# Copyright (C) 2011-2019 Apple Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF # THE POSSIBILITY OF SUCH DAMAGE. # Crash course on the language that this is written in (which I just call # "assembly" even though it's more than that): # # - Mostly gas-style operand ordering. The last operand tends to be the # destination. So "a := b" is written as "mov b, a". But unlike gas, # comparisons are in-order, so "if (a < b)" is written as # "bilt a, b, ...". # # - "b" = byte, "h" = 16-bit word, "i" = 32-bit word, "p" = pointer. # For 32-bit, "i" and "p" are interchangeable except when an op supports one # but not the other. # # - In general, valid operands for macro invocations and instructions are # registers (eg "t0"), addresses (eg "4[t0]"), base-index addresses # (eg "7[t0, t1, 2]"), absolute addresses (eg "0xa0000000[]"), or labels # (eg "_foo" or ".foo"). Macro invocations can also take anonymous # macros as operands. Instructions cannot take anonymous macros. # # - Labels must have names that begin with either "_" or ".". A "." label # is local and gets renamed before code gen to minimize namespace # pollution. A "_" label is an extern symbol (i.e. ".globl"). The "_" # may or may not be removed during code gen depending on whether the asm # conventions for C name mangling on the target platform mandate a "_" # prefix. # # - A "macro" is a lambda expression, which may be either anonymous or # named. But this has caveats. "macro" can take zero or more arguments, # which may be macros or any valid operands, but it can only return # code. But you can do Turing-complete things via continuation passing # style: "macro foo (a, b) b(a, a) end foo(foo, foo)". Actually, don't do # that, since you'll just crash the assembler. # # - An "if" is a conditional on settings. Any identifier supplied in the # predicate of an "if" is assumed to be a #define that is available # during code gen. So you can't use "if" for computation in a macro, but # you can use it to select different pieces of code for different # platforms. # # - Arguments to macros follow lexical scoping rather than dynamic scoping. # Const's also follow lexical scoping and may override (hide) arguments # or other consts. All variables (arguments and constants) can be bound # to operands. Additionally, arguments (but not constants) can be bound # to macros. # The following general-purpose registers are available: # # - cfr and sp hold the call frame and (native) stack pointer respectively. # They are callee-save registers, and guaranteed to be distinct from all other # registers on all architectures. # # - lr is defined on non-X86 architectures (ARM64, ARM64E, ARMv7, MIPS and CLOOP) # and holds the return PC # # - pc holds the (native) program counter on 32-bits ARM architectures (ARMv7) # # - t0, t1, t2, t3, t4 and optionally t5 are temporary registers that can get trashed on # calls, and are pairwise distinct registers. t4 holds the JS program counter, so use # with caution in opcodes (actually, don't use it in opcodes at all, except as PC). # # - r0 and r1 are the platform's customary return registers, and thus are # two distinct registers # # - a0, a1, a2 and a3 are the platform's customary argument registers, and # thus are pairwise distinct registers. Be mindful that: # + On X86, there are no argument registers. a0 and a1 are edx and # ecx following the fastcall convention, but you should still use the stack # to pass your arguments. The cCall2 and cCall4 macros do this for you. # + On X86_64_WIN, you should allocate space on the stack for the arguments, # and the return convention is weird for > 8 bytes types. The only place we # use > 8 bytes return values is on a cCall, and cCall2 and cCall4 handle # this for you. # # - The only registers guaranteed to be caller-saved are r0, r1, a0, a1 and a2, and # you should be mindful of that in functions that are called directly from C. # If you need more registers, you should push and pop them like a good # assembly citizen, because any other register will be callee-saved on X86. # # You can additionally assume: # # - a3, t2, t3, t4 and t5 are never return registers; t0, t1, a0, a1 and a2 # can be return registers. # # - t4 and t5 are never argument registers, t3 can only be a3, t1 can only be # a1; but t0 and t2 can be either a0 or a2. # # - On 64 bits, there are callee-save registers named csr0, csr1, ... csrN. # The last three csr registers are used used to store the PC base and # two special tag values. Don't use them for anything else. # # Additional platform-specific details (you shouldn't rely on this remaining # true): # # - For consistency with the baseline JIT, t0 is always r0 (and t1 is always # r1 on 32 bits platforms). You should use the r version when you need return # registers, and the t version otherwise: code using t0 (or t1) should still # work if swapped with e.g. t3, while code using r0 (or r1) should not. There # *may* be legacy code relying on this. # # - On all platforms other than X86, t0 can only be a0 and t2 can only be a2. # # - On all platforms other than X86 and X86_64, a2 is not a return register. # a2 is r0 on X86 (because we have so few registers) and r1 on X86_64 (because # the ABI enforces it). # # The following floating-point registers are available: # # - ft0-ft5 are temporary floating-point registers that get trashed on calls, # and are pairwise distinct. # # - fa0 and fa1 are the platform's customary floating-point argument # registers, and are both distinct. On 64-bits platforms, fa2 and fa3 are # additional floating-point argument registers. # # - fr is the platform's customary floating-point return register # # You can assume that ft1-ft5 or fa1-fa3 are never fr, and that ftX is never # faY if X != Y. # First come the common protocols that both interpreters use. Note that each # of these must have an ASSERT() in LLIntData.cpp # Work-around for the fact that the toolchain's awareness of armv7k / armv7s # results in a separate slab in the fat binary, yet the offlineasm doesn't know # to expect it. if ARMv7k end if ARMv7s end # These declarations must match interpreter/JSStack.h. const PtrSize = constexpr (sizeof(void*)) const MachineRegisterSize = constexpr (sizeof(CPURegister)) const SlotSize = constexpr (sizeof(Register)) if JSVALUE64 const CallFrameHeaderSlots = 5 else const CallFrameHeaderSlots = 4 const CallFrameAlignSlots = 1 end const JSLexicalEnvironment_variables = (sizeof JSLexicalEnvironment + SlotSize - 1) & ~(SlotSize - 1) const DirectArguments_storage = (sizeof DirectArguments + SlotSize - 1) & ~(SlotSize - 1) const StackAlignment = constexpr (stackAlignmentBytes()) const StackAlignmentSlots = constexpr (stackAlignmentRegisters()) const StackAlignmentMask = StackAlignment - 1 const CallerFrameAndPCSize = constexpr (sizeof(CallerFrameAndPC)) const CallerFrame = 0 const ReturnPC = CallerFrame + MachineRegisterSize const CodeBlock = ReturnPC + MachineRegisterSize const Callee = CodeBlock + SlotSize const ArgumentCount = Callee + SlotSize const ThisArgumentOffset = ArgumentCount + SlotSize const FirstArgumentOffset = ThisArgumentOffset + SlotSize const CallFrameHeaderSize = ThisArgumentOffset # Some value representation constants. if JSVALUE64 const TagBitTypeOther = constexpr TagBitTypeOther const TagBitBool = constexpr TagBitBool const TagBitUndefined = constexpr TagBitUndefined const ValueEmpty = constexpr ValueEmpty const ValueFalse = constexpr ValueFalse const ValueTrue = constexpr ValueTrue const ValueUndefined = constexpr ValueUndefined const ValueNull = constexpr ValueNull const TagTypeNumber = constexpr TagTypeNumber const TagMask = constexpr TagMask else const Int32Tag = constexpr JSValue::Int32Tag const BooleanTag = constexpr JSValue::BooleanTag const NullTag = constexpr JSValue::NullTag const UndefinedTag = constexpr JSValue::UndefinedTag const CellTag = constexpr JSValue::CellTag const EmptyValueTag = constexpr JSValue::EmptyValueTag const DeletedValueTag = constexpr JSValue::DeletedValueTag const LowestTag = constexpr JSValue::LowestTag end const CallOpCodeSize = constexpr op_call_length const maxFrameExtentForSlowPathCall = constexpr maxFrameExtentForSlowPathCall if X86_64 or X86_64_WIN or ARM64 or ARM64E const CalleeSaveSpaceAsVirtualRegisters = 4 elsif C_LOOP const CalleeSaveSpaceAsVirtualRegisters = 1 elsif ARMv7 const CalleeSaveSpaceAsVirtualRegisters = 1 else const CalleeSaveSpaceAsVirtualRegisters = 0 end const CalleeSaveSpaceStackAligned = (CalleeSaveSpaceAsVirtualRegisters * SlotSize + StackAlignment - 1) & ~StackAlignmentMask # Watchpoint states const ClearWatchpoint = constexpr ClearWatchpoint const IsWatched = constexpr IsWatched const IsInvalidated = constexpr IsInvalidated # ShadowChicken data const ShadowChickenTailMarker = constexpr ShadowChicken::Packet::tailMarkerValue # ArithProfile data const ArithProfileInt = constexpr (ArithProfile::observedUnaryInt().bits()) const ArithProfileNumber = constexpr (ArithProfile::observedUnaryNumber().bits()) const ArithProfileIntInt = constexpr (ArithProfile::observedBinaryIntInt().bits()) const ArithProfileNumberInt = constexpr (ArithProfile::observedBinaryNumberInt().bits()) const ArithProfileIntNumber = constexpr (ArithProfile::observedBinaryIntNumber().bits()) const ArithProfileNumberNumber = constexpr (ArithProfile::observedBinaryNumberNumber().bits()) # Pointer Tags const BytecodePtrTag = constexpr BytecodePtrTag const JSEntryPtrTag = constexpr JSEntryPtrTag const ExceptionHandlerPtrTag = constexpr ExceptionHandlerPtrTag const NoPtrTag = constexpr NoPtrTag const SlowPathPtrTag = constexpr SlowPathPtrTag # Some register conventions. if JSVALUE64 # - Use a pair of registers to represent the PC: one register for the # base of the bytecodes, and one register for the index. # - The PC base (or PB for short) must be stored in a callee-save register. # - C calls are still given the Instruction* rather than the PC index. # This requires an add before the call, and a sub after. const PC = t4 # When changing this, make sure LLIntPC is up to date in LLIntPCRanges.h if ARM64 or ARM64E const metadataTable = csr6 const PB = csr7 const tagTypeNumber = csr8 const tagMask = csr9 elsif X86_64 const metadataTable = csr1 const PB = csr2 const tagTypeNumber = csr3 const tagMask = csr4 elsif X86_64_WIN const metadataTable = csr3 const PB = csr4 const tagTypeNumber = csr5 const tagMask = csr6 elsif C_LOOP const PB = csr0 const tagTypeNumber = csr1 const tagMask = csr2 const metadataTable = csr3 end else const PC = t4 # When changing this, make sure LLIntPC is up to date in LLIntPCRanges.h if C_LOOP const metadataTable = csr3 elsif ARMv7 const metadataTable = csr0 else error end end macro dispatch(advanceReg) addp advanceReg, PC nextInstruction() end macro dispatchIndirect(offsetReg) dispatch(offsetReg) end macro dispatchOp(size, opcodeName) macro dispatchNarrow() dispatch(constexpr %opcodeName%_length) end macro dispatchWide() dispatch(constexpr %opcodeName%_length * 4 + 1) end size(dispatchNarrow, dispatchWide, macro (dispatch) dispatch() end) end macro getu(size, opcodeStruct, fieldName, dst) size(getuOperandNarrow, getuOperandWide, macro (getu) getu(opcodeStruct, fieldName, dst) end) end macro get(size, opcodeStruct, fieldName, dst) size(getOperandNarrow, getOperandWide, macro (get) get(opcodeStruct, fieldName, dst) end) end macro narrow(narrowFn, wideFn, k) k(narrowFn) end macro wide(narrowFn, wideFn, k) k(wideFn) end macro metadata(size, opcode, dst, scratch) loadi constexpr %opcode%::opcodeID * 4[metadataTable], dst # offset = metadataTable[opcodeID] getu(size, opcode, m_metadataID, scratch) # scratch = bytecode.m_metadataID muli sizeof %opcode%::Metadata, scratch # scratch *= sizeof(Op::Metadata) addi scratch, dst # offset += scratch addp metadataTable, dst # return &metadataTable[offset] end macro jumpImpl(targetOffsetReg) btiz targetOffsetReg, .outOfLineJumpTarget dispatchIndirect(targetOffsetReg) .outOfLineJumpTarget: callSlowPath(_llint_slow_path_out_of_line_jump_target) nextInstruction() end macro commonOp(label, prologue, fn) _%label%: prologue() fn(narrow) _%label%_wide: prologue() fn(wide) end macro op(l, fn) commonOp(l, macro () end, macro (unused) fn() end) end macro llintOp(opcodeName, opcodeStruct, fn) commonOp(llint_%opcodeName%, traceExecution, macro(size) macro getImpl(fieldName, dst) get(size, opcodeStruct, fieldName, dst) end macro dispatchImpl() dispatchOp(size, opcodeName) end fn(size, getImpl, dispatchImpl) end) end macro llintOpWithReturn(opcodeName, opcodeStruct, fn) llintOp(opcodeName, opcodeStruct, macro(size, get, dispatch) makeReturn(get, dispatch, macro (return) fn(size, get, dispatch, return) end) end) end macro llintOpWithMetadata(opcodeName, opcodeStruct, fn) llintOpWithReturn(opcodeName, opcodeStruct, macro (size, get, dispatch, return) macro meta(dst, scratch) metadata(size, opcodeStruct, dst, scratch) end fn(size, get, dispatch, meta, return) end) end macro llintOpWithJump(opcodeName, opcodeStruct, impl) llintOpWithMetadata(opcodeName, opcodeStruct, macro(size, get, dispatch, metadata, return) macro jump(fieldName) get(fieldName, t0) jumpImpl(t0) end impl(size, get, jump, dispatch) end) end macro llintOpWithProfile(opcodeName, opcodeStruct, fn) llintOpWithMetadata(opcodeName, opcodeStruct, macro(size, get, dispatch, metadata, return) makeReturnProfiled(opcodeStruct, get, metadata, dispatch, macro (returnProfiled) fn(size, get, dispatch, returnProfiled) end) end) end if X86_64_WIN const extraTempReg = t0 else const extraTempReg = t5 end # Constants for reasoning about value representation. const TagOffset = constexpr TagOffset const PayloadOffset = constexpr PayloadOffset # Constant for reasoning about butterflies. const IsArray = constexpr IsArray const IndexingShapeMask = constexpr IndexingShapeMask const NoIndexingShape = constexpr NoIndexingShape const Int32Shape = constexpr Int32Shape const DoubleShape = constexpr DoubleShape const ContiguousShape = constexpr ContiguousShape const ArrayStorageShape = constexpr ArrayStorageShape const SlowPutArrayStorageShape = constexpr SlowPutArrayStorageShape const CopyOnWrite = constexpr CopyOnWrite # Type constants. const StringType = constexpr StringType const SymbolType = constexpr SymbolType const ObjectType = constexpr ObjectType const FinalObjectType = constexpr FinalObjectType const JSFunctionType = constexpr JSFunctionType const ArrayType = constexpr ArrayType const DerivedArrayType = constexpr DerivedArrayType const ProxyObjectType = constexpr ProxyObjectType # The typed array types need to be numbered in a particular order because of the manually written # switch statement in get_by_val and put_by_val. const Int8ArrayType = constexpr Int8ArrayType const Uint8ArrayType = constexpr Uint8ArrayType const Uint8ClampedArrayType = constexpr Uint8ClampedArrayType const Int16ArrayType = constexpr Int16ArrayType const Uint16ArrayType = constexpr Uint16ArrayType const Int32ArrayType = constexpr Int32ArrayType const Uint32ArrayType = constexpr Uint32ArrayType const Float32ArrayType = constexpr Float32ArrayType const Float64ArrayType = constexpr Float64ArrayType const FirstTypedArrayType = constexpr FirstTypedArrayType const NumberOfTypedArrayTypesExcludingDataView = constexpr NumberOfTypedArrayTypesExcludingDataView # Type flags constants. const MasqueradesAsUndefined = constexpr MasqueradesAsUndefined const ImplementsDefaultHasInstance = constexpr ImplementsDefaultHasInstance # Bytecode operand constants. const FirstConstantRegisterIndexNarrow = 16 const FirstConstantRegisterIndexWide = constexpr FirstConstantRegisterIndex # Code type constants. const GlobalCode = constexpr GlobalCode const EvalCode = constexpr EvalCode const FunctionCode = constexpr FunctionCode const ModuleCode = constexpr ModuleCode # The interpreter steals the tag word of the argument count. const LLIntReturnPC = ArgumentCount + TagOffset # String flags. const HashFlags8BitBuffer = constexpr StringImpl::s_hashFlag8BitBuffer # Copied from PropertyOffset.h const firstOutOfLineOffset = constexpr firstOutOfLineOffset # ResolveType const GlobalProperty = constexpr GlobalProperty const GlobalVar = constexpr GlobalVar const GlobalLexicalVar = constexpr GlobalLexicalVar const ClosureVar = constexpr ClosureVar const LocalClosureVar = constexpr LocalClosureVar const ModuleVar = constexpr ModuleVar const GlobalPropertyWithVarInjectionChecks = constexpr GlobalPropertyWithVarInjectionChecks const GlobalVarWithVarInjectionChecks = constexpr GlobalVarWithVarInjectionChecks const GlobalLexicalVarWithVarInjectionChecks = constexpr GlobalLexicalVarWithVarInjectionChecks const ClosureVarWithVarInjectionChecks = constexpr ClosureVarWithVarInjectionChecks const ResolveTypeMask = constexpr GetPutInfo::typeBits const InitializationModeMask = constexpr GetPutInfo::initializationBits const InitializationModeShift = constexpr GetPutInfo::initializationShift const NotInitialization = constexpr InitializationMode::NotInitialization const MarkedBlockSize = constexpr MarkedBlock::blockSize const MarkedBlockMask = ~(MarkedBlockSize - 1) const MarkedBlockFooterOffset = constexpr MarkedBlock::offsetOfFooter const BlackThreshold = constexpr blackThreshold const VectorBufferOffset = Vector::m_buffer const VectorSizeOffset = Vector::m_size # Some common utilities. macro crash() if C_LOOP cloopCrash else call _llint_crash end end macro assert(assertion) if ASSERT_ENABLED assertion(.ok) crash() .ok: end end # The probe macro can be used to insert some debugging code without perturbing scalar # registers. Presently, the probe macro only preserves scalar registers. Hence, the # C probe callback function should not trash floating point registers. # # The macro you pass to probe() can pass whatever registers you like to your probe # callback function. However, you need to be mindful of which of the registers are # also used as argument registers, and ensure that you don't trash the register value # before storing it in the probe callback argument register that you desire. # # Here's an example of how it's used: # # probe( # macro() # move cfr, a0 # pass the ExecState* as arg0. # move t0, a1 # pass the value of register t0 as arg1. # call _cProbeCallbackFunction # to do whatever you want. # end # ) # if X86_64 or ARM64 or ARM64E or ARMv7 macro probe(action) # save all the registers that the LLInt may use. if ARM64 or ARM64E or ARMv7 push cfr, lr end push a0, a1 push a2, a3 push t0, t1 push t2, t3 push t4, t5 if ARM64 or ARM64E push csr0, csr1 push csr2, csr3 push csr4, csr5 push csr6, csr7 push csr8, csr9 elsif ARMv7 push csr0 end action() # restore all the registers we saved previously. if ARM64 or ARM64E pop csr9, csr8 pop csr7, csr6 pop csr5, csr4 pop csr3, csr2 pop csr1, csr0 elsif ARMv7 pop csr0 end pop t5, t4 pop t3, t2 pop t1, t0 pop a3, a2 pop a1, a0 if ARM64 or ARM64E or ARMv7 pop lr, cfr end end else macro probe(action) end end macro checkStackPointerAlignment(tempReg, location) if ASSERT_ENABLED if ARM64 or ARM64E or C_LOOP # ARM64 and ARM64E will check for us! # C_LOOP does not need the alignment, and can use a little perf # improvement from avoiding