crc32.c   [plain text]


/*
 * lib/crypto/crc32/crc.c
 *
 * Copyright 1990, 2002 by the Massachusetts Institute of Technology.
 * All Rights Reserved.
 *
 * Export of this software from the United States of America may
 *   require a specific license from the United States Government.
 *   It is the responsibility of any person or organization contemplating
 *   export to obtain such a license before exporting.
 * 
 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
 * distribute this software and its documentation for any purpose and
 * without fee is hereby granted, provided that the above copyright
 * notice appear in all copies and that both that copyright notice and
 * this permission notice appear in supporting documentation, and that
 * the name of M.I.T. not be used in advertising or publicity pertaining
 * to distribution of the software without specific, written prior
 * permission.  Furthermore if you modify this software you must label
 * your software as modified software and not distribute it in such a
 * fashion that it might be confused with the original M.I.T. software.
 * M.I.T. makes no representations about the suitability of
 * this software for any purpose.  It is provided "as is" without express
 * or implied warranty.
 * 
 *
 * CRC-32/AUTODIN-II routines
 */

#include "k5-int.h"
#include "crc-32.h"

/* This table and block of comments are taken from code labeled: */
/*
 * Copyright (C) 1986 Gary S. Brown.  You may use this program, or
 * code or tables extracted from it, as desired without restriction.
 */

/* First, the polynomial itself and its table of feedback terms.  The  */
/* polynomial is                                                       */
/* X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0 */
/* Note that we take it "backwards" and put the highest-order term in  */
/* the lowest-order bit.  The X^32 term is "implied"; the LSB is the   */
/* X^31 term, etc.  The X^0 term (usually shown as "+1") results in    */
/* the MSB being 1.                                                    */

/* Note that the usual hardware shift register implementation, which   */
/* is what we're using (we're merely optimizing it by doing eight-bit  */
/* chunks at a time) shifts bits into the lowest-order term.  In our   */
/* implementation, that means shifting towards the right.  Why do we   */
/* do it this way?  Because the calculated CRC must be transmitted in  */
/* order from highest-order term to lowest-order term.  UARTs transmit */
/* characters in order from LSB to MSB.  By storing the CRC this way,  */
/* we hand it to the UART in the order low-byte to high-byte; the UART */
/* sends each low-bit to hight-bit; and the result is transmission bit */
/* by bit from highest- to lowest-order term without requiring any bit */
/* shuffling on our part.  Reception works similarly.                  */

/* The feedback terms table consists of 256, 32-bit entries.  Notes:   */
/*                                                                     */
/*  1. The table can be generated at runtime if desired; code to do so */
/*     is shown later.  It might not be obvious, but the feedback      */
/*     terms simply represent the results of eight shift/xor opera-    */
/*     tions for all combinations of data and CRC register values.     */
/*                                                                     */
/*  2. The CRC accumulation logic is the same for all CRC polynomials, */
/*     be they sixteen or thirty-two bits wide.  You simply choose the */
/*     appropriate table.  Alternatively, because the table can be     */
/*     generated at runtime, you can start by generating the table for */
/*     the polynomial in question and use exactly the same "updcrc",   */
/*     if your application needn't simultaneously handle two CRC       */
/*     polynomials.  (Note, however, that XMODEM is strange.)          */
/*                                                                     */
/*  3. For 16-bit CRCs, the table entries need be only 16 bits wide;   */
/*     of course, 32-bit entries work OK if the high 16 bits are zero. */
/*                                                                     */
/*  4. The values must be right-shifted by eight bits by the "updcrc"  */
/*     logic; the shift must be unsigned (bring in zeroes).  On some   */
/*     hardware you could probably optimize the shift in assembler by  */
/*     using byte-swap instructions.                                   */

static u_long const crc_table[256] = {
    0x00000000, 0x77073096, 0xee0e612c, 0x990951ba,
    0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
    0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
    0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
    0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
    0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
    0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec,
    0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
    0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
    0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
    0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940,
    0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
    0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116,
    0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
    0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
    0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
    0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a,
    0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
    0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818,
    0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
    0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
    0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
    0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c,
    0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
    0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
    0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
    0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
    0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
    0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086,
    0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
    0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4,
    0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
    0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
    0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
    0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
    0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
    0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe,
    0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
    0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
    0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
    0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252,
    0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
    0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60,
    0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
    0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
    0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
    0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04,
    0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
    0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a,
    0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
    0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
    0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
    0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e,
    0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
    0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
    0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
    0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
    0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
    0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0,
    0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
    0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6,
    0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
    0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
    0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
    };

void
mit_crc32(krb5_pointer in, size_t in_length, unsigned long *cksum)
{
    register u_char *data;
    register u_long c = 0;
    register int idx;
    size_t i;

    data = (u_char *)in;
    for (i = 0; i < in_length; i++) {
	idx = (int) (data[i] ^ c);
	idx &= 0xff;
	c >>= 8;
	c ^= crc_table[idx];
    }

    *cksum = c;
}

#ifdef CRC32_SHIFT4
static unsigned long const tbl4[16] = {
    0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
    0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
    0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
    0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
};

void
mit_crc32_shift4(krb5_pointer in, size_t in_length, unsigned long *cksum)
{
    register unsigned char *data, b;
    register unsigned long c = 0;
    size_t i;

    data = (u_char *)in;
    for (i = 0; i < in_length; i++) {
	b = data[i];
	c = (c >> 4) ^ tbl4[(b ^ c) & 0x0f];
	b >>= 4;
	c = (c >> 4) ^ tbl4[(b ^ c) & 0x0f];
    }
    *cksum = c;
}
#endif