ckMD5.c   [plain text]


/*
	File:		MD5.c

	Written by:	Colin Plumb

	Copyright:	Copyright 1998 by Apple Computer, Inc., all rights reserved.

	Change History (most recent first):

		 <7>	10/06/98	ap		Changed to compile with C++. 

	To Do:
*/

/* Copyright (c) 1998 Apple Computer, Inc.  All rights reserved.
 *
 * NOTICE: USE OF THE MATERIALS ACCOMPANYING THIS NOTICE IS SUBJECT
 * TO THE TERMS OF THE SIGNED "FAST ELLIPTIC ENCRYPTION (FEE) REFERENCE
 * SOURCE CODE EVALUATION AGREEMENT" BETWEEN APPLE COMPUTER, INC. AND THE
 * ORIGINAL LICENSEE THAT OBTAINED THESE MATERIALS FROM APPLE COMPUTER,
 * INC.  ANY USE OF THESE MATERIALS NOT PERMITTED BY SUCH AGREEMENT WILL
 * EXPOSE YOU TO LIABILITY.
 ***************************************************************************
 *
 * MD5.c
 */

/*
 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest.  This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 *
 * To compute the message digest of a chunk of bytes, declare an
 * MD5Context structure, pass it to MD5Init, call MD5Update as
 * needed on buffers full of bytes, and then call MD5Final, which
 * will fill a supplied 16-byte array with the digest.
 */

/*
 * Revision History
 * ----------------
 * 06 Feb 1997	Doug Mitchell at Apple
 *	Fixed endian-dependent cast in MD5Final()
 *	Made byteReverse() tolerant of platform-dependent alignment
 *		restrictions
 */

#include "ckconfig.h"

#if	CRYPTKIT_MD5_ENABLE && !CRYPTKIT_LIBMD_DIGEST

#include "ckMD5.h"
#include "platform.h"
#include "byteRep.h"
#include <stdlib.h>


#define MD5_DEBUG	0

#if	MD5_DEBUG
static inline void dumpCtx(MD5Context *ctx, char *label)
{
	int i;

	printf("%s\n", label);
	printf("buf = ");
	for(i=0; i<4; i++) {
		printf("%x:", ctx->buf[i]);
	}
	printf("\nbits: %d:%d\n", ctx->bits[0], ctx->bits[1]);
	printf("in[]:\n   ");
	for(i=0; i<64; i++) {
		printf("%02x:", ctx->in[i]);
		if((i % 16) == 15) {
			printf("\n   ");
		}
	}
	printf("\n");
}
#else	// MD5_DEBUG
#define dumpCtx(ctx, label)
#endif	// MD5_DEBUG

static void MD5Transform(UINT32 buf[4], UINT32 const in[16]);

#if __LITTLE_ENDIAN__
#define byteReverse(buf, len)	/* Nothing */
#else
static void byteReverse(unsigned char *buf, unsigned longs);

#ifndef ASM_MD5
/*
 * Note: this code is harmless on little-endian machines.
 */
static void byteReverse(unsigned char *buf, unsigned longs)
{
#if		old_way
    /*
     * this code is NOT harmless on big-endian machine which require
     * natural alignment. 
     */
    UINT32 t;
    do {
	t = (UINT32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
	    ((unsigned) buf[1] << 8 | buf[0]);
	*(UINT32 *) buf = t;
	buf += 4;
    } while (--longs);
#else	// new_way

    unsigned char t;
    do {
        t = buf[0];
	buf[0] = buf[3];
	buf[3] = t;
        t = buf[1];
	buf[1] = buf[2];
	buf[2] = t;
	buf += 4;
    } while (--longs);
#endif // old_way
}
#endif // ASM_MD5
#endif // __LITTLE_ENDIAN__

