   || skip_past_comma (&str) == FAIL))
	return FAIL;
      break;

    case check_waligni:
      if ((wreg_required_here (&str, 12, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || wreg_required_here (&str, 0, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL))
	return FAIL;
      break;

    case check_textrm:
      if ((reg_required_here (&str, 12) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL))
	return FAIL;
      break;

    case check_wshufh:
      if ((wreg_required_here (&str, 12, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL
	   || wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL
	   || skip_past_comma (&str) == FAIL))
	return FAIL;
      break;
    }

  if (immediate_size == 0)
    {
      end_of_line (str);
      inst.error = inst_error;
      return reg;
    }
  else
    {
      skip_whitespace (str);

      /* Allow optional leading '#'.  */
      if (is_immediate_prefix (* str))
        str++;

      memset (& expr, '\0', sizeof (expr));

      if (my_get_expression (& expr, & str) || (expr.X_op != O_constant))
        {
          inst.error = _("bad or missing expression");
          return FAIL;
        }

      number = expr.X_add_number;

      if (number != (number & immediate_size))
        {
          inst.error = _("immediate value out of range");
          return FAIL;
        }
      end_of_line (str);
      inst.error = inst_error;
      return number;
    }
}

static void
do_iwmmxt_byte_addr (char * str)
{
  int op = (inst.instruction & 0x300) >> 8;
  int reg;

  inst.instruction &= ~0x300;
  inst.instruction |= (op & 1) << 22 | (op & 2) << 7;

  skip_whitespace (str);

  if ((reg = wreg_required_here (&str, 12, IWMMXT_REG_WR_OR_WC)) == FAIL
      || skip_past_comma (& str) == FAIL
      || cp_byte_address_required_here (&str) == FAIL)
    {
      if (! inst.error)
        inst.error = BAD_ARGS;
    }
  else
    end_of_line (str);

  if (wc_register (reg))
    {
      as_bad (_("non-word size not supported with control register"));
      inst.instruction |=  0xf0000100;
      inst.instruction &= ~0x00400000;
    }
}

static void
do_iwmmxt_tandc (char * str)
{
  int reg;

  reg = check_iwmmxt_insn (str, check_rd, 0);

  if (reg != REG_PC && !inst.error)
    inst.error = _("only r15 allowed here");
}

static void
do_iwmmxt_tbcst (char * str)
{
  check_iwmmxt_insn (str, check_tbcst, 0);
}

static void
do_iwmmxt_textrc (char * str)
{
  unsigned long number;

  if ((number = check_iwmmxt_insn (str, check_textrc, 7)) == (unsigned long) FAIL)
    return;

  inst.instruction |= number & 0x7;
}

static void
do_iwmmxt_textrm (char * str)
{
  unsigned long number;

  if ((number = check_iwmmxt_insn (str, check_textrm, 7)) == (unsigned long) FAIL)
    return;

  inst.instruction |= number & 0x7;
}

static void
do_iwmmxt_tinsr (char * str)
{
  unsigned long number;

  if ((number = check_iwmmxt_insn (str, check_tinsr, 7)) == (unsigned long) FAIL)
    return;

  inst.instruction |= number & 0x7;
}

static void
do_iwmmxt_tmcr (char * str)
{
  check_iwmmxt_insn (str, check_tmcr, 0);
}

static void
do_iwmmxt_tmcrr (char * str)
{
  check_iwmmxt_insn (str, check_tmcrr, 0);
}

static void
do_iwmmxt_tmia (char * str)
{
  check_iwmmxt_insn (str, check_tmia, 0);
}

static void
do_iwmmxt_tmovmsk (char * str)
{
  check_iwmmxt_insn (str, check_tmovmsk, 0);
}

static void
do_iwmmxt_tmrc (char * str)
{
  check_iwmmxt_insn (str, check_tmrc, 0);
}

static void
do_iwmmxt_tmrrc (char * str)
{
  check_iwmmxt_insn (str, check_tmrrc, 0);
}

static void
do_iwmmxt_torc (char * str)
{
  check_iwmmxt_insn (str, check_rd, 0);
}

static void
do_iwmmxt_waligni (char * str)
{
  unsigned long number;

  if ((number = check_iwmmxt_insn (str, check_waligni, 7)) == (unsigned long) FAIL)
    return;

  inst.instruction |= ((number & 0x7) << 20);
}

static void
do_iwmmxt_wmov (char * str)
{
  if (check_iwmmxt_insn (str, check_wrwr, 0) == (unsigned long) FAIL)
    return;

  inst.instruction |= ((inst.instruction >> 16) & 0xf);
}

static void
do_iwmmxt_word_addr (char * str)
{
  int op = (inst.instruction & 0x300) >> 8;
  int reg;

  inst.instruction &= ~0x300;
  inst.instruction |= (op & 1) << 22 | (op & 2) << 7;

  skip_whitespace (str);

  if ((reg = wreg_required_here (&str, 12, IWMMXT_REG_WR_OR_WC)) == FAIL
      || skip_past_comma (& str) == FAIL
      || cp_address_required_here (& str, CP_WB_OK) == FAIL)
    {
      if (! inst.error)
        inst.error = BAD_ARGS;
    }
  else
    end_of_line (str);

  if (wc_register (reg))
    {
      if ((inst.instruction & COND_MASK) != COND_ALWAYS)
	as_bad (_("conditional execution not supported with control register"));
      if (op != 2)
	as_bad (_("non-word size not supported with control register"));
      inst.instruction |=  0xf0000100;
      inst.instruction &= ~0x00400000;
    }
}

static void
do_iwmmxt_wrwr (char * str)
{
  check_iwmmxt_insn (str, check_wrwr, 0);
}

static void
do_iwmmxt_wrwrwcg (char * str)
{
  check_iwmmxt_insn (str, check_wrwrwcg, 0);
}

static void
do_iwmmxt_wrwrwr (char * str)
{
  check_iwmmxt_insn (str, check_wrwrwr, 0);
}

static void
do_iwmmxt_wshufh (char * str)
{
  unsigned long number;

  if ((number = check_iwmmxt_insn (str, check_wshufh, 0xff)) == (unsigned long) FAIL)
    return;

  inst.instruction |= ((number & 0xf0) << 16) | (number & 0xf);
}

static void
do_iwmmxt_wzero (char * str)
{
  if (check_iwmmxt_insn (str, check_wr, 0) == (unsigned long) FAIL)
    return;

  inst.instruction |= ((inst.instruction & 0xf) << 12) | ((inst.instruction & 0xf) << 16);
}

/* Xscale multiply-accumulate (argument parse)
     MIAcc   acc0,Rm,Rs
     MIAPHcc acc0,Rm,Rs
     MIAxycc acc0,Rm,Rs.  */

static void
do_xsc_mia (char * str)
{
  int rs;
  int rm;

  if (accum0_required_here (& str) == FAIL)
    inst.error = ERR_NO_ACCUM;

  else if (skip_past_comma (& str) == FAIL
	   || (rm = reg_required_here (& str, 0)) == FAIL)
    inst.error = BAD_ARGS;

  else if (skip_past_comma (& str) == FAIL
	   || (rs = reg_required_here (& str, 12)) == FAIL)
    inst.error = BAD_ARGS;

  /* inst.instruction has now been zapped with both rm and rs.  */
  else if (rm == REG_PC || rs == REG_PC)
    inst.error = BAD_PC;	/* Undefined result if rm or rs is R15.  */

  else
    end_of_line (str);
}

/* Xscale move-accumulator-register (argument parse)

     MARcc   acc0,RdLo,RdHi.  */

static void
do_xsc_mar (char * str)
{
  int rdlo, rdhi;

  if (accum0_required_here (& str) == FAIL)
    inst.error = ERR_NO_ACCUM;

  else if (skip_past_comma (& str) == FAIL
	   || (rdlo = reg_required_here (& str, 12)) == FAIL)
    inst.error = BAD_ARGS;

  else if (skip_past_comma (& str) == FAIL
	   || (rdhi = reg_required_here (& str, 16)) == FAIL)
    inst.error = BAD_ARGS;

  /* inst.instruction has now been zapped with both rdlo and rdhi.  */
  else if (rdlo == REG_PC || rdhi == REG_PC)
    inst.error = BAD_PC;	/* Undefined result if rdlo or rdhi is R15.  */

  else
    end_of_line (str);
}

/* Xscale move-register-accumulator (argument parse)

     MRAcc   RdLo,RdHi,acc0.  */

static void
do_xsc_mra (char * str)
{
  int rdlo;
  int rdhi;

  skip_whitespace (str);

  if ((rdlo = reg_required_here (& str, 12)) == FAIL)
    inst.error = BAD_ARGS;

  else if (skip_past_comma (& str) == FAIL
	   || (rdhi = reg_required_here (& str, 16)) == FAIL)
    inst.error = BAD_ARGS;

  else if  (skip_past_comma (& str) == FAIL
	    || accum0_required_here (& str) == FAIL)
    inst.error = ERR_NO_ACCUM;

  /* inst.instruction has now been zapped with both rdlo and rdhi.  */
  else if (rdlo == rdhi)
    inst.error = BAD_ARGS;	/* Undefined result if 2 writes to same reg.  */

  else if (rdlo == REG_PC || rdhi == REG_PC)
    inst.error = BAD_PC;	/* Undefined result if rdlo or rdhi is R15.  */
  else
    end_of_line (str);
}

static int
ldst_extend (char ** str)
{
  int add = INDEX_UP;

  switch (**str)
    {
    case '#':
    case '$':
      (*str)++;
      if (my_get_expression (& inst.reloc.exp, str))
	return FAIL;

      if (inst.reloc.exp.X_op == O_constant)
	{
	  int value = inst.reloc.exp.X_add_number;

	  if (value < -4095 || value > 4095)
	    {
	      inst.error = _("address offset too large");
	      return FAIL;
	    }

	  if (value < 0)
	    {
	      value = -value;
	      add = 0;
	    }

	  inst.instruction |= add | value;
	}
      else
	{
	  inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
	  inst.reloc.pc_rel = 0;
	}
      return SUCCESS;

    case '-':
      add = 0;
      /* Fall through.  */

    case '+':
      (*str)++;
      /* Fall through.  */

    default:
      if (reg_required_here (str, 0) == FAIL)
	return FAIL;

      inst.instruction |= add | OFFSET_REG;
      if (skip_past_comma (str) == SUCCESS)
	return decode_shift (str, SHIFT_IMMEDIATE);

      return SUCCESS;
    }
}

/* ARMv5TE: Preload-Cache

    PLD <addr_mode>

  Syntactically, like LDR with B=1, W=0, L=1.  */

static void
do_pld (char * str)
{
  int rd;

  skip_whitespace (str);

  if (* str != '[')
    {
      inst.error = _("'[' expected after PLD mnemonic");
      return;
    }

  ++str;
  skip_whitespace (str);

  if ((rd = reg_required_here (& str, 16)) == FAIL)
    return;

  skip_whitespace (str);

  if (*str == ']')
    {
      /* [Rn], ... ?  */
      ++str;
      skip_whitespace (str);

      /* Post-indexed addressing is not allowed with PLD.  */
      if (skip_past_comma (&str) == SUCCESS)
	{
	  inst.error
	    = _("post-indexed expression used in preload instruction");
	  return;
	}
      else if (*str == '!') /* [Rn]! */
	{
	  inst.error = _("writeback used in preload instruction");
	  ++str;
	}
      else /* [Rn] */
	inst.instruction |= INDEX_UP | PRE_INDEX;
    }
  else /* [Rn, ...] */
    {
      if (skip_past_comma (& str) == FAIL)
	{
	  inst.error = _("pre-indexed expression expected");
	  return;
	}

      if (ldst_extend (&str) == FAIL)
	return;

      skip_whitespace (str);

      if (* str != ']')
	{
	  inst.error = _("missing ]");
	  return;
	}

      ++ str;
      skip_whitespace (str);

      if (* str == '!') /* [Rn]! */
	{
	  inst.error = _("writeback used in preload instruction");
	  ++ str;
	}

      inst.instruction |= PRE_INDEX;
    }

  end_of_line (str);
}

/* ARMv5TE load-consecutive (argument parse)
   Mode is like LDRH.

     LDRccD R, mode
     STRccD R, mode.  */

static void
do_ldrd (char * str)
{
  int rd;
  int rn;

  skip_whitespace (str);

  if ((rd = reg_required_here (& str, 12)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == FAIL
      || (rn = ld_mode_required_here (& str)) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  /* inst.instruction has now been zapped with Rd and the addressing mode.  */
  if (rd & 1)		/* Unpredictable result if Rd is odd.  */
    {
      inst.error = _("destination register must be even");
      return;
    }

  if (rd == REG_LR)
    {
      inst.error = _("r14 not allowed here");
      return;
    }

  if (((rd == rn) || (rd + 1 == rn))
      && ((inst.instruction & WRITE_BACK)
	  || (!(inst.instruction & PRE_INDEX))))
    as_warn (_("pre/post-indexing used when modified address register is destination"));

  /* For an index-register load, the index register must not overlap the
     destination (even if not write-back).  */
  if ((inst.instruction & V4_STR_BIT) == 0
      && (inst.instruction & HWOFFSET_IMM) == 0)
    {
      int rm = inst.instruction & 0x0000000f;

      if (rm == rd || (rm == rd + 1))
	as_warn (_("ldrd destination registers must not overlap index register"));
    }

  end_of_line (str);
}

#ifdef NOTYET
/* Returns the index into fp_values of a floating point number,
   or -1 if not in the table.  */

static int
my_get_float_expression (char ** str)
{
  LITTLENUM_TYPE words[MAX_LITTLENUMS];
  char *         save_in;
  expressionS    exp;
  int            i;
  int            j;

  memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));

  /* Look for a raw floating point number.  */
  if ((save_in = atof_ieee (*str, 'x', words)) != NULL
      && is_end_of_line[(unsigned char) *save_in])
    {
      for (i = 0; i < NUM_FLOAT_VALS; i++)
	{
	  for (j = 0; j < MAX_LITTLENUMS; j++)
	    {
	      if (words[j] != fp_values[i][j])
		break;
	    }

	  if (j == MAX_LITTLENUMS)
	    {
	      *str = save_in;
	      return i;
	    }
	}
    }

  /* Try and parse a more complex expression, this will probably fail
     unless the code uses a floating point prefix (eg "0f").  */
  save_in = input_line_pointer;
  input_line_pointer = *str;
  if (expression (&exp) == absolute_section
      && exp.X_op == O_big
      && exp.X_add_number < 0)
    {
      /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
	 Ditto for 15.  */
      if (gen_to_words (words, 5, (long) 15) == 0)
	{
	  for (i = 0; i < NUM_FLOAT_VALS; i++)
	    {
	      for (j = 0; j < MAX_LITTLENUMS; j++)
		{
		  if (words[j] != fp_values[i][j])
		    break;
		}

	      if (j == MAX_LITTLENUMS)
		{
		  *str = input_line_pointer;
		  input_line_pointer = save_in;
		  return i;
		}
	    }
	}
    }

  *str = input_line_pointer;
  input_line_pointer = save_in;
  return -1;
}
#endif

/* We handle all bad expressions here, so that we can report the faulty
   instruction in the error message.  */
void
md_operand (expressionS * expr)
{
  if (in_my_get_expression)
    {
      expr->X_op = O_illegal;
      if (inst.error == NULL)
	inst.error = _("bad expression");
    }
}

/* Do those data_ops which can take a negative immediate constant
   by altering the instruction.  A bit of a hack really.
        MOV <-> MVN
        AND <-> BIC
        ADC <-> SBC
        by inverting the second operand, and
        ADD <-> SUB
        CMP <-> CMN
        by negating the second operand.  */

static int
negate_data_op (unsigned long * instruction,
		unsigned long   value)
{
  int op, new_inst;
  unsigned long negated, inverted;

  negated = validate_immediate (-value);
  inverted = validate_immediate (~value);

  op = (*instruction >> DATA_OP_SHIFT) & 0xf;
  switch (op)
    {
      /* First negates.  */
    case OPCODE_SUB:             /* ADD <-> SUB  */
      new_inst = OPCODE_ADD;
      value = negated;
      break;

    case OPCODE_ADD:
      new_inst = OPCODE_SUB;
      value = negated;
      break;

    case OPCODE_CMP:             /* CMP <-> CMN  */
      new_inst = OPCODE_CMN;
      value = negated;
      break;

    case OPCODE_CMN:
      new_inst = OPCODE_CMP;
      value = negated;
      break;

      /* Now Inverted ops.  */
    case OPCODE_MOV:             /* MOV <-> MVN  */
      new_inst = OPCODE_MVN;
      value = inverted;
      break;

    case OPCODE_MVN:
      new_inst = OPCODE_MOV;
      value = inverted;
      break;

    case OPCODE_AND:             /* AND <-> BIC  */
      new_inst = OPCODE_BIC;
      value = inverted;
      break;

    case OPCODE_BIC:
      new_inst = OPCODE_AND;
      value = inverted;
      break;

    case OPCODE_ADC:              /* ADC <-> SBC  */
      new_inst = OPCODE_SBC;
      value = inverted;
      break;

    case OPCODE_SBC:
      new_inst = OPCODE_ADC;
      value = inverted;
      break;

      /* We cannot do anything.  */
    default:
      return FAIL;
    }

  if (value == (unsigned) FAIL)
    return FAIL;

  *instruction &= OPCODE_MASK;
  *instruction |= new_inst << DATA_OP_SHIFT;
  return value;
}

static int
data_op2 (char ** str)
{
  int value;
  expressionS expr;

  skip_whitespace (* str);

  if (reg_required_here (str, 0) != FAIL)
    {
      if (skip_past_comma (str) == SUCCESS)
	/* Shift operation on register.  */
	return decode_shift (str, NO_SHIFT_RESTRICT);

      return SUCCESS;
    }
  else
    {
      /* Immediate expression.  */
      if (is_immediate_prefix (**str))
	{
	  (*str)++;
	  inst.error = NULL;

	  if (my_get_expression (&inst.reloc.exp, str))
	    return FAIL;

	  if (inst.reloc.exp.X_add_symbol)
	    {
	      inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
	      inst.reloc.pc_rel = 0;
	    }
	  else
	    {
	      if (skip_past_comma (str) == SUCCESS)
		{
		  /* #x, y -- ie explicit rotation by Y.  */
		  if (my_get_expression (&expr, str))
		    return FAIL;

		  if (expr.X_op != O_constant)
		    {
		      inst.error = _("constant expression expected");
		      return FAIL;
		    }

		  /* Rotate must be a multiple of 2.  */
		  if (((unsigned) expr.X_add_number) > 30
		      || (expr.X_add_number & 1) != 0
		      || ((unsigned) inst.reloc.exp.X_add_number) > 255)
		    {
		      inst.error = _("invalid constant");
		      return FAIL;
		    }
		  inst.instruction |= INST_IMMEDIATE;
		  inst.instruction |= inst.reloc.exp.X_add_number;
		  inst.instruction |= expr.X_add_number << 7;
		  return SUCCESS;
		}

	      /* Implicit rotation, select a suitable one.  */
	      value = validate_immediate (inst.reloc.exp.X_add_number);

	      if (value == FAIL)
		{
		  /* Can't be done.  Perhaps the code reads something like
		     "add Rd, Rn, #-n", where "sub Rd, Rn, #n" would be OK.  */
		  if ((value = negate_data_op (&inst.instruction,
					       inst.reloc.exp.X_add_number))
		      == FAIL)
		    {
		      inst.error = _("invalid constant");
		      return FAIL;
		    }
		}

	      inst.instruction |= value;
	    }

	  inst.instruction |= INST_IMMEDIATE;
	  return SUCCESS;
	}

      (*str)++;
      inst.error = _("register or shift expression expected");
      return FAIL;
    }
}

static int
fp_op2 (char ** str)
{
  skip_whitespace (* str);

  if (fp_reg_required_here (str, 0) != FAIL)
    return SUCCESS;
  else
    {
      /* Immediate expression.  */
      if (*((*str)++) == '#')
	{
#ifdef NOTYET
	  int i;
#endif

	  inst.error = NULL;

	  skip_whitespace (* str);

#ifdef NOTYET
	  /* First try and match exact strings, this is to guarantee
	     that some formats will work even for cross assembly.  */

	  for (i = 0; fp_const[i]; i++)
	    {
	      if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
		{
		  char *start = *str;

		  *str += strlen (fp_const[i]);
		  if (is_end_of_line[(unsigned char) **str])
		    {
		      inst.instruction |= i + 8;
		      return SUCCESS;
		    }
		  *str = start;
		}
	    }

	  /* Just because we didn't get a match doesn't mean that the
	     constant isn't valid, just that it is in a format that we
	     don't automatically recognize.  Try parsing it with
	     the standard expression routines.  */
	  if ((i = my_get_float_expression (str)) >= 0)
	    {
	      inst.instruction |= i + 8;
	      return SUCCESS;
	    }
#endif

	  inst.error = _("invalid floating point immediate expression");
	  return FAIL;
	}
      inst.error =
	_("floating point register or immediate expression expected");
      return FAIL;
    }
}

static void
do_arit (char * str)
{
  skip_whitespace (str);

  if (reg_required_here (&str, 12) == FAIL
      || skip_past_comma (&str) == FAIL
      || reg_required_here (&str, 16) == FAIL
      || skip_past_comma (&str) == FAIL
      || data_op2 (&str) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_adr (char * str)
{
  /* This is a pseudo-op of the form "adr rd, label" to be converted
     into a relative address of the form "add rd, pc, #label-.-8".  */
  skip_whitespace (str);

  if (reg_required_here (&str, 12) == FAIL
      || skip_past_comma (&str) == FAIL
      || my_get_expression (&inst.reloc.exp, &str))
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  /* Frag hacking will turn this into a sub instruction if the offset turns
     out to be negative.  */
  inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
#ifndef TE_WINCE
  inst.reloc.exp.X_add_number -= 8; /* PC relative adjust.  */
#endif
  inst.reloc.pc_rel = 1;

  end_of_line (str);
}

static void
do_adrl (char * str)
{
  /* This is a pseudo-op of the form "adrl rd, label" to be converted
     into a relative address of the form:
     add rd, pc, #low(label-.-8)"
     add rd, rd, #high(label-.-8)"  */

  skip_whitespace (str);

  if (reg_required_here (&str, 12) == FAIL
      || skip_past_comma (&str) == FAIL
      || my_get_expression (&inst.reloc.exp, &str))
    {
      if (!inst.error)
	inst.error = BAD_ARGS;

      return;
    }

  end_of_line (str);
  /* Frag hacking will turn this into a sub instruction if the offset turns
     out to be negative.  */
  inst.reloc.type              = BFD_RELOC_ARM_ADRL_IMMEDIATE;
#ifndef TE_WINCE
  inst.reloc.exp.X_add_number -= 8; /* PC relative adjust  */
#endif
  inst.reloc.pc_rel            = 1;
  inst.size                    = INSN_SIZE * 2;
}

static void
do_cmp (char * str)
{
  skip_whitespace (str);

  if (reg_required_here (&str, 16) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || data_op2 (&str) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_mov (char * str)
{
  skip_whitespace (str);

  if (reg_required_here (&str, 12) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || data_op2 (&str) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_ldst (char * str)
{
  int pre_inc = 0;
  int conflict_reg;
  int value;

  skip_whitespace (str);

  if ((conflict_reg = reg_required_here (&str, 12)) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL)
    {
      inst.error = _("address expected");
      return;
    }

  if (*str == '[')
    {
      int reg;

      str++;

      skip_whitespace (str);

      if ((reg = reg_required_here (&str, 16)) == FAIL)
	return;

      /* Conflicts can occur on stores as well as loads.  */
      conflict_reg = (conflict_reg == reg);

      skip_whitespace (str);

      if (*str == ']')
	{
	  str ++;

	  if (skip_past_comma (&str) == SUCCESS)
	    {
	      /* [Rn],... (post inc)  */
	      if (ldst_extend (&str) == FAIL)
		return;
	      if (conflict_reg)
		as_warn (_("%s register same as write-back base"),
			 ((inst.instruction & LOAD_BIT)
			  ? _("destination") : _("source")));
	    }
	  else
	    {
	      /* [Rn]  */
	      skip_whitespace (str);

	      if (*str == '!')
		{
		  if (conflict_reg)
		    as_warn (_("%s register same as write-back base"),
			     ((inst.instruction & LOAD_BIT)
			      ? _("destination") : _("source")));
		  str++;
		  inst.instruction |= WRITE_BACK;
		}

	      inst.instruction |= INDEX_UP;
	      pre_inc = 1;
	    }
	}
      else
	{
	  /* [Rn,...]  */
	  if (skip_past_comma (&str) == FAIL)
	    {
	      inst.error = _("pre-indexed expression expected");
	      return;
	    }

	  pre_inc = 1;
	  if (ldst_extend (&str) == FAIL)
	    return;

	  skip_whitespace (str);

	  if (*str++ != ']')
	    {
	      inst.error = _("missing ]");
	      return;
	    }

	  skip_whitespace (str);

	  if (*str == '!')
	    {
	      if (conflict_reg)
		as_warn (_("%s register same as write-back base"),
			 ((inst.instruction & LOAD_BIT)
			  ? _("destination") : _("source")));
	      str++;
	      inst.instruction |= WRITE_BACK;
	    }
	}
    }
  else if (*str == '=')
    {
      if ((inst.instruction & LOAD_BIT) == 0)
	{
	  inst.error = _("invalid pseudo operation");
	  return;
	}

