DFGSpeculativeJIT64.cpp   [plain text]


/*
 * Copyright (C) 2011-2018 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "DFGSpeculativeJIT.h"

#if ENABLE(DFG_JIT)

#include "ArrayPrototype.h"
#include "AtomicsObject.h"
#include "CallFrameShuffler.h"
#include "DFGAbstractInterpreterInlines.h"
#include "DFGCallArrayAllocatorSlowPathGenerator.h"
#include "DFGOperations.h"
#include "DFGSlowPathGenerator.h"
#include "DirectArguments.h"
#include "GetterSetter.h"
#include "HasOwnPropertyCache.h"
#include "JSCInlines.h"
#include "JSLexicalEnvironment.h"
#include "JSMap.h"
#include "JSPropertyNameEnumerator.h"
#include "JSSet.h"
#include "ObjectPrototype.h"
#include "SetupVarargsFrame.h"
#include "SpillRegistersMode.h"
#include "StringPrototype.h"
#include "SuperSampler.h"
#include "Watchdog.h"

namespace JSC { namespace DFG {

#if USE(JSVALUE64)

void SpeculativeJIT::boxInt52(GPRReg sourceGPR, GPRReg targetGPR, DataFormat format)
{
    GPRReg tempGPR;
    if (sourceGPR == targetGPR)
        tempGPR = allocate();
    else
        tempGPR = targetGPR;
    
    FPRReg fpr = fprAllocate();

    if (format == DataFormatInt52)
        m_jit.rshift64(TrustedImm32(JSValue::int52ShiftAmount), sourceGPR);
    else
        ASSERT(format == DataFormatStrictInt52);
    
    m_jit.boxInt52(sourceGPR, targetGPR, tempGPR, fpr);
    
    if (format == DataFormatInt52 && sourceGPR != targetGPR)
        m_jit.lshift64(TrustedImm32(JSValue::int52ShiftAmount), sourceGPR);
    
    if (tempGPR != targetGPR)
        unlock(tempGPR);
    
    unlock(fpr);
}

GPRReg SpeculativeJIT::fillJSValue(Edge edge)
{
    VirtualRegister virtualRegister = edge->virtualRegister();
    GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);
    
    switch (info.registerFormat()) {
    case DataFormatNone: {
        GPRReg gpr = allocate();

        if (edge->hasConstant()) {
            JSValue jsValue = edge->asJSValue();
            m_jit.move(MacroAssembler::TrustedImm64(JSValue::encode(jsValue)), gpr);
            info.fillJSValue(*m_stream, gpr, DataFormatJS);
            m_gprs.retain(gpr, virtualRegister, SpillOrderConstant);
        } else {
            DataFormat spillFormat = info.spillFormat();
            m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled);
            switch (spillFormat) {
            case DataFormatInt32: {
                m_jit.load32(JITCompiler::addressFor(virtualRegister), gpr);
                m_jit.or64(GPRInfo::tagTypeNumberRegister, gpr);
                spillFormat = DataFormatJSInt32;
                break;
            }
                
            default:
                m_jit.load64(JITCompiler::addressFor(virtualRegister), gpr);
                DFG_ASSERT(m_jit.graph(), m_currentNode, spillFormat & DataFormatJS, spillFormat);
                break;
            }
            info.fillJSValue(*m_stream, gpr, spillFormat);
        }
        return gpr;
    }

    case DataFormatInt32: {
        GPRReg gpr = info.gpr();
        // If the register has already been locked we need to take a copy.
        // If not, we'll zero extend in place, so mark on the info that this is now type DataFormatInt32, not DataFormatJSInt32.
        if (m_gprs.isLocked(gpr)) {
            GPRReg result = allocate();
            m_jit.or64(GPRInfo::tagTypeNumberRegister, gpr, result);
            return result;
        }
        m_gprs.lock(gpr);
        m_jit.or64(GPRInfo::tagTypeNumberRegister, gpr);
        info.fillJSValue(*m_stream, gpr, DataFormatJSInt32);
        return gpr;
    }

    case DataFormatCell:
        // No retag required on JSVALUE64!
    case DataFormatJS:
    case DataFormatJSInt32:
    case DataFormatJSDouble:
    case DataFormatJSCell:
    case DataFormatJSBoolean: {
        GPRReg gpr = info.gpr();
        m_gprs.lock(gpr);
        return gpr;
    }
        
    case DataFormatBoolean:
    case DataFormatStorage:
    case DataFormatDouble:
    case DataFormatInt52:
        // this type currently never occurs
        DFG_CRASH(m_jit.graph(), m_currentNode, "Bad data format");
        
