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1.0
Scope

This  document describes the design of the Apple Cryptographic Service Provider (“CSP”) for the OS X platform. The functionality of the CSP, mainly in terms of supported algorithms, is described in a separate document entitled “Supported CSP Algorithms”.

2.0
Design Specification

The CSP provides all of the core cryptographic functions used in the Apple Security architecture. This includes digest, symmetric key generation and derivation, symmetric encryption and decryption, digital signature generation and verification, and asymmetric key pair generation, encryption and decryption. These various crypto functions are implemented, at the lowest level, in a number of separate libraries as well as within the CSP proper. The functions are available at the application level via the CSSM API and within the Security framework via the CSPFullPluginSession API. 

The CSP is conceptually a CDSA plugin whose top-level classes, AppleCSPPlugin and AppleCSPSession, are subclasses of CssmPlugin and CSPFullPluginSession respectively. In current practice the CSP builds as a library which is statically linked to the Security framework for performance reasons. The source for the CSP is part of the Security project, in the AppleCSP group and directory. 

2.1
 
General Operation

Per the standard CssmPlugin architecture, the AppleCSPPlugin’s purpose in life is to create AppleCSPSession objects at ModuleAttach time. There is at most one AppleCSPPlugin object per address space; the can be an arbitrary number of AppleCSPSession objects per address space. 

Per the CSPFullPluginSession scheme, the main purpose of the AppleCSPSession is to vend subclasses of CSPContext at setupContext time. The optional “context creation” at contextCreate is not implemented. Subsequent to setupContext, most operations in the CSP are performed by algorithm-specific subclasses of CSPContext. AppleCSPSession vends CSPContext objects by polling a small list of known “algorithm factories”, each of which is capable of mapping a Context to an algorithm-specific CSPContext. All CSPContext subclasses in the CSP are reusable; most assume that the associated Context is immutable after setupContext time. See section 2.3 for more information on CSPContext subclasses. 

AppleCSPSession’s other main task is to maintain state associated with reference keys. See section 2.2.1 for more information on reference keys. 

Throughout this document, the term Crypto Module will be used to refer to a conglomeration of algorithm-specific code. One Crypto Module typically implements more than one cryptographic algorithm; there is a one-to-one correspondence between Crypto Modules and the algorithm factories which are used by AppleCSPContext to vend algorithm-specific CSPContext subclasses. 

2.2
 
Key generation and handling

The handling and generation of keys is one of the most complex aspect of the high level portions of the CSP. All keys (symmetric and asymmetric) can be created in either raw or reference format; all public function which use keys as input (either explicitly or in a Context) accept keys in both formats as well. A number of key-related classes exist to facilitate this flexibility. (See the “Supported CSP Algorithms” document for information on reference and raw keys.)

2.2.1
Reference keys and BinaryKeys

Reference keys have the same lifetime as the associated AppleCSPSession (which lives from ModuleAttach to ModuleDetach), unless they are freed explicitly via CSSM_FreeKey. Reference keys are represented internally, and stored by AppleCSPSession, as subclasses of BinaryKey. A BinaryKey just contains a copy of the original CssmKey::Header and an algorithm-specific low-level representation of the actual binary key material. For example, the FEE-related BinaryKey subclass stores a feePubKey in the FEEBinaryKey class; the RSA BinaryKey stores a pointer to an RSA object in its BinaryKey subclass. All subclasses of BinaryKey must implement the generateKeyBlob function, which is used to generate a flat, exportable representation of the underlying key material. 

Reference keys are referred to internally by a four-byte unsigned integer called a KeyRef; it is this value which appears in Key.KeyData external to the CSP. AppleCSPSession maintains a thread-safe map<KeyRef, const BinaryKey *> which is used to store BinaryKeys when creating a reference key and to retrieve a BinaryKey given its KeyRef value. 

Note: as of this writing, the underlying memory allocator used by the STL map template is not thread safe. AppleCSPSession protects its own BinaryKey map with a Mutext, but it is known that concurrent use of this map and other map instances in the system result in corruption of STL’s memory regions. See Radar 2594763.