      /* Parse an "ldr Rd, =expr" instruction; this is another pseudo op.  */
      str++;

      skip_whitespace (str);

      if (my_get_expression (&inst.reloc.exp, &str))
	return;

      if (inst.reloc.exp.X_op != O_constant
	  && inst.reloc.exp.X_op != O_symbol)
	{
	  inst.error = _("constant expression expected");
	  return;
	}

      if (inst.reloc.exp.X_op == O_constant)
	{
	  value = validate_immediate (inst.reloc.exp.X_add_number);

	  if (value != FAIL)
	    {
	      /* This can be done with a mov instruction.  */
	      inst.instruction &= LITERAL_MASK;
	      inst.instruction |= (INST_IMMEDIATE
				   | (OPCODE_MOV << DATA_OP_SHIFT));
	      inst.instruction |= value & 0xfff;
	      end_of_line (str);
	      return;
	    }

	  value = validate_immediate (~inst.reloc.exp.X_add_number);

	  if (value != FAIL)
	    {
	      /* This can be done with a mvn instruction.  */
	      inst.instruction &= LITERAL_MASK;
	      inst.instruction |= (INST_IMMEDIATE
				   | (OPCODE_MVN << DATA_OP_SHIFT));
	      inst.instruction |= value & 0xfff;
	      end_of_line (str);
	      return;
	    }
	}

      /* Insert into literal pool.  */
      if (add_to_lit_pool () == FAIL)
	{
	  if (!inst.error)
	    inst.error = _("literal pool insertion failed");
	  return;
	}

      /* Change the instruction exp to point to the pool.  */
      inst.reloc.type = BFD_RELOC_ARM_LITERAL;
      inst.reloc.pc_rel = 1;
      inst.instruction |= (REG_PC << 16);
      pre_inc = 1;
    }
  else
    {
      if (my_get_expression (&inst.reloc.exp, &str))
	return;

      inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
#ifndef TE_WINCE
      /* PC rel adjust.  */
      inst.reloc.exp.X_add_number -= 8;
#endif
      inst.reloc.pc_rel = 1;
      inst.instruction |= (REG_PC << 16);
      pre_inc = 1;
    }

  inst.instruction |= (pre_inc ? PRE_INDEX : 0);
  end_of_line (str);
}

static void
do_ldstt (char * str)
{
  int conflict_reg;

  skip_whitespace (str);

  if ((conflict_reg = reg_required_here (& str, 12)) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == FAIL)
    {
      inst.error = _("address expected");
      return;
    }

  if (*str == '[')
    {
      int reg;

      str++;

      skip_whitespace (str);

      if ((reg = reg_required_here (&str, 16)) == FAIL)
	return;

      /* ldrt/strt always use post-indexed addressing, so if the base is
	 the same as Rd, we warn.  */
      if (conflict_reg == reg)
	as_warn (_("%s register same as write-back base"),
		 ((inst.instruction & LOAD_BIT)
		  ? _("destination") : _("source")));

      skip_whitespace (str);

      if (*str == ']')
	{
	  str ++;

	  if (skip_past_comma (&str) == SUCCESS)
	    {
	      /* [Rn],... (post inc)  */
	      if (ldst_extend (&str) == FAIL)
		return;
	    }
	  else
	    {
	      /* [Rn]  */
	      skip_whitespace (str);

	      /* Skip a write-back '!'.  */
	      if (*str == '!')
		str++;

	      inst.instruction |= INDEX_UP;
	    }
	}
      else
	{
	  inst.error = _("post-indexed expression expected");
	  return;
	}
    }
  else
    {
      inst.error = _("post-indexed expression expected");
      return;
    }

  end_of_line (str);
}

/* Halfword and signed-byte load/store operations.  */

static void
do_ldstv4 (char * str)
{
  int pre_inc = 0;
  int conflict_reg;
  int value;

  skip_whitespace (str);

  if ((conflict_reg = reg_required_here (& str, 12)) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (& str) == FAIL)
    {
      inst.error = _("address expected");
      return;
    }

  if (*str == '[')
    {
      int reg;

      str++;

      skip_whitespace (str);

      if ((reg = reg_required_here (&str, 16)) == FAIL)
	return;

      /* Conflicts can occur on stores as well as loads.  */
      conflict_reg = (conflict_reg == reg);

      skip_whitespace (str);

      if (*str == ']')
	{
	  str ++;

	  if (skip_past_comma (&str) == SUCCESS)
	    {
	      /* [Rn],... (post inc)  */
	      if (ldst_extend_v4 (&str) == FAIL)
		return;
	      if (conflict_reg)
		as_warn (_("%s register same as write-back base"),
			 ((inst.instruction & LOAD_BIT)
			  ? _("destination") : _("source")));
	    }
	  else
	    {
	      /* [Rn]  */
	      inst.instruction |= HWOFFSET_IMM;

	      skip_whitespace (str);

	      if (*str == '!')
		{
		  if (conflict_reg)
		    as_warn (_("%s register same as write-back base"),
			     ((inst.instruction & LOAD_BIT)
			      ? _("destination") : _("source")));
		  str++;
		  inst.instruction |= WRITE_BACK;
		}

	      inst.instruction |= INDEX_UP;
	      pre_inc = 1;
	    }
	}
      else
	{
	  /* [Rn,...]  */
	  if (skip_past_comma (&str) == FAIL)
	    {
	      inst.error = _("pre-indexed expression expected");
	      return;
	    }

	  pre_inc = 1;
	  if (ldst_extend_v4 (&str) == FAIL)
	    return;

	  skip_whitespace (str);

	  if (*str++ != ']')
	    {
	      inst.error = _("missing ]");
	      return;
	    }

	  skip_whitespace (str);

	  if (*str == '!')
	    {
	      if (conflict_reg)
		as_warn (_("%s register same as write-back base"),
			 ((inst.instruction & LOAD_BIT)
			  ? _("destination") : _("source")));
	      str++;
	      inst.instruction |= WRITE_BACK;
	    }
	}
    }
  else if (*str == '=')
    {
      if ((inst.instruction & LOAD_BIT) == 0)
	{
	  inst.error = _("invalid pseudo operation");
	  return;
	}

      /* XXX Does this work correctly for half-word/byte ops?  */
      /* Parse an "ldr Rd, =expr" instruction; this is another pseudo op.  */
      str++;

      skip_whitespace (str);

      if (my_get_expression (&inst.reloc.exp, &str))
	return;

      if (inst.reloc.exp.X_op != O_constant
	  && inst.reloc.exp.X_op != O_symbol)
	{
	  inst.error = _("constant expression expected");
	  return;
	}

      if (inst.reloc.exp.X_op == O_constant)
	{
	  value = validate_immediate (inst.reloc.exp.X_add_number);

	  if (value != FAIL)
	    {
	      /* This can be done with a mov instruction.  */
	      inst.instruction &= LITERAL_MASK;
	      inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
	      inst.instruction |= value & 0xfff;
	      end_of_line (str);
	      return;
	    }

	  value = validate_immediate (~ inst.reloc.exp.X_add_number);

	  if (value != FAIL)
	    {
	      /* This can be done with a mvn instruction.  */
	      inst.instruction &= LITERAL_MASK;
	      inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
	      inst.instruction |= value & 0xfff;
	      end_of_line (str);
	      return;
	    }
	}

      /* Insert into literal pool.  */
      if (add_to_lit_pool () == FAIL)
	{
	  if (!inst.error)
	    inst.error = _("literal pool insertion failed");
	  return;
	}

      /* Change the instruction exp to point to the pool.  */
      inst.instruction |= HWOFFSET_IMM;
      inst.reloc.type = BFD_RELOC_ARM_HWLITERAL;
      inst.reloc.pc_rel = 1;
      inst.instruction |= (REG_PC << 16);
      pre_inc = 1;
    }
  else
    {
      if (my_get_expression (&inst.reloc.exp, &str))
	return;

      inst.instruction |= HWOFFSET_IMM;
      inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
#ifndef TE_WINCE
      /* PC rel adjust.  */
      inst.reloc.exp.X_add_number -= 8;
#endif
      inst.reloc.pc_rel = 1;
      inst.instruction |= (REG_PC << 16);
      pre_inc = 1;
    }

  inst.instruction |= (pre_inc ? PRE_INDEX : 0);
  end_of_line (str);
}

static long
reg_list (char ** strp)
{
  char * str = * strp;
  long   range = 0;
  int    another_range;

  /* We come back here if we get ranges concatenated by '+' or '|'.  */
  do
    {
      another_range = 0;

      if (*str == '{')
	{
	  int in_range = 0;
	  int cur_reg = -1;

	  str++;
	  do
	    {
	      int reg;

	      skip_whitespace (str);

	      if ((reg = reg_required_here (& str, -1)) == FAIL)
		return FAIL;

	      if (in_range)
		{
		  int i;

		  if (reg <= cur_reg)
		    {
		      inst.error = _("bad range in register list");
		      return FAIL;
		    }

		  for (i = cur_reg + 1; i < reg; i++)
		    {
		      if (range & (1 << i))
			as_tsktsk
			  (_("Warning: duplicated register (r%d) in register list"),
			   i);
		      else
			range |= 1 << i;
		    }
		  in_range = 0;
		}

	      if (range & (1 << reg))
		as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
			   reg);
	      else if (reg <= cur_reg)
		as_tsktsk (_("Warning: register range not in ascending order"));

	      range |= 1 << reg;
	      cur_reg = reg;
	    }
	  while (skip_past_comma (&str) != FAIL
		 || (in_range = 1, *str++ == '-'));
	  str--;
	  skip_whitespace (str);

	  if (*str++ != '}')
	    {
	      inst.error = _("missing `}'");
	      return FAIL;
	    }
	}
      else
	{
	  expressionS expr;

	  if (my_get_expression (&expr, &str))
	    return FAIL;

	  if (expr.X_op == O_constant)
	    {
	      if (expr.X_add_number
		  != (expr.X_add_number & 0x0000ffff))
		{
		  inst.error = _("invalid register mask");
		  return FAIL;
		}

	      if ((range & expr.X_add_number) != 0)
		{
		  int regno = range & expr.X_add_number;

		  regno &= -regno;
		  regno = (1 << regno) - 1;
		  as_tsktsk
		    (_("Warning: duplicated register (r%d) in register list"),
		     regno);
		}

	      range |= expr.X_add_number;
	    }
	  else
	    {
	      if (inst.reloc.type != 0)
		{
		  inst.error = _("expression too complex");
		  return FAIL;
		}

	      memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
	      inst.reloc.type = BFD_RELOC_ARM_MULTI;
	      inst.reloc.pc_rel = 0;
	    }
	}

      skip_whitespace (str);

      if (*str == '|' || *str == '+')
	{
	  str++;
	  another_range = 1;
	}
    }
  while (another_range);

  *strp = str;
  return range;
}

static void
do_ldmstm (char * str)
{
  int base_reg;
  long range;

  skip_whitespace (str);

  if ((base_reg = reg_required_here (&str, 16)) == FAIL)
    return;

  if (base_reg == REG_PC)
    {
      inst.error = _("r15 not allowed as base register");
      return;
    }

  skip_whitespace (str);

  if (*str == '!')
    {
      inst.instruction |= WRITE_BACK;
      str++;
    }

  if (skip_past_comma (&str) == FAIL
      || (range = reg_list (&str)) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (*str == '^')
    {
      str++;
      inst.instruction |= LDM_TYPE_2_OR_3;
    }

  if (inst.instruction & WRITE_BACK)
    {
      /* Check for unpredictable uses of writeback.  */
      if (inst.instruction & LOAD_BIT)
	{
	  /* Not allowed in LDM type 2.  */
	  if ((inst.instruction & LDM_TYPE_2_OR_3)
	      && ((range & (1 << REG_PC)) == 0))
	    as_warn (_("writeback of base register is UNPREDICTABLE"));
	  /* Only allowed if base reg not in list for other types.  */
	  else if (range & (1 << base_reg))
	    as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
	}
      else /* STM.  */
	{
	  /* Not allowed for type 2.  */
	  if (inst.instruction & LDM_TYPE_2_OR_3)
	    as_warn (_("writeback of base register is UNPREDICTABLE"));
	  /* Only allowed if base reg not in list, or first in list.  */
	  else if ((range & (1 << base_reg))
		   && (range & ((1 << base_reg) - 1)))
	    as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
	}
    }

  inst.instruction |= range;
  end_of_line (str);
}

static void
do_smi (char * str)
{
  skip_whitespace (str);

  /* Allow optional leading '#'.  */
  if (is_immediate_prefix (*str))
    str++;

  if (my_get_expression (& inst.reloc.exp, & str))
    return;

  inst.reloc.type = BFD_RELOC_ARM_SMI;
  inst.reloc.pc_rel = 0;
  end_of_line (str);
}

static void
do_swi (char * str)
{
  skip_whitespace (str);

  /* Allow optional leading '#'.  */
  if (is_immediate_prefix (*str))
    str++;

  if (my_get_expression (& inst.reloc.exp, & str))
    return;

  inst.reloc.type = BFD_RELOC_ARM_SWI;
  inst.reloc.pc_rel = 0;
  end_of_line (str);
}

static void
do_swap (char * str)
{
  int Rd, Rm, Rn;

  skip_whitespace (str);

  if ((Rd = reg_required_here (&str, 12)) == FAIL)
    return;

  if (Rd == REG_PC)
    {
      inst.error = _("r15 not allowed in swap");
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || (Rm = reg_required_here (&str, 0)) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (Rm == REG_PC)
    {
      inst.error = _("r15 not allowed in swap");
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || *str++ != '[')
    {
      inst.error = BAD_ARGS;
      return;
    }

  skip_whitespace (str);

  if ((Rn = reg_required_here (&str, 16)) == FAIL)
    return;

  if (Rn == REG_PC)
    {
      inst.error = BAD_PC;
      return;
    }

  if (Rn == Rm || Rn == Rd)
    {
      inst.error = _("Rn must not overlap other operands");
      return;
    }

  skip_whitespace (str);

  if (*str++ != ']')
    {
      inst.error = _("missing ]");
      return;
    }

  end_of_line (str);
}

/* FROM line 6805 */
static void
do_branch (char * str)
{
  if (my_get_expression (&inst.reloc.exp, &str))
    return;

#ifdef OBJ_ELF
  {
    char * save_in;

    /* ScottB: February 5, 1998 - Check to see of PLT32 reloc
       required for the instruction.  */

    /* arm_parse_reloc () works on input_line_pointer.
       We actually want to parse the operands to the branch instruction
       passed in 'str'.  Save the input pointer and restore it later.  */
    save_in = input_line_pointer;
    input_line_pointer = str;
    if (inst.reloc.exp.X_op == O_symbol
	&& *str == '('
	&& arm_parse_reloc () == BFD_RELOC_ARM_PLT32)
      {
	inst.reloc.type   = BFD_RELOC_ARM_PLT32;
	inst.reloc.pc_rel = 0;
	/* Modify str to point to after parsed operands, otherwise
	   end_of_line() will complain about the (PLT) left in str.  */
	str = input_line_pointer;
      }
    else
      {
	inst.reloc.type   = BFD_RELOC_ARM_PCREL_BRANCH;
	inst.reloc.pc_rel = 1;
      }
    input_line_pointer = save_in;
  }
#else
  inst.reloc.type   = BFD_RELOC_ARM_PCREL_BRANCH;
  inst.reloc.pc_rel = 1;
#endif /* OBJ_ELF  */

  end_of_line (str);
}

static void
do_cdp (char * str)
{
  /* Co-processor data operation.
     Format: CDP{cond} CP#,<expr>,CRd,CRn,CRm{,<expr>}  */
  skip_whitespace (str);

  if (co_proc_number (&str) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || cp_opc_expr (&str, 20,4) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || cp_reg_required_here (&str, 12) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || cp_reg_required_here (&str, 16) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || cp_reg_required_here (&str, 0) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == SUCCESS)
    {
      if (cp_opc_expr (&str, 5, 3) == FAIL)
	{
	  if (!inst.error)
	    inst.error = BAD_ARGS;
	  return;
	}
    }

  end_of_line (str);
}

static void
do_lstc (char * str)
{
  /* Co-processor register load/store.
     Format: <LDC|STC{cond}[L] CP#,CRd,<address>  */

  skip_whitespace (str);

  if (co_proc_number (&str) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || cp_reg_required_here (&str, 12) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || cp_address_required_here (&str, CP_WB_OK) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_co_reg (char * str)
{
  /* Co-processor register transfer.
     Format: <MCR|MRC>{cond} CP#,<expr1>,Rd,CRn,CRm{,<expr2>}  */

  skip_whitespace (str);

  if (co_proc_number (&str) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || cp_opc_expr (&str, 21, 3) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || reg_required_here (&str, 12) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || cp_reg_required_here (&str, 16) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || cp_reg_required_here (&str, 0) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == SUCCESS)
    {
      if (cp_opc_expr (&str, 5, 3) == FAIL)
	{
	  if (!inst.error)
	    inst.error = BAD_ARGS;
	  return;
	}
    }

  end_of_line (str);
}

static void
do_fpa_ctrl (char * str)
{
  /* FP control registers.
     Format: <WFS|RFS|WFC|RFC>{cond} Rn  */

  skip_whitespace (str);

  if (reg_required_here (&str, 12) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_fpa_ldst (char * str)
{
  skip_whitespace (str);

  if (fp_reg_required_here (&str, 12) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || cp_address_required_here (&str, CP_WB_OK) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_fpa_ldmstm (char * str)
{
  int num_regs;

  skip_whitespace (str);

  if (fp_reg_required_here (&str, 12) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  /* Get Number of registers to transfer.  */
  if (skip_past_comma (&str) == FAIL
      || my_get_expression (&inst.reloc.exp, &str))
    {
      if (! inst.error)
	inst.error = _("constant expression expected");
      return;
    }

  if (inst.reloc.exp.X_op != O_constant)
    {
      inst.error = _("constant value required for number of registers");
      return;
    }

  num_regs = inst.reloc.exp.X_add_number;

  if (num_regs < 1 || num_regs > 4)
    {
      inst.error = _("number of registers must be in the range [1:4]");
      return;
    }

  switch (num_regs)
    {
    case 1:
      inst.instruction |= CP_T_X;
      break;
    case 2:
      inst.instruction |= CP_T_Y;
      break;
    case 3:
      inst.instruction |= CP_T_Y | CP_T_X;
      break;
    case 4:
      break;
    default:
      abort ();
    }

  if (inst.instruction & (CP_T_Pre | CP_T_UD)) /* ea/fd format.  */
    {
      int reg;
      int write_back;
      int offset;

      /* The instruction specified "ea" or "fd", so we can only accept
	 [Rn]{!}.  The instruction does not really support stacking or
	 unstacking, so we have to emulate these by setting appropriate
	 bits and offsets.  */
      if (skip_past_comma (&str) == FAIL
	  || *str != '[')
	{
	  if (! inst.error)
	    inst.error = BAD_ARGS;
	  return;
	}

      str++;
      skip_whitespace (str);

      if ((reg = reg_required_here (&str, 16)) == FAIL)
	return;

      skip_whitespace (str);

      if (*str != ']')
	{
	  inst.error = BAD_ARGS;
	  return;
	}

      str++;
      if (*str == '!')
	{
	  write_back = 1;
	  str++;
	  if (reg == REG_PC)
	    {
	      inst.error =
		_("r15 not allowed as base register with write-back");
	      return;
	    }
	}
      else
	write_back = 0;

      if (inst.instruction & CP_T_Pre)
	{
	  /* Pre-decrement.  */
	  offset = 3 * num_regs;
	  if (write_back)
	    inst.instruction |= CP_T_WB;
	}
      else
	{
	  /* Post-increment.  */
	  if (write_back)
	    {
	      inst.instruction |= CP_T_WB;
	      offset = 3 * num_regs;
	    }
	  else
	    {
	      /* No write-back, so convert this into a standard pre-increment
		 instruction -- aesthetically more pleasing.  */
	      inst.instruction |= CP_T_Pre | CP_T_UD;
	      offset = 0;
	    }
	}

      inst.instruction |= offset;
    }
  else if (skip_past_comma (&str) == FAIL
	   || cp_address_required_here (&str, CP_WB_OK) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_fpa_dyadic (char * str)
{
  skip_whitespace (str);

  if (fp_reg_required_here (&str, 12) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || fp_reg_required_here (&str, 16) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || fp_op2 (&str) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_fpa_monadic (char * str)
{
  skip_whitespace (str);

  if (fp_reg_required_here (&str, 12) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || fp_op2 (&str) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_fpa_cmp (char * str)
{
  skip_whitespace (str);

  if (fp_reg_required_here (&str, 16) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || fp_op2 (&str) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_fpa_from_reg (char * str)
{
  skip_whitespace (str);

  if (fp_reg_required_here (&str, 16) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || reg_required_here (&str, 12) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_fpa_to_reg (char * str)
{
  skip_whitespace (str);

  if (reg_required_here (&str, 12) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || fp_reg_required_here (&str, 0) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

/* Encode a VFP SP register number.  */

static void
vfp_sp_encode_reg (int reg, enum vfp_sp_reg_pos pos)
{
  switch (pos)
    {
    case VFP_REG_Sd:
      inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
      break;

    case VFP_REG_Sn:
      inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
      break;

    case VFP_REG_Sm:
      inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
      break;

    default:
      abort ();
    }
}

static int
vfp_sp_reg_required_here (char ** str,
			  enum vfp_sp_reg_pos pos)
{
  int    reg;
  char * start = *str;

  if ((reg = arm_reg_parse (str, all_reg_maps[REG_TYPE_SN].htab)) != FAIL)
    {
      vfp_sp_encode_reg (reg, pos);
      return reg;
    }

  /* In the few cases where we might be able to accept something else
     this error can be overridden.  */
  inst.error = _(all_reg_maps[REG_TYPE_SN].expected);

  /* Restore the start point.  */
  *str = start;
  return FAIL;
}

static int
vfp_dp_reg_required_here (char ** str,
			  enum vfp_dp_reg_pos pos)
{
  int    reg;
  char * start = *str;

  if ((reg = arm_reg_parse (str, all_reg_maps[REG_TYPE_DN].htab)) != FAIL)
    {
      switch (pos)
	{
	case VFP_REG_Dd:
	  inst.instruction |= reg << 12;
	  break;

	case VFP_REG_Dn:
	  inst.instruction |= reg << 16;
	  break;

	case VFP_REG_Dm:
	  inst.instruction |= reg << 0;
	  break;

	default:
	  abort ();
	}
      return reg;
    }

  /* In the few cases where we might be able to accept something else
     this error can be overridden.  */
  inst.error = _(all_reg_maps[REG_TYPE_DN].expected);

  /* Restore the start point.  */
  *str = start;
  return FAIL;
}

static void
do_vfp_sp_monadic (char * str)
{
  skip_whitespace (str);

  if (vfp_sp_reg_required_here (&str, VFP_REG_Sd) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || vfp_sp_reg_required_here (&str, VFP_REG_Sm) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_dp_monadic (char * str)
{
  skip_whitespace (str);

  if (vfp_dp_reg_required_here (&str, VFP_REG_Dd) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || vfp_dp_reg_required_here (&str, VFP_REG_Dm) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_sp_dyadic (char * str)
{
  skip_whitespace (str);

  if (vfp_sp_reg_required_here (&str, VFP_REG_Sd) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || vfp_sp_reg_required_here (&str, VFP_REG_Sn) == FAIL
      || skip_past_comma (&str) == FAIL
      || vfp_sp_reg_required_here (&str, VFP_REG_Sm) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_dp_dyadic (char * str)
{
  skip_whitespace (str);

  if (vfp_dp_reg_required_here (&str, VFP_REG_Dd) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || vfp_dp_reg_required_here (&str, VFP_REG_Dn) == FAIL
      || skip_past_comma (&str) == FAIL
      || vfp_dp_reg_required_here (&str, VFP_REG_Dm) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_reg_from_sp (char * str)
{
  skip_whitespace (str);

  if (reg_required_here (&str, 12) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || vfp_sp_reg_required_here (&str, VFP_REG_Sn) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

/* Parse a VFP register list.  If the string is invalid return FAIL.
   Otherwise return the number of registers, and set PBASE to the first
   register.  Double precision registers are matched if DP is nonzero.  */

static int
vfp_parse_reg_list (char **str, int *pbase, int dp)
{
  int base_reg;
  int new_base;
  int regtype;
  int max_regs;
  int count = 0;
  int warned = 0;
  unsigned long mask = 0;
  int i;

  if (**str != '{')
    return FAIL;

  (*str)++;
  skip_whitespace (*str);

  if (dp)
    {
      regtype = REG_TYPE_DN;
      max_regs = 16;
    }
  else
    {
      regtype = REG_TYPE_SN;
      max_regs = 32;
    }

  base_reg = max_regs;

  do
    {
      new_base = arm_reg_parse (str, all_reg_maps[regtype].htab);
      if (new_base == FAIL)
	{
	  inst.error = _(all_reg_maps[regtype].expected);
	  return FAIL;
	}

      if (new_base < base_reg)
	base_reg = new_base;

      if (mask & (1 << new_base))
	{
	  inst.error = _("invalid register list");
	  return FAIL;
	}

      if ((mask >> new_base) != 0 && ! warned)
	{
	  as_tsktsk (_("register list not in ascending order"));
	  warned = 1;
	}

      mask |= 1 << new_base;
      count++;

      skip_whitespace (*str);

      if (**str == '-') /* We have the start of a range expression */
	{
	  int high_range;