    default:
        DFG_CRASH(m_jit.graph(), m_currentNode, "Corrupt data format");
        return InvalidGPRReg;
    }
}

void SpeculativeJIT::cachedGetById(CodeOrigin origin, JSValueRegs base, JSValueRegs result, unsigned identifierNumber, JITCompiler::Jump slowPathTarget , SpillRegistersMode mode, AccessType type)
{
    cachedGetById(origin, base.gpr(), result.gpr(), identifierNumber, slowPathTarget, mode, type);
}

void SpeculativeJIT::cachedGetById(CodeOrigin codeOrigin, GPRReg baseGPR, GPRReg resultGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget, SpillRegistersMode spillMode, AccessType type)
{
    CallSiteIndex callSite = m_jit.recordCallSiteAndGenerateExceptionHandlingOSRExitIfNeeded(codeOrigin, m_stream->size());
    RegisterSet usedRegisters = this->usedRegisters();
    if (spillMode == DontSpill) {
        // We've already flushed registers to the stack, we don't need to spill these.
        usedRegisters.set(baseGPR, false);
        usedRegisters.set(resultGPR, false);
    }
    JITGetByIdGenerator gen(
        m_jit.codeBlock(), codeOrigin, callSite, usedRegisters, identifierUID(identifierNumber),
        JSValueRegs(baseGPR), JSValueRegs(resultGPR), type);
    gen.generateFastPath(m_jit);
    
    JITCompiler::JumpList slowCases;
    slowCases.append(slowPathTarget);
    slowCases.append(gen.slowPathJump());

    std::unique_ptr<SlowPathGenerator> slowPath = slowPathCall(
        slowCases, this, appropriateOptimizingGetByIdFunction(type),
        spillMode, ExceptionCheckRequirement::CheckNeeded,
        resultGPR, gen.stubInfo(), baseGPR, identifierUID(identifierNumber));
    
    m_jit.addGetById(gen, slowPath.get());
    addSlowPathGenerator(WTFMove(slowPath));
}

void SpeculativeJIT::cachedGetByIdWithThis(CodeOrigin codeOrigin, GPRReg baseGPR, GPRReg thisGPR, GPRReg resultGPR, unsigned identifierNumber, const JITCompiler::JumpList& slowPathTarget)
{
    CallSiteIndex callSite = m_jit.recordCallSiteAndGenerateExceptionHandlingOSRExitIfNeeded(codeOrigin, m_stream->size());
    RegisterSet usedRegisters = this->usedRegisters();
    // We've already flushed registers to the stack, we don't need to spill these.
    usedRegisters.set(baseGPR, false);
    usedRegisters.set(thisGPR, false);
    usedRegisters.set(resultGPR, false);
    
    JITGetByIdWithThisGenerator gen(
        m_jit.codeBlock(), codeOrigin, callSite, usedRegisters, identifierUID(identifierNumber),
        JSValueRegs(resultGPR), JSValueRegs(baseGPR), JSValueRegs(thisGPR), AccessType::GetWithThis);
    gen.generateFastPath(m_jit);
    
    JITCompiler::JumpList slowCases;
    slowCases.append(slowPathTarget);
    slowCases.append(gen.slowPathJump());
    
    std::unique_ptr<SlowPathGenerator> slowPath = slowPathCall(
        slowCases, this, operationGetByIdWithThisOptimize,
        DontSpill, ExceptionCheckRequirement::CheckNeeded,
        resultGPR, gen.stubInfo(), baseGPR, thisGPR, identifierUID(identifierNumber));
    
    m_jit.addGetByIdWithThis(gen, slowPath.get());
    addSlowPathGenerator(WTFMove(slowPath));
}

void SpeculativeJIT::nonSpeculativeNonPeepholeCompareNullOrUndefined(Edge operand)
{
    ASSERT_WITH_MESSAGE(!masqueradesAsUndefinedWatchpointIsStillValid() || !isKnownCell(operand.node()), "The Compare should have been eliminated, it is known to be always false.");

    JSValueOperand arg(this, operand, ManualOperandSpeculation);
    GPRReg argGPR = arg.gpr();
    
    GPRTemporary result(this);
    GPRReg resultGPR = result.gpr();

    m_jit.move(TrustedImm32(0), resultGPR);

    JITCompiler::JumpList done;
    if (masqueradesAsUndefinedWatchpointIsStillValid()) {
        if (!isKnownNotCell(operand.node()))
            done.append(m_jit.branchIfCell(JSValueRegs(argGPR)));
    } else {
        GPRTemporary localGlobalObject(this);
        GPRTemporary remoteGlobalObject(this);
        GPRTemporary scratch(this);

