# <@LICENSE> # Copyright 2006 Apache Software Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =head1 NAME Mail::SpamAssassin::Plugin::BodyRuleBaseExtractor - extract "bases" from body ruleset =head1 SYNOPSIS This is a plugin to extract "base" strings from SpamAssassin 'body' rules, suitable for use in Rule2XSBody rules or other parallel matching algorithms. =cut package Mail::SpamAssassin::Plugin::BodyRuleBaseExtractor; use Mail::SpamAssassin::Plugin; use Mail::SpamAssassin::Logger; use Mail::SpamAssassin::Util::Progress; use strict; use warnings; use bytes; use vars qw(@ISA); @ISA = qw(Mail::SpamAssassin::Plugin); use constant DEBUG_RE_PARSING => 0; # noisy! # a few settings that control what kind of bases are output. # treat all rules as lowercase for purposes of term extraction? # $main->{bases_must_be_casei} = 1; # $main->{bases_can_use_alternations} = 0; # /(foo|bar|baz)/ # $main->{bases_can_use_quantifiers} = 0; # /foo.*bar/ or /foo*bar/ or /foooo?bar/ # $main->{bases_can_use_char_classes} = 0; # /fo[opqr]bar/ # $main->{bases_split_out_alternations} = 1; # /(foo|bar|baz)/ => ["foo", "bar", "baz"] # TODO: it would be nice to have a clean API to pass such settings # through to plugins instead of hanging them off $main ########################################################################### sub new { my $class = shift; my $mailsaobject = shift; $class = ref($class) || $class; my $self = $class->SUPER::new($mailsaobject); bless ($self, $class); $self->{show_progress} = 1; # default # $self->test(); exit; return $self; } ########################################################################### sub finish_parsing_end { my ($self, $params) = @_; my $conf = $params->{conf}; $self->extract_bases($conf); } sub extract_bases { my ($self, $conf) = @_; my $main = $conf->{main}; if (!$main->{base_extract}) { return; } info("base extraction starting. this can take a while..."); $self->extract_set($conf, $conf->{body_tests}, 'body'); } sub extract_set { my ($self, $conf, $test_set, $ruletype) = @_; foreach my $pri (keys %{$test_set}) { my $nicepri = $pri; $nicepri =~ s/-/neg/g; $self->extract_set_pri($conf, $test_set->{$pri}, $ruletype.'_'.$nicepri); } } ########################################################################### sub extract_set_pri { my ($self, $conf, $rules, $ruletype) = @_; my @good_bases = (); my @failed = (); my $yes = 0; my $no = 0; my $start = time; $self->{main} = $conf->{main}; # for use in extract_hints() info ("extracting from rules of type $ruletype"); # attempt to find good "base strings" (simplified regexp subsets) for each # regexp. We try looking at the regexp from both ends, since there # may be a good long string of text at the end of the rule. # require this many chars in a base string for it to be viable my $min_chars = 3; my $count = 0; my $progress; $self->{show_progress} and $progress = Mail::SpamAssassin::Util::Progress->new({ total => scalar keys %{$rules}, itemtype => 'rules', }); foreach my $name (keys %{$rules}) { my $rule = $rules->{$name}; $self->{show_progress} and $progress->update(++$count); # ignore ReplaceTags rules # TODO: need cleaner way to do this next if ($conf->{rules_to_replace}->{$name}); my ($qr, $mods) = $self->simplify_and_qr_regexp($rule); my @bases; eval { # catch die()s @bases = $self->extract_hints($rule, $qr, $mods); }; $@ and dbg("giving up on regexp: $@"); # if any of the extracted hints in a set are too short, the entire # set is invalid; this is because each set of N hints represents just # 1 regexp. my $minlen; foreach my $str (@bases) { my $len = length $str; if ($len < $min_chars) { $minlen = undef; @bases = (); last; } elsif (!defined($minlen) || $len < $minlen) { $minlen = $len; } } if ($minlen && @bases) { # dbg("zoom: YES $base $rule"); # figure out if we have e.g. ["foo", "foob", "foobar"]; in this # case, we only need to track ["foo"]. my %subsumed = (); foreach my $base1 (@bases) { foreach my $base2 (@bases) { if ($base1 ne $base2 && $base1 =~ /\Q$base2\E/) { $subsumed{$base1} = 1; # base2 is inside base1; discard the longer } } } foreach my $base (@bases) { next if $subsumed{$base}; push @good_bases, { base => $base, orig => $rule, name => $name }; } $yes++; } else { dbg("zoom: NO $rule"); push @failed, { orig => $rule }; $no++; } } $self->{show_progress} and $progress->final(); dbg ("$ruletype: found ".(scalar @good_bases). " usable base strings in ". "$yes rules, skipped $no rules"); # NOTE: re2c will attempt to provide the longest pattern that matched; e.g. # ("food" =~ "foo" / "food") will return "food". So therefore if a pattern # subsumes other patterns, we need to return hits for all of them. We also # need to take care of the case where multiple regexps wind up sharing the # same base. # # Another gotcha, an exception to the subsumption rule; if one pattern isn't # entirely subsumed (e.g. "food" =~ "foo" / "ood"), then they will be # returned as two hits, correctly. So we only have to be smart about the # full-subsumption case; overlapping is taken care of for us, by re2c. # # TODO: there's a bug here. Since the code in extract_hints() has been # modified to support more complex regexps, we can no longer simply assume # that if pattern A is not contained in pattern B, that means that pattern B # doesn't subsume it. Consider, for example, A="foo*bar" and # B="morefobarry"; A is indeed subsumed by B, but we won't be able to test # that without running the A RE match itself somehow against B. # same issue remains with: # # "foo?bar" / "fobar" # "fo(?:o|oo|)bar" / "fobar" # "fo(?:o|oo)?bar" / "fobar" # "fo(?:o*|baz)bar" / "fobar" # "(?:fo(?:o*|baz)bar|blargh)" / "fobar" # # it's worse with this: # # "fo(?:o|oo|)bar" / "foo*bar" # # basically, this is impossible to compute without reimplementing most of # re2c, and it appears the re2c developers don't plan to offer this: # https://sourceforge.net/tracker/index.php?func=detail&aid=1540845&group_id=96864&atid=616203 $conf->{base_orig}->{$ruletype} = { }; $conf->{base_string}->{$ruletype} = { }; $count = 0; $self->{show_progress} and $progress = Mail::SpamAssassin::Util::Progress->new({ total => scalar @good_bases, itemtype => 'bases', }); foreach my $set1 (@good_bases) { $self->{show_progress} and $progress->update(++$count); my $base1 = $set1->{base}; my $orig1 = $set1->{orig}; my $name1 = $set1->{name}; next if ($base1 eq '' or $name1 eq ''); $conf->{base_orig}->{$ruletype}->{$name1} = $orig1; foreach my $set2 (@good_bases) { next if ($set1 == $set2); my $base2 = $set2->{base}; my $name2 = $set2->{name}; # clobber exact dups; this can happen if a regexp outputs the # same base string multiple times if ($orig1 eq $set2->{orig} && $base1 eq $base2 && $name1 eq $name2) { $set2->{name} = ''; # clobber $set2->{base} = ''; } # skip if either already contains the other rule's name next if ($name1 =~ /\b\Q$name2\E\b/); next if ($name2 =~ /\b\Q$name1\E\b/); next if ($base2 eq ''); next if (length $base1 < length $base2); next if ($base1 !~ /\Q$base2\E/); $set1->{name} .= " ".