	  (*str)++;

	  if ((high_range
	       = arm_reg_parse (str, all_reg_maps[regtype].htab))
	      == FAIL)
	    {
	      inst.error = _(all_reg_maps[regtype].expected);
	      return FAIL;
	    }

	  if (high_range <= new_base)
	    {
	      inst.error = _("register range not in ascending order");
	      return FAIL;
	    }

	  for (new_base++; new_base <= high_range; new_base++)
	    {
	      if (mask & (1 << new_base))
		{
		  inst.error = _("invalid register list");
		  return FAIL;
		}

	      mask |= 1 << new_base;
	      count++;
	    }
	}
    }
  while (skip_past_comma (str) != FAIL);

  (*str)++;

  /* Sanity check -- should have raised a parse error above.  */
  if (count == 0 || count > max_regs)
    abort ();

  *pbase = base_reg;

  /* Final test -- the registers must be consecutive.  */
  mask >>= base_reg;
  for (i = 0; i < count; i++)
    {
      if ((mask & (1u << i)) == 0)
	{
	  inst.error = _("non-contiguous register range");
	  return FAIL;
	}
    }

  return count;
}

static void
do_vfp_reg2_from_sp2 (char * str)
{
  int reg;

  skip_whitespace (str);

  if (reg_required_here (&str, 12) == FAIL
      || skip_past_comma (&str) == FAIL
      || reg_required_here (&str, 16) == FAIL
      || skip_past_comma (&str) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  /* We require exactly two consecutive SP registers.  */
  if (vfp_parse_reg_list (&str, &reg, 0) != 2)
    {
      if (! inst.error)
	inst.error = _("only two consecutive VFP SP registers allowed here");
    }
  vfp_sp_encode_reg (reg, VFP_REG_Sm);

  end_of_line (str);
}

static void
do_vfp_sp_from_reg (char * str)
{
  skip_whitespace (str);

  if (vfp_sp_reg_required_here (&str, VFP_REG_Sn) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || reg_required_here (&str, 12) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_sp2_from_reg2 (char * str)
{
  int reg;

  skip_whitespace (str);

  /* We require exactly two consecutive SP registers.  */
  if (vfp_parse_reg_list (&str, &reg, 0) != 2)
    {
      if (! inst.error)
	inst.error = _("only two consecutive VFP SP registers allowed here");
    }
  vfp_sp_encode_reg (reg, VFP_REG_Sm);

  if (skip_past_comma (&str) == FAIL
      || reg_required_here (&str, 12) == FAIL
      || skip_past_comma (&str) == FAIL
      || reg_required_here (&str, 16) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_reg_from_dp (char * str)
{
  skip_whitespace (str);

  if (reg_required_here (&str, 12) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || vfp_dp_reg_required_here (&str, VFP_REG_Dn) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_reg2_from_dp (char * str)
{
  skip_whitespace (str);

  if (reg_required_here (&str, 12) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || reg_required_here (&str, 16) == FAIL
      || skip_past_comma (&str) == FAIL
      || vfp_dp_reg_required_here (&str, VFP_REG_Dm) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_dp_from_reg (char * str)
{
  skip_whitespace (str);

  if (vfp_dp_reg_required_here (&str, VFP_REG_Dn) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || reg_required_here (&str, 12) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_dp_from_reg2 (char * str)
{
  skip_whitespace (str);

  if (vfp_dp_reg_required_here (&str, VFP_REG_Dm) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || reg_required_here (&str, 12) == FAIL
      || skip_past_comma (&str) == FAIL
      || reg_required_here (&str, 16) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static const struct vfp_reg *
vfp_psr_parse (char ** str)
{
  char *start = *str;
  char  c;
  char *p;
  const struct vfp_reg *vreg;

  p = start;

  /* Find the end of the current token.  */
  do
    {
      c = *p++;
    }
  while (ISALPHA (c));

  /* Mark it.  */
  *--p = 0;

  for (vreg = vfp_regs + 0;
       vreg < vfp_regs + sizeof (vfp_regs) / sizeof (struct vfp_reg);
       vreg++)
    {
      if (streq (start, vreg->name))
	{
	  *p = c;
	  *str = p;
	  return vreg;
	}
    }

  *p = c;
  return NULL;
}

static int
vfp_psr_required_here (char ** str)
{
  char *start = *str;
  const struct vfp_reg *vreg;

  vreg = vfp_psr_parse (str);

  if (vreg)
    {
      inst.instruction |= vreg->regno;
      return SUCCESS;
    }

  inst.error = _("VFP system register expected");

  *str = start;
  return FAIL;
}

static void
do_vfp_reg_from_ctrl (char * str)
{
  skip_whitespace (str);

  if (reg_required_here (&str, 12) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || vfp_psr_required_here (&str) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_ctrl_from_reg (char * str)
{
  skip_whitespace (str);

  if (vfp_psr_required_here (&str) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || reg_required_here (&str, 12) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_sp_ldst (char * str)
{
  skip_whitespace (str);

  if (vfp_sp_reg_required_here (&str, VFP_REG_Sd) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || cp_address_required_here (&str, CP_NO_WB) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_dp_ldst (char * str)
{
  skip_whitespace (str);

  if (vfp_dp_reg_required_here (&str, VFP_REG_Dd) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || cp_address_required_here (&str, CP_NO_WB) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}


static void
vfp_sp_ldstm (char * str, enum vfp_ldstm_type ldstm_type)
{
  int count;
  int reg;

  skip_whitespace (str);

  if (reg_required_here (&str, 16) == FAIL)
    return;

  skip_whitespace (str);

  if (*str == '!')
    {
      inst.instruction |= WRITE_BACK;
      str++;
    }
  else if (ldstm_type != VFP_LDSTMIA)
    {
      inst.error = _("this addressing mode requires base-register writeback");
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || (count = vfp_parse_reg_list (&str, &reg, 0)) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }
  vfp_sp_encode_reg (reg, VFP_REG_Sd);

  inst.instruction |= count;
  end_of_line (str);
}

static void
vfp_dp_ldstm (char * str, enum vfp_ldstm_type ldstm_type)
{
  int count;
  int reg;

  skip_whitespace (str);

  if (reg_required_here (&str, 16) == FAIL)
    return;

  skip_whitespace (str);

  if (*str == '!')
    {
      inst.instruction |= WRITE_BACK;
      str++;
    }
  else if (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX)
    {
      inst.error = _("this addressing mode requires base-register writeback");
      return;
    }

  if (skip_past_comma (&str) == FAIL
      || (count = vfp_parse_reg_list (&str, &reg, 1)) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  count <<= 1;
  if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
    count += 1;

  inst.instruction |= (reg << 12) | count;
  end_of_line (str);
}

static void
do_vfp_sp_ldstmia (char * str)
{
  vfp_sp_ldstm (str, VFP_LDSTMIA);
}

static void
do_vfp_sp_ldstmdb (char * str)
{
  vfp_sp_ldstm (str, VFP_LDSTMDB);
}

static void
do_vfp_dp_ldstmia (char * str)
{
  vfp_dp_ldstm (str, VFP_LDSTMIA);
}

static void
do_vfp_dp_ldstmdb (char * str)
{
  vfp_dp_ldstm (str, VFP_LDSTMDB);
}

static void
do_vfp_xp_ldstmia (char *str)
{
  vfp_dp_ldstm (str, VFP_LDSTMIAX);
}

static void
do_vfp_xp_ldstmdb (char * str)
{
  vfp_dp_ldstm (str, VFP_LDSTMDBX);
}

static void
do_vfp_sp_compare_z (char * str)
{
  skip_whitespace (str);

  if (vfp_sp_reg_required_here (&str, VFP_REG_Sd) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_dp_compare_z (char * str)
{
  skip_whitespace (str);

  if (vfp_dp_reg_required_here (&str, VFP_REG_Dd) == FAIL)
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_dp_sp_cvt (char * str)
{
  skip_whitespace (str);

  if (vfp_dp_reg_required_here (&str, VFP_REG_Dd) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || vfp_sp_reg_required_here (&str, VFP_REG_Sm) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

static void
do_vfp_sp_dp_cvt (char * str)
{
  skip_whitespace (str);

  if (vfp_sp_reg_required_here (&str, VFP_REG_Sd) == FAIL)
    return;

  if (skip_past_comma (&str) == FAIL
      || vfp_dp_reg_required_here (&str, VFP_REG_Dm) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  end_of_line (str);
}

/* Thumb specific routines.  */

/* Parse an add or subtract instruction, SUBTRACT is non-zero if the opcode
   was SUB.  */

static void
thumb_add_sub (char * str, int subtract)
{
  int Rd, Rs, Rn = FAIL;

  skip_whitespace (str);

  if ((Rd = thumb_reg (&str, THUMB_REG_ANY)) == FAIL
      || skip_past_comma (&str) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (is_immediate_prefix (*str))
    {
      Rs = Rd;
      str++;
      if (my_get_expression (&inst.reloc.exp, &str))
	return;
    }
  else
    {
      if ((Rs = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
	return;

      if (skip_past_comma (&str) == FAIL)
	{
	  /* Two operand format, shuffle the registers
	     and pretend there are 3.  */
	  Rn = Rs;
	  Rs = Rd;
	}
      else if (is_immediate_prefix (*str))
	{
	  str++;
	  if (my_get_expression (&inst.reloc.exp, &str))
	    return;
	}
      else if ((Rn = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
	return;
    }

  /* We now have Rd and Rs set to registers, and Rn set to a register or FAIL;
     for the latter case, EXPR contains the immediate that was found.  */
  if (Rn != FAIL)
    {
      /* All register format.  */
      if (Rd > 7 || Rs > 7 || Rn > 7)
	{
	  if (Rs != Rd)
	    {
	      inst.error = _("dest and source1 must be the same register");
	      return;
	    }

	  /* Can't do this for SUB.  */
	  if (subtract)
	    {
	      inst.error = _("subtract valid only on lo regs");
	      return;
	    }

	  inst.instruction = (T_OPCODE_ADD_HI
			      | (Rd > 7 ? THUMB_H1 : 0)
			      | (Rn > 7 ? THUMB_H2 : 0));
	  inst.instruction |= (Rd & 7) | ((Rn & 7) << 3);
	}
      else
	{
	  inst.instruction = subtract ? T_OPCODE_SUB_R3 : T_OPCODE_ADD_R3;
	  inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
	}
    }
  else
    {
      /* Immediate expression, now things start to get nasty.  */

      /* First deal with HI regs, only very restricted cases allowed:
	 Adjusting SP, and using PC or SP to get an address.  */
      if ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
	  || (Rs > 7 && Rs != REG_SP && Rs != REG_PC))
	{
	  inst.error = _("invalid Hi register with immediate");
	  return;
	}

      if (inst.reloc.exp.X_op != O_constant)
	{
	  /* Value isn't known yet, all we can do is store all the fragments
	     we know about in the instruction and let the reloc hacking
	     work it all out.  */
	  inst.instruction = (subtract ? 0x8000 : 0) | (Rd << 4) | Rs;
	  inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
	}
      else
	{
	  int offset = inst.reloc.exp.X_add_number;

	  if (subtract)
	    offset = - offset;

	  if (offset < 0)
	    {
	      offset = - offset;
	      subtract = 1;

	      /* Quick check, in case offset is MIN_INT.  */
	      if (offset < 0)
		{
		  inst.error = _("immediate value out of range");
		  return;
		}
	    }
	  /* Note - you cannot convert a subtract of 0 into an
	     add of 0 because the carry flag is set differently.  */
	  else if (offset > 0)
	    subtract = 0;

	  if (Rd == REG_SP)
	    {
	      if (offset & ~0x1fc)
		{
		  inst.error = _("invalid immediate value for stack adjust");
		  return;
		}
	      inst.instruction = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
	      inst.instruction |= offset >> 2;
	    }
	  else if (Rs == REG_PC || Rs == REG_SP)
	    {
	      if (subtract
		  || (offset & ~0x3fc))
		{
		  inst.error = _("invalid immediate for address calculation");
		  return;
		}
	      inst.instruction = (Rs == REG_PC ? T_OPCODE_ADD_PC
				  : T_OPCODE_ADD_SP);
	      inst.instruction |= (Rd << 8) | (offset >> 2);
	    }
	  else if (Rs == Rd)
	    {
	      if (offset & ~0xff)
		{
		  inst.error = _("immediate value out of range");
		  return;
		}
	      inst.instruction = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
	      inst.instruction |= (Rd << 8) | offset;
	    }
	  else
	    {
	      if (offset & ~0x7)
		{
		  inst.error = _("immediate value out of range");
		  return;
		}
	      inst.instruction = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
	      inst.instruction |= Rd | (Rs << 3) | (offset << 6);
	    }
	}
    }

  end_of_line (str);
}

static void
thumb_shift (char * str, int shift)
{
  int Rd, Rs, Rn = FAIL;

  skip_whitespace (str);

  if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL
      || skip_past_comma (&str) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (is_immediate_prefix (*str))
    {
      /* Two operand immediate format, set Rs to Rd.  */
      Rs = Rd;
      str ++;
      if (my_get_expression (&inst.reloc.exp, &str))
	return;
    }
  else
    {
      if ((Rs = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
	return;

      if (skip_past_comma (&str) == FAIL)
	{
	  /* Two operand format, shuffle the registers
	     and pretend there are 3.  */
	  Rn = Rs;
	  Rs = Rd;
	}
      else if (is_immediate_prefix (*str))
	{
	  str++;
	  if (my_get_expression (&inst.reloc.exp, &str))
	    return;
	}
      else if ((Rn = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
	return;
    }

  /* We now have Rd and Rs set to registers, and Rn set to a register or FAIL;
     for the latter case, EXPR contains the immediate that was found.  */

  if (Rn != FAIL)
    {
      if (Rs != Rd)
	{
	  inst.error = _("source1 and dest must be same register");
	  return;
	}

      switch (shift)
	{
	case THUMB_ASR: inst.instruction = T_OPCODE_ASR_R; break;
	case THUMB_LSL: inst.instruction = T_OPCODE_LSL_R; break;
	case THUMB_LSR: inst.instruction = T_OPCODE_LSR_R; break;
	}

      inst.instruction |= Rd | (Rn << 3);
    }
  else
    {
      switch (shift)
	{
	case THUMB_ASR: inst.instruction = T_OPCODE_ASR_I; break;
	case THUMB_LSL: inst.instruction = T_OPCODE_LSL_I; break;
	case THUMB_LSR: inst.instruction = T_OPCODE_LSR_I; break;
	}

      if (inst.reloc.exp.X_op != O_constant)
	{
	  /* Value isn't known yet, create a dummy reloc and let reloc
	     hacking fix it up.  */
	  inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
	}
      else
	{
	  unsigned shift_value = inst.reloc.exp.X_add_number;

	  if (shift_value > 32 || (shift_value == 32 && shift == THUMB_LSL))
	    {
	      inst.error = _("invalid immediate for shift");
	      return;
	    }

	  /* Shifts of zero are handled by converting to LSL.  */
	  if (shift_value == 0)
	    inst.instruction = T_OPCODE_LSL_I;

	  /* Shifts of 32 are encoded as a shift of zero.  */
	  if (shift_value == 32)
	    shift_value = 0;

	  inst.instruction |= shift_value << 6;
	}

      inst.instruction |= Rd | (Rs << 3);
    }

  end_of_line (str);
}

static void
thumb_load_store (char * str, int load_store, int size)
{
  int Rd, Rb, Ro = FAIL;

  skip_whitespace (str);

  if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL
      || skip_past_comma (&str) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (*str == '[')
    {
      str++;
      if ((Rb = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
	return;

      if (skip_past_comma (&str) != FAIL)
	{
	  if (is_immediate_prefix (*str))
	    {
	      str++;
	      if (my_get_expression (&inst.reloc.exp, &str))
		return;
	    }
	  else if ((Ro = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
	    return;
	}
      else
	{
	  inst.reloc.exp.X_op = O_constant;
	  inst.reloc.exp.X_add_number = 0;
	}

      if (*str != ']')
	{
	  inst.error = _("expected ']'");
	  return;
	}
      str++;
    }
  else if (*str == '=')
    {
      if (load_store != THUMB_LOAD)
	{
	  inst.error = _("invalid pseudo operation");
	  return;
	}

      /* Parse an "ldr Rd, =expr" instruction; this is another pseudo op.  */
      str++;

      skip_whitespace (str);

      if (my_get_expression (& inst.reloc.exp, & str))
	return;

      end_of_line (str);

      if (   inst.reloc.exp.X_op != O_constant
	  && inst.reloc.exp.X_op != O_symbol)
	{
	  inst.error = "Constant expression expected";
	  return;
	}

      if (inst.reloc.exp.X_op == O_constant
	  && ((inst.reloc.exp.X_add_number & ~0xFF) == 0))
	{
	  /* This can be done with a mov instruction.  */

	  inst.instruction  = T_OPCODE_MOV_I8 | (Rd << 8);
	  inst.instruction |= inst.reloc.exp.X_add_number;
	  return;
	}

      /* Insert into literal pool.  */
      if (add_to_lit_pool () == FAIL)
	{
	  if (!inst.error)
	    inst.error = "literal pool insertion failed";
	  return;
	}

      inst.reloc.type   = BFD_RELOC_ARM_THUMB_OFFSET;
      inst.reloc.pc_rel = 1;
      inst.instruction  = T_OPCODE_LDR_PC | (Rd << 8);
      /* Adjust ARM pipeline offset to Thumb.  */
      inst.reloc.exp.X_add_number += 4;

      return;
    }
  else
    {
      if (my_get_expression (&inst.reloc.exp, &str))
	return;

      inst.instruction = T_OPCODE_LDR_PC | (Rd << 8);
      inst.reloc.pc_rel = 1;
      inst.reloc.exp.X_add_number -= 4; /* Pipeline offset.  */
      inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
      end_of_line (str);
      return;
    }

  if (Rb == REG_PC || Rb == REG_SP)
    {
      if (size != THUMB_WORD)
	{
	  inst.error = _("byte or halfword not valid for base register");
	  return;
	}
      else if (Rb == REG_PC && load_store != THUMB_LOAD)
	{
	  inst.error = _("r15 based store not allowed");
	  return;
	}
      else if (Ro != FAIL)
	{
	  inst.error = _("invalid base register for register offset");
	  return;
	}

      if (Rb == REG_PC)
	inst.instruction = T_OPCODE_LDR_PC;
      else if (load_store == THUMB_LOAD)
	inst.instruction = T_OPCODE_LDR_SP;
      else
	inst.instruction = T_OPCODE_STR_SP;

      inst.instruction |= Rd << 8;
      if (inst.reloc.exp.X_op == O_constant)
	{
	  unsigned offset = inst.reloc.exp.X_add_number;

	  if (offset & ~0x3fc)
	    {
	      inst.error = _("invalid offset");
	      return;
	    }

	  inst.instruction |= offset >> 2;
	}
      else
	inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
    }
  else if (Rb > 7)
    {
      inst.error = _("invalid base register in load/store");
      return;
    }
  else if (Ro == FAIL)
    {
      /* Immediate offset.  */
      if (size == THUMB_WORD)
	inst.instruction = (load_store == THUMB_LOAD
			    ? T_OPCODE_LDR_IW : T_OPCODE_STR_IW);
      else if (size == THUMB_HALFWORD)
	inst.instruction = (load_store == THUMB_LOAD
			    ? T_OPCODE_LDR_IH : T_OPCODE_STR_IH);
      else
	inst.instruction = (load_store == THUMB_LOAD
			    ? T_OPCODE_LDR_IB : T_OPCODE_STR_IB);

      inst.instruction |= Rd | (Rb << 3);

      if (inst.reloc.exp.X_op == O_constant)
	{
	  unsigned offset = inst.reloc.exp.X_add_number;

	  if (offset & ~(0x1f << size))
	    {
	      inst.error = _("invalid offset");
	      return;
	    }
	  inst.instruction |= (offset >> size) << 6;
	}
      else
	inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
    }
  else
    {
      /* Register offset.  */
      if (size == THUMB_WORD)
	inst.instruction = (load_store == THUMB_LOAD
			    ? T_OPCODE_LDR_RW : T_OPCODE_STR_RW);
      else if (size == THUMB_HALFWORD)
	inst.instruction = (load_store == THUMB_LOAD
			    ? T_OPCODE_LDR_RH : T_OPCODE_STR_RH);
      else
	inst.instruction = (load_store == THUMB_LOAD
			    ? T_OPCODE_LDR_RB : T_OPCODE_STR_RB);

      inst.instruction |= Rd | (Rb << 3) | (Ro << 6);
    }

  end_of_line (str);
}

/* FROM line 9172 */
static void
do_t_nop (char * str)
{
  /* Do nothing.  */
  end_of_line (str);
}

/* Handle the Format 4 instructions that do not have equivalents in other
   formats.  That is, ADC, AND, EOR, SBC, ROR, TST, NEG, CMN, ORR, MUL,
   BIC and MVN.  */

static void
do_t_arit (char * str)
{
  int Rd, Rs, Rn;

  skip_whitespace (str);

  if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (Rs = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
    {
      inst.error = BAD_ARGS;
      return;
    }

  if (skip_past_comma (&str) != FAIL)
    {
      /* Three operand format not allowed for TST, CMN, NEG and MVN.
	 (It isn't allowed for CMP either, but that isn't handled by this
	 function.)  */
      if (inst.instruction == T_OPCODE_TST
	  || inst.instruction == T_OPCODE_CMN
	  || inst.instruction == T_OPCODE_NEG
	  || inst.instruction == T_OPCODE_MVN)
	{
	  inst.error = BAD_ARGS;
	  return;
	}

      if ((Rn = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
	return;

      if (Rs != Rd)
	{
	  inst.error = _("dest and source1 must be the same register");
	  return;
	}
      Rs = Rn;
    }

  /* Only restrict on pre-V4 architectures - radar 4958629 */
  if (inst.instruction == T_OPCODE_MUL
      && Rs == Rd
      && (cpu_variant & ARM_EXT_V4) == 0
      && !force_cpusubtype_ALL)
    as_tsktsk (_("Rs and Rd must be different in MUL"));

  inst.instruction |= Rd | (Rs << 3);
  end_of_line (str);
}

static void
do_t_add (char * str)
{
  thumb_add_sub (str, 0);
}

static void
do_t_asr (char * str)
{
  thumb_shift (str, THUMB_ASR);
}

static void
do_t_branch9 (char * str)
{
  if (my_get_expression (&inst.reloc.exp, &str))
    return;
  inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
  inst.reloc.pc_rel = 1;
  end_of_line (str);
}

static void
do_t_branch12 (char * str)
{
  if (my_get_expression (&inst.reloc.exp, &str))
    return;
  inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
  inst.reloc.pc_rel = 1;
  end_of_line (str);
}

/* Find the real, Thumb encoded start of a Thumb function.  */

static symbolS *
find_real_start (symbolS * symbolP)
{
  char *       real_start;
  const char * name = S_GET_NAME (symbolP);
  symbolS *    new_target;

  /* This definition must agree with the one in gcc/config/arm/thumb.c.  */
#define STUB_NAME ".real_start_of"

  if (name == NULL)
    abort ();

  /* Names that start with 'L' are local labels, not function entry points.
     The compiler may generate BL instructions to these labels because it
     needs to perform a branch to a far away location.  */
  if (name[0] == 'L')
    return symbolP;

  real_start = malloc (strlen (name) + strlen (STUB_NAME) + 1);
  sprintf (real_start, "%s%s", STUB_NAME, name);

  new_target = symbol_find (real_start);

#ifdef NOTYET
  if (new_target == NULL)
    {
      as_warn ("Failed to find real start of function: %s\n", name);
      new_target = symbolP;
    }
#endif

  free (real_start);

  return new_target;
}

static void
do_t_branch23 (char * str)
{
#ifndef NOTYET
  symbolS *real_start;
#endif

  if (my_get_expression (& inst.reloc.exp, & str))
    return;

  inst.reloc.type   = BFD_RELOC_THUMB_PCREL_BRANCH23;
  inst.reloc.pc_rel = 1;
  end_of_line (str);

  /* If the destination of the branch is a defined symbol which does not have
     the THUMB_FUNC attribute, then we must be calling a function which has
     the (interfacearm) attribute.  We look for the Thumb entry point to that
     function and change the branch to refer to that function instead.  */
  if (   inst.reloc.exp.X_op == O_symbol
      && inst.reloc.exp.X_add_symbol != NULL
      && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
      && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
#ifdef NOTYET
    inst.reloc.exp.X_add_symbol =
      find_real_start (inst.reloc.exp.X_add_symbol);
#else
    {
      real_start = find_real_start (inst.reloc.exp.X_add_symbol);
      if (real_start != NULL)
	inst.reloc.exp.X_add_symbol = real_start;
    }
#endif
}

static void
do_t_bx (char * str)
{
  int reg;

  skip_whitespace (str);

  if ((reg = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
    return;