        JITCompiler::Jump notCell;
        if (!isKnownCell(operand.node()))
            notCell = m_jit.branchIfNotCell(JSValueRegs(argGPR));
        
        JITCompiler::Jump isNotMasqueradesAsUndefined = m_jit.branchTest8(
            JITCompiler::Zero,
            JITCompiler::Address(argGPR, JSCell::typeInfoFlagsOffset()), 
            JITCompiler::TrustedImm32(MasqueradesAsUndefined));
        done.append(isNotMasqueradesAsUndefined);

        GPRReg localGlobalObjectGPR = localGlobalObject.gpr();
        GPRReg remoteGlobalObjectGPR = remoteGlobalObject.gpr();
        m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), m_jit.graph().globalObjectFor(m_currentNode->origin.semantic)), localGlobalObjectGPR);
        m_jit.emitLoadStructure(*m_jit.vm(), argGPR, resultGPR, scratch.gpr());
        m_jit.loadPtr(JITCompiler::Address(resultGPR, Structure::globalObjectOffset()), remoteGlobalObjectGPR);
        m_jit.comparePtr(JITCompiler::Equal, localGlobalObjectGPR, remoteGlobalObjectGPR, resultGPR);
        done.append(m_jit.jump());
        if (!isKnownCell(operand.node()))
            notCell.link(&m_jit);
    }
 
    if (!isKnownNotOther(operand.node())) {
        m_jit.move(argGPR, resultGPR);
        m_jit.and64(JITCompiler::TrustedImm32(~TagBitUndefined), resultGPR);
        m_jit.compare64(JITCompiler::Equal, resultGPR, JITCompiler::TrustedImm32(ValueNull), resultGPR);
    }

    done.link(&m_jit);
 
    m_jit.or32(TrustedImm32(ValueFalse), resultGPR);
    jsValueResult(resultGPR, m_currentNode, DataFormatJSBoolean);
}

void SpeculativeJIT::nonSpeculativePeepholeBranchNullOrUndefined(Edge operand, Node* branchNode)
{
    BasicBlock* taken = branchNode->branchData()->taken.block;
    BasicBlock* notTaken = branchNode->branchData()->notTaken.block;

    JSValueOperand arg(this, operand, ManualOperandSpeculation);
    GPRReg argGPR = arg.gpr();
    
    GPRTemporary result(this, Reuse, arg);
    GPRReg resultGPR = result.gpr();

    // First, handle the case where "operand" is a cell.
    if (masqueradesAsUndefinedWatchpointIsStillValid()) {
        if (!isKnownNotCell(operand.node())) {
            JITCompiler::Jump isCell = m_jit.branchIfCell(JSValueRegs(argGPR));
            addBranch(isCell, notTaken);
        }
    } else {
        GPRTemporary localGlobalObject(this);
        GPRTemporary remoteGlobalObject(this);
        GPRTemporary scratch(this);

        JITCompiler::Jump notCell;
        if (!isKnownCell(operand.node()))
            notCell = m_jit.branchIfNotCell(JSValueRegs(argGPR));
        
        branchTest8(JITCompiler::Zero, 
            JITCompiler::Address(argGPR, JSCell::typeInfoFlagsOffset()), 
            JITCompiler::TrustedImm32(MasqueradesAsUndefined), notTaken);

        GPRReg localGlobalObjectGPR = localGlobalObject.gpr();
        GPRReg remoteGlobalObjectGPR = remoteGlobalObject.gpr();
        m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), m_jit.graph().globalObjectFor(m_currentNode->origin.semantic)), localGlobalObjectGPR);
        m_jit.emitLoadStructure(*m_jit.vm(), argGPR, resultGPR, scratch.gpr());
        m_jit.loadPtr(JITCompiler::Address(resultGPR, Structure::globalObjectOffset()), remoteGlobalObjectGPR);
        branchPtr(JITCompiler::Equal, localGlobalObjectGPR, remoteGlobalObjectGPR, taken);

        if (!isKnownCell(operand.node())) {
            jump(notTaken, ForceJump);
            notCell.link(&m_jit);
        }
    }

    if (isKnownNotOther(operand.node()))
        jump(notTaken);
    else {
        JITCompiler::RelationalCondition condition = JITCompiler::Equal;
        if (taken == nextBlock()) {
            condition = JITCompiler::NotEqual;
            std::swap(taken, notTaken);
        }
        m_jit.move(argGPR, resultGPR);
        m_jit.and64(JITCompiler::TrustedImm32(~TagBitUndefined), resultGPR);
        branch64(condition, resultGPR, JITCompiler::TrustedImm64(ValueNull), taken);
        jump(notTaken);
    }
}

void SpeculativeJIT::nonSpeculativePeepholeStrictEq(Node* node, Node* branchNode, bool invert)
{
    BasicBlock* taken = branchNode->branchData()->taken.block;
    BasicBlock* notTaken = branchNode->branchData()->notTaken.block;