Typically, during the init phase of CSPContext subclass operation which uses an existing key, a CssmKey is obtained from the associated Context by the algorithm-specific CSPContext. If that key is  a reference key, AppleCSPSession::lookupKeyRef() is used to obtain the (much more useful, to the low-level code) BinaryKey. It is mainly for this purpose that all CSPContext subclasses in the CSP are actually subclasses of AppleCSPContext. This class simply adds a reference to the associated AppleCSPSession to the CSPContext base class. It is also for this reason that algorithm factories in the CSP are not subclasses of the “standard” CSPFullPluginSession::AlgorithmFactory.  

Typically, during key generation, one of the last steps is to determine whether the app is asking for a raw or a reference key to be returned. If the app is asking for a reference key, AppleCSPSession::AddRefKey is used to convert the newly generated BinaryKey subclass to a reference form of CssmKey, and to store the BinaryKey in the session’s reference key map. See sections 2.2.2 and 2.2.3 for more info on this mechanism. 

2.2.2
Asymmetric key pair generation

In an attempt to segregate the algorithm-specific portion of key pair generation from the common work of storing keys, parsing and validating key usage and attribute bits, and formatting CSSM_KEY structs to be returned to calling apps, the AppleKeyPairGenContext class was written. All keypair-generating AppleCSPContext subclasses also inherit from AppleKeyPairGenContext. The general operation of key pair generation is as follows:

· A subclass of AppleCSPAlgorithmFactory vends an instantiation of an algorithm-specific subclass of AppleCSPContext to AppleCSPSession::setupContext().

· The AppleCSPContext subclass’s generate(const Context &, CssmKey &, CssmKey&) function is called by the CSPFullPluginSession framework.   (The init function for key pair generation is currently not used by the CSP.) This algorithm-specific routine allocates two new, empty algorithm-specific BinaryKey objects and calls AppleKeyPairGenContext::generate(const Context &, AppleCSPSession &, CssmKey &, BinaryKey &, CssmKey &, BinaryKey &). 

· The AppleKeyPairGenContext::generate routine parses and validates the incoming keyuse and attribute bits (which are in the CssmKey.KeyHeader structs). It then has the algorithm-specific code actually generate the raw key pairs, in BinaryKey form, via generate(const Context &, BinaryKey &, BinaryKey &, uint32). 

· The AppleKeyPairGenContext::generate routine then handles the storage of reference keys and/or the conversion to raw key format per the requested key attribute bits. If the caller is requesting raw format (for either the public or private key), the BinaryKey::generateKeyBlob() routine is called. This routine is Crypto Module specific. 

Thus, in the process of generating asymmetric keys pairs, the Crypto Module need only know how to create its own subclass of BinaryKey, generate key pairs (in the form of algorithm-specific subclasses of BinaryKey), and to generate an exportable key blob from an existing BinaryKey.

AppleKeyPairGenContext can be found in AppleCSP/AppleCSPContext.{h,cpp}.

2.2.3
Symmetric key generation

Currently, all symmetric keys in the CSP are generated using classes which derive from both AppleCSPContext and from AppleSymmKeyGenContext. All symmetric keys stored as reference keys are represented by a subclass of BinaryKey called SymmetricBinaryKey. Unlike asymmetric binary keys, the “algorithm specific” subclass of BinaryKey is the same for all algorithms – the subclass-specific portion is merely a CssmData containing the actual key material, and a reference to the allocator which allocated it. Note that symmetric reference keys do not contain  algorithm-specific objects such as key schedules; for this reason, there is no performance win for using reference keys rather than raw keys when dealing with asymmetric encryption. 

See AppleCSP/BinaryKey.h for the declarations of BinaryKey and SymmetricBinaryKey; implementation of the latter is in AppleCSP/AppleCSPContext.cpp. AppleSymmKeyGenContext and AppleSymmKeyGenerator  are found in AppleCSP/AppleCSPContext.{h,cpp}. 