  /* This sets THUMB_H2 from the top bit of reg.  */
  inst.instruction |= reg << 3;

  /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC.  The reloc
     should cause the alignment to be checked once it is known.  This is
     because BX PC only works if the instruction is word aligned.  */

  end_of_line (str);
}

static void
do_t_compare (char * str)
{
  thumb_mov_compare (str, THUMB_COMPARE);
}

static void
do_t_ldmstm (char * str)
{
  int Rb;
  long range;

  skip_whitespace (str);

  if ((Rb = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
    return;

  if (*str != '!')
    as_warn (_("inserted missing '!': load/store multiple always writes back base register"));
  else
    str++;

  if (skip_past_comma (&str) == FAIL
      || (range = reg_list (&str)) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (inst.reloc.type != BFD_RELOC_UNUSED)
    {
      /* This really doesn't seem worth it.  */
      inst.reloc.type = BFD_RELOC_UNUSED;
      inst.error = _("expression too complex");
      return;
    }

  if (range & ~0xff)
    {
      inst.error = _("only lo-regs valid in load/store multiple");
      return;
    }

  inst.instruction |= (Rb << 8) | range;
  end_of_line (str);
}

static void
do_t_ldr (char * str)
{
  thumb_load_store (str, THUMB_LOAD, THUMB_WORD);
}

static void
do_t_ldrb (char * str)
{
  thumb_load_store (str, THUMB_LOAD, THUMB_BYTE);
}

static void
do_t_ldrh (char * str)
{
  thumb_load_store (str, THUMB_LOAD, THUMB_HALFWORD);
}

static void
do_t_lds (char * str)
{
  int Rd, Rb, Ro;

  skip_whitespace (str);

  if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL
      || skip_past_comma (&str) == FAIL
      || *str++ != '['
      || (Rb = thumb_reg (&str, THUMB_REG_LO)) == FAIL
      || skip_past_comma (&str) == FAIL
      || (Ro = thumb_reg (&str, THUMB_REG_LO)) == FAIL
      || *str++ != ']')
    {
      if (! inst.error)
	inst.error = _("syntax: ldrs[b] Rd, [Rb, Ro]");
      return;
    }

  inst.instruction |= Rd | (Rb << 3) | (Ro << 6);
  end_of_line (str);
}

static void
do_t_lsl (char * str)
{
  thumb_shift (str, THUMB_LSL);
}

static void
do_t_lsr (char * str)
{
  thumb_shift (str, THUMB_LSR);
}

static void
do_t_mov (char * str)
{
  thumb_mov_compare (str, THUMB_MOVE);
}

static void
do_t_push_pop (char * str)
{
  long range;

  skip_whitespace (str);

  if ((range = reg_list (&str)) == FAIL)
    {
      if (! inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  if (inst.reloc.type != BFD_RELOC_UNUSED)
    {
      /* This really doesn't seem worth it.  */
      inst.reloc.type = BFD_RELOC_UNUSED;
      inst.error = _("expression too complex");
      return;
    }

  if (range & ~0xff)
    {
      if ((inst.instruction == T_OPCODE_PUSH
	   && (range & ~0xff) == 1 << REG_LR)
	  || (inst.instruction == T_OPCODE_POP
	      && (range & ~0xff) == 1 << REG_PC))
	{
	  inst.instruction |= THUMB_PP_PC_LR;
	  range &= 0xff;
	}
      else
	{
	  inst.error = _("invalid register list to push/pop instruction");
	  return;
	}
    }

  inst.instruction |= range;
  end_of_line (str);
}

static void
do_t_str (char * str)
{
  thumb_load_store (str, THUMB_STORE, THUMB_WORD);
}

static void
do_t_strb (char * str)
{
  thumb_load_store (str, THUMB_STORE, THUMB_BYTE);
}

static void
do_t_strh (char * str)
{
  thumb_load_store (str, THUMB_STORE, THUMB_HALFWORD);
}

static void
do_t_sub (char * str)
{
  thumb_add_sub (str, 1);
}

static void
do_t_swi (char * str)
{
  skip_whitespace (str);

  if (my_get_expression (&inst.reloc.exp, &str))
    return;

  inst.reloc.type = BFD_RELOC_ARM_SWI;
  end_of_line (str);
}

static void
do_t_adr (char * str)
{
  int reg;

  /* This is a pseudo-op of the form "adr rd, label" to be converted
     into a relative address of the form "add rd, pc, #label-.-4".  */
  skip_whitespace (str);

  /* Store Rd in temporary location inside instruction.  */
  if ((reg = reg_required_here (&str, 4)) == FAIL
      || (reg > 7)  /* For Thumb reg must be r0..r7.  */
      || skip_past_comma (&str) == FAIL
      || my_get_expression (&inst.reloc.exp, &str))
    {
      if (!inst.error)
	inst.error = BAD_ARGS;
      return;
    }

  inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
  inst.reloc.exp.X_add_number -= 4; /* PC relative adjust.  */
  inst.reloc.pc_rel = 1;
  inst.instruction |= REG_PC; /* Rd is already placed into the instruction.  */

  end_of_line (str);
}

static void
insert_reg (const struct reg_entry * r,
	    struct hash_control * htab)
{
  int    len  = strlen (r->name) + 2;
  char * buf  = xmalloc (len);
  char * buf2 = xmalloc (len);
  int    i    = 0;

#ifdef REGISTER_PREFIX
  buf[i++] = REGISTER_PREFIX;
#endif

  strcpy (buf + i, r->name);

  for (i = 0; buf[i]; i++)
    buf2[i] = TOUPPER (buf[i]);

  buf2[i] = '\0';

  hash_insert (htab, buf,  (PTR) r);
  hash_insert (htab, buf2, (PTR) r);
}

static void
build_reg_hsh (struct reg_map * map)
{
  const struct reg_entry *r;

  if ((map->htab = hash_new ()) == NULL)
    as_fatal (_("virtual memory exhausted"));

  for (r = map->names; r->name != NULL; r++)
    insert_reg (r, map->htab);
}

/* FROM line 9715 */
static const struct asm_opcode insns[] =
{
  /* APPLE LOCAL */
  {"trap",       0xe7ffdefe, 0,  ARM_EXT_V1,       do_empty},

  /* Core ARM Instructions.  */
  {"and",        0xe0000000, 3,  ARM_EXT_V1,       do_arit},
  {"ands",       0xe0100000, 3,  ARM_EXT_V1,       do_arit},
  {"eor",        0xe0200000, 3,  ARM_EXT_V1,       do_arit},
  {"eors",       0xe0300000, 3,  ARM_EXT_V1,       do_arit},
  {"sub",        0xe0400000, 3,  ARM_EXT_V1,       do_arit},
  {"subs",       0xe0500000, 3,  ARM_EXT_V1,       do_arit},
  {"rsb",        0xe0600000, 3,  ARM_EXT_V1,       do_arit},
  {"rsbs",       0xe0700000, 3,  ARM_EXT_V1,       do_arit},
  {"add",        0xe0800000, 3,  ARM_EXT_V1,       do_arit},
  {"adds",       0xe0900000, 3,  ARM_EXT_V1,       do_arit},
  {"adc",        0xe0a00000, 3,  ARM_EXT_V1,       do_arit},
  {"adcs",       0xe0b00000, 3,  ARM_EXT_V1,       do_arit},
  {"sbc",        0xe0c00000, 3,  ARM_EXT_V1,       do_arit},
  {"sbcs",       0xe0d00000, 3,  ARM_EXT_V1,       do_arit},
  {"rsc",        0xe0e00000, 3,  ARM_EXT_V1,       do_arit},
  {"rscs",       0xe0f00000, 3,  ARM_EXT_V1,       do_arit},
  {"orr",        0xe1800000, 3,  ARM_EXT_V1,       do_arit},
  {"orrs",       0xe1900000, 3,  ARM_EXT_V1,       do_arit},
  {"bic",        0xe1c00000, 3,  ARM_EXT_V1,       do_arit},
  {"bics",       0xe1d00000, 3,  ARM_EXT_V1,       do_arit},

  {"tst",        0xe1100000, 3,  ARM_EXT_V1,       do_cmp},
  {"tsts",       0xe1100000, 3,  ARM_EXT_V1,       do_cmp},
  {"tstp",       0xe110f000, 3,  ARM_EXT_V1,       do_cmp},
  {"teq",        0xe1300000, 3,  ARM_EXT_V1,       do_cmp},
  {"teqs",       0xe1300000, 3,  ARM_EXT_V1,       do_cmp},
  {"teqp",       0xe130f000, 3,  ARM_EXT_V1,       do_cmp},
  {"cmp",        0xe1500000, 3,  ARM_EXT_V1,       do_cmp},
  {"cmps",       0xe1500000, 3,  ARM_EXT_V1,       do_cmp},
  {"cmpp",       0xe150f000, 3,  ARM_EXT_V1,       do_cmp},
  {"cmn",        0xe1700000, 3,  ARM_EXT_V1,       do_cmp},
  {"cmns",       0xe1700000, 3,  ARM_EXT_V1,       do_cmp},
  {"cmnp",       0xe170f000, 3,  ARM_EXT_V1,       do_cmp},

  {"mov",        0xe1a00000, 3,  ARM_EXT_V1,       do_mov},
  {"movs",       0xe1b00000, 3,  ARM_EXT_V1,       do_mov},
  {"mvn",        0xe1e00000, 3,  ARM_EXT_V1,       do_mov},
  {"mvns",       0xe1f00000, 3,  ARM_EXT_V1,       do_mov},

  {"ldr",        0xe4100000, 3,  ARM_EXT_V1,       do_ldst},
  {"ldrb",       0xe4500000, 3,  ARM_EXT_V1,       do_ldst},
  {"ldrt",       0xe4300000, 3,  ARM_EXT_V1,       do_ldstt},
  {"ldrbt",      0xe4700000, 3,  ARM_EXT_V1,       do_ldstt},
  {"str",        0xe4000000, 3,  ARM_EXT_V1,       do_ldst},
  {"strb",       0xe4400000, 3,  ARM_EXT_V1,       do_ldst},
  {"strt",       0xe4200000, 3,  ARM_EXT_V1,       do_ldstt},
  {"strbt",      0xe4600000, 3,  ARM_EXT_V1,       do_ldstt},

  {"stmia",      0xe8800000, 3,  ARM_EXT_V1,       do_ldmstm},
  {"stmib",      0xe9800000, 3,  ARM_EXT_V1,       do_ldmstm},
  {"stmda",      0xe8000000, 3,  ARM_EXT_V1,       do_ldmstm},
  {"stmdb",      0xe9000000, 3,  ARM_EXT_V1,       do_ldmstm},
  {"stmfd",      0xe9000000, 3,  ARM_EXT_V1,       do_ldmstm},
  {"stmfa",      0xe9800000, 3,  ARM_EXT_V1,       do_ldmstm},
  {"stmea",      0xe8800000, 3,  ARM_EXT_V1,       do_ldmstm},
  {"stmed",      0xe8000000, 3,  ARM_EXT_V1,       do_ldmstm},

  {"ldmia",      0xe8900000, 3,  ARM_EXT_V1,       do_ldmstm},
  {"ldmib",      0xe9900000, 3,  ARM_EXT_V1,       do_ldmstm},
  {"ldmda",      0xe8100000, 3,  ARM_EXT_V1,       do_ldmstm},
  {"ldmdb",      0xe9100000, 3,  ARM_EXT_V1,       do_ldmstm},
  {"ldmfd",      0xe8900000, 3,  ARM_EXT_V1,       do_ldmstm},
  {"ldmfa",      0xe8100000, 3,  ARM_EXT_V1,       do_ldmstm},
  {"ldmea",      0xe9100000, 3,  ARM_EXT_V1,       do_ldmstm},
  {"ldmed",      0xe9900000, 3,  ARM_EXT_V1,       do_ldmstm},

  {"swi",        0xef000000, 3,  ARM_EXT_V1,       do_swi},
#ifdef TE_WINCE
  /* XXX This is the wrong place to do this.  Think multi-arch.  */
  {"bl",         0xeb000000, 2,  ARM_EXT_V1,       do_branch},
  {"b",          0xea000000, 1,  ARM_EXT_V1,       do_branch},
#else
  {"bl",         0xebfffffe, 2,  ARM_EXT_V1,       do_branch},
  {"b",          0xeafffffe, 1,  ARM_EXT_V1,       do_branch},
#endif

  /* Pseudo ops.  */
  {"adr",        0xe28f0000, 3,  ARM_EXT_V1,       do_adr},
  {"adrl",       0xe28f0000, 3,  ARM_EXT_V1,       do_adrl},
  {"nop",        0xe1a00000, 3,  ARM_EXT_V1,       do_nop},

  /* ARM 2 multiplies.  */
  {"mul",        0xe0000090, 3,  ARM_EXT_V2,       do_mul},
  {"muls",       0xe0100090, 3,  ARM_EXT_V2,       do_mul},
  {"mla",        0xe0200090, 3,  ARM_EXT_V2,       do_mla},
  {"mlas",       0xe0300090, 3,  ARM_EXT_V2,       do_mla},

  /* Generic coprocessor instructions.  */
  {"cdp",        0xee000000, 3,  ARM_EXT_V2,       do_cdp},
  {"ldc",        0xec100000, 3,  ARM_EXT_V2,       do_lstc},
  {"ldcl",       0xec500000, 3,  ARM_EXT_V2,       do_lstc},
  {"stc",        0xec000000, 3,  ARM_EXT_V2,       do_lstc},
  {"stcl",       0xec400000, 3,  ARM_EXT_V2,       do_lstc},
  {"mcr",        0xee000010, 3,  ARM_EXT_V2,       do_co_reg},
  {"mrc",        0xee100010, 3,  ARM_EXT_V2,       do_co_reg},

  /* ARM 3 - swp instructions.  */
  {"swp",        0xe1000090, 3,  ARM_EXT_V2S,      do_swap},
  {"swpb",       0xe1400090, 3,  ARM_EXT_V2S,      do_swap},

  /* ARM 6 Status register instructions.  */
  {"mrs",        0xe10f0000, 3,  ARM_EXT_V3,       do_mrs},
  {"msr",        0xe120f000, 3,  ARM_EXT_V3,       do_msr},
  /* ScottB: our code uses     0xe128f000 for msr.
     NickC:  but this is wrong because the bits 16 through 19 are
             handled by the PSR_xxx defines above.  */

  /* ARM 7M long multiplies.  */
  {"smull",      0xe0c00090, 5,  ARM_EXT_V3M,      do_mull},
  {"smulls",     0xe0d00090, 5,  ARM_EXT_V3M,      do_mull},
  {"umull",      0xe0800090, 5,  ARM_EXT_V3M,      do_mull},
  {"umulls",     0xe0900090, 5,  ARM_EXT_V3M,      do_mull},
  {"smlal",      0xe0e00090, 5,  ARM_EXT_V3M,      do_mull},
  {"smlals",     0xe0f00090, 5,  ARM_EXT_V3M,      do_mull},
  {"umlal",      0xe0a00090, 5,  ARM_EXT_V3M,      do_mull},
  {"umlals",     0xe0b00090, 5,  ARM_EXT_V3M,      do_mull},

  /* ARM Architecture 4.  */
  {"ldrh",       0xe01000b0, 3,  ARM_EXT_V4,       do_ldstv4},
  {"ldrsh",      0xe01000f0, 3,  ARM_EXT_V4,       do_ldstv4},
  {"ldrsb",      0xe01000d0, 3,  ARM_EXT_V4,       do_ldstv4},
  {"strh",       0xe00000b0, 3,  ARM_EXT_V4,       do_ldstv4},

  /* ARM Architecture 4T.  */
  /* Note: bx (and blx) are required on V5, even if the processor does
     not support Thumb.  */
  {"bx",         0xe12fff10, 2,  ARM_EXT_V4T | ARM_EXT_V5, do_bx},

  /*  ARM Architecture 5T.  */
  /* Note: blx has 2 variants, so the .value is set dynamically.
     Only one of the variants has conditional execution.  */
  {"blx",        0xe0000000, 3,  ARM_EXT_V5,       do_blx},
  {"clz",        0xe16f0f10, 3,  ARM_EXT_V5,       do_clz},
  {"bkpt",       0xe1200070, 0,  ARM_EXT_V5,       do_bkpt},
  {"ldc2",       0xfc100000, 0,  ARM_EXT_V5,       do_lstc2},
  {"ldc2l",      0xfc500000, 0,  ARM_EXT_V5,       do_lstc2},
  {"stc2",       0xfc000000, 0,  ARM_EXT_V5,       do_lstc2},
  {"stc2l",      0xfc400000, 0,  ARM_EXT_V5,       do_lstc2},
  {"cdp2",       0xfe000000, 0,  ARM_EXT_V5,       do_cdp2},
  {"mcr2",       0xfe000010, 0,  ARM_EXT_V5,       do_co_reg2},
  {"mrc2",       0xfe100010, 0,  ARM_EXT_V5,       do_co_reg2},

  /*  ARM Architecture 5TExP.  */
  {"smlabb",     0xe1000080, 6,  ARM_EXT_V5ExP,    do_smla},
  {"smlatb",     0xe10000a0, 6,  ARM_EXT_V5ExP,    do_smla},
  {"smlabt",     0xe10000c0, 6,  ARM_EXT_V5ExP,    do_smla},
  {"smlatt",     0xe10000e0, 6,  ARM_EXT_V5ExP,    do_smla},

  {"smlawb",     0xe1200080, 6,  ARM_EXT_V5ExP,    do_smla},
  {"smlawt",     0xe12000c0, 6,  ARM_EXT_V5ExP,    do_smla},

  {"smlalbb",    0xe1400080, 7,  ARM_EXT_V5ExP,    do_smlal},
  {"smlaltb",    0xe14000a0, 7,  ARM_EXT_V5ExP,    do_smlal},
  {"smlalbt",    0xe14000c0, 7,  ARM_EXT_V5ExP,    do_smlal},
  {"smlaltt",    0xe14000e0, 7,  ARM_EXT_V5ExP,    do_smlal},

  {"smulbb",     0xe1600080, 6,  ARM_EXT_V5ExP,    do_smul},
  {"smultb",     0xe16000a0, 6,  ARM_EXT_V5ExP,    do_smul},
  {"smulbt",     0xe16000c0, 6,  ARM_EXT_V5ExP,    do_smul},
  {"smultt",     0xe16000e0, 6,  ARM_EXT_V5ExP,    do_smul},

  {"smulwb",     0xe12000a0, 6,  ARM_EXT_V5ExP,    do_smul},
  {"smulwt",     0xe12000e0, 6,  ARM_EXT_V5ExP,    do_smul},

  {"qadd",       0xe1000050, 4,  ARM_EXT_V5ExP,    do_qadd},
  {"qdadd",      0xe1400050, 5,  ARM_EXT_V5ExP,    do_qadd},
  {"qsub",       0xe1200050, 4,  ARM_EXT_V5ExP,    do_qadd},
  {"qdsub",      0xe1600050, 5,  ARM_EXT_V5ExP,    do_qadd},

  /*  ARM Architecture 5TE.  */
  {"pld",        0xf450f000, 0,  ARM_EXT_V5E,      do_pld},
  {"ldrd",       0xe00000d0, 3,  ARM_EXT_V5E,      do_ldrd},
  {"strd",       0xe00000f0, 3,  ARM_EXT_V5E,      do_ldrd},

  {"mcrr",       0xec400000, 4,  ARM_EXT_V5E,      do_co_reg2c},
  {"mrrc",       0xec500000, 4,  ARM_EXT_V5E,      do_co_reg2c},

  /*  ARM Architecture 5TEJ.  */
  {"bxj",	 0xe12fff20, 3,  ARM_EXT_V5J,	   do_bxj},

  /*  ARM V6.  */
  { "cps",       0xf1020000, 0,  ARM_EXT_V6,       do_cps},
  { "cpsie",     0xf1080000, 0,  ARM_EXT_V6,       do_cpsi},
  { "cpsid",     0xf10C0000, 0,  ARM_EXT_V6,       do_cpsi},
  { "ldrex",     0xe1900f9f, 5,  ARM_EXT_V6,       do_ldrex},
  { "mcrr2",     0xfc400000, 0,  ARM_EXT_V6,       do_co_reg2c},
  { "mrrc2",     0xfc500000, 0,  ARM_EXT_V6,       do_co_reg2c},
  { "pkhbt",     0xe6800010, 5,  ARM_EXT_V6,       do_pkhbt},
  { "pkhtb",     0xe6800050, 5,  ARM_EXT_V6,       do_pkhtb},
  { "qadd16",    0xe6200f10, 6,  ARM_EXT_V6,       do_qadd16},
  { "qadd8",     0xe6200f90, 5,  ARM_EXT_V6,       do_qadd16},
  { "qaddsubx",  0xe6200f30, 8,  ARM_EXT_V6,       do_qadd16},
  { "qsub16",    0xe6200f70, 6,  ARM_EXT_V6,       do_qadd16},
  { "qsub8",     0xe6200ff0, 5,  ARM_EXT_V6,       do_qadd16},
  { "qsubaddx",  0xe6200f50, 8,  ARM_EXT_V6,       do_qadd16},
  { "sadd16",    0xe6100f10, 6,  ARM_EXT_V6,       do_qadd16},
  { "sadd8",     0xe6100f90, 5,  ARM_EXT_V6,       do_qadd16},
  { "saddsubx",  0xe6100f30, 8,  ARM_EXT_V6,       do_qadd16},
  { "shadd16",   0xe6300f10, 7,  ARM_EXT_V6,       do_qadd16},
  { "shadd8",    0xe6300f90, 6,  ARM_EXT_V6,       do_qadd16},
  { "shaddsubx", 0xe6300f30, 9,  ARM_EXT_V6,       do_qadd16},
  { "shsub16",   0xe6300f70, 7,  ARM_EXT_V6,       do_qadd16},
  { "shsub8",    0xe6300ff0, 6,  ARM_EXT_V6,       do_qadd16},
  { "shsubaddx", 0xe6300f50, 9,  ARM_EXT_V6,       do_qadd16},
  { "ssub16",    0xe6100f70, 6,  ARM_EXT_V6,       do_qadd16},
  { "ssub8",     0xe6100ff0, 5,  ARM_EXT_V6,       do_qadd16},
  { "ssubaddx",  0xe6100f50, 8,  ARM_EXT_V6,       do_qadd16},
  { "uadd16",    0xe6500f10, 6,  ARM_EXT_V6,       do_qadd16},
  { "uadd8",     0xe6500f90, 5,  ARM_EXT_V6,       do_qadd16},
  { "uaddsubx",  0xe6500f30, 8,  ARM_EXT_V6,       do_qadd16},
  { "uhadd16",   0xe6700f10, 7,  ARM_EXT_V6,       do_qadd16},
  { "uhadd8",    0xe6700f90, 6,  ARM_EXT_V6,       do_qadd16},
  { "uhaddsubx", 0xe6700f30, 9,  ARM_EXT_V6,       do_qadd16},
  { "uhsub16",   0xe6700f70, 7,  ARM_EXT_V6,       do_qadd16},
  { "uhsub8",    0xe6700ff0, 6,  ARM_EXT_V6,       do_qadd16},
  { "uhsubaddx", 0xe6700f50, 9,  ARM_EXT_V6,       do_qadd16},
  { "uqadd16",   0xe6600f10, 7,  ARM_EXT_V6,       do_qadd16},
  { "uqadd8",    0xe6600f90, 6,  ARM_EXT_V6,       do_qadd16},
  { "uqaddsubx", 0xe6600f30, 9,  ARM_EXT_V6,       do_qadd16},
  { "uqsub16",   0xe6600f70, 7,  ARM_EXT_V6,       do_qadd16},
  { "uqsub8",    0xe6600ff0, 6,  ARM_EXT_V6,       do_qadd16},
  { "uqsubaddx", 0xe6600f50, 9,  ARM_EXT_V6,       do_qadd16},
  { "usub16",    0xe6500f70, 6,  ARM_EXT_V6,       do_qadd16},
  { "usub8",     0xe6500ff0, 5,  ARM_EXT_V6,       do_qadd16},
  { "usubaddx",  0xe6500f50, 8,  ARM_EXT_V6,       do_qadd16},
  { "rev",       0xe6bf0f30, 3,  ARM_EXT_V6,       do_rev},
  { "rev16",     0xe6bf0fb0, 5,  ARM_EXT_V6,       do_rev},
  { "revsh",     0xe6ff0fb0, 5,  ARM_EXT_V6,       do_rev},
  { "rfeia",     0xf8900a00, 0,  ARM_EXT_V6,       do_rfe},
  { "rfefd",     0xf8900a00, 0,  ARM_EXT_V6,       do_rfe},
  { "rfeib",     0xf9900a00, 0,  ARM_EXT_V6,       do_rfe},
  { "rfeed",     0xf9900a00, 0,  ARM_EXT_V6,       do_rfe}, /* APPLE LOCAL */
  { "rfeda",     0xf8100a00, 0,  ARM_EXT_V6,       do_rfe},
  { "rfefa",     0xf8100a00, 0,  ARM_EXT_V6,       do_rfe}, /* APPLE LOCAL */
  { "rfedb",     0xf9100a00, 0,  ARM_EXT_V6,       do_rfe},
  { "rfeea",     0xf9100a00, 0,  ARM_EXT_V6,       do_rfe}, /* APPLE LOCAL */
  { "sxtah",     0xe6b00070, 5,  ARM_EXT_V6,       do_sxtah},
  { "sxtab16",   0xe6800070, 7,  ARM_EXT_V6,       do_sxtah},
  { "sxtab",     0xe6a00070, 5,  ARM_EXT_V6,       do_sxtah},
  { "sxth",      0xe6bf0070, 4,  ARM_EXT_V6,       do_sxth},
  { "sxtb16",    0xe68f0070, 6,  ARM_EXT_V6,       do_sxth},
  { "sxtb",      0xe6af0070, 4,  ARM_EXT_V6,       do_sxth},
  { "uxtah",     0xe6f00070, 5,  ARM_EXT_V6,       do_sxtah},
  { "uxtab16",   0xe6c00070, 7,  ARM_EXT_V6,       do_sxtah},
  { "uxtab",     0xe6e00070, 5,  ARM_EXT_V6,       do_sxtah},
  { "uxth",      0xe6ff0070, 4,  ARM_EXT_V6,       do_sxth},
  { "uxtb16",    0xe6cf0070, 6,  ARM_EXT_V6,       do_sxth},
  { "uxtb",      0xe6ef0070, 4,  ARM_EXT_V6,       do_sxth},
  { "sel",       0xe68000b0, 3,  ARM_EXT_V6,       do_qadd16},
  { "setend",    0xf1010000, 0,  ARM_EXT_V6,       do_setend},
  { "smlad",     0xe7000010, 5,  ARM_EXT_V6,       do_smlad},
  { "smladx",    0xe7000030, 6,  ARM_EXT_V6,       do_smlad},
  { "smlald",    0xe7400010, 6,  ARM_EXT_V6,       do_smlald},
  { "smlaldx",   0xe7400030, 7,  ARM_EXT_V6,       do_smlald},
  { "smlsd",     0xe7000050, 5,  ARM_EXT_V6,       do_smlad},
  { "smlsdx",    0xe7000070, 6,  ARM_EXT_V6,       do_smlad},
  { "smlsld",    0xe7400050, 6,  ARM_EXT_V6,       do_smlald},
  { "smlsldx",   0xe7400070, 7,  ARM_EXT_V6,       do_smlald},
  { "smmla",     0xe7500010, 5,  ARM_EXT_V6,       do_smlad},
  { "smmlar",    0xe7500030, 6,  ARM_EXT_V6,       do_smlad},
  { "smmls",     0xe75000d0, 5,  ARM_EXT_V6,       do_smlad},
  { "smmlsr",    0xe75000f0, 6,  ARM_EXT_V6,       do_smlad},
  { "smmul",     0xe750f010, 5,  ARM_EXT_V6,       do_smmul},
  { "smmulr",    0xe750f030, 6,  ARM_EXT_V6,       do_smmul},
  { "smuad",     0xe700f010, 5,  ARM_EXT_V6,       do_smmul},
  { "smuadx",    0xe700f030, 6,  ARM_EXT_V6,       do_smmul},
  { "smusd",     0xe700f050, 5,  ARM_EXT_V6,       do_smmul},
  { "smusdx",    0xe700f070, 6,  ARM_EXT_V6,       do_smmul},
  { "srsia",     0xf8cd0500, 0,  ARM_EXT_V6,       do_srs},
  { "srsea",     0xf8cd0500, 0,  ARM_EXT_V6,       do_srs}, /* APPLE Added v6 */
  { "srsib",     0xf9cd0500, 0,  ARM_EXT_V6,       do_srs},
  { "srsfa",     0xf9cd0500, 0,  ARM_EXT_V6,       do_srs}, /* APPLE Added v6 */
  { "srsda",     0xf84d0500, 0,  ARM_EXT_V6,       do_srs},
  { "srsed",     0xf84d0500, 0,  ARM_EXT_V6,       do_srs}, /* APPLE Added v6 */
  { "srsdb",     0xf94d0500, 0,  ARM_EXT_V6,       do_srs},
  { "srsfd",     0xf94d0500, 0,  ARM_EXT_V6,       do_srs}, /* APPLE Added v6 */
  { "ssat",      0xe6a00010, 4,  ARM_EXT_V6,       do_ssat},
  { "ssat16",    0xe6a00f30, 6,  ARM_EXT_V6,       do_ssat16},
  { "strex",     0xe1800f90, 5,  ARM_EXT_V6,       do_strex},
  { "umaal",     0xe0400090, 5,  ARM_EXT_V6,       do_umaal},
  { "usad8",     0xe780f010, 5,  ARM_EXT_V6,       do_smmul},
  { "usada8",    0xe7800010, 6,  ARM_EXT_V6,       do_smlad},
  { "usat",      0xe6e00010, 4,  ARM_EXT_V6,       do_usat},
  { "usat16",    0xe6e00f30, 6,  ARM_EXT_V6,       do_usat16},