useless work. else if ARMv7 # ARM can't do logical ops with the sp as a source move sp, tempReg andp StackAlignmentMask, tempReg else andp sp, StackAlignmentMask, tempReg end btpz tempReg, .stackPointerOkay move location, tempReg break .stackPointerOkay: end end end if C_LOOP or ARM64 or ARM64E or X86_64 or X86_64_WIN const CalleeSaveRegisterCount = 0 elsif ARMv7 const CalleeSaveRegisterCount = 7 elsif MIPS const CalleeSaveRegisterCount = 1 elsif X86 or X86_WIN const CalleeSaveRegisterCount = 3 end const CalleeRegisterSaveSize = CalleeSaveRegisterCount * MachineRegisterSize # VMEntryTotalFrameSize includes the space for struct VMEntryRecord and the # callee save registers rounded up to keep the stack aligned const VMEntryTotalFrameSize = (CalleeRegisterSaveSize + sizeof VMEntryRecord + StackAlignment - 1) & ~StackAlignmentMask macro pushCalleeSaves() if C_LOOP or ARM64 or ARM64E or X86_64 or X86_64_WIN elsif ARMv7 emit "push {r4-r6, r8-r11}" elsif MIPS emit "addiu $sp, $sp, -4" emit "sw $s4, 0($sp)" # save $gp to $s4 so that we can restore it after a function call emit "move $s4, $gp" elsif X86 emit "push %esi" emit "push %edi" emit "push %ebx" elsif X86_WIN emit "push esi" emit "push edi" emit "push ebx" end end macro popCalleeSaves() if C_LOOP or ARM64 or ARM64E or X86_64 or X86_64_WIN elsif ARMv7 emit "pop {r4-r6, r8-r11}" elsif MIPS emit "lw $s4, 0($sp)" emit "addiu $sp, $sp, 4" elsif X86 emit "pop %ebx" emit "pop %edi" emit "pop %esi" elsif X86_WIN emit "pop ebx" emit "pop edi" emit "pop esi" end end macro preserveCallerPCAndCFR() if C_LOOP or ARMv7 or MIPS push lr push cfr elsif X86 or X86_WIN or X86_64 or X86_64_WIN push cfr elsif ARM64 or ARM64E push cfr, lr else error end move sp, cfr end macro restoreCallerPCAndCFR() move cfr, sp if C_LOOP or ARMv7 or MIPS pop cfr pop lr elsif X86 or X86_WIN or X86_64 or X86_64_WIN pop cfr elsif ARM64 or ARM64E pop lr, cfr end end macro preserveCalleeSavesUsedByLLInt() subp CalleeSaveSpaceStackAligned, sp if C_LOOP storep metadataTable, -PtrSize[cfr] elsif ARMv7 storep metadataTable, -4[cfr] elsif ARM64 or ARM64E emit "stp x27, x28, [x29, #-16]" emit "stp x25, x26, [x29, #-32]" elsif MIPS elsif X86 elsif X86_WIN elsif X86_64 storep csr4, -8[cfr] storep csr3, -16[cfr] storep csr2, -24[cfr] storep csr1, -32[cfr] elsif X86_64_WIN storep csr6, -8[cfr] storep csr5, -16[cfr] storep csr4, -24[cfr] storep csr3, -32[cfr] end end macro restoreCalleeSavesUsedByLLInt() if C_LOOP loadp -PtrSize[cfr], metadataTable elsif ARMv7 loadp -4[cfr], metadataTable elsif ARM64 or ARM64E emit "ldp x25, x26, [x29, #-32]" emit "ldp x27, x28, [x29, #-16]" elsif MIPS elsif X86 elsif X86_WIN elsif X86_64 loadp -32[cfr], csr1 loadp -24[cfr], csr2 loadp -16[cfr], csr3 loadp -8[cfr], csr4 elsif X86_64_WIN loadp -32[cfr], csr3 loadp -24[cfr], csr4 loadp -16[cfr], csr5 loadp -8[cfr], csr6 end end macro copyCalleeSavesToVMEntryFrameCalleeSavesBuffer(vm, temp) if ARM64 or ARM64E or X86_64 or X86_64_WIN or ARMv7 loadp VM::topEntryFrame[vm], temp vmEntryRecord(temp, temp) leap VMEntryRecord::calleeSaveRegistersBuffer[temp], temp if ARM64 or ARM64E storeq csr0, [temp] storeq csr1, 8[temp] storeq csr2, 16[temp] storeq csr3, 24[temp] storeq csr4, 32[temp] storeq csr5, 40[temp] storeq csr6, 48[temp] storeq csr7, 56[temp] storeq csr8, 64[temp] storeq csr9, 72[temp] stored csfr0, 80[temp] stored csfr1, 88[temp] stored csfr2, 96[temp] stored csfr3, 104[temp] stored csfr4, 112[temp] stored csfr5, 120[temp] stored csfr6, 128[temp] stored csfr7, 136[temp] elsif X86_64 storeq csr0, [temp] storeq csr1, 8[temp] storeq csr2, 16[temp] storeq csr3, 24[temp] storeq csr4, 32[temp] elsif X86_64_WIN storeq csr0, [temp] storeq csr1, 8[temp] storeq csr2, 16[temp] storeq csr3, 24[temp] storeq csr4, 32[temp] storeq csr5, 40[temp] storeq csr6, 48[temp] elsif ARMv7 storep csr0, [temp] end end end macro restoreCalleeSavesFromVMEntryFrameCalleeSavesBuffer(vm, temp) if ARM64 or ARM64E or X86_64 or X86_64_WIN or ARMv7 loadp VM::topEntryFrame[vm], temp vmEntryRecord(temp, temp) leap VMEntryRecord::calleeSaveRegistersBuffer[temp], temp if ARM64 or ARM64E loadq [temp], csr0 loadq 8[temp], csr1 loadq 16[temp], csr2 loadq 24[temp], csr3 loadq 32[temp], csr4 loadq 40[temp], csr5 loadq 48[temp], csr6 loadq 56[temp], csr7 loadq 64[temp], csr8 loadq 72[temp], csr9 loadd 80[temp], csfr0 loadd 88[temp], csfr1 loadd 96[temp], csfr2 loadd 104[temp], csfr3 loadd 112[temp], csfr4 loadd 120[temp], csfr5 loadd 128[temp], csfr6 loadd 136[temp], csfr7 elsif X86_64 loadq [temp], csr0 loadq 8[temp], csr1 loadq 16[temp], csr2 loadq 24[temp], csr3 loadq 32[temp], csr4 elsif X86_64_WIN loadq [temp], csr0 loadq 8[temp], csr1 loadq 16[temp], csr2 loadq 24[temp], csr3 loadq 32[temp], csr4 loadq 40[temp], csr5 loadq 48[temp], csr6 elsif ARMv7 loadp [temp], csr0 end end end macro preserveReturnAddressAfterCall(destinationRegister) if C_LOOP or ARMv7 or ARM64 or ARM64E or MIPS # In C_LOOP case, we're only preserving the bytecode vPC. move lr, destinationRegister elsif X86 or X86_WIN or X86_64 or X86_64_WIN pop destinationRegister else error end end macro unpoison(poison, fieldReg, scratch) if POISON loadp poison, scratch xorp scratch, fieldReg end end macro functionPrologue() tagReturnAddress sp if X86 or X86_WIN or X86_64 or X86_64_WIN push cfr elsif ARM64 or ARM64E push cfr, lr elsif C_LOOP or ARMv7 or MIPS push lr push cfr end move sp, cfr end macro functionEpilogue() if X86 or X86_WIN or X86_64 or X86_64_WIN pop cfr elsif ARM64 or ARM64E pop lr, cfr elsif C_LOOP or ARMv7 or MIPS pop cfr pop lr end end macro vmEntryRecord(entryFramePointer, resultReg) subp entryFramePointer, VMEntryTotalFrameSize, resultReg end macro getFrameRegisterSizeForCodeBlock(codeBlock, size) loadi CodeBlock::m_numCalleeLocals[codeBlock], size lshiftp 3, size addp maxFrameExtentForSlowPathCall, size end macro restoreStackPointerAfterCall() loadp CodeBlock[cfr], t2 getFrameRegisterSizeForCodeBlock(t2, t2) if ARMv7 subp cfr, t2, t2 move t2, sp else subp cfr, t2, sp end end macro traceExecution() if TRACING callSlowPath(_llint_trace) end end macro callTargetFunction(size, opcodeStruct, dispatch, callee, callPtrTag) if C_LOOP cloopCallJSFunction callee else call callee, callPtrTag end restoreStackPointerAfterCall() dispatchAfterCall(size, opcodeStruct, dispatch) end macro prepareForRegularCall(callee, temp1, temp2, temp3, callPtrTag) addp