$name2; # base2 is just a subset of base1 # dbg("zoom: subsuming '$base2' into '$base1': $set1->{name}"); } } # we can still have duplicate cases; __FRAUD_PTS and __SARE_FRAUD_BADTHINGS # both contain "killed" for example, pointing at different rules, which # the above search hasn't found. Collapse them here with a hash my %bases = (); foreach my $set (@good_bases) { my $base = $set->{base}; next unless $base; if (defined $bases{$base}) { $bases{$base} .= " ".$set->{name}; } else { $bases{$base} = $set->{name}; } } foreach my $base (keys %bases) { # uniq the list, since there are probably dup rules listed my @list = split (' ', $bases{$base}); my @uniqed; { my %u=(); @uniqed = grep {defined} map { if (exists $u{$_}) { undef; } else { $u{$_}=undef;$_; } } @list; undef %u; } my $key = join ' ', sort @uniqed; $conf->{base_string}->{$ruletype}->{$base} = $key; } $self->{show_progress} and $progress->final(); my $elapsed = time - $start; info ("$ruletype: ". (scalar keys %{$conf->{base_string}->{$ruletype}}). " base strings extracted in $elapsed seconds\n"); } ########################################################################### # TODO: # NO /no.{1,10}P(?:er|re)scription.{1,10}(?:needed|require|necessary)/i # => should extract 'scription' somehow # /time to refinance|refinanc\w{1,3}\b.{0,16}\bnow\b/i # => should understand alternations; tricky sub simplify_and_qr_regexp { my $self = shift; my $rule = shift; my $main = $self->{main}; $rule = Mail::SpamAssassin::Util::regexp_remove_delimiters($rule); # remove the regexp modifiers, keep for later my $mods = ''; while ($rule =~ s/^\(\?([a-z]*)\)//) { $mods .= $1; } # modifier removal while ($rule =~ s/^\(\?-([a-z]*)\)//) { foreach my $modchar (split '', $mods) { $mods =~ s/$modchar//g; } } # now: simplify aspects of the regexp. Bear in mind that we can # simplify as long as we cause the regexp to become more general; # more hits is OK, since false positives will be discarded afterwards # anyway. Simplification that causes the regexp to *not* hit # stuff that the "real" rule would hit, however, is a bad thing. if ($main->{bases_must_be_casei}) { $rule = lc $rule; $mods =~ s/i//; # always case-i: /A(?i:ct) N(?i:ow)/ => /Act Now/ $rule =~ s/(? /Act/ $rule =~ s/(?{main}; my $orig = $rule; # if there are anchors, give up; we can't get much # faster than these anyway die "anchors" if $rule =~ /^\(?(?:\^|\\A)/; # die "anchors" if $rule =~ /(?:\$|\\Z)\)?$/; # just remove end-of-string anchors; they're slow so could gain # from our speedup $rule =~ s/(?{bases_allow_noncapture_groups} or $rule =~ s/\(\?:/\(/g; # simplify some grouping arrangements so they're easier for us to parse # (foo)? => (foo|) $rule =~ s/\((.*?)\)\?/\($1\|\)/gs; # r? => (r|) $rule =~ s/(?get_perl(); open (IN, "$perl -c -Mre=debug $tmpf 2>&1 |") or die "cannot run $perl"; my $fullstr = join('', ); close IN; unlink $tmpf; # now parse the -Mre=debug output. # perl 5.10 format $fullstr =~ s/^.*\nFinal program:\n//gs; # perl 5.6/5.8 format $fullstr =~ s/^(?:.*\n|)size \d[^\n]*\n//gs; $fullstr =~ s/^(?:.*\n|)first at \d[^\n]*\n//gs; # common to all $fullstr =~ s/\nOffsets:.*$//gs; # clean up every other line that doesn't start with a space $fullstr =~ s/^\S.*$//gm; if ($fullstr !~ /((?:\s[^\n]+\n)+)/m) { die "failed to parse Mre=debug output: $fullstr m".$quos.$rule.$quos.$mods." $rawrule"; } my $opsstr = $1; # what's left looks like this: # 1: EXACTF (3) # 3: ANYOF[1ILil](14) # 14: EXACTF (16) # 16: CURLY {2,7}(29) # 18: ANYOF[A-Za-z](0) # 29: SPACE(30) # 30: EXACTF (33) # 33: END(0) # DEBUG_RE_PARSING and warn "Mre=debug output: $opsstr"; my @ops = (); foreach my $op (split(/\n/s, $opsstr)) { next unless $op; if ($op =~ /^\s+\d+: (\s*)([A-Z]\w+)\b(.