/* bignum.h-arbitrary precision integers
Copyright (C) 1987 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/***********************************************************************\
* *
* Arbitrary-precision integer arithmetic. *
* For speed, we work in groups of bits, even though this *
* complicates algorithms. *
* Each group of bits is called a 'littlenum'. *
* A bunch of littlenums representing a (possibly large) *
* integer is called a 'bignum'. *
* Bignums are >= 0. *
* *
\***********************************************************************/
#define LITTLENUM_NUMBER_OF_BITS (16)
#define LITTLENUM_RADIX (1 << LITTLENUM_NUMBER_OF_BITS)
#define LITTLENUM_MASK (0xFFFF)
#define LITTLENUM_SHIFT (1)
#define CHARS_PER_LITTLENUM (1 << LITTLENUM_SHIFT)
#ifndef BITS_PER_CHAR
#define BITS_PER_CHAR (8)
#endif
typedef unsigned short int LITTLENUM_TYPE;
/* JF truncated this to get around a problem with GCC */
#define LOG_TO_BASE_2_OF_10 (3.3219280948873623478703194294893901758651)
/* WARNING: I haven't checked that the trailing digits are correct! */