    // The branch instruction will branch to the taken block.
    // If taken is next, switch taken with notTaken & invert the branch condition so we can fall through.
    if (taken == nextBlock()) {
        invert = !invert;
        BasicBlock* tmp = taken;
        taken = notTaken;
        notTaken = tmp;
    }
    
    JSValueOperand arg1(this, node->child1());
    JSValueOperand arg2(this, node->child2());
    GPRReg arg1GPR = arg1.gpr();
    GPRReg arg2GPR = arg2.gpr();
    
    GPRTemporary result(this);
    GPRReg resultGPR = result.gpr();
    
    arg1.use();
    arg2.use();
    
    if (isKnownCell(node->child1().node()) && isKnownCell(node->child2().node())) {
        // see if we get lucky: if the arguments are cells and they reference the same
        // cell, then they must be strictly equal.
        branch64(JITCompiler::Equal, arg1GPR, arg2GPR, invert ? notTaken : taken);
        
        silentSpillAllRegisters(resultGPR);
        callOperation(operationCompareStrictEqCell, resultGPR, arg1GPR, arg2GPR);
        silentFillAllRegisters();
        m_jit.exceptionCheck();
        
        branchTest32(invert ? JITCompiler::Zero : JITCompiler::NonZero, resultGPR, taken);
    } else {
        m_jit.or64(arg1GPR, arg2GPR, resultGPR);
        
        JITCompiler::Jump twoCellsCase = m_jit.branchIfCell(resultGPR);
        
        JITCompiler::Jump leftOK = m_jit.branchIfInt32(arg1GPR);
        JITCompiler::Jump leftDouble = m_jit.branchIfNumber(arg1GPR);
        leftOK.link(&m_jit);
        JITCompiler::Jump rightOK = m_jit.branchIfInt32(arg2GPR);
        JITCompiler::Jump rightDouble = m_jit.branchIfNumber(arg2GPR);
        rightOK.link(&m_jit);
        
        branch64(invert ? JITCompiler::NotEqual : JITCompiler::Equal, arg1GPR, arg2GPR, taken);
        jump(notTaken, ForceJump);
        
        twoCellsCase.link(&m_jit);
        branch64(JITCompiler::Equal, arg1GPR, arg2GPR, invert ? notTaken : taken);
        
        leftDouble.link(&m_jit);
        rightDouble.link(&m_jit);
        
        silentSpillAllRegisters(resultGPR);
        callOperation(operationCompareStrictEq, resultGPR, arg1GPR, arg2GPR);
        silentFillAllRegisters();
        m_jit.exceptionCheck();
        
        branchTest32(invert ? JITCompiler::Zero : JITCompiler::NonZero, resultGPR, taken);
    }
    
    jump(notTaken);
}

void SpeculativeJIT::nonSpeculativeNonPeepholeStrictEq(Node* node, bool invert)
{
    JSValueOperand arg1(this, node->child1());
    JSValueOperand arg2(this, node->child2());
    JSValueRegs arg1Regs = arg1.jsValueRegs();
    JSValueRegs arg2Regs = arg2.jsValueRegs();
    
    GPRTemporary result(this);
    GPRReg resultGPR = result.gpr();
    
    arg1.use();
    arg2.use();
    
    if (isKnownCell(node->child1().node()) && isKnownCell(node->child2().node())) {
        // see if we get lucky: if the arguments are cells and they reference the same
        // cell, then they must be strictly equal.
        // FIXME: this should flush registers instead of silent spill/fill.
        JITCompiler::Jump notEqualCase = m_jit.branch64(JITCompiler::NotEqual, arg1Regs.gpr(), arg2Regs.gpr());
        
        m_jit.move(JITCompiler::TrustedImm64(!invert), resultGPR);
        
        JITCompiler::Jump done = m_jit.jump();

        notEqualCase.link(&m_jit);
        
        silentSpillAllRegisters(resultGPR);
        callOperation(operationCompareStrictEqCell, resultGPR, arg1Regs, arg2Regs);
        silentFillAllRegisters();
        m_jit.exceptionCheck();
        
        done.link(&m_jit);
        unblessedBooleanResult(resultGPR, m_currentNode, UseChildrenCalledExplicitly);
        return;
    }

    m_jit.or64(arg1Regs.gpr(), arg2Regs.gpr(), resultGPR);