Most symmetric algorithms can specify the validity of incoming key generation requests with three parameters: minimum key size in bits, maximum key size in bits, and a flag indicating whether the key size in bits has to be zero modulo 8 (i.e., whether the key size has to be on a byte boundary). Such algorithms can use the AppleSymmKeyGenerator class directly by instantiating it from the Crypto Module’s algorithm factory. AppleSymmKeyGenerator and one of its base classes, AppleSymmKeyGenContext, perform all the logic necessary to parse key usage and attributes, validating key size requirements, storing reference keys, and formatting CSSM_KEY structs to be returned from the caller. The Crypto Module need only pass the appropriate parameters to AppleSymmKeyGenerator’s constructor. 

Currently, one symmetric algorithm – AES – can not express its key size limitations using the parameters used by AppleSymmKeyGenerator (min/max size, byte aligned). Thus it derives from AppleCSPContext and from AppleSymmKeyGenContext and performs its own validation. The rest of the work (subsequent key size validation) to is performed by AppleSymmKeyGenContext.

2.2.4
CSPKeyInfoProvider

There are certain circumstances in which algorithm-specific work needs to be performed on an existing key, but no associated Context (or CSPContext) is available; thus, the algorithm factory model does not suffice to dispatch a key to its algorithm-specific code. These circumstances are: key wrapping and unwrapping (which require conversion between reference keys and raw blobs), and the CSSM_QueryKeySizeInBits function, which can be performed without using any context information at all. For these purposes, the CSPKeyInfoProvider class exists. Each Crypto Module which deals with asymmetric keys must implement a subclass of CSPKeyInfoProvider. A common subclass used for all symmetric keys called SymmetricKeyInfoProvider also exists. All of these classes implement three functions:

CSPKeyInfoProvider(const CssmKey &cssmKey);

The subclass’s implementation of this constructor throws if the Crypto Module does not understand the provided key. Otherwise it just calls the base class’s constructor. 

void CssmKeyToBinary(BinaryKey **binKey);

The subclass’s implementation of this function converts a CssmKey (saved by the base class’s constructor) to an algorithm-specific BinaryKey.

void QueryKeySizeInBits(CSSM_KEY_SIZE &keySize);

The subclass’s implementation of this calculates the key size in bits of the CssmKey passed to the cosntructor. 

In common usage, a given CssmKey of any algorithm and type is mapped to a CSPKeyInfoProvider via AppleCSPSession::infoProvider, which just iterates through a list of known CSPKeyInfoProviders, one for each Crypto Module which deals with asymmetric keys, as well as the common SymmetricKeyInfoProvider. 

2.3

Crypto modules and algorithm factories

As mentioned previously, there is a one-to-one correspondence between Crypto Modules and algorithm factories (i.e., subclasses of AppleCSPAlgorithmFactories). This section briefly describes the contents (in terms of algorithms) and implementations of each Crypto Module. 

2.3.1
RSA and DSA

This Crypto Module deals with the RSA and DSA asymmetric algorithms. Low-level implementation is in code obtained from the OpenSSL project, CSP-specific copies of the relevant code are in the open_ssl directory in the AppleCSP subproject. The glue between the OpenSSL code and the rest of the rest of the CSP is in the RSA_DSA subdirectory. Unlike OpenSSL, DER encoding and decoding is done using SNACC-derived C++ classes; utility functions which perform this work can be found in open_ssl/opensslUtils/openRsaSnacc.{cpp,h}. 

2.3.2
Apple Secure Compression

This Crypto Module implements one algorithm, ASC (also known as ComCryption). The low-level code is implemented outside of the CSP project, in the ComCryption subproject of SecurityX/RSACryptographicProvider. This ASC source – unlike the bulk of the CSP’s source – is not part of the OpenSource project and is proprietary to Apple. A CSP based on the OpenSource release can be built without the ASC code (or the related code in the ASC Crypto Module); the production CSP #defines the symbol ASC_CSP_ENABLE via OTHER_CFLAGS, enabling the ASC Crypto Module code. The Security framework links against libComCryption.a, which is built by the RSACryptographicProvider project. 