*)(?:\(\d+\))?$/) { push @ops, [ $1, $2, $3 ]; } elsif ($op =~ /^ (\s*)<(.*)>\.\.\.\s*$/) { # 5: TRIE-EXACT[im](44) # ... my $spcs = $1; # we could use the entire length here, but it's easier to trim to # the length of a perl 5.8.x/5.6.x EXACT* string; that way our test # suite results will match, since the sa-update --list extraction will # be the same for all versions. (The "..." trailer is important btw) my $str = substr ($2, 0, 55); push @ops, [ $spcs, '_moretrie', "<$str...>" ]; } elsif ($op =~ /^ (\s*)(<.*>)\s*(?:\(\d+\))?$/) { # 5: TRIE-EXACT[am](21) # (21) # (12) push @ops, [ $1, '_moretrie', $2 ]; } elsif ($op =~ /^ at .+ line \d+$/) { next; # ' at /local/perl561/lib/5.6.1/i86pc-solaris/re.pm line 109': } else { warn "cannot parse '$op': $opsstr"; next; } } # unroll the branches; returns a list of versions. # e.g. /foo(bar|baz)argh/ => [ "foobarargh", "foobazargh" ] my @unrolled; if ($main->{bases_split_out_alternations}) { @unrolled = $self->unroll_branches(0, \@ops); } else { @unrolled = ( \@ops ); } # now find the longest DFA-friendly string in each unrolled version my @longests = (); foreach my $opsarray (@unrolled) { my $longestexact = ''; my $buf = ''; # use a closure to keep the code succinct my $add_candidate = sub { if (length $buf > length $longestexact) { $longestexact = $buf; } $buf = ''; }; my $prevop; foreach my $op (@{$opsarray}) { my ($spcs, $item, $args) = @{$op}; next if ($item eq 'NOTHING'); # EXACT == case-sensitive # EXACTF == case-i # we can do both, since we canonicalize to lc. if (!$spcs && $item =~ /^EXACT/ && $args =~ /<(.*)>/) { $buf .= $1; if (length $1 >= 55 && $buf =~ s/\.\.\.$//) { # perl 5.8.x truncates with a "..." here! cut and stop $add_candidate->(); } } # _moretrie == a TRIE-EXACT entry elsif (!$spcs && $item =~ /^_moretrie/ && $args =~ /<(.*)>/) { $buf .= $1; if (length $1 >= 55 && $buf =~ s/\.\.\.$//) { # perl 5.8.x truncates with a "..." here! cut and stop $add_candidate->(); } } # /(?:foo|bar|baz){2}/ results in a CURLYX beforehand elsif ($item =~ /^EXACT/ && $prevop && !$prevop->[0] && $prevop->[1] =~ /^CURLYX/ && $prevop->[2] =~ /\{(\d+),/ && $1 >= 1 && $args =~ /<(.*)>/) { $buf .= $1; if (length $1 >= 55 && $buf =~ s/\.\.\.$//) { # perl 5.8.x truncates with a "..." here! cut and stop $add_candidate->(); } } # CURLYX, for perl >= 5.9.5 elsif ($item =~ /^_moretrie/ && $prevop && !$prevop->[0] && $prevop->[1] =~ /^CURLYX/ && $prevop->[2] =~ /\{(\d+),/ && $1 >= 1 && $args =~ /<(.*)>/) { $buf .= $1; if (length $1 >= 60 && $buf =~ s/\.\.\.$//) { # perl 5.8.x truncates with a "..." here! cut and stop $add_candidate->(); } } else { # not an /^EXACT/; clear the buffer $add_candidate->(); } $prevop = $op; } $add_candidate->(); if (!$longestexact) { die "no long-enough string found in $rawrule"; # all unrolled versions must have a long string, otherwise # we cannot reliably match all variants of the rule } else { push @longests, lc $longestexact; } } DEBUG_RE_PARSING and warn "longest base strings: /".join("/", @longests)."/"; return @longests; } ########################################################################### sub unroll_branches { my ($self, $depth, $opslist) = @_; die "too deep" if ($depth++ > 5); my @ops = (@{$opslist}); # copy my @pre_branch_ops = (); my $branch_spcs; my $trie_spcs; my $open_spcs; # our input looks something like this 2-level structure: # 1: BOUND(2) # 2: EXACT (5) # 5: BRANCH(9) # 6: EXACT (8) # 8: NALNUM(24) # 9: BRANCH(23) # 10: EXACT (12) # 12: BRANCH(14) # 13: NOTHING(21) # 14: BRANCH(17) # 15: EXACT (21) # 17: BRANCH(20) # 18: EXACT (21) # 20: TAIL(21) # 21: EXACT (24) # 23: TAIL(24) # 24: EXACT < shop>(27) # 27: END(0) # # or: # # 1: OPEN1(3) # 3: BRANCH(6) # 4: EXACT (9) # 6: BRANCH(9) # 7: EXACT <\\/>(9) # 9: CLOSE1(11) # 11: CURLY {2,5}(14) # 13: REG_ANY(0) # 14: EXACT < g r a >(17) # 17: ANYOF[a-z](28) # 28: END(0) # # or: # # 1: EXACT (3) # 3: OPEN1(5) # 5: TRIE-EXACT[am](21) # (21) # (12) # 12: OPEN2(14) # 14: TRIE-EXACT[ ](19) # < be> # <> # 19: CLOSE2(21) # 21: CLOSE1(23) # 23: EXACT < c>(25) DEBUG_RE_PARSING and warn "starting parse"; # this happens for /foo|bar/ instead of /(?:foo|bar)/ ; transform # it into the latter. bit of a kludge to do this before the loop, but hey. # note that it doesn't fix the CLOSE1/END ordering to be correct if (scalar @ops > 1 && $ops[0]->[1] =~ /^BRANCH/) { my @newops = ([ "", "OPEN1", "" ]); foreach my $op (@ops) { push @newops, [ " ".$op->[0], $op->[1], $op->[2] ]; } push @newops, [ "", "CLOSE1", "" ]; @ops = @newops; } # iterate until we start a branch set. using # /dkjfksl(foo|bar(baz|argh)boo)gab/ as an example, we're at "dkj..." # just hitting an OPEN is not enough; wait until we see a TRIE-EXACT # or a BRANCH, *then* unroll the most recent OPEN set. while (1) { my $op = shift @ops; last unless defined $op; my ($spcs, $item, $args) = @{$op}; DEBUG_RE_PARSING and warn "pre: [$spcs] $item $args"; if ($item =~ /^OPEN/) { $open_spcs = $spcs; next; # next will be a BRANCH or TRIE } elsif ($item =~ /^TRIE/) { $trie_spcs = $spcs; last; } elsif ($item =~ /^BRANCH/) { $branch_spcs = $spcs; last; } elsif ($item =~ /^EXACT/ && defined $open_spcs) { # perl 5.9.5 does this; f(o|oish) => OPEN, EXACT, TRIE-EXACT push @pre_branch_ops, [ $open_spcs, $item, $args ]; next; } elsif (defined $open_spcs) { # OPEN not followed immediately by BRANCH, EXACT or TRIE-EXACT: # ignore this OPEN block entirely and don't try to unroll it undef $open_spcs; } else { push @pre_branch_ops, $op; } } # no branches found? we're done unrolling on this one! if (scalar @ops == 0) { return [ @pre_branch_ops ]; } # otherwise we're at the start of a new branch set # /(foo|bar(baz|argh)boo)gab/ my @alts = (); my @in_this_branch = (); DEBUG_RE_PARSING and warn "entering branch: ". "open='".(defined $open_spcs ? $open_spcs : 'undef')."' ". "branch='".(defined $branch_spcs ? $branch_spcs : 'undef')."' ". "trie='".(defined $trie_spcs ? $trie_spcs : 'undef')."'"; # indentation level to remove from "normal" ops (using a s///) my $open_sub_spcs = ($branch_spcs ? $branch_spcs : "")." "; my $trie_sub_spcs = ""; while (1) { my $op = shift @ops; last unless defined $op; my ($spcs, $item, $args) = @{$op}; DEBUG_RE_PARSING and warn "in: [$spcs] $item $args"; if (defined $branch_spcs && $branch_spcs eq $spcs && $item =~ /^BRANCH/) { # alt push @alts, [ @pre_branch_ops, @in_this_branch ]; @in_this_branch = (); $open_sub_spcs = $branch_spcs." "; $trie_sub_spcs = ""; next; } elsif (defined $branch_spcs && $branch_spcs eq $spcs && $item eq 'TAIL') { # end push @alts, [ @pre_branch_ops, @in_this_branch ]; undef $branch_spcs; $open_sub_spcs = ""; $trie_sub_spcs = ""; last; } elsif (defined $trie_spcs && $trie_spcs eq $spcs && $item eq '_moretrie') { if (scalar @in_this_branch > 0) { push @alts, [ @pre_branch_ops, @in_this_branch ]; } # use $open_spcs instead of $trie_spcs (which is 2 spcs further indented) @in_this_branch = ( [ $open_spcs, $item, $args ] ); $open_sub_spcs = ($branch_spcs ? $branch_spcs : "")." "; $trie_sub_spcs = " "; next; } elsif (defined $open_spcs && $open_spcs eq $spcs && $item =~ /^CLOSE/) { # end push @alts, [ @pre_branch_ops, @in_this_branch ]; undef $branch_spcs; undef $open_spcs; undef $trie_spcs; $open_sub_spcs = ""; $trie_sub_spcs = ""; last; } elsif ($item eq 'END') { # of string push @alts, [ @pre_branch_ops, @in_this_branch ]; undef $branch_spcs; undef $open_spcs; undef $trie_spcs; $open_sub_spcs = ""; $trie_sub_spcs = ""; last; } else { if ($open_sub_spcs) { # deindent the space-level to match the opening brace $spcs =~ s/^$open_sub_spcs//; # tries also add one more indent level in $spcs =~ s/^$trie_sub_spcs//; } push @in_this_branch, [ $spcs, $item, $args ]; # note that we ignore ops at a deeper $spcs level entirely (until later!) } } if (defined $branch_spcs) { die "fell off end of string with a branch open: '$branch_spcs'"; } # we're now after the branch set: /gab/ # @alts looks like [ /dkjfkslfoo/ , /dkjfkslbar(baz|argh)boo/ ] foreach my $alt (@alts) { push @{$alt}, @ops; # add all remaining ops to each one # note that this could include more (?:...); we don't care, since # those can be handled by recursing } # ok, parsed the entire ops list # @alts looks like [ /dkjfkslfoogab/ , /dkjfkslbar(baz|argh)boogab/ ] if (DEBUG_RE_PARSING) { print "unrolled: "; foreach my $alt (@alts) { foreach my $o (@{$alt}) { print "{/$o->[0]/$o->[1]/$o->[2]} "; } print "\n"; } } # now recurse, to unroll the remaining branches (if any exist) my @rets = (); foreach my $alt (@alts) { push @rets, $self->unroll_branches($depth, $alt); } if (DEBUG_RE_PARSING) { print "unrolled post-recurse: "; foreach my $alt (@rets) { foreach my $o (@{$alt}) { print "{/$o->[0]/$o->[1]/$o->[2]} "; } print "\n"; } } return @rets; } ########################################################################### sub test { my ($self) = @_; $self->test_split_alt("foo", "/foo/"); $self->test_split_alt("(foo)", "/foo/"); $self->test_split_alt("foo(bar)baz", "/foobarbaz/"); $self->test_split_alt("x(foo|)", "/xfoo/ /x/"); $self->test_split_alt("fo(o|)", "/foo/ /fo/"); $self->test_split_alt("(foo|bar)", "/foo/ /bar/"); $self->test_split_alt("foo|bar", "/foo/ /bar/"); $self->test_split_alt("foo (bar|baz) argh", "/foo bar argh/ /foo baz argh/"); $self->test_split_alt("foo (bar|baz|bl(arg|at)) cough", "/foo bar cough/ /foo baz cough/ /foo blarg cough/ /foo blat cough/"); $self->test_split_alt("(s(otc|tco)k)", "/sotck/ /stcok/"); $self->test_split_alt("(business partner(s|ship|)|silent partner(s|ship|))", "/business partners/ /silent partners/ /business partnership/ /silent partnership/ /business partner/ /silent partner/"); } sub test_split_alt { my ($self, $in, $out) = @_; my @got = $self->split_alt($in); $out =~ s/^\///; $out =~ s/\/$//; my @want = split(/\/ \//, $out); my $failed = 0; if (scalar @want != scalar @got) { warn "FAIL: results count don't match"; $failed++; } else { my %got = map { $_ => 1 } @got; foreach my $w (@want) { if (!$got{$w}) { warn "FAIL: '$w' not found"; $failed++; } } } if ($failed) { print "want: /".join('/ /', @want)."/\n"; print "got: /".join('/ /', @got)."/\n"; return 0; } else { print "ok\n"; return 1; } } ########################################################################### sub get_perl { my ($self) = @_; my $perl; # allow user override of the perl interpreter to use when # extracting base strings. # TODO: expose this via sa-compile command-line option my $fromconf = $self->{main}->{conf}->{re_parser_perl}; if ($fromconf) { $perl = $fromconf; } elsif ($^X =~ m|^/|) { $perl = $^X; } else { use Config; $perl = $Config{perlpath}; $perl =~ s|/[^/]*$|/$^X|; } $perl =~ /^(.*)$/; return $1; } ########################################################################### 1;