CallerFrameAndPCSize, sp end # sp points to the new frame macro prepareForTailCall(callee, temp1, temp2, temp3, callPtrTag) restoreCalleeSavesUsedByLLInt() loadi PayloadOffset + ArgumentCount[cfr], temp2 loadp CodeBlock[cfr], temp1 loadi CodeBlock::m_numParameters[temp1], temp1 bilteq temp1, temp2, .noArityFixup move temp1, temp2 .noArityFixup: # We assume < 2^28 arguments muli SlotSize, temp2 addi StackAlignment - 1 + CallFrameHeaderSize, temp2 andi ~StackAlignmentMask, temp2 move cfr, temp1 addp temp2, temp1 loadi PayloadOffset + ArgumentCount[sp], temp2 # We assume < 2^28 arguments muli SlotSize, temp2 addi StackAlignment - 1 + CallFrameHeaderSize, temp2 andi ~StackAlignmentMask, temp2 if ARMv7 or ARM64 or ARM64E or C_LOOP or MIPS addp CallerFrameAndPCSize, sp subi CallerFrameAndPCSize, temp2 loadp CallerFrameAndPC::returnPC[cfr], lr else addp PtrSize, sp subi PtrSize, temp2 loadp PtrSize[cfr], temp3 storep temp3, [sp] end if POINTER_PROFILING addp 16, cfr, temp3 untagReturnAddress temp3 end subp temp2, temp1 loadp [cfr], cfr .copyLoop: if ARM64 and not ADDRESS64 subi MachineRegisterSize, temp2 loadq [sp, temp2, 1], temp3 storeq temp3, [temp1, temp2, 1] btinz temp2, .copyLoop else subi PtrSize, temp2 loadp [sp, temp2, 1], temp3 storep temp3, [temp1, temp2, 1] btinz temp2, .copyLoop end move temp1, sp jmp callee, callPtrTag end macro slowPathForCall(size, opcodeStruct, dispatch, slowPath, prepareCall) callCallSlowPath( slowPath, # Those are r0 and r1 macro (callee, calleeFramePtr) btpz calleeFramePtr, .dontUpdateSP move calleeFramePtr, sp prepareCall(callee, t2, t3, t4, SlowPathPtrTag) .dontUpdateSP: callTargetFunction(size, opcodeStruct, dispatch, callee, SlowPathPtrTag) end) end macro arrayProfile(offset, cellAndIndexingType, metadata, scratch) const cell = cellAndIndexingType const indexingType = cellAndIndexingType loadi JSCell::m_structureID[cell], scratch storei scratch, offset + ArrayProfile::m_lastSeenStructureID[metadata] loadb JSCell::m_indexingTypeAndMisc[cell], indexingType end macro skipIfIsRememberedOrInEden(cell, slowPath) memfence bba JSCell::m_cellState[cell], BlackThreshold, .done slowPath() .done: end macro notifyWrite(set, slow) bbneq WatchpointSet::m_state[set], IsInvalidated, slow end macro checkSwitchToJIT(increment, action) loadp CodeBlock[cfr], t0 baddis increment, CodeBlock::m_llintExecuteCounter + BaselineExecutionCounter::m_counter[t0], .continue action() .continue: end macro checkSwitchToJITForEpilogue() checkSwitchToJIT( 10, macro () callSlowPath(_llint_replace) end) end macro assertNotConstant(size, index) size(FirstConstantRegisterIndexNarrow, FirstConstantRegisterIndexWide, macro (FirstConstantRegisterIndex) assert(macro (ok) bilt index, FirstConstantRegisterIndex, ok end) end) end macro functionForCallCodeBlockGetter(targetRegister, scratch) if JSVALUE64 loadp Callee[cfr], targetRegister else loadp Callee + PayloadOffset[cfr], targetRegister end loadp JSFunction::m_executable[targetRegister], targetRegister unpoison(_g_JSFunctionPoison, targetRegister, scratch) loadp FunctionExecutable::m_codeBlockForCall[targetRegister], targetRegister loadp ExecutableToCodeBlockEdge::m_codeBlock[targetRegister], targetRegister end macro functionForConstructCodeBlockGetter(targetRegister, scratch) if JSVALUE64 loadp Callee[cfr], targetRegister else loadp Callee + PayloadOffset[cfr], targetRegister end loadp JSFunction::m_executable[targetRegister], targetRegister unpoison(_g_JSFunctionPoison, targetRegister, scratch) loadp FunctionExecutable::m_codeBlockForConstruct[targetRegister], targetRegister loadp ExecutableToCodeBlockEdge::m_codeBlock[targetRegister], targetRegister end macro notFunctionCodeBlockGetter(targetRegister, ignored) loadp CodeBlock[cfr], targetRegister end macro functionCodeBlockSetter(sourceRegister) storep sourceRegister, CodeBlock[cfr] end macro notFunctionCodeBlockSetter(sourceRegister) # Nothing to do! end # Do the bare minimum required to execute code. Sets up the PC, leave the CodeBlock* # in t1. May also trigger prologue entry OSR. macro prologue(codeBlockGetter, codeBlockSetter, osrSlowPath, traceSlowPath) # Set up the call frame and check if we should OSR. tagReturnAddress sp preserveCallerPCAndCFR() if TRACING subp maxFrameExtentForSlowPathCall, sp callSlowPath(traceSlowPath) addp maxFrameExtentForSlowPathCall, sp end codeBlockGetter(t1, t2) if not C_LOOP baddis 5, CodeBlock::m_llintExecuteCounter + BaselineExecutionCounter::m_counter[t1], .continue if JSVALUE64 move cfr, a0 move PC, a1 cCall2(osrSlowPath) else # We are after the function prologue, but before we have set up sp from the CodeBlock. # Temporarily align stack pointer for this call. subp 8, sp move cfr, a0 move PC, a1 cCall2(osrSlowPath) addp 8, sp end btpz r0, .recover move cfr, sp # restore the previous sp # pop the callerFrame since we will jump to a function that wants to save it if ARM64 or ARM64E pop lr, cfr untagReturnAddress sp elsif ARMv7 or MIPS pop cfr pop lr else pop cfr end jmp r0, JSEntryPtrTag .recover: codeBlockGetter(t1, t2) .continue: end codeBlockSetter(t1) preserveCalleeSavesUsedByLLInt() # Set up the PC. if JSVALUE64 loadp CodeBlock::m_instructionsRawPointer[t1], PB unpoison(_g_CodeBlockPoison, PB, t3) move 0, PC else loadp CodeBlock::m_instructionsRawPointer[t1], PC end # Get new sp in t0 and check stack height. getFrameRegisterSizeForCodeBlock(t1, t0) subp cfr, t0, t0 bpa t0, cfr, .needStackCheck loadp CodeBlock::m_poisonedVM[t1], t2 unpoison(_g_CodeBlockPoison, t2, t3) if C_LOOP bpbeq VM::m_cloopStackLimit[t2], t0, .stackHeightOK else bpbeq VM::m_softStackLimit[t2], t0, .stackHeightOK end .needStackCheck: # Stack height check failed - need to call a slow_path. # Set up temporary stack pointer for call including callee saves subp maxFrameExtentForSlowPathCall, sp callSlowPath(_llint_stack_check) bpeq r1, 0, .stackHeightOKGetCodeBlock # We're throwing before the frame is fully set up. This frame will be # ignored by the unwinder. So, let's restore the callee saves before we # start unwinding. We need to do this before we change the cfr. restoreCalleeSavesUsedByLLInt() move r1, cfr jmp _llint_throw_from_slow_path_trampoline .stackHeightOKGetCodeBlock: # Stack check slow path returned that the stack was ok. # Since they were clobbered, need to get CodeBlock and new sp codeBlockGetter(t1, t2) getFrameRegisterSizeForCodeBlock(t1, t0) subp