  /*  ARM V6K.  */
  { "clrex",     0xf57ff01f, 0,  ARM_EXT_V6K,      do_empty},
  { "ldrexb",    0xe1d00f9f, 6,  ARM_EXT_V6K,      do_ldrex},
  { "ldrexd",    0xe1b00f9f, 6,  ARM_EXT_V6K,      do_ldrex},
  { "ldrexh",    0xe1f00f9f, 6,  ARM_EXT_V6K,      do_ldrex},
  { "sev",       0xe320f004, 3,  ARM_EXT_V6K,      do_empty},
  { "strexb",    0xe1c00f90, 6,  ARM_EXT_V6K,      do_strex},
  { "strexd",    0xe1a00f90, 6,  ARM_EXT_V6K,      do_strex},
  { "strexh",    0xe1e00f90, 6,  ARM_EXT_V6K,      do_strex},
  { "wfe",       0xe320f002, 3,  ARM_EXT_V6K,      do_empty},
  { "wfi",       0xe320f003, 3,  ARM_EXT_V6K,      do_empty},
  { "yield",     0xe320f001, 5,  ARM_EXT_V6K,      do_empty},

  /*  ARM V6Z.  */
  { "smi",       0xe1600070, 3,  ARM_EXT_V6Z,      do_smi},

  /* Core FPA instruction set (V1).  */
  {"wfs",        0xee200110, 3,  FPU_FPA_EXT_V1,   do_fpa_ctrl},
  {"rfs",        0xee300110, 3,  FPU_FPA_EXT_V1,   do_fpa_ctrl},
  {"wfc",        0xee400110, 3,  FPU_FPA_EXT_V1,   do_fpa_ctrl},
  {"rfc",        0xee500110, 3,  FPU_FPA_EXT_V1,   do_fpa_ctrl},

  {"ldfs",       0xec100100, 3,  FPU_FPA_EXT_V1,   do_fpa_ldst},
  {"ldfd",       0xec108100, 3,  FPU_FPA_EXT_V1,   do_fpa_ldst},
  {"ldfe",       0xec500100, 3,  FPU_FPA_EXT_V1,   do_fpa_ldst},
  {"ldfp",       0xec508100, 3,  FPU_FPA_EXT_V1,   do_fpa_ldst},

  {"stfs",       0xec000100, 3,  FPU_FPA_EXT_V1,   do_fpa_ldst},
  {"stfd",       0xec008100, 3,  FPU_FPA_EXT_V1,   do_fpa_ldst},
  {"stfe",       0xec400100, 3,  FPU_FPA_EXT_V1,   do_fpa_ldst},
  {"stfp",       0xec408100, 3,  FPU_FPA_EXT_V1,   do_fpa_ldst},

  {"mvfs",       0xee008100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mvfsp",      0xee008120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mvfsm",      0xee008140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mvfsz",      0xee008160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mvfd",       0xee008180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mvfdp",      0xee0081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mvfdm",      0xee0081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mvfdz",      0xee0081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mvfe",       0xee088100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mvfep",      0xee088120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mvfem",      0xee088140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mvfez",      0xee088160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"mnfs",       0xee108100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mnfsp",      0xee108120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mnfsm",      0xee108140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mnfsz",      0xee108160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mnfd",       0xee108180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mnfdp",      0xee1081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mnfdm",      0xee1081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mnfdz",      0xee1081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mnfe",       0xee188100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mnfep",      0xee188120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mnfem",      0xee188140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"mnfez",      0xee188160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"abss",       0xee208100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"abssp",      0xee208120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"abssm",      0xee208140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"abssz",      0xee208160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"absd",       0xee208180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"absdp",      0xee2081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"absdm",      0xee2081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"absdz",      0xee2081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"abse",       0xee288100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"absep",      0xee288120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"absem",      0xee288140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"absez",      0xee288160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"rnds",       0xee308100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"rndsp",      0xee308120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"rndsm",      0xee308140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"rndsz",      0xee308160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"rndd",       0xee308180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"rnddp",      0xee3081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"rnddm",      0xee3081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"rnddz",      0xee3081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"rnde",       0xee388100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"rndep",      0xee388120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"rndem",      0xee388140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"rndez",      0xee388160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"sqts",       0xee408100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sqtsp",      0xee408120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sqtsm",      0xee408140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sqtsz",      0xee408160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sqtd",       0xee408180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sqtdp",      0xee4081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sqtdm",      0xee4081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sqtdz",      0xee4081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sqte",       0xee488100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sqtep",      0xee488120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sqtem",      0xee488140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sqtez",      0xee488160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"logs",       0xee508100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"logsp",      0xee508120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"logsm",      0xee508140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"logsz",      0xee508160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"logd",       0xee508180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"logdp",      0xee5081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"logdm",      0xee5081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"logdz",      0xee5081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"loge",       0xee588100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"logep",      0xee588120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"logem",      0xee588140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"logez",      0xee588160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"lgns",       0xee608100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"lgnsp",      0xee608120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"lgnsm",      0xee608140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"lgnsz",      0xee608160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"lgnd",       0xee608180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"lgndp",      0xee6081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"lgndm",      0xee6081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"lgndz",      0xee6081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"lgne",       0xee688100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"lgnep",      0xee688120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"lgnem",      0xee688140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"lgnez",      0xee688160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"exps",       0xee708100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"expsp",      0xee708120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"expsm",      0xee708140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"expsz",      0xee708160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"expd",       0xee708180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"expdp",      0xee7081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"expdm",      0xee7081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"expdz",      0xee7081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"expe",       0xee788100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"expep",      0xee788120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"expem",      0xee788140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"expdz",      0xee788160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"sins",       0xee808100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sinsp",      0xee808120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sinsm",      0xee808140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sinsz",      0xee808160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sind",       0xee808180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sindp",      0xee8081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sindm",      0xee8081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sindz",      0xee8081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sine",       0xee888100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sinep",      0xee888120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sinem",      0xee888140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"sinez",      0xee888160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"coss",       0xee908100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"cossp",      0xee908120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"cossm",      0xee908140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"cossz",      0xee908160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"cosd",       0xee908180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"cosdp",      0xee9081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"cosdm",      0xee9081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"cosdz",      0xee9081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"cose",       0xee988100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"cosep",      0xee988120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"cosem",      0xee988140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"cosez",      0xee988160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"tans",       0xeea08100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"tansp",      0xeea08120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"tansm",      0xeea08140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"tansz",      0xeea08160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"tand",       0xeea08180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"tandp",      0xeea081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"tandm",      0xeea081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"tandz",      0xeea081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"tane",       0xeea88100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"tanep",      0xeea88120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"tanem",      0xeea88140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"tanez",      0xeea88160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"asns",       0xeeb08100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"asnsp",      0xeeb08120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"asnsm",      0xeeb08140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"asnsz",      0xeeb08160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"asnd",       0xeeb08180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"asndp",      0xeeb081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"asndm",      0xeeb081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"asndz",      0xeeb081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"asne",       0xeeb88100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"asnep",      0xeeb88120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"asnem",      0xeeb88140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"asnez",      0xeeb88160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"acss",       0xeec08100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"acssp",      0xeec08120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"acssm",      0xeec08140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"acssz",      0xeec08160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"acsd",       0xeec08180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"acsdp",      0xeec081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"acsdm",      0xeec081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"acsdz",      0xeec081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"acse",       0xeec88100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"acsep",      0xeec88120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"acsem",      0xeec88140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"acsez",      0xeec88160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"atns",       0xeed08100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"atnsp",      0xeed08120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"atnsm",      0xeed08140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"atnsz",      0xeed08160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"atnd",       0xeed08180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"atndp",      0xeed081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"atndm",      0xeed081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"atndz",      0xeed081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"atne",       0xeed88100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"atnep",      0xeed88120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"atnem",      0xeed88140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"atnez",      0xeed88160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"urds",       0xeee08100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"urdsp",      0xeee08120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"urdsm",      0xeee08140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"urdsz",      0xeee08160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"urdd",       0xeee08180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"urddp",      0xeee081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"urddm",      0xeee081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"urddz",      0xeee081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"urde",       0xeee88100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"urdep",      0xeee88120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"urdem",      0xeee88140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"urdez",      0xeee88160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"nrms",       0xeef08100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"nrmsp",      0xeef08120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"nrmsm",      0xeef08140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"nrmsz",      0xeef08160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"nrmd",       0xeef08180, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"nrmdp",      0xeef081a0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"nrmdm",      0xeef081c0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"nrmdz",      0xeef081e0, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"nrme",       0xeef88100, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"nrmep",      0xeef88120, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"nrmem",      0xeef88140, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},
  {"nrmez",      0xeef88160, 3,  FPU_FPA_EXT_V1,   do_fpa_monadic},

  {"adfs",       0xee000100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"adfsp",      0xee000120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"adfsm",      0xee000140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"adfsz",      0xee000160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"adfd",       0xee000180, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"adfdp",      0xee0001a0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"adfdm",      0xee0001c0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"adfdz",      0xee0001e0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"adfe",       0xee080100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"adfep",      0xee080120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"adfem",      0xee080140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"adfez",      0xee080160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},

  {"sufs",       0xee200100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"sufsp",      0xee200120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"sufsm",      0xee200140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"sufsz",      0xee200160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"sufd",       0xee200180, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"sufdp",      0xee2001a0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"sufdm",      0xee2001c0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"sufdz",      0xee2001e0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"sufe",       0xee280100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"sufep",      0xee280120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"sufem",      0xee280140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"sufez",      0xee280160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},

  {"rsfs",       0xee300100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rsfsp",      0xee300120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rsfsm",      0xee300140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rsfsz",      0xee300160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rsfd",       0xee300180, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rsfdp",      0xee3001a0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rsfdm",      0xee3001c0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rsfdz",      0xee3001e0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rsfe",       0xee380100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rsfep",      0xee380120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rsfem",      0xee380140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rsfez",      0xee380160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},

  {"mufs",       0xee100100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"mufsp",      0xee100120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"mufsm",      0xee100140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"mufsz",      0xee100160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"mufd",       0xee100180, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"mufdp",      0xee1001a0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"mufdm",      0xee1001c0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"mufdz",      0xee1001e0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"mufe",       0xee180100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"mufep",      0xee180120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"mufem",      0xee180140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"mufez",      0xee180160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},

  {"dvfs",       0xee400100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"dvfsp",      0xee400120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"dvfsm",      0xee400140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"dvfsz",      0xee400160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"dvfd",       0xee400180, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"dvfdp",      0xee4001a0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"dvfdm",      0xee4001c0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"dvfdz",      0xee4001e0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"dvfe",       0xee480100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"dvfep",      0xee480120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"dvfem",      0xee480140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"dvfez",      0xee480160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},

  {"rdfs",       0xee500100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rdfsp",      0xee500120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rdfsm",      0xee500140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rdfsz",      0xee500160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rdfd",       0xee500180, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rdfdp",      0xee5001a0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rdfdm",      0xee5001c0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rdfdz",      0xee5001e0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rdfe",       0xee580100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rdfep",      0xee580120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rdfem",      0xee580140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rdfez",      0xee580160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},

  {"pows",       0xee600100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"powsp",      0xee600120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"powsm",      0xee600140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"powsz",      0xee600160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"powd",       0xee600180, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"powdp",      0xee6001a0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"powdm",      0xee6001c0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"powdz",      0xee6001e0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"powe",       0xee680100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"powep",      0xee680120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"powem",      0xee680140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"powez",      0xee680160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},

  {"rpws",       0xee700100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rpwsp",      0xee700120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rpwsm",      0xee700140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rpwsz",      0xee700160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rpwd",       0xee700180, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rpwdp",      0xee7001a0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rpwdm",      0xee7001c0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rpwdz",      0xee7001e0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rpwe",       0xee780100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rpwep",      0xee780120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rpwem",      0xee780140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rpwez",      0xee780160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},

  {"rmfs",       0xee800100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rmfsp",      0xee800120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rmfsm",      0xee800140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rmfsz",      0xee800160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rmfd",       0xee800180, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rmfdp",      0xee8001a0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rmfdm",      0xee8001c0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rmfdz",      0xee8001e0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rmfe",       0xee880100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rmfep",      0xee880120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rmfem",      0xee880140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"rmfez",      0xee880160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},

  {"fmls",       0xee900100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fmlsp",      0xee900120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fmlsm",      0xee900140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fmlsz",      0xee900160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fmld",       0xee900180, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fmldp",      0xee9001a0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fmldm",      0xee9001c0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fmldz",      0xee9001e0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fmle",       0xee980100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fmlep",      0xee980120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fmlem",      0xee980140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fmlez",      0xee980160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},

  {"fdvs",       0xeea00100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fdvsp",      0xeea00120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fdvsm",      0xeea00140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fdvsz",      0xeea00160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fdvd",       0xeea00180, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fdvdp",      0xeea001a0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fdvdm",      0xeea001c0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fdvdz",      0xeea001e0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fdve",       0xeea80100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fdvep",      0xeea80120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fdvem",      0xeea80140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"fdvez",      0xeea80160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},

  {"frds",       0xeeb00100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"frdsp",      0xeeb00120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"frdsm",      0xeeb00140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"frdsz",      0xeeb00160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"frdd",       0xeeb00180, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"frddp",      0xeeb001a0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"frddm",      0xeeb001c0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"frddz",      0xeeb001e0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"frde",       0xeeb80100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"frdep",      0xeeb80120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"frdem",      0xeeb80140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"frdez",      0xeeb80160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},

  {"pols",       0xeec00100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"polsp",      0xeec00120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"polsm",      0xeec00140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"polsz",      0xeec00160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"pold",       0xeec00180, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"poldp",      0xeec001a0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"poldm",      0xeec001c0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"poldz",      0xeec001e0, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"pole",       0xeec80100, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"polep",      0xeec80120, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"polem",      0xeec80140, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},
  {"polez",      0xeec80160, 3,  FPU_FPA_EXT_V1,   do_fpa_dyadic},

  {"cmf",        0xee90f110, 3,  FPU_FPA_EXT_V1,   do_fpa_cmp},
  {"cmfe",       0xeed0f110, 3,  FPU_FPA_EXT_V1,   do_fpa_cmp},
  {"cnf",        0xeeb0f110, 3,  FPU_FPA_EXT_V1,   do_fpa_cmp},
  {"cnfe",       0xeef0f110, 3,  FPU_FPA_EXT_V1,   do_fpa_cmp},
  /* The FPA10 data sheet suggests that the 'E' of cmfe/cnfe should
     not be an optional suffix, but part of the instruction.  To be
     compatible, we accept either.  */
  {"cmfe",       0xeed0f110, 4,  FPU_FPA_EXT_V1,   do_fpa_cmp},
  {"cnfe",       0xeef0f110, 4,  FPU_FPA_EXT_V1,   do_fpa_cmp},

  {"flts",       0xee000110, 3,  FPU_FPA_EXT_V1,   do_fpa_from_reg},
  {"fltsp",      0xee000130, 3,  FPU_FPA_EXT_V1,   do_fpa_from_reg},
  {"fltsm",      0xee000150, 3,  FPU_FPA_EXT_V1,   do_fpa_from_reg},
  {"fltsz",      0xee000170, 3,  FPU_FPA_EXT_V1,   do_fpa_from_reg},
  {"fltd",       0xee000190, 3,  FPU_FPA_EXT_V1,   do_fpa_from_reg},
  {"fltdp",      0xee0001b0, 3,  FPU_FPA_EXT_V1,   do_fpa_from_reg},
  {"fltdm",      0xee0001d0, 3,  FPU_FPA_EXT_V1,   do_fpa_from_reg},
  {"fltdz",      0xee0001f0, 3,  FPU_FPA_EXT_V1,   do_fpa_from_reg},
  {"flte",       0xee080110, 3,  FPU_FPA_EXT_V1,   do_fpa_from_reg},
  {"fltep",      0xee080130, 3,  FPU_FPA_EXT_V1,   do_fpa_from_reg},
  {"fltem",      0xee080150, 3,  FPU_FPA_EXT_V1,   do_fpa_from_reg},
  {"fltez",      0xee080170, 3,  FPU_FPA_EXT_V1,   do_fpa_from_reg},

  /* The implementation of the FIX instruction is broken on some
     assemblers, in that it accepts a precision specifier as well as a
     rounding specifier, despite the fact that this is meaningless.
     To be more compatible, we accept it as well, though of course it
     does not set any bits.  */
  {"fix",        0xee100110, 3,  FPU_FPA_EXT_V1,   do_fpa_to_reg},
  {"fixp",       0xee100130, 3,  FPU_FPA_EXT_V1,   do_fpa_to_reg},
  {"fixm",       0xee100150, 3,  FPU_FPA_EXT_V1,   do_fpa_to_reg},
  {"fixz",       0xee100170, 3,  FPU_FPA_EXT_V1,   do_fpa_to_reg},
  {"fixsp",      0xee100130, 3,  FPU_FPA_EXT_V1,   do_fpa_to_reg},
  {"fixsm",      0xee100150, 3,  FPU_FPA_EXT_V1,   do_fpa_to_reg},
  {"fixsz",      0xee100170, 3,  FPU_FPA_EXT_V1,   do_fpa_to_reg},
  {"fixdp",      0xee100130, 3,  FPU_FPA_EXT_V1,   do_fpa_to_reg},
  {"fixdm",      0xee100150, 3,  FPU_FPA_EXT_V1,   do_fpa_to_reg},
  {"fixdz",      0xee100170, 3,  FPU_FPA_EXT_V1,   do_fpa_to_reg},
  {"fixep",      0xee100130, 3,  FPU_FPA_EXT_V1,   do_fpa_to_reg},
  {"fixem",      0xee100150, 3,  FPU_FPA_EXT_V1,   do_fpa_to_reg},
  {"fixez",      0xee100170, 3,  FPU_FPA_EXT_V1,   do_fpa_to_reg},

  /* Instructions that were new with the real FPA, call them V2.  */
  {"lfm",        0xec100200, 3,  FPU_FPA_EXT_V2,   do_fpa_ldmstm},
  {"lfmfd",      0xec900200, 3,  FPU_FPA_EXT_V2,   do_fpa_ldmstm},
  {"lfmea",      0xed100200, 3,  FPU_FPA_EXT_V2,   do_fpa_ldmstm},
  {"sfm",        0xec000200, 3,  FPU_FPA_EXT_V2,   do_fpa_ldmstm},
  {"sfmfd",      0xed000200, 3,  FPU_FPA_EXT_V2,   do_fpa_ldmstm},
  {"sfmea",      0xec800200, 3,  FPU_FPA_EXT_V2,   do_fpa_ldmstm},

  /* VFP V1xD (single precision).  */
  /* Moves and type conversions.  */
  {"fcpys",   0xeeb00a40, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
  {"fmrs",    0xee100a10, 4, FPU_VFP_EXT_V1xD, do_vfp_reg_from_sp},
  {"fmsr",    0xee000a10, 4, FPU_VFP_EXT_V1xD, do_vfp_sp_from_reg},
  {"fmstat",  0xeef1fa10, 6, FPU_VFP_EXT_V1xD, do_empty},
  {"fsitos",  0xeeb80ac0, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
  {"fuitos",  0xeeb80a40, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
  {"ftosis",  0xeebd0a40, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
  {"ftosizs", 0xeebd0ac0, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
  {"ftouis",  0xeebc0a40, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
  {"ftouizs", 0xeebc0ac0, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
  {"fmrx",    0xeef00a10, 4, FPU_VFP_EXT_V1xD, do_vfp_reg_from_ctrl},
  {"fmxr",    0xeee00a10, 4, FPU_VFP_EXT_V1xD, do_vfp_ctrl_from_reg},

  /* Memory operations.  */
  {"flds",    0xed100a00, 4, FPU_VFP_EXT_V1xD, do_vfp_sp_ldst},
  {"fsts",    0xed000a00, 4, FPU_VFP_EXT_V1xD, do_vfp_sp_ldst},
  {"fldmias", 0xec900a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmia},
  {"fldmfds", 0xec900a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmia},
  {"fldmdbs", 0xed300a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmdb},
  {"fldmeas", 0xed300a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmdb},
  {"fldmiax", 0xec900b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmia},
  {"fldmfdx", 0xec900b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmia},
  {"fldmdbx", 0xed300b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmdb},
  {"fldmeax", 0xed300b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmdb},
  {"fstmias", 0xec800a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmia},
  {"fstmeas", 0xec800a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmia},
  {"fstmdbs", 0xed200a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmdb},
  {"fstmfds", 0xed200a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmdb},
  {"fstmiax", 0xec800b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmia},
  {"fstmeax", 0xec800b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmia},
  {"fstmdbx", 0xed200b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmdb},
  {"fstmfdx", 0xed200b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmdb},