/*
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 * initialization constants.
 */
void MD5Init(MD5Context *ctx)
{
    ctx->buf[0] = 0x67452301;
    ctx->buf[1] = 0xefcdab89;
    ctx->buf[2] = 0x98badcfe;
    ctx->buf[3] = 0x10325476;

    ctx->bits[0] = 0;
    ctx->bits[1] = 0;
}

/*
 * Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
void MD5Update(MD5Context *ctx, unsigned char const *buf, unsigned len)
{
    UINT32 t;

    dumpCtx(ctx, "MD5.c update top");
    /* Update bitcount */

    t = ctx->bits[0];
    if ((ctx->bits[0] = t + ((UINT32) len << 3)) < t)
	ctx->bits[1]++;		/* Carry from low to high */
    ctx->bits[1] += len >> 29;

    t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */

    /* Handle any leading odd-sized chunks */

    if (t) {
	unsigned char *p = (unsigned char *) ctx->in + t;

	t = 64 - t;
	if (len < t) {
	    memcpy(p, buf, len);
	    return;
	}
	memcpy(p, buf, t);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (UINT32 *) ctx->in);
	dumpCtx(ctx, "update - return from transform (1)");
	buf += t;
	len -= t;
    }
    /* Process data in 64-byte chunks */

    while (len >= 64) {
	memcpy(ctx->in, buf, 64);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (UINT32 *) ctx->in);
	dumpCtx(ctx, "update - return from transform (2)");
	buf += 64;
	len -= 64;
    }

    /* Handle any remaining bytes of data. */

    memcpy(ctx->in, buf, len);
}

/*
 * Final wrapup - pad to 64-byte boundary with the bit pattern
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
void MD5Final(MD5Context *ctx, unsigned char *digest)
{
    unsigned count;
    unsigned char *p;

    dumpCtx(ctx, "final top");

    /* Compute number of bytes mod 64 */
    count = (ctx->bits[0] >> 3) & 0x3F;

    /* Set the first char of padding to 0x80.  This is safe since there is
       always at least one byte free */
    p = ctx->in + count;
    *p++ = 0x80;
    #if	MD5_DEBUG
    printf("in[%d] = %x\n", count, ctx->in[count]);
    #endif
    /* Bytes of padding needed to make 64 bytes */
    count = 64 - 1 - count;

    /* Pad out to 56 mod 64 */
    dumpCtx(ctx, "final, before pad");
    if (count < 8) {
	/* Two lots of padding:  Pad the first block to 64 bytes */
	bzero(p, count);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (UINT32 *) ctx->in);

	/* Now fill the next block with 56 bytes */
	bzero(ctx->in, 56);
    } else {
	/* Pad block to 56 bytes */
	bzero(p, count - 8);
    }
    byteReverse(ctx->in, 14);

    /* Append length in bits and transform */
    #if		old_way
     /*
     * On a little endian machine, this writes the l.s. byte of
     * the bit count to ctx->in[56] and the m.s byte of the bit count to
     * ctx->in[63].
     */
    ((UINT32 *) ctx->in)[14] = ctx->bits[0];
    ((UINT32 *) ctx->in)[15] = ctx->bits[1];
    #else	// new_way
    intToByteRep(ctx->bits[0], &ctx->in[56]);
    intToByteRep(ctx->bits[1], &ctx->in[60]);
    #endif	// new_way

    dumpCtx(ctx, "last transform");
    MD5Transform(ctx->buf, (UINT32 *) ctx->in);
    byteReverse((unsigned char *) ctx->buf, 4);
    memcpy(digest, ctx->buf, MD5_DIGEST_SIZE);
    dumpCtx(ctx, "final end");

    bzero(ctx, sizeof(*ctx));	/* In case it's sensitive */
}

#ifndef ASM_MD5

/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
static void MD5Transform(UINT32 buf[4], UINT32 const in[16])
{
    register UINT32 a, b, c, d;

    a = buf[0];
    b = buf[1];
    c = buf[2];
    d = buf[3];

    MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
    MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
    MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
    MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
    MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
    MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
    MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
    MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
    MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
    MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
    MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
    MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

    MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
    MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
    MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
    MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
    MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
    MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
    MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
    MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
    MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

    MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);

    MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);

    buf[0] += a;
    buf[1] += b;
    buf[2] += c;
    buf[3] += d;
}

#endif /* ASM_MD5 */

#endif	/* CRYPTKIT_MD5_ENABLE && CRYPTKIT_LIBMD_DIGEST */