2.3.3
CryptKit

This Crypto Module implements Apple’s proprietary Fast Elliptic Encryption (FEE). The FEE source code is not open sourceable; thus the same mechanism is used for FEE as for ASC – the low-level source is in the CryptKit subproject of SecurityX/RSACryptographicProvider; CRYPTKIT_CSP_ENABLE is defined via OTHER_CFLAGS for the production build, and Security.framework links against libCryptKit.a, which is generated by the RSACryptographicProvider project. If CRYPTKIT_CSP_ENABLE is not defined, none of the higher level CryptKit Crypto Module code is compiled. 

One extension to CryptKit exists in the CSP rather than in CryptKit itself. That code, in CryptKit/CryptKitDER.cpp, implements DER encoding and decoding of FEE keys and signatures using SNACC-generated classes. The CryptKit code itself is in strict ANSI C, so this code needed to be outside of CryptKit. CryptKit can still be used without the DER encoding provided by the CSP; in such a configuration (in which CRYPTKIT_DER_ENABLE is not defined, as it is in the CSP and RSACryptographicProvider projects), CryptKit’s old “native” style encoding is used for keys and signatures. 

2.3.4
Miscellaneous Algorithms

This module is a catch-all for the symmetric encryption algorithms implemented in code copied from the OpenSSL projects, for AES (Advanced Encryption Standard, a.k.a. Rijndael), and for MD5 and SHA1 digests. The low-level code for all of these algorithms is open sourced and is contained in the CSP proper. 

The AES implementation is based on the reference port obtained from NIST. It has been extensively optimized, particularly for the common case of 128-bit keys and blocks. This configuration can see up to two megabytes per second of throughput on both encrypt and decrypt on an 800 MHz G4. 

The AES symmetric encryption context has an optimization which is currently unique in the CSP: it allows for reuse of a Context even after the Context changes. During AES’s init, a copy of the raw key bits are saved in the CSPContext subclass. Upon re-init, if the raw key bits have not changed, a new (redundant) key schedule operation is avoided. This optimization was implemented in the service of the Encrypted File System, which performs multiple encrypt operations using the same key but different initialization vectors for each file system block. The IV does not affect the key schedule.

All of the symmetric encryption algorithms in this Crypto Module are based on the BlockCryptor class; see  section 2.5.4 for more info. 

2.3.5
BSAFE

The Cheetah (Mac OS 10.0) CSP was based primarily on BSAFE, the standard crypto library from RSA. For open source purposes, this code was replaced by (mostly) OpenSSL implementation for Puma (10.1). The current CSP does not link against BSAFE; however, the high-level Crypto Module code is still in the project in case it is desired to build a BSAFE-based CSP. To do this, one must #define BSAFE_CSP_ENABLE via OTHER_CFLAGS (which enables the high-level BSAFE-related code) and also link Security.framework against libBSafe.a, which is still built by the RSACryptographicProvider (this is still done to enable compatibility testing between the CSP and BSAFE). If BSAFE_CSP_ENABLE is defined, BSAFE’s algorithm factory is given first crack at all incoming contexts, thus overriding equivalent implementations elsewhere in the CSP. 

2.4

Other AppleCSPSession functions

Some CSPFullPluginSession functions do not fit in the standard “init/update/final” model used by CSPContext subclasses. These functions are implemented by AppleCSPSession directly, as follows. 

2.4.1
WrapKey/UnwrapKey

For historical reasons, there are apparently two paths in the existing code for both wrapping and unwrapping keys. One path is for PKCS7 and PKCS8 wrap/unwrap, and the other path does an Apple-specific variant of the CMS format. Currently only the CMS version, found in AppleCSP/wrapKeyCms.cpp, is enabled. Any key and algorithm can be used to wrap any other key, with the exception of AES, which can not be used as a wrapping key because it requires an initialization vector of larger than 8 bytes. The CMS wrap/unwrap algorithm itself requires an 8-byte IV expects to see an IV of at least 8 bytes in the context. Wrapping algorithms which require no IV can be used, but there must be an 8-byte IV in the context. (For this reason, algorithms which do not require IVs tolerate and ignore IVs which happen to present in their Contexts.) The (currently unused) PKCS7/8 code, in AppleCSP/pkcs7_8.cpp, should be deleted from the AppleCSP subproject if it is decided that the custom CMS format is the only format Apple will ever use. 