  /* Monadic operations.  */
  {"fabss",   0xeeb00ac0, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
  {"fnegs",   0xeeb10a40, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
  {"fsqrts",  0xeeb10ac0, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},

  /* Dyadic operations.  */
  {"fadds",   0xee300a00, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
  {"fsubs",   0xee300a40, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
  {"fmuls",   0xee200a00, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
  {"fdivs",   0xee800a00, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
  {"fmacs",   0xee000a00, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
  {"fmscs",   0xee100a00, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
  {"fnmuls",  0xee200a40, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
  {"fnmacs",  0xee000a40, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
  {"fnmscs",  0xee100a40, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},

  /* Comparisons.  */
  {"fcmps",   0xeeb40a40, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
  {"fcmpzs",  0xeeb50a40, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_compare_z},
  {"fcmpes",  0xeeb40ac0, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
  {"fcmpezs", 0xeeb50ac0, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_compare_z},

  /* VFP V1 (Double precision).  */
  /* Moves and type conversions.  */
  {"fcpyd",   0xeeb00b40, 5, FPU_VFP_EXT_V1,   do_vfp_dp_monadic},
  {"fcvtds",  0xeeb70ac0, 6, FPU_VFP_EXT_V1,   do_vfp_dp_sp_cvt},
  {"fcvtsd",  0xeeb70bc0, 6, FPU_VFP_EXT_V1,   do_vfp_sp_dp_cvt},
  {"fmdhr",   0xee200b10, 5, FPU_VFP_EXT_V1,   do_vfp_dp_from_reg},
  {"fmdlr",   0xee000b10, 5, FPU_VFP_EXT_V1,   do_vfp_dp_from_reg},
  {"fmrdh",   0xee300b10, 5, FPU_VFP_EXT_V1,   do_vfp_reg_from_dp},
  {"fmrdl",   0xee100b10, 5, FPU_VFP_EXT_V1,   do_vfp_reg_from_dp},
  {"fsitod",  0xeeb80bc0, 6, FPU_VFP_EXT_V1,   do_vfp_dp_sp_cvt},
  {"fuitod",  0xeeb80b40, 6, FPU_VFP_EXT_V1,   do_vfp_dp_sp_cvt},
  {"ftosid",  0xeebd0b40, 6, FPU_VFP_EXT_V1,   do_vfp_sp_dp_cvt},
  {"ftosizd", 0xeebd0bc0, 7, FPU_VFP_EXT_V1,   do_vfp_sp_dp_cvt},
  {"ftouid",  0xeebc0b40, 6, FPU_VFP_EXT_V1,   do_vfp_sp_dp_cvt},
  {"ftouizd", 0xeebc0bc0, 7, FPU_VFP_EXT_V1,   do_vfp_sp_dp_cvt},

  /* Memory operations.  */
  {"fldd",    0xed100b00, 4, FPU_VFP_EXT_V1,   do_vfp_dp_ldst},
  {"fstd",    0xed000b00, 4, FPU_VFP_EXT_V1,   do_vfp_dp_ldst},
  {"fldmiad", 0xec900b00, 7, FPU_VFP_EXT_V1,   do_vfp_dp_ldstmia},
  {"fldmfdd", 0xec900b00, 7, FPU_VFP_EXT_V1,   do_vfp_dp_ldstmia},
  {"fldmdbd", 0xed300b00, 7, FPU_VFP_EXT_V1,   do_vfp_dp_ldstmdb},
  {"fldmead", 0xed300b00, 7, FPU_VFP_EXT_V1,   do_vfp_dp_ldstmdb},
  {"fstmiad", 0xec800b00, 7, FPU_VFP_EXT_V1,   do_vfp_dp_ldstmia},
  {"fstmead", 0xec800b00, 7, FPU_VFP_EXT_V1,   do_vfp_dp_ldstmia},
  {"fstmdbd", 0xed200b00, 7, FPU_VFP_EXT_V1,   do_vfp_dp_ldstmdb},
  {"fstmfdd", 0xed200b00, 7, FPU_VFP_EXT_V1,   do_vfp_dp_ldstmdb},

  /* Monadic operations.  */
  {"fabsd",   0xeeb00bc0, 5, FPU_VFP_EXT_V1,   do_vfp_dp_monadic},
  {"fnegd",   0xeeb10b40, 5, FPU_VFP_EXT_V1,   do_vfp_dp_monadic},
  {"fsqrtd",  0xeeb10bc0, 6, FPU_VFP_EXT_V1,   do_vfp_dp_monadic},

  /* Dyadic operations.  */
  {"faddd",   0xee300b00, 5, FPU_VFP_EXT_V1,   do_vfp_dp_dyadic},
  {"fsubd",   0xee300b40, 5, FPU_VFP_EXT_V1,   do_vfp_dp_dyadic},
  {"fmuld",   0xee200b00, 5, FPU_VFP_EXT_V1,   do_vfp_dp_dyadic},
  {"fdivd",   0xee800b00, 5, FPU_VFP_EXT_V1,   do_vfp_dp_dyadic},
  {"fmacd",   0xee000b00, 5, FPU_VFP_EXT_V1,   do_vfp_dp_dyadic},
  {"fmscd",   0xee100b00, 5, FPU_VFP_EXT_V1,   do_vfp_dp_dyadic},
  {"fnmuld",  0xee200b40, 6, FPU_VFP_EXT_V1,   do_vfp_dp_dyadic},
  {"fnmacd",  0xee000b40, 6, FPU_VFP_EXT_V1,   do_vfp_dp_dyadic},
  {"fnmscd",  0xee100b40, 6, FPU_VFP_EXT_V1,   do_vfp_dp_dyadic},

  /* Comparisons.  */
  {"fcmpd",   0xeeb40b40, 5, FPU_VFP_EXT_V1,   do_vfp_dp_monadic},
  {"fcmpzd",  0xeeb50b40, 6, FPU_VFP_EXT_V1,   do_vfp_dp_compare_z},
  {"fcmped",  0xeeb40bc0, 6, FPU_VFP_EXT_V1,   do_vfp_dp_monadic},
  {"fcmpezd", 0xeeb50bc0, 7, FPU_VFP_EXT_V1,   do_vfp_dp_compare_z},

  /* VFP V2.  */
  {"fmsrr",   0xec400a10, 5, FPU_VFP_EXT_V2,   do_vfp_sp2_from_reg2},
  {"fmrrs",   0xec500a10, 5, FPU_VFP_EXT_V2,   do_vfp_reg2_from_sp2},
  {"fmdrr",   0xec400b10, 5, FPU_VFP_EXT_V2,   do_vfp_dp_from_reg2},
  {"fmrrd",   0xec500b10, 5, FPU_VFP_EXT_V2,   do_vfp_reg2_from_dp},

  /* Intel XScale extensions to ARM V5 ISA.  (All use CP0).  */
  {"mia",        0xee200010, 3,  ARM_CEXT_XSCALE,   do_xsc_mia},
  {"miaph",      0xee280010, 5,  ARM_CEXT_XSCALE,   do_xsc_mia},
  {"miabb",      0xee2c0010, 5,  ARM_CEXT_XSCALE,   do_xsc_mia},
  {"miabt",      0xee2d0010, 5,  ARM_CEXT_XSCALE,   do_xsc_mia},
  {"miatb",      0xee2e0010, 5,  ARM_CEXT_XSCALE,   do_xsc_mia},
  {"miatt",      0xee2f0010, 5,  ARM_CEXT_XSCALE,   do_xsc_mia},
  {"mar",        0xec400000, 3,  ARM_CEXT_XSCALE,   do_xsc_mar},
  {"mra",        0xec500000, 3,  ARM_CEXT_XSCALE,   do_xsc_mra},

  /* Intel Wireless MMX technology instructions.  */
  {"tandcb",     0xee130130, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tandc},
  {"tandch",     0xee530130, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tandc},
  {"tandcw",     0xee930130, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tandc},
  {"tbcstb",     0xee400010, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tbcst},
  {"tbcsth",     0xee400050, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tbcst},
  {"tbcstw",     0xee400090, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tbcst},
  {"textrcb",    0xee130170, 7, ARM_CEXT_IWMMXT, do_iwmmxt_textrc},
  {"textrch",    0xee530170, 7, ARM_CEXT_IWMMXT, do_iwmmxt_textrc},
  {"textrcw",    0xee930170, 7, ARM_CEXT_IWMMXT, do_iwmmxt_textrc},
  {"textrmub",   0xee100070, 8, ARM_CEXT_IWMMXT, do_iwmmxt_textrm},
  {"textrmuh",   0xee500070, 8, ARM_CEXT_IWMMXT, do_iwmmxt_textrm},
  {"textrmuw",   0xee900070, 8, ARM_CEXT_IWMMXT, do_iwmmxt_textrm},
  {"textrmsb",   0xee100078, 8, ARM_CEXT_IWMMXT, do_iwmmxt_textrm},
  {"textrmsh",   0xee500078, 8, ARM_CEXT_IWMMXT, do_iwmmxt_textrm},
  {"textrmsw",   0xee900078, 8, ARM_CEXT_IWMMXT, do_iwmmxt_textrm},
  {"tinsrb",     0xee600010, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tinsr},
  {"tinsrh",     0xee600050, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tinsr},
  {"tinsrw",     0xee600090, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tinsr},
  {"tmcr",       0xee000110, 4, ARM_CEXT_IWMMXT, do_iwmmxt_tmcr},
  {"tmcrr",      0xec400000, 5, ARM_CEXT_IWMMXT, do_iwmmxt_tmcrr},
  {"tmia",       0xee200010, 4, ARM_CEXT_IWMMXT, do_iwmmxt_tmia},
  {"tmiaph",     0xee280010, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tmia},
  {"tmiabb",     0xee2c0010, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tmia},
  {"tmiabt",     0xee2d0010, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tmia},
  {"tmiatb",     0xee2e0010, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tmia},
  {"tmiatt",     0xee2f0010, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tmia},
  {"tmovmskb",   0xee100030, 8, ARM_CEXT_IWMMXT, do_iwmmxt_tmovmsk},
  {"tmovmskh",   0xee500030, 8, ARM_CEXT_IWMMXT, do_iwmmxt_tmovmsk},
  {"tmovmskw",   0xee900030, 8, ARM_CEXT_IWMMXT, do_iwmmxt_tmovmsk},
  {"tmrc",       0xee100110, 4, ARM_CEXT_IWMMXT, do_iwmmxt_tmrc},
  {"tmrrc",      0xec500000, 5, ARM_CEXT_IWMMXT, do_iwmmxt_tmrrc},
  {"torcb",      0xee130150, 5, ARM_CEXT_IWMMXT, do_iwmmxt_torc},
  {"torch",      0xee530150, 5, ARM_CEXT_IWMMXT, do_iwmmxt_torc},
  {"torcw",      0xee930150, 5, ARM_CEXT_IWMMXT, do_iwmmxt_torc},
  {"waccb",      0xee0001c0, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"wacch",      0xee4001c0, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"waccw",      0xee8001c0, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"waddbss",    0xee300180, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"waddb",      0xee000180, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"waddbus",    0xee100180, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"waddhss",    0xee700180, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"waddh",      0xee400180, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"waddhus",    0xee500180, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"waddwss",    0xeeb00180, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"waddw",      0xee800180, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"waddwus",    0xee900180, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"waligni",    0xee000020, 7, ARM_CEXT_IWMMXT, do_iwmmxt_waligni},
  {"walignr0",   0xee800020, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"walignr1",   0xee900020, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"walignr2",   0xeea00020, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"walignr3",   0xeeb00020, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wand",       0xee200000, 4, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wandn",      0xee300000, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wavg2b",     0xee800000, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wavg2br",    0xee900000, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wavg2h",     0xeec00000, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wavg2hr",    0xeed00000, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wcmpeqb",    0xee000060, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wcmpeqh",    0xee400060, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wcmpeqw",    0xee800060, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wcmpgtub",   0xee100060, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wcmpgtuh",   0xee500060, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wcmpgtuw",   0xee900060, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wcmpgtsb",   0xee300060, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wcmpgtsh",   0xee700060, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wcmpgtsw",   0xeeb00060, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wldrb",      0xec100000, 5, ARM_CEXT_IWMMXT, do_iwmmxt_byte_addr},
  {"wldrh",      0xec100100, 5, ARM_CEXT_IWMMXT, do_iwmmxt_byte_addr},
  {"wldrw",      0xec100200, 5, ARM_CEXT_IWMMXT, do_iwmmxt_word_addr},
  {"wldrd",      0xec100300, 5, ARM_CEXT_IWMMXT, do_iwmmxt_word_addr},
  {"wmacs",      0xee600100, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmacsz",     0xee700100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmacu",      0xee400100, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmacuz",     0xee500100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmadds",     0xeea00100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmaddu",     0xee800100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmaxsb",     0xee200160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmaxsh",     0xee600160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmaxsw",     0xeea00160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmaxub",     0xee000160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmaxuh",     0xee400160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmaxuw",     0xee800160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wminsb",     0xee300160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wminsh",     0xee700160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wminsw",     0xeeb00160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wminub",     0xee100160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wminuh",     0xee500160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wminuw",     0xee900160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmov",       0xee000000, 4, ARM_CEXT_IWMMXT, do_iwmmxt_wmov},
  {"wmulsm",     0xee300100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmulsl",     0xee200100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmulum",     0xee100100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wmulul",     0xee000100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wor",        0xee000000, 3, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wpackhss",   0xee700080, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wpackhus",   0xee500080, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wpackwss",   0xeeb00080, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wpackwus",   0xee900080, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wpackdss",   0xeef00080, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wpackdus",   0xeed00080, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wrorh",      0xee700040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wrorhg",     0xee700148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
  {"wrorw",      0xeeb00040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wrorwg",     0xeeb00148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
  {"wrord",      0xeef00040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wrordg",     0xeef00148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
  {"wsadb",      0xee000120, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsadbz",     0xee100120, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsadh",      0xee400120, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsadhz",     0xee500120, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wshufh",     0xee0001e0, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wshufh},
  {"wsllh",      0xee500040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsllhg",     0xee500148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
  {"wsllw",      0xee900040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsllwg",     0xee900148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
  {"wslld",      0xeed00040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wslldg",     0xeed00148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
  {"wsrah",      0xee400040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsrahg",     0xee400148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
  {"wsraw",      0xee800040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsrawg",     0xee800148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
  {"wsrad",      0xeec00040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsradg",     0xeec00148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
  {"wsrlh",      0xee600040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsrlhg",     0xee600148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
  {"wsrlw",      0xeea00040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsrlwg",     0xeea00148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
  {"wsrld",      0xeee00040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsrldg",     0xeee00148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
  {"wstrb",      0xec000000, 5, ARM_CEXT_IWMMXT, do_iwmmxt_byte_addr},
  {"wstrh",      0xec000100, 5, ARM_CEXT_IWMMXT, do_iwmmxt_byte_addr},
  {"wstrw",      0xec000200, 5, ARM_CEXT_IWMMXT, do_iwmmxt_word_addr},
  {"wstrd",      0xec000300, 5, ARM_CEXT_IWMMXT, do_iwmmxt_word_addr},
  {"wsubbss",    0xee3001a0, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsubb",      0xee0001a0, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsubbus",    0xee1001a0, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsubhss",    0xee7001a0, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsubh",      0xee4001a0, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsubhus",    0xee5001a0, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsubwss",    0xeeb001a0, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsubw",      0xee8001a0, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wsubwus",    0xee9001a0, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wunpckehub", 0xee0000c0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"wunpckehuh", 0xee4000c0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"wunpckehuw", 0xee8000c0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"wunpckehsb", 0xee2000c0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"wunpckehsh", 0xee6000c0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"wunpckehsw", 0xeea000c0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"wunpckihb",  0xee1000c0, 9, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wunpckihh",  0xee5000c0, 9, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wunpckihw",  0xee9000c0, 9, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wunpckelub", 0xee0000e0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"wunpckeluh", 0xee4000e0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"wunpckeluw", 0xee8000e0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"wunpckelsb", 0xee2000e0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"wunpckelsh", 0xee6000e0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"wunpckelsw", 0xeea000e0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
  {"wunpckilb",  0xee1000e0, 9, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wunpckilh",  0xee5000e0, 9, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wunpckilw",  0xee9000e0, 9, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wxor",       0xee100000, 4, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
  {"wzero",      0xee300000, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wzero},

#ifdef NOTYET
  /* Cirrus Maverick instructions.  */
  {"cfldrs",     0xec100400, 6,  ARM_CEXT_MAVERICK, do_mav_ldst_1},
  {"cfldrd",     0xec500400, 6,  ARM_CEXT_MAVERICK, do_mav_ldst_2},
  {"cfldr32",    0xec100500, 7,  ARM_CEXT_MAVERICK, do_mav_ldst_3},
  {"cfldr64",    0xec500500, 7,  ARM_CEXT_MAVERICK, do_mav_ldst_4},
  {"cfstrs",     0xec000400, 6,  ARM_CEXT_MAVERICK, do_mav_ldst_1},
  {"cfstrd",     0xec400400, 6,  ARM_CEXT_MAVERICK, do_mav_ldst_2},
  {"cfstr32",    0xec000500, 7,  ARM_CEXT_MAVERICK, do_mav_ldst_3},
  {"cfstr64",    0xec400500, 7,  ARM_CEXT_MAVERICK, do_mav_ldst_4},
  {"cfmvsr",     0xee000450, 6,  ARM_CEXT_MAVERICK, do_mav_binops_2a},
  {"cfmvrs",     0xee100450, 6,  ARM_CEXT_MAVERICK, do_mav_binops_1a},
  {"cfmvdlr",    0xee000410, 7,  ARM_CEXT_MAVERICK, do_mav_binops_2b},
  {"cfmvrdl",    0xee100410, 7,  ARM_CEXT_MAVERICK, do_mav_binops_1b},
  {"cfmvdhr",    0xee000430, 7,  ARM_CEXT_MAVERICK, do_mav_binops_2b},
  {"cfmvrdh",    0xee100430, 7,  ARM_CEXT_MAVERICK, do_mav_binops_1b},
  {"cfmv64lr",   0xee000510, 8,  ARM_CEXT_MAVERICK, do_mav_binops_2c},
  {"cfmvr64l",   0xee100510, 8,  ARM_CEXT_MAVERICK, do_mav_binops_1c},
  {"cfmv64hr",   0xee000530, 8,  ARM_CEXT_MAVERICK, do_mav_binops_2c},
  {"cfmvr64h",   0xee100530, 8,  ARM_CEXT_MAVERICK, do_mav_binops_1c},
  {"cfmval32",   0xee200440, 8,  ARM_CEXT_MAVERICK, do_mav_binops_3a},
  {"cfmv32al",   0xee100440, 8,  ARM_CEXT_MAVERICK, do_mav_binops_3b},
  {"cfmvam32",   0xee200460, 8,  ARM_CEXT_MAVERICK, do_mav_binops_3a},
  {"cfmv32am",   0xee100460, 8,  ARM_CEXT_MAVERICK, do_mav_binops_3b},
  {"cfmvah32",   0xee200480, 8,  ARM_CEXT_MAVERICK, do_mav_binops_3a},
  {"cfmv32ah",   0xee100480, 8,  ARM_CEXT_MAVERICK, do_mav_binops_3b},
  {"cfmva32",    0xee2004a0, 7,  ARM_CEXT_MAVERICK, do_mav_binops_3a},
  {"cfmv32a",    0xee1004a0, 7,  ARM_CEXT_MAVERICK, do_mav_binops_3b},
  {"cfmva64",    0xee2004c0, 7,  ARM_CEXT_MAVERICK, do_mav_binops_3c},
  {"cfmv64a",    0xee1004c0, 7,  ARM_CEXT_MAVERICK, do_mav_binops_3d},
  {"cfmvsc32",   0xee2004e0, 8,  ARM_CEXT_MAVERICK, do_mav_dspsc_1},
  {"cfmv32sc",   0xee1004e0, 8,  ARM_CEXT_MAVERICK, do_mav_dspsc_2},
  {"cfcpys",     0xee000400, 6,  ARM_CEXT_MAVERICK, do_mav_binops_1d},
  {"cfcpyd",     0xee000420, 6,  ARM_CEXT_MAVERICK, do_mav_binops_1e},
  {"cfcvtsd",    0xee000460, 7,  ARM_CEXT_MAVERICK, do_mav_binops_1f},
  {"cfcvtds",    0xee000440, 7,  ARM_CEXT_MAVERICK, do_mav_binops_1g},
  {"cfcvt32s",   0xee000480, 8,  ARM_CEXT_MAVERICK, do_mav_binops_1h},
  {"cfcvt32d",   0xee0004a0, 8,  ARM_CEXT_MAVERICK, do_mav_binops_1i},
  {"cfcvt64s",   0xee0004c0, 8,  ARM_CEXT_MAVERICK, do_mav_binops_1j},
  {"cfcvt64d",   0xee0004e0, 8,  ARM_CEXT_MAVERICK, do_mav_binops_1k},
  {"cfcvts32",   0xee100580, 8,  ARM_CEXT_MAVERICK, do_mav_binops_1l},
  {"cfcvtd32",   0xee1005a0, 8,  ARM_CEXT_MAVERICK, do_mav_binops_1m},
  {"cftruncs32", 0xee1005c0, 10, ARM_CEXT_MAVERICK, do_mav_binops_1l},
  {"cftruncd32", 0xee1005e0, 10, ARM_CEXT_MAVERICK, do_mav_binops_1m},
  {"cfrshl32",   0xee000550, 8,  ARM_CEXT_MAVERICK, do_mav_triple_4a},
  {"cfrshl64",   0xee000570, 8,  ARM_CEXT_MAVERICK, do_mav_triple_4b},
  {"cfsh32",     0xee000500, 6,  ARM_CEXT_MAVERICK, do_mav_shift_1},
  {"cfsh64",     0xee200500, 6,  ARM_CEXT_MAVERICK, do_mav_shift_2},
  {"cfcmps",     0xee100490, 6,  ARM_CEXT_MAVERICK, do_mav_triple_5a},
  {"cfcmpd",     0xee1004b0, 6,  ARM_CEXT_MAVERICK, do_mav_triple_5b},
  {"cfcmp32",    0xee100590, 7,  ARM_CEXT_MAVERICK, do_mav_triple_5c},
  {"cfcmp64",    0xee1005b0, 7,  ARM_CEXT_MAVERICK, do_mav_triple_5d},
  {"cfabss",     0xee300400, 6,  ARM_CEXT_MAVERICK, do_mav_binops_1d},
  {"cfabsd",     0xee300420, 6,  ARM_CEXT_MAVERICK, do_mav_binops_1e},
  {"cfnegs",     0xee300440, 6,  ARM_CEXT_MAVERICK, do_mav_binops_1d},
  {"cfnegd",     0xee300460, 6,  ARM_CEXT_MAVERICK, do_mav_binops_1e},
  {"cfadds",     0xee300480, 6,  ARM_CEXT_MAVERICK, do_mav_triple_5e},
  {"cfaddd",     0xee3004a0, 6,  ARM_CEXT_MAVERICK, do_mav_triple_5f},
  {"cfsubs",     0xee3004c0, 6,  ARM_CEXT_MAVERICK, do_mav_triple_5e},
  {"cfsubd",     0xee3004e0, 6,  ARM_CEXT_MAVERICK, do_mav_triple_5f},
  {"cfmuls",     0xee100400, 6,  ARM_CEXT_MAVERICK, do_mav_triple_5e},
  {"cfmuld",     0xee100420, 6,  ARM_CEXT_MAVERICK, do_mav_triple_5f},
  {"cfabs32",    0xee300500, 7,  ARM_CEXT_MAVERICK, do_mav_binops_1n},
  {"cfabs64",    0xee300520, 7,  ARM_CEXT_MAVERICK, do_mav_binops_1o},
  {"cfneg32",    0xee300540, 7,  ARM_CEXT_MAVERICK, do_mav_binops_1n},
  {"cfneg64",    0xee300560, 7,  ARM_CEXT_MAVERICK, do_mav_binops_1o},
  {"cfadd32",    0xee300580, 7,  ARM_CEXT_MAVERICK, do_mav_triple_5g},
  {"cfadd64",    0xee3005a0, 7,  ARM_CEXT_MAVERICK, do_mav_triple_5h},
  {"cfsub32",    0xee3005c0, 7,  ARM_CEXT_MAVERICK, do_mav_triple_5g},
  {"cfsub64",    0xee3005e0, 7,  ARM_CEXT_MAVERICK, do_mav_triple_5h},
  {"cfmul32",    0xee100500, 7,  ARM_CEXT_MAVERICK, do_mav_triple_5g},
  {"cfmul64",    0xee100520, 7,  ARM_CEXT_MAVERICK, do_mav_triple_5h},
  {"cfmac32",    0xee100540, 7,  ARM_CEXT_MAVERICK, do_mav_triple_5g},
  {"cfmsc32",    0xee100560, 7,  ARM_CEXT_MAVERICK, do_mav_triple_5g},
  {"cfmadd32",   0xee000600, 8,  ARM_CEXT_MAVERICK, do_mav_quad_6a},
  {"cfmsub32",   0xee100600, 8,  ARM_CEXT_MAVERICK, do_mav_quad_6a},
  {"cfmadda32",  0xee200600, 9,  ARM_CEXT_MAVERICK, do_mav_quad_6b},
  {"cfmsuba32",  0xee300600, 9,  ARM_CEXT_MAVERICK, do_mav_quad_6b},
#endif
};