cfr, t0, t0 .stackHeightOK: if X86_64 or ARM64 # We need to start zeroing from sp as it has been adjusted after saving callee saves. move sp, t2 move t0, sp .zeroStackLoop: bpeq sp, t2, .zeroStackDone subp PtrSize, t2 storep 0, [t2] jmp .zeroStackLoop .zeroStackDone: else move t0, sp end loadp CodeBlock::m_metadata[t1], metadataTable if JSVALUE64 move TagTypeNumber, tagTypeNumber addq TagBitTypeOther, tagTypeNumber, tagMask end end # Expects that CodeBlock is in t1, which is what prologue() leaves behind. # Must call dispatch(0) after calling this. macro functionInitialization(profileArgSkip) # Profile the arguments. Unfortunately, we have no choice but to do this. This # code is pretty horrendous because of the difference in ordering between # arguments and value profiles, the desire to have a simple loop-down-to-zero # loop, and the desire to use only three registers so as to preserve the PC and # the code block. It is likely that this code should be rewritten in a more # optimal way for architectures that have more than five registers available # for arbitrary use in the interpreter. loadi CodeBlock::m_numParameters[t1], t0 addp -profileArgSkip, t0 # Use addi because that's what has the peephole assert(macro (ok) bpgteq t0, 0, ok end) btpz t0, .argumentProfileDone loadp CodeBlock::m_argumentValueProfiles + RefCountedArray::m_data[t1], t3 btpz t3, .argumentProfileDone # When we can't JIT, we don't allocate any argument value profiles. mulp sizeof ValueProfile, t0, t2 # Aaaaahhhh! Need strength reduction! lshiftp 3, t0 # offset of last JSValue arguments on the stack. addp t2, t3 # pointer to end of ValueProfile array in CodeBlock::m_argumentValueProfiles. .argumentProfileLoop: if JSVALUE64 loadq ThisArgumentOffset - 8 + profileArgSkip * 8[cfr, t0], t2 subp sizeof ValueProfile, t3 storeq t2, profileArgSkip * sizeof ValueProfile + ValueProfile::m_buckets[t3] else loadi ThisArgumentOffset + TagOffset - 8 + profileArgSkip * 8[cfr, t0], t2 subp sizeof ValueProfile, t3 storei t2, profileArgSkip * sizeof ValueProfile + ValueProfile::m_buckets + TagOffset[t3] loadi ThisArgumentOffset + PayloadOffset - 8 + profileArgSkip * 8[cfr, t0], t2 storei t2, profileArgSkip * sizeof ValueProfile + ValueProfile::m_buckets + PayloadOffset[t3] end baddpnz -8, t0, .argumentProfileLoop .argumentProfileDone: end macro doReturn() restoreCalleeSavesUsedByLLInt() restoreCallerPCAndCFR() ret end # This break instruction is needed so that the synthesized llintPCRangeStart label # doesn't point to the exact same location as vmEntryToJavaScript which comes after it. # Otherwise, libunwind will report vmEntryToJavaScript as llintPCRangeStart in # stack traces. break # stub to call into JavaScript or Native functions # EncodedJSValue vmEntryToJavaScript(void* code, VM* vm, ProtoCallFrame* protoFrame) # EncodedJSValue vmEntryToNativeFunction(void* code, VM* vm, ProtoCallFrame* protoFrame) if C_LOOP _llint_vm_entry_to_javascript: else global _vmEntryToJavaScript _vmEntryToJavaScript: end doVMEntry(makeJavaScriptCall) if C_LOOP _llint_vm_entry_to_native: else global _vmEntryToNative _vmEntryToNative: end doVMEntry(makeHostFunctionCall) if not C_LOOP # void sanitizeStackForVMImpl(VM* vm) global _sanitizeStackForVMImpl _sanitizeStackForVMImpl: tagReturnAddress sp # We need three non-aliased caller-save registers. We are guaranteed # this for a0, a1 and a2 on all architectures. if X86 or X86_WIN loadp 4[sp], a0 end const vm = a0 const address = a1 const zeroValue = a2 loadp VM::m_lastStackTop[vm], address bpbeq sp, address, .zeroFillDone move 0, zeroValue .zeroFillLoop: storep zeroValue, [address] addp PtrSize, address bpa sp, address, .zeroFillLoop .zeroFillDone: move sp, address storep address, VM::m_lastStackTop[vm] ret # VMEntryRecord* vmEntryRecord(const EntryFrame* entryFrame) global _vmEntryRecord _vmEntryRecord: tagReturnAddress sp if X86 or X86_WIN loadp 4[sp], a0 end vmEntryRecord(a0, r0) ret end if C_LOOP # Dummy entry point the C Loop uses to initialize. _llint_entry: crash() else macro initPCRelative(pcBase) if X86_64 or X86_64_WIN or X86 or X86_WIN call _relativePCBase _relativePCBase: pop pcBase elsif ARM64 or ARM64E elsif ARMv7 _relativePCBase: move pc, pcBase subp 3, pcBase # Need to back up the PC and set the Thumb2 bit elsif MIPS la _relativePCBase, pcBase setcallreg pcBase # needed to set $t9 to the right value for the .cpload created by the label. _relativePCBase: end end # The PC base is in t2, as this is what _llint_entry leaves behind through # initPCRelative(t2) macro setEntryAddress(index, label) setEntryAddressCommon(index, label, a0) end macro setEntryAddressWide(index, label) setEntryAddressCommon(index, label, a1) end macro setEntryAddressCommon(index, label, map) if X86_64 or X86_64_WIN leap (label - _relativePCBase)[t2], t3 move index, t4 storep t3, [map, t4, 8] elsif X86 or X86_WIN leap (label - _relativePCBase)[t2], t3 move index, t4 storep t3, [map, t4, 4] elsif ARM64 or ARM64E pcrtoaddr label, t2 move index, t4 storep t2, [map, t4, PtrSize] elsif ARMv7 mvlbl (label - _relativePCBase), t4 addp t4, t2, t4 move index, t3 storep t4, [map, t3, 4] elsif MIPS la label, t4 la _relativePCBase, t3 subp t3, t4 addp t4, t2, t4 move index, t3 storep t4, [map, t3, 4] end end global _llint_entry # Entry point for the llint to initialize. _llint_entry: functionPrologue() pushCalleeSaves() if X86 or X86_WIN loadp 20[sp], a0 loadp 24[sp], a1 end initPCRelative(t2) # Include generated bytecode initialization file. include InitBytecodes popCalleeSaves() functionEpilogue() ret end _llint_op_wide: nextInstructionWide() _llint_op_wide_wide: crash() _llint_op_enter_wide: crash() op(llint_program_prologue, macro () prologue(notFunctionCodeBlockGetter, notFunctionCodeBlockSetter, _llint_entry_osr, _llint_trace_prologue) dispatch(0) end) op(llint_module_program_prologue, macro () prologue(notFunctionCodeBlockGetter, notFunctionCodeBlockSetter, _llint_entry_osr, _llint_trace_prologue) dispatch(0) end) op(llint_eval_prologue, macro () prologue(notFunctionCodeBlockGetter, notFunctionCodeBlockSetter, _llint_entry_osr, _llint_trace_prologue) dispatch(0) end) op(llint_function_for_call_prologue, macro () prologue(functionForCallCodeBlockGetter, functionCodeBlockSetter, _llint_entry_osr_function_for_call, _llint_trace_prologue_function_for_call) functionInitialization(0) dispatch(0) end) op(llint_function_for_construct_prologue, macro () prologue(functionForConstructCodeBlockGetter, functionCodeBlockSetter, _llint_entry_osr_function_for_construct, _llint_trace_prologue_function_for_construct) functionInitialization(1) dispatch(0) end) op(llint_function_for_call_arity_check, macro () prologue(functionForCallCodeBlockGetter, functionCodeBlockSetter, _llint_entry_osr_function_for_call_arityCheck, _llint_trace_arityCheck_for_call) functionArityCheck(.functionForCallBegin, _slow_path_call_arityCheck) .functionForCallBegin: functionInitialization(0) dispatch(0) end) op(llint_function_for_construct_arity_check, macro () prologue(functionForConstructCodeBlockGetter, functionCodeBlockSetter, _llint_entry_osr_function_for_construct_arityCheck, _llint_trace_arityCheck_for_construct) functionArityCheck(.functionForConstructBegin, _slow_path_construct_arityCheck) .functionForConstructBegin: functionInitialization(1) dispatch(0) end) # Value-representation-specific code. if JSVALUE64 include LowLevelInterpreter64 else include LowLevelInterpreter32_64 end # Value-representation-agnostic code. macro slowPathOp(opcodeName) llintOp(op_%opcodeName%, unused, macro (unused, unused, dispatch) callSlowPath(_slow_path_%opcodeName%) dispatch() end) end slowPathOp(create_cloned_arguments) slowPathOp(create_direct_arguments) slowPathOp(create_lexical_environment) slowPathOp(create_rest) slowPathOp(create_scoped_arguments) slowPathOp(create_this) slowPathOp(define_accessor_property) slowPathOp(define_data_property) slowPathOp(enumerator_generic_pname) slowPathOp(enumerator_structure_pname) slowPathOp(get_by_id_with_this) slowPathOp(get_by_val_with_this) slowPathOp(get_direct_pname) slowPathOp(get_enumerable_length) slowPathOp(get_property_enumerator) slowPathOp(greater) slowPathOp(greatereq) slowPathOp(has_generic_property) slowPathOp(has_indexed_property) slowPathOp(has_structure_property) slowPathOp(in_by_id) slowPathOp(in_by_val) slowPathOp(is_function) slowPathOp(is_object_or_null) slowPathOp(less) slowPathOp(lesseq) slowPathOp(mod) slowPathOp(new_array_buffer) slowPathOp(new_array_with_spread) slowPathOp(pow) slowPathOp(push_with_scope) slowPathOp(put_by_id_with_this) slowPathOp(put_by_val_with_this) slowPathOp(resolve_scope_for_hoisting_func_decl_in_eval) slowPathOp(spread) slowPathOp(strcat) slowPathOp(throw_static_error) slowPathOp(to_index_string) slowPathOp(typeof) slowPathOp(unreachable) macro llintSlowPathOp(opcodeName) llintOp(op_%opcodeName%, unused, macro (unused, unused, dispatch) callSlowPath(_llint_slow_path_%opcodeName%) dispatch() end) end llintSlowPathOp(del_by_id) llintSlowPathOp(del_by_val) llintSlowPathOp(instanceof) llintSlowPathOp(instanceof_custom) llintSlowPathOp(new_array) llintSlowPathOp(new_array_with_size) llintSlowPathOp(new_async_func) llintSlowPathOp(new_async_func_exp) llintSlowPathOp(new_async_generator_func) llintSlowPathOp(new_async_generator_func_exp) llintSlowPathOp(new_func) llintSlowPathOp(new_func_exp) llintSlowPathOp(new_generator_func) llintSlowPathOp(new_generator_func_exp) llintSlowPathOp(new_object) llintSlowPathOp(new_regexp) llintSlowPathOp(put_getter_by_id) llintSlowPathOp(put_getter_by_val) llintSlowPathOp(put_getter_setter_by_id) llintSlowPathOp(put_setter_by_id) llintSlowPathOp(put_setter_by_val) llintSlowPathOp(set_function_name) llintSlowPathOp(super_sampler_begin) llintSlowPathOp(super_sampler_end) llintSlowPathOp(throw) llintSlowPathOp(try_get_by_id) llintOp(op_switch_string, unused, macro (unused, unused, unused) callSlowPath(_llint_slow_path_switch_string) nextInstruction() end) equalityComparisonOp(eq, OpEq, macro (left, right, result) cieq left, right, result end) equalityComparisonOp(neq, OpNeq, macro (left, right, result) cineq left, right, result end) compareUnsignedOp(below, OpBelow, macro (left, right, result) cib left, right, result end) compareUnsignedOp(beloweq, OpBeloweq, macro (left, right, result) cibeq left, right, result end) llintOpWithJump(op_jmp, OpJmp, macro (size, get, jump, dispatch) jump(m_targetLabel) end) llintJumpTrueOrFalseOp( jtrue, OpJtrue, macro (value, target) btinz value, 1, target end) llintJumpTrueOrFalseOp( jfalse, OpJfalse, macro (value, target) btiz value, 1, target end) compareJumpOp( jless, OpJless, macro (left, right, target) bilt left, right, target end, macro (left, right, target) bdlt left, right, target end) compareJumpOp( jnless, OpJnless, macro (left, right, target) bigteq left, right, target end, macro (left, right, target) bdgtequn left, right, target end) compareJumpOp( jgreater, OpJgreater, macro (left, right, target) bigt left, right, target end, macro (left, right, target) bdgt left, right, target end) compareJumpOp( jngreater, OpJngreater, macro (left, right, target) bilteq left, right, target end, macro (left, right, target) bdltequn left, right, target end) compareJumpOp( jlesseq, OpJlesseq, macro (left, right, target) bilteq left, right, target end, macro (left, right, target) bdlteq left, right, target end) compareJumpOp( jnlesseq, OpJnlesseq, macro (left, right, target) bigt left, right, target end, macro (left, right, target) bdgtun left, right, target end) compareJumpOp( jgreatereq, OpJgreatereq, macro (left, right, target) bigteq left, right, target end, macro (left, right, target) bdgteq left, right, target end) compareJumpOp( jngreatereq, OpJngreatereq, macro (left, right, target) bilt left, right, target end, macro (left, right, target) bdltun left, right, target end) equalityJumpOp( jeq, OpJeq, macro (left, right, target) bieq left, right, target end) equalityJumpOp( jneq, OpJneq, macro (left, right, target) bineq left, right, target end) compareUnsignedJumpOp( jbelow, OpJbelow, macro (left, right, target) bib left, right, target end) compareUnsignedJumpOp( jbeloweq, OpJbeloweq, macro (left, right, target) bibeq left, right, target end) preOp(inc, OpInc, macro (value, slow) baddio 1, value, slow end) preOp(dec, OpDec, macro (value, slow) bsubio 1, value, slow end) llintOp(op_loop_hint, OpLoopHint, macro (unused, unused, dispatch) checkSwitchToJITForLoop() dispatch() end) llintOp(op_check_traps, OpCheckTraps, macro (unused, unused, dispatch) loadp CodeBlock[cfr], t1 loadp CodeBlock::m_poisonedVM[t1], t1 unpoison(_g_CodeBlockPoison, t1, t2) loadb VM::m_traps+VMTraps::m_needTrapHandling[t1], t0 btpnz t0, .handleTraps .afterHandlingTraps: dispatch() .handleTraps: callTrapHandler(.throwHandler) jmp .afterHandlingTraps .throwHandler: jmp _llint_throw_from_slow_path_trampoline end) # Returns the packet pointer in t0. macro acquireShadowChickenPacket(slow) loadp CodeBlock[cfr], t1 loadp CodeBlock::m_poisonedVM[t1], t1 unpoison(_g_CodeBlockPoison, t1, t2) loadp VM::m_shadowChicken[t1], t2 loadp ShadowChicken::m_logCursor[t2], t0 bpaeq t0, ShadowChicken::m_logEnd[t2], slow addp sizeof ShadowChicken::Packet, t0, t1 storep t1, ShadowChicken::m_logCursor[t2] end llintOp(op_nop, OpNop, macro (unused, unused, dispatch) dispatch() end) # we can't use callOp because we can't pass `call` as the opcode name, since it's an instruction name commonCallOp(op_call, _llint_slow_path_call, OpCall, prepareForRegularCall, macro (getu, metadata) arrayProfileForCall(OpCall, getu) end) macro callOp(opcodeName, opcodeStruct, prepareCall, fn) commonCallOp(op_%opcodeName%, _llint_slow_path_%opcodeName%, opcodeStruct, prepareCall, fn) end callOp(tail_call, OpTailCall, prepareForTailCall, macro (getu, metadata) arrayProfileForCall(OpTailCall, getu) checkSwitchToJITForEpilogue() # reload metadata since checkSwitchToJITForEpilogue() might have trashed t5 metadata(t5, t0) end) callOp(construct, OpConstruct, prepareForRegularCall, macro (getu, metadata) end) macro doCallVarargs(size, opcodeStruct, dispatch, frameSlowPath, slowPath, prepareCall) callSlowPath(frameSlowPath) branchIfException(_llint_throw_from_slow_path_trampoline) # calleeFrame in r1 if JSVALUE64 move r1, sp else # The calleeFrame is not stack aligned, move down by CallerFrameAndPCSize to align if ARMv7 subp r1, CallerFrameAndPCSize, t2 move t2, sp else subp r1, CallerFrameAndPCSize, sp end end slowPathForCall(size, opcodeStruct, dispatch, slowPath, prepareCall) end llintOp(op_call_varargs, OpCallVarargs, macro (size, get, dispatch) doCallVarargs(size, OpCallVarargs, dispatch, _llint_slow_path_size_frame_for_varargs, _llint_slow_path_call_varargs, prepareForRegularCall) end) llintOp(op_tail_call_varargs, OpTailCallVarargs, macro (size, get, dispatch) checkSwitchToJITForEpilogue() # We lie and perform the tail call instead of preparing it since we can't # prepare the frame for a call opcode doCallVarargs(size, OpTailCallVarargs, dispatch, _llint_slow_path_size_frame_for_varargs, _llint_slow_path_tail_call_varargs, prepareForTailCall) end) llintOp(op_tail_call_forward_arguments, OpTailCallForwardArguments, macro (size, get, dispatch) checkSwitchToJITForEpilogue() # We lie and perform the tail call instead of preparing it since we can't # prepare the frame for a call opcode doCallVarargs(size, OpTailCallForwardArguments, dispatch, _llint_slow_path_size_frame_for_forward_arguments, _llint_slow_path_tail_call_forward_arguments, prepareForTailCall) end) llintOp(op_construct_varargs, OpConstructVarargs, macro (size, get, dispatch) doCallVarargs(size, OpConstructVarargs, dispatch, _llint_slow_path_size_frame_for_varargs, _llint_slow_path_construct_varargs, prepareForRegularCall) end) # Eval is executed in one of two modes: # # 1) We find that we're really invoking eval() in which case the # execution is perfomed entirely inside the slow_path, and it # returns the PC of a function that just returns the return value # that the eval returned. # # 2) We find that we're invoking something called eval() that is not # the real eval. Then the slow_path returns the PC of the thing to # call, and we call it. # # This allows us to handle two cases, which would require a total of # up to four pieces of state that cannot be easily packed into two # registers (C functions can return up to two registers, easily): # # - The call frame register. This may or may not have been modified # by the slow_path, but the convention is that it returns it. It's not # totally clear if that's necessary, since the cfr is callee save. # But that's our style in this here interpreter so we stick with it. # # - A bit to say if the slow_path successfully executed the eval and has # the return value, or did not execute the eval but has a PC for us # to call. # # - Either: # - The JS return value (two registers), or # # - The PC to call. # # It turns out to be easier to just always have this return the cfr # and a PC to call, and that PC may be a dummy thunk that just # returns the JS value that the eval returned. _llint_op_call_eval: slowPathForCall( narrow, OpCallEval, macro () dispatchOp(narrow, op_call_eval) end, _llint_slow_path_call_eval, prepareForRegularCall) _llint_op_call_eval_wide: slowPathForCall( wide, OpCallEval, macro () dispatchOp(wide, op_call_eval) end, _llint_slow_path_call_eval_wide, prepareForRegularCall) _llint_generic_return_point: dispatchAfterCall(narrow, OpCallEval, macro () dispatchOp(narrow, op_call_eval) end) _llint_generic_return_point_wide: dispatchAfterCall(wide, OpCallEval, macro() dispatchOp(wide, op_call_eval) end) llintOp(op_identity_with_profile, OpIdentityWithProfile, macro (unused, unused, dispatch) dispatch() end) llintOp(op_yield, OpYield, macro (unused, unused, unused) notSupported() end) llintOp(op_debug, OpDebug, macro (unused, unused, dispatch) loadp CodeBlock[cfr], t0 loadi CodeBlock::m_debuggerRequests[t0], t0 btiz t0, .opDebugDone callSlowPath(_llint_slow_path_debug) .opDebugDone: dispatch() end) op(llint_native_call_trampoline, macro () nativeCallTrampoline(NativeExecutable::m_function) end) op(llint_native_construct_trampoline, macro () nativeCallTrampoline(NativeExecutable::m_constructor) end) op(llint_internal_function_call_trampoline, macro () internalFunctionCallTrampoline(InternalFunction::m_functionForCall) end) op(llint_internal_function_construct_trampoline, macro () internalFunctionCallTrampoline(InternalFunction::m_functionForConstruct) end) # Lastly, make sure that we can link even though we don't support all opcodes. # These opcodes should never arise when using LLInt or either JIT. We assert # as much. macro notSupported() if ASSERT_ENABLED crash() else # We should use whatever the smallest possible instruction is, just to # ensure that there is a gap between instruction labels. If multiple # smallest instructions exist, we should pick the one that is most # likely result in execution being halted. Currently that is the break # instruction on all architectures we're interested in. (Break is int3 # on Intel, which is 1 byte, and bkpt on ARMv7, which is 2 bytes.) break end end