2.4.2
DeriveKey

One key derivation algorithm is supported, CSSM_ALGID_PKCS5_PBKDF2 with an HMAC/SHA1 MAC. The straightforward mplementation for this is in AppleCSP/deriveKey.cpp, PBKDF2/pbkdf2.[ch], and PBKDF2/HMACSHA1.[ch]. 

2.4.3
FreeKey

FreeKey is a trivial function which simply attempts to delete a reference key’s associated BinaryKey from the session’s map if present and calls up to CSPFullPluginSession::FreeKey (which frees Key.KeyData). Implementation is in AppleCSP.cpp.

2.4.4
GetKeySize

This is one of the functions which needs to dispatch to algorithm-specific code based solely on an existing CSSM_KEY rather than on a Context (see 2.2.4). It uses AppleCSPSession::infoProvider() to get the appropriate CSPKeyInfoProvider for the specified key; that object’s QueryKeySizeInBits() function is then used to calculate the key size. 

2.5.5
PassThrough

This function, implemented in AppleCSP.cpp, currently provides one passthrough function – CSSM_APPLECSP_KEYDIGEST. This function obtains the SHA1 digest of any key’s key material. This function is currently not used by any Apple software; it’s a holdover from OS 9. 

2.5

Common support classes

2.5.1
DigestObject and DigestContext

All digest operations in the CSP, whether for an explicit CSSM_DigestData* operation or part of a digital signature operation, are performed by subclasses of DigestObject. This virtual class, declared in AppleCSP/DigestObject.h, defines a very simple API for all digest operations – reusable init, update, final, obtain digest size in bytes. CSSM_DigestData operations are implemented using the DigestContext class, which is the glue between CSPContext and DigestObject. DigestContext is implemented in MiscCSPAlgs/DigestContext.{h,cpp}, though it should probably be in the AppleCSP subdirectory. Crypto Modules which implement and support a particular digest algorithm need to to two things:

· Implement a DigestObject subclass, which is generally glue between the actual digest implementation and the DigestObject API, and

· Instantiate a DigestContext as appropriate in the Crypto Module’s algorithm factory. The DigestContext takes a reference to a DigestObject in its constructor. A typical entry which does this in an algorithm factory’s algorithm switch statement looks like this:



case CSSM_ALGID_SHA1:

      


if(cspCtx == NULL) {

           

cspCtx = new DigestContext(session,




  

*(new SHA1Object));

             }

             return true;

See the following section for more uses of DigestObject. 

2.5.2
RawSigner and SignatureContext

Conceptually, all digital signature algorithms are identical from a high level point of view: incoming data is added to a digest; the final step is either a digital signature generation or verification on the output of the digest.  Thus, there is exactly one digital signature CSPContext in the CSP, called SignatureContext. Its constructor takes as arguments references to two objects – a DigestObject (see 2.5.1) and a RawSigner. RawSigner is a virtual class which defines the API for digital signature verification, with a very simple set of functions – reusable init, sign, and verify.  SignatureContext just takes incoming updates and adds them to its DigestObject; at sign or verify time, it takes the output of the DigestObject and feeds it to the appropriate function in its RawSigner object. Any digest and raw digital signature algorithms can be combined using a DigitalSignature object; a typical entry which does this in an algorithm factory’s algorithm switch statement looks like this:



case CSSM_ALGID_MD5WithRSA:




if(cspCtx == NULL) {





cspCtx = new SignatureContext(session,






*(new MD5Object()),






*(new RSASigner(*privAllocator, 







session, CSSM_ALGID_MD5)));




}




return true;

2.5.2.1
Raw Digital Signature operations

A raw digital signature operation is performed when an application calculates the digest externally and then calls CSSM_SignData or CSSM_VerifyData with an algorithm like CSSM_ALGID_RSA or CSSM_ALGID_DSA (i.e., an algorithm which does not specify a digest algorithm.) These operations are performed with a SignatureContext, as described above, with a special purpose DigestObject called NullDigest. NullDigest is simply an accumulator whose output is the same as the concatenation of its input. SignatureContext performs its work as usual. 