/* Iterate over the base tables to create the instruction patterns.  */

static void
build_arm_ops_hsh (void)
{
  unsigned int i;
  unsigned int j;
  static struct obstack insn_obstack;

  obstack_begin (&insn_obstack, 4000);

  for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
    {
      const struct asm_opcode *insn = insns + i;

      if (insn->cond_offset != 0)
	{
	  /* Insn supports conditional execution.  Build the varaints
	     and insert them in the hash table.  */
	  for (j = 0; j < sizeof (conds) / sizeof (struct asm_cond); j++)
	    {
	      unsigned len = strlen (insn->template);
	      struct asm_opcode *new;
	      char *template;

	      new = obstack_alloc (&insn_obstack, sizeof (struct asm_opcode));
	      /* All condition codes are two characters.  */
	      template = obstack_alloc (&insn_obstack, len + 3);

	      strncpy (template, insn->template, insn->cond_offset);
	      strcpy (template + insn->cond_offset, conds[j].template);
	      if (len > insn->cond_offset)
		strcpy (template + insn->cond_offset + 2,
			insn->template + insn->cond_offset);
	      new->template = template;
	      new->cond_offset = 0;
	      new->variant = insn->variant;
	      new->parms = insn->parms;
	      new->value = (insn->value & ~COND_MASK) | conds[j].value;

	      hash_insert (arm_ops_hsh, new->template, (PTR) new);
	    }
	}
      /* Finally, insert the unconditional insn in the table directly;
	 no need to build a copy.  */
      hash_insert (arm_ops_hsh, insn->template, (PTR) insn);
    }
}


static const struct thumb_opcode tinsns[] =
{
  /* APPLE LOCAL */
  {"trap",	0xdefe,		2,	ARM_EXT_V4T, do_t_nop},

  /* Thumb v1 (ARMv4T).  */
  {"adc",	0x4140,		2,	ARM_EXT_V4T, do_t_arit},
  {"add",	0x0000,		2,	ARM_EXT_V4T, do_t_add},
  {"and",	0x4000,		2,	ARM_EXT_V4T, do_t_arit},
  {"asr",	0x0000,		2,	ARM_EXT_V4T, do_t_asr},
  {"b",		T_OPCODE_BRANCH, 2,	ARM_EXT_V4T, do_t_branch12},
  {"beq",	0xd0fe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bne",	0xd1fe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bcs",	0xd2fe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bhs",	0xd2fe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bcc",	0xd3fe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bul",	0xd3fe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"blo",	0xd3fe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bmi",	0xd4fe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bpl",	0xd5fe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bvs",	0xd6fe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bvc",	0xd7fe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bhi",	0xd8fe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bls",	0xd9fe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bge",	0xdafe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"blt",	0xdbfe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bgt",	0xdcfe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"ble",	0xddfe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bal",	0xdefe,		2,	ARM_EXT_V4T, do_t_branch9},
  {"bic",	0x4380,		2,	ARM_EXT_V4T, do_t_arit},
  {"bl",	0xf7fffffe,	4,	ARM_EXT_V4T, do_t_branch23},
  {"bx",	0x4700,		2,	ARM_EXT_V4T, do_t_bx},
  {"cmn",	T_OPCODE_CMN,	2,	ARM_EXT_V4T, do_t_arit},
  {"cmp",	0x0000,		2,	ARM_EXT_V4T, do_t_compare},
  {"eor",	0x4040,		2,	ARM_EXT_V4T, do_t_arit},
  {"ldmia",	0xc800,		2,	ARM_EXT_V4T, do_t_ldmstm},
  {"ldr",	0x0000,		2,	ARM_EXT_V4T, do_t_ldr},
  {"ldrb",	0x0000,		2,	ARM_EXT_V4T, do_t_ldrb},
  {"ldrh",	0x0000,		2,	ARM_EXT_V4T, do_t_ldrh},
  {"ldrsb",	0x5600,		2,	ARM_EXT_V4T, do_t_lds},
  {"ldrsh",	0x5e00,		2,	ARM_EXT_V4T, do_t_lds},
  {"ldsb",	0x5600,		2,	ARM_EXT_V4T, do_t_lds},
  {"ldsh",	0x5e00,		2,	ARM_EXT_V4T, do_t_lds},
  {"lsl",	0x0000,		2,	ARM_EXT_V4T, do_t_lsl},
  {"lsr",	0x0000,		2,	ARM_EXT_V4T, do_t_lsr},
  {"mov",	0x0000,		2,	ARM_EXT_V4T, do_t_mov},
  {"mul",	T_OPCODE_MUL,	2,	ARM_EXT_V4T, do_t_arit},
  {"mvn",	T_OPCODE_MVN,	2,	ARM_EXT_V4T, do_t_arit},
  {"neg",	T_OPCODE_NEG,	2,	ARM_EXT_V4T, do_t_arit},
  {"orr",	0x4300,		2,	ARM_EXT_V4T, do_t_arit},
  {"pop",	0xbc00,		2,	ARM_EXT_V4T, do_t_push_pop},
  {"push",	0xb400,		2,	ARM_EXT_V4T, do_t_push_pop},
  {"ror",	0x41c0,		2,	ARM_EXT_V4T, do_t_arit},
  {"sbc",	0x4180,		2,	ARM_EXT_V4T, do_t_arit},
  {"stmia",	0xc000,		2,	ARM_EXT_V4T, do_t_ldmstm},
  {"str",	0x0000,		2,	ARM_EXT_V4T, do_t_str},
  {"strb",	0x0000,		2,	ARM_EXT_V4T, do_t_strb},
  {"strh",	0x0000,		2,	ARM_EXT_V4T, do_t_strh},
  {"swi",	0xdf00,		2,	ARM_EXT_V4T, do_t_swi},
  {"sub",	0x0000,		2,	ARM_EXT_V4T, do_t_sub},
  {"tst",	T_OPCODE_TST,	2,	ARM_EXT_V4T, do_t_arit},
  /* Pseudo ops:  */
  {"adr",       0x0000,         2,      ARM_EXT_V4T, do_t_adr},
  {"nop",       0x46C0,         2,      ARM_EXT_V4T, do_t_nop},      /* mov r8,r8  */
  /* Thumb v2 (ARMv5T).  */
  {"blx",	0,		0,	ARM_EXT_V5T, do_t_blx},
  {"bkpt",	0xbe00,		2,	ARM_EXT_V5T, do_t_bkpt},

  /* ARM V6.  */
  {"cpsie",	0xb660,		2,	ARM_EXT_V6,  do_t_cps},
  {"cpsid",     0xb670,		2,	ARM_EXT_V6,  do_t_cps},
  {"cpy",	0x4600,		2,	ARM_EXT_V6,  do_t_cpy},
  {"rev",	0xba00,		2,	ARM_EXT_V6,  do_t_arit},
  {"rev16",	0xba40,		2,	ARM_EXT_V6,  do_t_arit},
  {"revsh",	0xbac0,		2,	ARM_EXT_V6,  do_t_arit},
#ifdef NOTYET
  {"setend",	0xb650,		2,	ARM_EXT_V6,  do_t_setend},
#endif
  {"sxth",	0xb200,		2,	ARM_EXT_V6,  do_t_arit},
  {"sxtb",	0xb240,		2,	ARM_EXT_V6,  do_t_arit},
  {"uxth",	0xb280,		2,	ARM_EXT_V6,  do_t_arit},
  {"uxtb",	0xb2c0,		2,	ARM_EXT_V6,  do_t_arit},
};

/* below started FROM port of Mac OS X assembler with parts
   FROM gas/config/tc-arm.c */
/*
 * md_begin() is called from main() in as.c before assembly begins.  It is used
 * to allow target machine dependent initialization.
 */
void
md_begin(void)
{
/* FROM line 10957 */
  unsigned int i;

  if (   (arm_ops_hsh = hash_new ()) == NULL
      || (arm_tops_hsh = hash_new ()) == NULL
      || (arm_cond_hsh = hash_new ()) == NULL
      || (arm_shift_hsh = hash_new ()) == NULL
      || (arm_psr_hsh = hash_new ()) == NULL)
    as_fatal (_("virtual memory exhausted"));

  build_arm_ops_hsh ();
  for (i = 0; i < sizeof (tinsns) / sizeof (struct thumb_opcode); i++)
    hash_insert (arm_tops_hsh, tinsns[i].template, (PTR) (tinsns + i));
  for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
    hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
  for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
    hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
  for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
    hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));

  for (i = (int) REG_TYPE_FIRST; i < (int) REG_TYPE_MAX; i++)
    build_reg_hsh (all_reg_maps + i);

  if (force_cpusubtype_ALL)
    md_cpusubtype = CPU_SUBTYPE_ARM_ALL;

  switch (archflag_cpusubtype)
    {
      case CPU_SUBTYPE_ARM_V5TEJ:
	cpu_variant = ARM_ARCH_V5TEJ;
	break;
      case CPU_SUBTYPE_ARM_XSCALE:
	cpu_variant = ARM_ARCH_XSCALE;
	break;
      case CPU_SUBTYPE_ARM_V6:
	cpu_variant = ARM_ARCH_V6ZK | FPU_ARCH_VFP_V2;
	break;
    }
}

/* FROM line 11152 */
/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
   for use in the a.out file, and stores them in the array pointed to by buf.
   This knows about the endian-ness of the target machine and does
   THE RIGHT THING, whatever it is.  Possible values for n are 1 (byte)
   2 (short) and 4 (long)  Floating numbers are put out as a series of
   LITTLENUMS (shorts, here at least).  */

void
md_number_to_chars (char * buf, signed_expr_t val, int n)
{
  if (target_big_endian)
    number_to_chars_bigendian (buf, val, n);
  else
    number_to_chars_littleendian (buf, val, n);
}

static valueT
md_chars_to_number (char * buf, int n)
{
  valueT result = 0;
  unsigned char * where = (unsigned char *) buf;

  if (target_big_endian)
    {
      while (n--)
	{
	  result <<= 8;
	  result |= (*where++ & 255);
	}
    }
  else
    {
      while (n--)
	{
	  result <<= 8;
	  result |= (where[n] & 255);
	}
    }

  return result;
}

/* FROM line 11283 */
/* The knowledge of the PC's pipeline offset is built into the insns
   themselves.  */

long
md_pcrel_from (const fixS * fixP)
{
#ifdef NOTYET
  if (fixP->fx_addsy
      && S_GET_SEGMENT (fixP->fx_addsy) == undefined_section
      && fixP->fx_subsy == NULL)
    return 0;
#endif

  if (fixP->fx_pcrel && (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_ADD))
    {
      /* PC relative addressing on the Thumb is slightly odd
	 as the bottom two bits of the PC are forced to zero
	 for the calculation.  */
      return (fixP->fx_where + fixP->fx_frag->fr_address) & ~3;
    }

#ifdef TE_WINCE
  /* The pattern was adjusted to accommodate CE's off-by-one fixups,
     so we un-adjust here to compensate for the accommodation.  */
  return fixP->fx_where + fixP->fx_frag->fr_address + 8;
#else
  return fixP->fx_where + fixP->fx_frag->fr_address;
#endif
}

/* FROM line 11351 */
void
md_apply_fix3 (fixS *   fixP,
	       valueT * valP,
	       segT     seg)
{
  offsetT        value = * valP;
  offsetT        newval;
  unsigned int   newimm;
  unsigned long  temp;
  int            sign;
  char *         buf = fixP->fx_where + fixP->fx_frag->fr_literal;
  arm_fix_data * arm_data = (arm_fix_data *) fixP->tc_fix_data;

  assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);

  /* Note whether this will delete the relocation.  */
  if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
    fixP->fx_done = 1;

#ifndef NeXT_MOD
  /* If this symbol is in a different section then we need to leave it for
     the linker to deal with.  Unfortunately, md_pcrel_from can't tell,
     so we have to undo it's effects here.  */
  if (fixP->fx_pcrel)
    {
      if (fixP->fx_addsy != NULL
	  && S_IS_DEFINED (fixP->fx_addsy)
	  && S_GET_SEGMENT (fixP->fx_addsy) != seg)
	value += md_pcrel_from (fixP);
    }
#endif

  /* Remember value for emit_reloc.  */
  fixP->fx_addnumber = value;

  switch (fixP->fx_r_type)
    {
#ifdef NOTYET
    case BFD_RELOC_NONE:
      /* This will need to go in the object file.  */
      fixP->fx_done = 0;
      break;
#endif

    case BFD_RELOC_ARM_IMMEDIATE:
      /* We claim that this fixup has been processed here,
	 even if in fact we generate an error because we do
	 not have a reloc for it, so tc_gen_reloc will reject it.  */
      fixP->fx_done = 1;

      if (fixP->fx_addsy
	  && ! S_IS_DEFINED (fixP->fx_addsy))
	{
	  as_bad_where (fixP->fx_file, fixP->fx_line,
			_("undefined symbol %s used as an immediate value"),
			S_GET_NAME (fixP->fx_addsy));
	  break;
	}

      newimm = validate_immediate (value);
      temp = md_chars_to_number (buf, INSN_SIZE);

      /* If the instruction will fail, see if we can fix things up by
	 changing the opcode.  */
      if (newimm == (unsigned int) FAIL
	  && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
	{
	  as_bad_where (fixP->fx_file, fixP->fx_line,
			_("invalid constant (%lx) after fixup"),
			(unsigned long) value);
	  break;
	}

      newimm |= (temp & 0xfffff000);
      md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
      break;

    case BFD_RELOC_ARM_ADRL_IMMEDIATE:
      {
	unsigned int highpart = 0;
	unsigned int newinsn  = 0xe1a00000; /* nop.  */

	newimm = validate_immediate (value);
	temp = md_chars_to_number (buf, INSN_SIZE);

	/* If the instruction will fail, see if we can fix things up by
	   changing the opcode.  */
	if (newimm == (unsigned int) FAIL
	    && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
	  {
	    /* No ?  OK - try using two ADD instructions to generate
               the value.  */
	    newimm = validate_immediate_twopart (value, & highpart);

	    /* Yes - then make sure that the second instruction is
               also an add.  */
	    if (newimm != (unsigned int) FAIL)
	      newinsn = temp;
	    /* Still No ?  Try using a negated value.  */
	    else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
	      temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
	    /* Otherwise - give up.  */
	    else
	      {
		as_bad_where (fixP->fx_file, fixP->fx_line,
			      _("unable to compute ADRL instructions for PC offset of 0x%lx"),
			      (long) value);
		break;
	      }

	    /* Replace the first operand in the 2nd instruction (which
	       is the PC) with the destination register.  We have
	       already added in the PC in the first instruction and we
	       do not want to do it again.  */
	    newinsn &= ~ 0xf0000;
	    newinsn |= ((newinsn & 0x0f000) << 4);
	  }

	newimm |= (temp & 0xfffff000);
	md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);

	highpart |= (newinsn & 0xfffff000);
	md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
      }
      break;

    case BFD_RELOC_ARM_OFFSET_IMM:
      sign = value >= 0;

      if (value < 0)
	value = - value;

      if (validate_offset_imm (value, 0) == FAIL)
	{
	  as_bad_where (fixP->fx_file, fixP->fx_line,
			_("bad immediate value for offset (%ld)"),
			(long) value);
	  break;
	}

      newval = md_chars_to_number (buf, INSN_SIZE);
      newval &= 0xff7ff000;
      newval |= value | (sign ? INDEX_UP : 0);
      md_number_to_chars (buf, newval, INSN_SIZE);
      break;

    case BFD_RELOC_ARM_OFFSET_IMM8:
    case BFD_RELOC_ARM_HWLITERAL:
      sign = value >= 0;

      if (value < 0)
	value = - value;

      if (validate_offset_imm (value, 1) == FAIL)
	{
	  if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("invalid literal constant: pool needs to be closer"));
	  else
	    as_bad (_("bad immediate value for half-word offset (%ld)"),
		    (long) value);
	  break;
	}

      newval = md_chars_to_number (buf, INSN_SIZE);
      newval &= 0xff7ff0f0;
      newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
      md_number_to_chars (buf, newval, INSN_SIZE);
      break;

    case BFD_RELOC_ARM_LITERAL:
      sign = value >= 0;

      if (value < 0)
	value = - value;

      if (validate_offset_imm (value, 0) == FAIL)
	{
	  as_bad_where (fixP->fx_file, fixP->fx_line,
			_("invalid literal constant: pool needs to be closer"));
	  break;
	}

      newval = md_chars_to_number (buf, INSN_SIZE);
      newval &= 0xff7ff000;
      newval |= value | (sign ? INDEX_UP : 0);
      md_number_to_chars (buf, newval, INSN_SIZE);
      break;

    case BFD_RELOC_ARM_SHIFT_IMM:
      newval = md_chars_to_number (buf, INSN_SIZE);
      if (((unsigned long) value) > 32
	  || (value == 32
	      && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
	{
	  as_bad_where (fixP->fx_file, fixP->fx_line,
			_("shift expression is too large"));
	  break;
	}

      if (value == 0)
	/* Shifts of zero must be done as lsl.  */
	newval &= ~0x60;
      else if (value == 32)
	value = 0;
      newval &= 0xfffff07f;
      newval |= (value & 0x1f) << 7;
      md_number_to_chars (buf, newval, INSN_SIZE);
      break;

    case BFD_RELOC_ARM_SMI:
      if (((unsigned long) value) > 0xffff)
	as_bad_where (fixP->fx_file, fixP->fx_line,
		      _("invalid smi expression"));
      newval = md_chars_to_number (buf, INSN_SIZE) & 0xfff000f0;
      newval |= (value & 0xf) | ((value & 0xfff0) << 4);
      md_number_to_chars (buf, newval, INSN_SIZE);
      break;

    case BFD_RELOC_ARM_SWI:
      if (arm_data->thumb_mode)
	{
	  if (((unsigned long) value) > 0xff)
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("invalid swi expression"));
	  newval = md_chars_to_number (buf, THUMB_SIZE) & 0xff00;
	  newval |= value;
	  md_number_to_chars (buf, newval, THUMB_SIZE);
	}
      else
	{
	  if (((unsigned long) value) > 0x00ffffff)
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("invalid swi expression"));
	  newval = md_chars_to_number (buf, INSN_SIZE) & 0xff000000;
	  newval |= value;
	  md_number_to_chars (buf, newval, INSN_SIZE);
	}
      break;

    case BFD_RELOC_ARM_MULTI:
      if (((unsigned long) value) > 0xffff)
	as_bad_where (fixP->fx_file, fixP->fx_line,
		      _("invalid expression in load/store multiple"));
      newval = value | md_chars_to_number (buf, INSN_SIZE);
      md_number_to_chars (buf, newval, INSN_SIZE);
      break;

    case BFD_RELOC_ARM_PCREL_BRANCH:
      newval = md_chars_to_number (buf, INSN_SIZE);

      /* Sign-extend a 24-bit number.  */
#define SEXT24(x)	((((x) & 0xffffff) ^ (~ 0x7fffff)) + 0x800000)

#ifdef OBJ_ELF
      value = fixP->fx_offset;
#endif

      /* We are going to store value (shifted right by two) in the
	 instruction, in a 24 bit, signed field.  Thus we need to check
	 that none of the top 8 bits of the shifted value (top 7 bits of
         the unshifted, unsigned value) are set, or that they are all set.  */
      if ((value & ~ ((offsetT) 0x1ffffff)) != 0
	  && ((value & ~ ((offsetT) 0x1ffffff)) != ~ ((offsetT) 0x1ffffff)))
	{
#ifdef OBJ_ELF
	  /* Normally we would be stuck at this point, since we cannot store
	     the absolute address that is the destination of the branch in the
	     24 bits of the branch instruction.  If however, we happen to know
	     that the destination of the branch is in the same section as the
	     branch instruction itself, then we can compute the relocation for
	     ourselves and not have to bother the linker with it.

	     FIXME: The test for OBJ_ELF is only here because I have not
	     worked out how to do this for OBJ_COFF.  */
	  if (fixP->fx_addsy != NULL
	      && S_IS_DEFINED (fixP->fx_addsy)
	      && S_GET_SEGMENT (fixP->fx_addsy) == seg)
	    {
	      /* Get pc relative value to go into the branch.  */
	      value = * valP;

	      /* Permit a backward branch provided that enough bits
		 are set.  Allow a forwards branch, provided that
		 enough bits are clear.  */
	      if (   (value & ~ ((offsetT) 0x1ffffff)) == ~ ((offsetT) 0x1ffffff)
		  || (value & ~ ((offsetT) 0x1ffffff)) == 0)
		fixP->fx_done = 1;
	    }

	  if (! fixP->fx_done)
#endif
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("GAS can't handle same-section branch dest >= 0x04000000"));
	}

      value >>= 2;
      value += SEXT24 (newval);

      if (    (value & ~ ((offsetT) 0xffffff)) != 0
	  && ((value & ~ ((offsetT) 0xffffff)) != ~ ((offsetT) 0xffffff)))
	as_bad_where (fixP->fx_file, fixP->fx_line,
		      _("out of range branch"));

#ifdef NOTYET
      if (seg->use_rela_p && !fixP->fx_done)
#else
      if (0 && !fixP->fx_done)
#endif
	{
	  /* Must unshift the value before storing it in the addend.  */
	  value <<= 2;
#ifdef OBJ_ELF
	  fixP->fx_offset = value;
#endif
	  fixP->fx_addnumber = value;
	  newval = newval & 0xff000000;
	}
      else
	  newval = (value & 0x00ffffff) | (newval & 0xff000000);
      md_number_to_chars (buf, newval, INSN_SIZE);
      break;

    case BFD_RELOC_ARM_PCREL_BLX:
      {
	offsetT hbit;
	newval = md_chars_to_number (buf, INSN_SIZE);

#ifdef OBJ_ELF
	value = fixP->fx_offset;
#endif
	hbit   = (value >> 1) & 1;
	value  = (value >> 2) & 0x00ffffff;
	value  = (value + (newval & 0x00ffffff)) & 0x00ffffff;
#ifndef NOTYET
	/* Our linker wants the same reloc for bl and blx.  */
	fixP->fx_r_type = BFD_RELOC_ARM_PCREL_BRANCH;
#endif

#ifdef NOTYET
	if (seg->use_rela_p && !fixP->fx_done)
#else
	if (0)
#endif
	  {
	    /* Must sign-extend and unshift the value before storing
	       it in the addend.  */
	    value = SEXT24 (value);
	    value = (value << 2) | hbit;
#ifdef OBJ_ELF
	    fixP->fx_offset = value;
#endif
	    fixP->fx_addnumber = value;
	    newval = newval & 0xfe000000;
	  }
	else
	  newval = value | (newval & 0xfe000000) | (hbit << 24);
	md_number_to_chars (buf, newval, INSN_SIZE);
      }
      break;

    case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch.  */
      newval = md_chars_to_number (buf, THUMB_SIZE);
      {
	addressT diff = (newval & 0xff) << 1;
	if (diff & 0x100)
	  diff |= ~0xff;

	value += diff;
	if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
	  as_bad_where (fixP->fx_file, fixP->fx_line,
			_("branch out of range"));
#ifdef NOTYET
	if (seg->use_rela_p && !fixP->fx_done)
#else
	if (0)
#endif
	  {
#ifdef OBJ_ELF
	    fixP->fx_offset = value;
#endif
	    fixP->fx_addnumber = value;
	    newval = newval & 0xff00;
	  }
	else
	  newval = (newval & 0xff00) | ((value & 0x1ff) >> 1);
      }
      md_number_to_chars (buf, newval, THUMB_SIZE);
      break;

    case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch.  */
      newval = md_chars_to_number (buf, THUMB_SIZE);
      {
	addressT diff = (newval & 0x7ff) << 1;
	if (diff & 0x800)
	  diff |= ~0x7ff;

	value += diff;
	if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
	  as_bad_where (fixP->fx_file, fixP->fx_line,
			_("branch out of range"));
#ifdef NOTYET
	if (seg->use_rela_p && !fixP->fx_done)
#else
	if (0)
#endif
	  {
#ifdef OBJ_ELF
	    fixP->fx_offset = value;
#endif
	    fixP->fx_addnumber = value;
	    newval = newval & 0xf800;
	  }
	else
	  newval = (newval & 0xf800) | ((value & 0xfff) >> 1);
      }
      md_number_to_chars (buf, newval, THUMB_SIZE);
      break;

    case BFD_RELOC_THUMB_PCREL_BLX:
    case BFD_RELOC_THUMB_PCREL_BRANCH23:
      {
	offsetT newval2;
	addressT diff;

	newval  = md_chars_to_number (buf, THUMB_SIZE);
	newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
	diff = ((newval & 0x7ff) << 12) | ((newval2 & 0x7ff) << 1);
	if (diff & 0x400000)
	  diff |= ~0x3fffff;
#ifdef OBJ_ELF
	value = fixP->fx_offset;
#endif
	value += diff;

	if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
	  as_bad_where (fixP->fx_file, fixP->fx_line,
			_("branch with link out of range"));

	if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
	  /* For a BLX instruction, make sure that the relocation is rounded up
	     to a word boundary.  This follows the semantics of the instruction
	     which specifies that bit 1 of the target address will come from bit
	     1 of the base address.  */
	  value = (value + 2) & ~ 2;