One oddity in this mechanism is the specification of a digest algorithm. This parameter is an argument to CSSM_SignData and CSSM_VerifyData and is used by some RawSigner classes (specifically RSA) to DER-encode the incoming digest along with an algorithm ID. This is handled by an extension to the CSPContext API called setDigestAlgorithm; CSPFullPluginSession calls this function only in the case of CSSM_{Sign,Verify}Data when the DigestAlgorithm argument is nonzero. SignatureContext passes this digest algorithm value along to its associated RawSigner; this happens after init and before updates. Note that in the normal case which uses an actual DigestObject rather than NullDigest, the digest algorithm is specified at the time the DigestObject subclass is constructed. That’s the CSSM_ALGID_MD5 argument in the code fragment shown above. This is all a kludge but we could not find a better way to do it short of modifying the init/update/final API model for all CSPContexts, which seemed inappropriate. 

2.5.3
BlockCryptor

Every implementation of a block cipher the author has written, maintained, or even seen has its own implementation of at least two common features: block buffering (to relieve callers of having to be cognizant of block boundaries) and cipher block chaining. In creating the current CSP, the author decided that he only wanted to write this code one more time and never look at it again. The result is the BlockCipher class. BlockCipher handles the chores of buffering up incoming plaintext (during encrypt) or ciphertext (during decrypt), feeding it to the low-level block cipher code in one-block chunks, performing cipher block chaining and initialization vector handling, PKCS[57] padding, and answering the questions constantly asked by CSPFullPluginSession in the form of outputSize(), inputSize(), and minimumProgress(). 

Actual implementations of block ciphers exist as subclasses of BlockCipher and merely need to perform the absolute basic functions: init from a Context, encrypt one block, and decrypt one block. BlockCryptor handles all the rest. After low-level init, the subclass calls one of BlockCipher’s setup functions. The details of these setup functions are as follows. First, the general purpose setup:


void    setup(

       
size_t  
blockSizeIn, 
// block size of input in bytes



size_t    blockSizeOut,
// block size of output in 









// 

bytes



bool 

pkcsPad,  
// this class performs PKCS{5,7}









// 

padding



bool   
needsFinal,
// needs final update with valid 









//

data



BC_Mode  
mode,     
// ECB, CBC



const CssmData  *iv); 
// init vector, required for CBC

Note that input block size does not have to be the same as output block size. These values are generally different for asymmetric encryption algorithms (RSA, FEE). The pkcsPad argument is derived from the Context at init time. The needsFinal argument is provided for algorithms like FEED which perform their own padding and need a non-zero amount of data in their final encrypt/decrypt. 

The more commonly used setup routine, used by “well-behaved” block ciphers (equal block size for input and output, no padding implemented at low level) is like this:


void setup(

      

size_t       
blockSize,
// block size of input 










//
and output

          const Context   
&context);

In this variant, all relevant parameters except blockSize (which is always algorithm-dependent) are obtained by BlockCryptor from the specified Context. 

BlockCipher’s implementation of inputSize(), outputSize(), and minimumProgress are valid for all known algorithms for which encrypting one block of plaintext yields exactly one block of ciphertext, and vice versa for decrypt. The code is rather complicated (which is one reason the author wanted to get it right once and never look at it again). Currently, the only algorithm which does not meet the one-to-one criteria is CryptKit’s FEED; thus its BlockCipher subclass implements its own versions of these functions. 
2.5.4
YarrowConnection

YarrowConnection is the CSP’s process-wide pseudo-random number generator. It’s a ModuleNexus-ized instance of DevRandomGenerator, which ultimatley uses /dev/random to get pseudo-random data from the Mach kernel’s Yarrow implementation. YarrowConnection provides a super-simple C interface usable by any code in the CSP to get random data. 

3.0
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