#ifndef NOTYET
	/* Our linker wants the same reloc for bl and blx.  */
	fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
#endif


#ifdef NOTYET
	if (seg->use_rela_p && !fixP->fx_done)
#else
	if (0)
#endif
	  {
#ifdef OBJ_ELF
	    fixP->fx_offset = value;
#endif
	    fixP->fx_addnumber = value;
	    newval = newval & 0xf800;
	    newval2 = newval2 & 0xf800;
	  }
	else
	  {
	    newval  = (newval  & 0xf800) | ((value & 0x7fffff) >> 12);
	    newval2 = (newval2 & 0xf800) | ((value & 0xfff) >> 1);
	  }
	md_number_to_chars (buf, newval, THUMB_SIZE);
	md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
      }
      break;

#ifdef NOTYET
    case BFD_RELOC_8:
#ifdef NOTYET
      if (seg->use_rela_p && !fixP->fx_done)
#else
      if (0)
#endif
	break;
      if (fixP->fx_done || fixP->fx_pcrel)
	md_number_to_chars (buf, value, 1);
#ifdef OBJ_ELF
      else
	{
	  value = fixP->fx_offset;
	  md_number_to_chars (buf, value, 1);
	}
#endif
      break;

    case BFD_RELOC_16:
#ifdef NOTYET
      if (seg->use_rela_p && !fixP->fx_done)
#else
      if (0)
#endif
	break;
      if (fixP->fx_done || fixP->fx_pcrel)
	md_number_to_chars (buf, value, 2);
#ifdef OBJ_ELF
      else
	{
	  value = fixP->fx_offset;
	  md_number_to_chars (buf, value, 2);
	}
#endif
      break;

#ifdef OBJ_ELF
    case BFD_RELOC_ARM_GOT32:
    case BFD_RELOC_ARM_GOTOFF:
    case BFD_RELOC_ARM_TARGET2:
      if (seg->use_rela_p && !fixP->fx_done)
	break;
      md_number_to_chars (buf, 0, 4);
      break;
#endif

    case BFD_RELOC_RVA:
    case BFD_RELOC_32:
    case BFD_RELOC_ARM_TARGET1:
    case BFD_RELOC_ARM_ROSEGREL32:
    case BFD_RELOC_ARM_SBREL32:
    case BFD_RELOC_32_PCREL:
#ifdef NOTYET
      if (seg->use_rela_p && !fixP->fx_done)
#else
      if (0)
#endif
	break;
      if (fixP->fx_done || fixP->fx_pcrel)
	md_number_to_chars (buf, value, 4);
#ifdef OBJ_ELF
      else
	{
	  value = fixP->fx_offset;
	  md_number_to_chars (buf, value, 4);
	}
#endif
      break;

#ifdef OBJ_ELF
    case BFD_RELOC_ARM_PREL31:
      if (fixP->fx_done || fixP->fx_pcrel)
	{
	  newval = md_chars_to_number (buf, 4) & 0x80000000;
	  if ((value ^ (value >> 1)) & 0x40000000)
	    {
	      as_bad_where (fixP->fx_file, fixP->fx_line,
			    _("rel31 relocation overflow"));
	    }
	  newval |= value & 0x7fffffff;
	  md_number_to_chars (buf, newval, 4);
	}
      break;

    case BFD_RELOC_ARM_PLT32:
      /* It appears the instruction is fully prepared at this point.  */
      break;
#endif
#endif

    case BFD_RELOC_ARM_CP_OFF_IMM:
      sign = value >= 0;
      if (value < -1023 || value > 1023 || (value & 3))
	as_bad_where (fixP->fx_file, fixP->fx_line,
		      _("illegal value for co-processor offset"));
      if (value < 0)
	value = -value;
      newval = md_chars_to_number (buf, INSN_SIZE) & 0xff7fff00;
      newval |= (value >> 2) | (sign ? INDEX_UP : 0);
      md_number_to_chars (buf, newval, INSN_SIZE);
      break;

    case BFD_RELOC_ARM_CP_OFF_IMM_S2:
      sign = value >= 0;
      if (value < -255 || value > 255)
        as_bad_where (fixP->fx_file, fixP->fx_line,
                      _("Illegal value for co-processor offset"));
      if (value < 0)
        value = -value;
      newval = md_chars_to_number (buf, INSN_SIZE) & 0xff7fff00;
      newval |= value | (sign ?  INDEX_UP : 0);
      md_number_to_chars (buf, newval , INSN_SIZE);
      break;

    case BFD_RELOC_ARM_THUMB_OFFSET:
      newval = md_chars_to_number (buf, THUMB_SIZE);
      /* Exactly what ranges, and where the offset is inserted depends
	 on the type of instruction, we can establish this from the
	 top 4 bits.  */
      switch (newval >> 12)
	{
	case 4: /* PC load.  */
	  /* Thumb PC loads are somewhat odd, bit 1 of the PC is
	     forced to zero for these loads, so we will need to round
	     up the offset if the instruction address is not word
	     aligned (since the final address produced must be, and
	     we can only describe word-aligned immediate offsets).  */

	  if ((fixP->fx_frag->fr_address + fixP->fx_where + value) & 3)
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("invalid offset, target not word aligned (0x%08X)"),
			  (unsigned int) (fixP->fx_frag->fr_address
					  + fixP->fx_where + value));

	  if ((value + 2) & ~0x3fe)
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("invalid offset, value too big (0x%08lX)"),
			  (long) value);

	  /* Round up, since pc will be rounded down.  */
	  newval |= (value + 2) >> 2;
	  break;

	case 9: /* SP load/store.  */
	  if (value & ~0x3fc)
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("invalid offset, value too big (0x%08lX)"),
			  (long) value);
	  newval |= value >> 2;
	  break;

	case 6: /* Word load/store.  */
	  if (value & ~0x7c)
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("invalid offset, value too big (0x%08lX)"),
			  (long) value);
	  newval |= value << 4; /* 6 - 2.  */
	  break;

	case 7: /* Byte load/store.  */
	  if (value & ~0x1f)
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("invalid offset, value too big (0x%08lX)"),
			  (long) value);
	  newval |= value << 6;
	  break;

	case 8: /* Halfword load/store.  */
	  if (value & ~0x3e)
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("invalid offset, value too big (0x%08lX)"),
			  (long) value);
	  newval |= value << 5; /* 6 - 1.  */
	  break;

	default:
	  as_bad_where (fixP->fx_file, fixP->fx_line,
			"Unable to process relocation for thumb opcode: %lx",
			(unsigned long) newval);
	  break;
	}
      md_number_to_chars (buf, newval, THUMB_SIZE);
      break;

    case BFD_RELOC_ARM_THUMB_ADD:
      /* This is a complicated relocation, since we use it for all of
         the following immediate relocations:

	    3bit ADD/SUB
	    8bit ADD/SUB
	    9bit ADD/SUB SP word-aligned
	   10bit ADD PC/SP word-aligned

         The type of instruction being processed is encoded in the
         instruction field:

	   0x8000  SUB
	   0x00F0  Rd
	   0x000F  Rs
      */
      newval = md_chars_to_number (buf, THUMB_SIZE);
      {
	int rd = (newval >> 4) & 0xf;
	int rs = newval & 0xf;
	int subtract = newval & 0x8000;

	if (rd == REG_SP)
	  {
	    if (value & ~0x1fc)
	      as_bad_where (fixP->fx_file, fixP->fx_line,
			    _("invalid immediate for stack address calculation"));
	    newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
	    newval |= value >> 2;
	  }
	else if (rs == REG_PC || rs == REG_SP)
	  {
	    if (subtract ||
		value & ~0x3fc)
	      as_bad_where (fixP->fx_file, fixP->fx_line,
			    _("invalid immediate for address calculation (value = 0x%08lX)"),
			    (unsigned long) value);
	    newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
	    newval |= rd << 8;
	    newval |= value >> 2;
	  }
	else if (rs == rd)
	  {
	    if (value & ~0xff)
	      as_bad_where (fixP->fx_file, fixP->fx_line,
			    _("invalid 8bit immediate"));
	    newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
	    newval |= (rd << 8) | value;
	  }
	else
	  {
	    if (value & ~0x7)
	      as_bad_where (fixP->fx_file, fixP->fx_line,
			    _("invalid 3bit immediate"));
	    newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
	    newval |= rd | (rs << 3) | (value << 6);
	  }
      }
      md_number_to_chars (buf, newval, THUMB_SIZE);
      break;

    case BFD_RELOC_ARM_THUMB_IMM:
      newval = md_chars_to_number (buf, THUMB_SIZE);
      switch (newval >> 11)
	{
	case 0x04: /* 8bit immediate MOV.  */
	case 0x05: /* 8bit immediate CMP.  */
	  if (value < 0 || value > 255)
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("invalid immediate: %ld is too large"),
			  (long) value);
	  newval |= value;
	  break;

	default:
	  abort ();
	}
      md_number_to_chars (buf, newval, THUMB_SIZE);
      break;

    case BFD_RELOC_ARM_THUMB_SHIFT:
      /* 5bit shift value (0..31).  */
      if (value < 0 || value > 31)
	as_bad_where (fixP->fx_file, fixP->fx_line,
		      _("illegal Thumb shift value: %ld"), (long) value);
      newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf03f;
      newval |= value << 6;
      md_number_to_chars (buf, newval, THUMB_SIZE);
      break;

#ifdef NOTYET
    case BFD_RELOC_VTABLE_INHERIT:
    case BFD_RELOC_VTABLE_ENTRY:
      fixP->fx_done = 0;
      return;

#endif
    case BFD_RELOC_UNUSED:
    default:
      as_bad_where (fixP->fx_file, fixP->fx_line,
		    _("bad relocation fixup type (%d)"), fixP->fx_r_type);
    }

#ifndef NOTYET
  /* Don't allow relocations to escape into the object file that aren't
     supported by the linker.  */
  if (fixP->fx_addsy != NULL
      && fixP->fx_r_type != ARM_THUMB_RELOC_BR22
      && fixP->fx_r_type != ARM_RELOC_BR24)
    as_bad_where (fixP->fx_file, fixP->fx_line,
		  _("unsupported relocation on symbol %s"),
		  S_GET_NAME (fixP->fx_addsy));
#endif
}

/* FROM line 12235 */
/* We need to be able to fix up arbitrary expressions in some statements.
   This is so that we can handle symbols that are an arbitrary distance from
   the pc.  The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
   which returns part of an address in a form which will be valid for
   a data instruction.  We do this by pushing the expression into a symbol
   in the expr_section, and creating a fix for that.  */

static void
fix_new_arm (fragS *       frag,
	     int           where,
	     short int     size,
	     expressionS * exp,
	     int           pc_rel,
	     int           pcrel_reloc, /* HACK_GUESS */
	     int           reloc)
{
  fixS *           new_fix;
  arm_fix_data *   arm_data;

  switch (exp->X_op)
    {
#ifdef NOTYET
    case O_constant:
#endif
    case O_symbol:
#ifdef NOTYET
    case O_add:
    case O_subtract:
#endif
      new_fix = fix_new_exp (frag, where, size, exp, pc_rel, pcrel_reloc, reloc);
      break;

    default:
      new_fix = fix_new (frag,
			 where,
			 size,
			 exp->X_add_symbol,
			 exp->X_subtract_symbol,
			 exp->X_add_number,
			 pc_rel,
			 pcrel_reloc,
			 reloc);
#ifdef NOTYET
      new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
			 pc_rel, reloc);
#endif NOTYET
      break;
    }

  /* Mark whether the fix is to a THUMB instruction, or an ARM
     instruction.  */
  arm_data = obstack_alloc (& notes, sizeof (arm_fix_data));
  new_fix->tc_fix_data = (PTR) arm_data;
  arm_data->thumb_mode = thumb_mode;
}

/* FROM line 12275 */
static void
output_inst (const char * str)
{
  char * to = NULL;

  if (inst.error)
    {
      as_bad ("%s -- `%s'", inst.error, str);
      return;
    }

  to = frag_more (inst.size);

  if (thumb_mode && (inst.size > THUMB_SIZE))
    {
      assert (inst.size == (2 * THUMB_SIZE));
      md_number_to_chars (to, inst.instruction >> 16, THUMB_SIZE);
      md_number_to_chars (to + THUMB_SIZE, inst.instruction, THUMB_SIZE);
    }
  else if (inst.size > INSN_SIZE)
    {
      assert (inst.size == (2 * INSN_SIZE));
      md_number_to_chars (to, inst.instruction, INSN_SIZE);
      md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
    }
  else
    md_number_to_chars (to, inst.instruction, inst.size);

  if (inst.reloc.type != BFD_RELOC_UNUSED)
    fix_new_arm (frag_now, to - frag_now->fr_literal,
		 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
		 /* HACK_GUESS */ inst.reloc.pcrel_reloc,
		 inst.reloc.type);

#ifdef OBJ_ELF
  dwarf2_emit_insn (inst.size);
#endif
}

/* FROM line 13363 */
int
arm_force_relocation (struct fix * fixp)
{
#if defined (OBJ_COFF) && defined (TE_PE)
  if (fixp->fx_r_type == BFD_RELOC_RVA)
    return 1;
#endif
#ifdef OBJ_ELF
  if (fixp->fx_r_type == BFD_RELOC_ARM_PCREL_BRANCH
      || fixp->fx_r_type == BFD_RELOC_ARM_PCREL_BLX
      || fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX
      || fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23)
    return 1;
#endif
#ifdef NeXT_MOD
  if (fixp->fx_r_type == BFD_RELOC_ARM_PCREL_BRANCH
      || fixp->fx_r_type == BFD_RELOC_ARM_PCREL_BLX
      || fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX
      || fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23)
    {
      if (fixp->fx_addsy != NULL)
	{
	  const char *name = S_GET_NAME (fixp->fx_addsy);
	  if (! flagseen ['L'] && name && name[0] == 'L')
	    return 0;
	}
      return 1;
    }
#endif

  /* Resolve these relocations even if the symbol is extern or weak.  */
  if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
      || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
      || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
     )
    return 0;

  return 0;
}

/*
 * md_end() is called from main() in as.c after assembly ends.  It is used
 * to allow target machine dependent clean up.
 */
void
md_end(void)
{
}

/*
 * md_parse_option() is called from main() in as.c to parse target machine
 * dependent command line options.  This routine returns 0 if it is passed an
 * option that is not recognized non-zero otherwise.
 */
int
md_parse_option(
char **argP,
int *cntP,
char ***vecP)
{
	switch(**argP) {
	default:
	    break;
	}
	return(0);
}

/*
 * md_assemble() is passed a pointer to a string that should be a assembly
 * statement for the target machine.
 */
void
md_assemble(
char *str)
{
/* From line 12316 */
  char  c;
  char *p;
  char *start;

#ifdef NOTYET
  /* Align the previous label if needed.  */
  if (last_label_seen != NULL)
    {
      symbol_set_frag (last_label_seen, frag_now);
      S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
      S_SET_SEGMENT (last_label_seen, now_seg);
    }
#endif NOTYET

  memset (&inst, '\0', sizeof (inst));
  inst.reloc.type = BFD_RELOC_UNUSED;

  skip_whitespace (str);

  /* Scan up to the end of the op-code, which must end in white space or
     end of string.  */
  for (start = p = str; *p != '\0'; p++)
    if (*p == ' ')
      break;

  if (p == str)
    {
      as_bad (_("no operator -- statement `%s'\n"), str);
      return;
    }

  if (thumb_mode)
    {
      const struct thumb_opcode * opcode;

      c = *p;
      *p = '\0';
      opcode = (const struct thumb_opcode *) hash_find (arm_tops_hsh, str);
      *p = c;

      if (opcode)
	{
	  /* Check that this instruction is supported for this CPU.  */
	  if (thumb_mode == 1
              && (opcode->variant & cpu_variant) == 0
              && !force_cpusubtype_ALL)
	    {
	      as_bad (_("selected processor does not support `%s'"), str);
	      return;
	    }

	  mapping_state (MAP_THUMB);
	  inst.instruction = opcode->value;
	  inst.size = opcode->size;
	  opcode->parms (p);
	  output_inst (str);
	  return;
	}
    }
  else
    {
      const struct asm_opcode * opcode;

      c = *p;
      *p = '\0';
      opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, str);
      *p = c;

      if (opcode)
	{
	  /* Check that this instruction is supported for this CPU.  */
	  if ((opcode->variant & cpu_variant) == 0
              && !force_cpusubtype_ALL)
	    {
	      as_bad (_("selected processor does not support `%s'"), str);
	      return;
	    }

          mapping_state (MAP_ARM);
	  inst.instruction = opcode->value;
	  inst.size = INSN_SIZE;
	  opcode->parms (p);
	  output_inst (str);
goto assembled_instruction;
	  /* return; */
	}
    }

#ifdef NOTYET
  /* It wasn't an instruction, but it might be a register alias of the form
     alias .req reg.  */
  if (create_register_alias (str, p))
    return;
#endif NOTYET

  as_bad (_("bad instruction `%s'"), start);

assembled_instruction:
/* FROM Mac OS X port */
  /*
   * If the -g flag is present generate a line number stab for the
   * instruction.
   * 
   * See the detailed comments about stabs in read_a_source_file() for a
   * description of what is going on here.
   */
  if (flagseen['g'] && frchain_now->frch_nsect == text_nsect)
    {
      (void)symbol_new(
	"",
	68 /* N_SLINE */,
	text_nsect,
	logical_input_line /* n_desc, line number */,
	obstack_next_free(&frags) - frag_now->fr_literal,
	frag_now);
    }

  /*
   * We are putting a machine instruction in this section so mark it as
   * containg some machine instructions.
   */
  frchain_now->frch_section.flags |= S_ATTR_SOME_INSTRUCTIONS;
}

/*
 * md_number_to_imm() is the target machine dependent routine that puts out
 * a binary value of size 4, 2, or 1 bytes into the specified buffer with
 * reguard to a possible relocation entry (the fixP->fx_r_type field in the fixS
 * structure pointed to by fixP) for the section with the ordinal nsect.  This
 * is done in the target machine's byte sex using it's relocation types.
 * In this case the byte order is little endian.
 */
void
md_number_to_imm(
unsigned char *buf,
signed_expr_t val,
int nbytes,
fixS *fixP,
int nsect)
{
#if 0
    int sign;
    signed_target_addr_t newval;
#endif

	if(fixP->fx_r_type == NO_RELOC ||
	   fixP->fx_r_type == ARM_RELOC_VANILLA){
	    switch(nbytes){
	    case 4:
		*buf++ = val & 0xff;
		*buf++ = (val >> 8) & 0xff;
		*buf++ = (val >> 16) & 0xff;
		*buf++ = (val >> 24) & 0xff;
		break;
	    case 2:
		*buf++ = val & 0xff;
		*buf++ = (val >> 8) & 0xff;
		break;
	    case 1:
		*buf = val & 0xff;
		break;
	    default:
		abort();
	    }
	    return;
	}
	switch(fixP->fx_r_type){
#if 0
	case ARM_RELOC_BR24:
	    if(fixP->fx_pcrel)
/* GUESS this should be 4 not 8 which seems to disassemble correctly for local
   defined labels.  But this seems to be off by 8 for external undefined labels
   and the target address is not 0 but 0xfffffff8 */
		val += 4;
	    if((val & 0xfc000000) && ((val & 0xfc000000) != 0xfc000000)){
		layout_file = fixP->file;
		layout_line = fixP->line;
		as_warn("Fixup of %u too large for field width of 26 bits",val);
	    }
	    if((val & 0x3) != 0){
		layout_file = fixP->file;
		layout_line = fixP->line;
		as_warn("Fixup of %u is not to a 4 byte address", val);
	    }
	    buf[0] = (val >> 2) & 0xff;
	    buf[1] = (val >> 10) & 0xff;
	    buf[2] = (val >> 18) & 0xff;
	    /* buf[3] has the opcode part of the instruction */
	    break;

/* Code taken and modified from tc-arm.c md_apply_fix3() line 11473 */
	case BFD_RELOC_ARM_OFFSET_IMM:
/* GUESS this needs 4 added to val.  Which then better matches what the FSF GAS
   produces for an ldr instruction */
	    val += 4; 

	    sign = val >= 0;

	    if(val < 0)
		val = - val;

	    if(validate_offset_imm(val, 0) == FAIL){
		layout_file = fixP->file;
		layout_line = fixP->line;
		as_warn("bad immediate value for offset (%ld)", (long) val);
		break;
	    }

	    newval = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];

	    newval &= 0xff7ff000;
	    newval |= val | (sign ? INDEX_UP : 0);

	    *buf++ = newval & 0xff;
	    *buf++ = (newval >> 8) & 0xff;
	    *buf++ = (newval >> 16) & 0xff;
	    *buf++ = (newval >> 24) & 0xff;

	    break;
#endif

	case BFD_RELOC_ARM_ADRL_IMMEDIATE:
	default:
	  {
	    valueT newval = val;

	    /* Die if we have more bytes than md_apply_fix3 knows how to
	       handle.  */
	    if (sizeof (valueT) < nbytes)
	      abort ();

	    md_apply_fix3 (fixP, &newval, now_seg);
	  }
	}
}

#define MAX_LITTLENUMS 6

/*
 * md_atof() turns a string pointed to by input_line_pointer into a floating
 * point constant of type type, and store the appropriate bytes in *litP.
 * The number of LITTLENUMS emitted is stored indirectly through *sizeP.
 * An error message is returned, or a string containg only a '\0' for OK.
 * For this machine only IEEE single and IEEE double floating-point formats
 * are allowed.
 */
char *
md_atof(
int type,
char *litP,
int *sizeP)
{
    int prec;
    LITTLENUM_TYPE words[MAX_LITTLENUMS];
    LITTLENUM_TYPE *wordP;
    char *t;

	switch(type){
	case 'f':
	case 'F':
	    prec = 2;
	    break;
	case 'd':
	case 'D':
	    prec = 4;
	    break;
	default:
	    *sizeP = 0;
	    return("Bad call to md_atof()");
	}
	t = atof_ieee (input_line_pointer, type, words);
	if(t != NULL)
	    input_line_pointer=t;

	*sizeP = prec * sizeof(LITTLENUM_TYPE);
	/*
	 * This loops outputs the LITTLENUMs in REVERSE order; in accord with
	 * the byte order.
	 */
	for(wordP = words + prec - 1; prec--; ){
	    md_number_to_chars(litP, (long) (*wordP--), sizeof(LITTLENUM_TYPE));
	    litP += sizeof(LITTLENUM_TYPE);
	}
	return ""; /* OK */
}

int
md_estimate_size_before_relax(
fragS *fragP,
int segment_type)
{
	as_warn("Relaxation should never occur");
	return(sizeof(long));
}

const relax_typeS md_relax_table[] = { {0} };

void
md_convert_frag(
fragS *fragP)
{
	as_warn("Relaxation should never occur");
}

/* FROM line 13192 */
void
arm_frob_label (symbolS * sym)
{
#ifdef NOTYET
  last_label_seen = sym;

  ARM_SET_THUMB (sym, thumb_mode);

#if defined OBJ_COFF || defined OBJ_ELF
  ARM_SET_INTERWORK (sym, support_interwork);
#endif
#endif /* NOTYET */

  /* Note - do not allow local symbols (.Lxxx) to be labeled
     as Thumb functions.  This is because these labels, whilst
     they exist inside Thumb code, are not the entry points for
     possible ARM->Thumb calls.  Also, these labels can be used
     as part of a computed goto or switch statement.  eg gcc
     can generate code that looks like this:

                ldr  r2, [pc, .Laaa]
                lsl  r3, r3, #2
                ldr  r2, [r3, r2]
                mov  pc, r2

       .Lbbb:  .word .Lxxx
       .Lccc:  .word .Lyyy
       ..etc...
       .Laaa:   .word Lbbb

     The first instruction loads the address of the jump table.
     The second instruction converts a table index into a byte offset.
     The third instruction gets the jump address out of the table.
     The fourth instruction performs the jump.

     If the address stored at .Laaa is that of a symbol which has the
     Thumb_Func bit set, then the linker will arrange for this address
     to have the bottom bit set, which in turn would mean that the
     address computation performed by the third instruction would end
     up with the bottom bit set.  Since the ARM is capable of unaligned
     word loads, the instruction would then load the incorrect address
     out of the jump table, and chaos would ensue.  */
  if (label_is_thumb_function_name
      && (S_GET_NAME (sym)[0] != 'L')
#ifdef NOTYET
      && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
#else
      && (frchain_now->frch_nsect == text_nsect))
#endif
    {
      /* When the address of a Thumb function is taken the bottom
	 bit of that address should be set.  This will allow
	 interworking between Arm and Thumb functions to work
	 correctly.  */

      THUMB_SET_FUNC (sym, 1);
      sym->sy_desc |= N_ARM_THUMB_DEF;

      label_is_thumb_function_name = FALSE;
    }
}

/* FROM line 14835 */
const pseudo_typeS md_pseudo_table[] =
{
  { "arm",        s_arm,        0 },
  { "thumb",      s_thumb,      0 },
  { "code",       s_code,       0 },
  { "thumb_func", s_thumb_func, 0 },
  { 0, 0, 0 }
};