    JITCompiler::JumpList slowPathCases;

    JITCompiler::Jump twoCellsCase = m_jit.branchIfCell(resultGPR);

    JITCompiler::Jump leftOK = m_jit.branchIfInt32(arg1Regs);
    slowPathCases.append(m_jit.branchIfNumber(arg1Regs, InvalidGPRReg));
    leftOK.link(&m_jit);
    JITCompiler::Jump rightOK = m_jit.branchIfInt32(arg2Regs);
    slowPathCases.append(m_jit.branchIfNumber(arg2Regs, InvalidGPRReg));
    rightOK.link(&m_jit);

    m_jit.compare64(invert ? JITCompiler::NotEqual : JITCompiler::Equal, arg1Regs.gpr(), arg2Regs.gpr(), resultGPR);

    JITCompiler::Jump done = m_jit.jump();

    twoCellsCase.link(&m_jit);
    slowPathCases.append(m_jit.branch64(JITCompiler::NotEqual, arg1Regs.gpr(), arg2Regs.gpr()));

    m_jit.move(JITCompiler::TrustedImm64(!invert), resultGPR);

    addSlowPathGenerator(slowPathCall(slowPathCases, this, operationCompareStrictEq, resultGPR, arg1Regs, arg2Regs));

    done.link(&m_jit);

    unblessedBooleanResult(resultGPR, m_currentNode, UseChildrenCalledExplicitly);
}

void SpeculativeJIT::emitCall(Node* node)
{
    CallLinkInfo::CallType callType;
    bool isVarargs = false;
    bool isForwardVarargs = false;
    bool isTail = false;
    bool isEmulatedTail = false;
    bool isDirect = false;
    switch (node->op()) {
    case Call:
    case CallEval:
        callType = CallLinkInfo::Call;
        break;
    case TailCall:
        callType = CallLinkInfo::TailCall;
        isTail = true;
        break;
    case TailCallInlinedCaller:
        callType = CallLinkInfo::Call;
        isEmulatedTail = true;
        break;
    case Construct:
        callType = CallLinkInfo::Construct;
        break;
    case CallVarargs:
        callType = CallLinkInfo::CallVarargs;
        isVarargs = true;
        break;
    case TailCallVarargs:
        callType = CallLinkInfo::TailCallVarargs;
        isVarargs = true;
        isTail = true;
        break;
    case TailCallVarargsInlinedCaller:
        callType = CallLinkInfo::CallVarargs;
        isVarargs = true;
        isEmulatedTail = true;
        break;
    case ConstructVarargs:
        callType = CallLinkInfo::ConstructVarargs;
        isVarargs = true;
        break;
    case CallForwardVarargs:
        callType = CallLinkInfo::CallVarargs;
        isForwardVarargs = true;
        break;
    case ConstructForwardVarargs:
        callType = CallLinkInfo::ConstructVarargs;
        isForwardVarargs = true;
        break;
    case TailCallForwardVarargs:
        callType = CallLinkInfo::TailCallVarargs;
        isTail = true;
        isForwardVarargs = true;
        break;
    case TailCallForwardVarargsInlinedCaller:
        callType = CallLinkInfo::CallVarargs;
        isEmulatedTail = true;
        isForwardVarargs = true;
        break;
    case DirectCall:
        callType = CallLinkInfo::DirectCall;
        isDirect = true;
        break;
    case DirectConstruct:
        callType = CallLinkInfo::DirectConstruct;
        isDirect = true;
        break;
    case DirectTailCall:
        callType = CallLinkInfo::DirectTailCall;
        isTail = true;
        isDirect = true;
        break;
    case DirectTailCallInlinedCaller:
        callType = CallLinkInfo::DirectCall;
        isEmulatedTail = true;
        isDirect = true;
        break;
    default:
        DFG_CRASH(m_jit.graph(), node, "bad node type");
        break;
    }

    GPRReg calleeGPR = InvalidGPRReg;
    CallFrameShuffleData shuffleData;
    
    ExecutableBase* executable = nullptr;
    FunctionExecutable* functionExecutable = nullptr;
    if (isDirect) {
        executable = node->castOperand<ExecutableBase*>();
        functionExecutable = jsDynamicCast<FunctionExecutable*>(*m_jit.vm(), executable);
    }
    
    unsigned numPassedArgs = 0;
    unsigned numAllocatedArgs = 0;
    
    // Gotta load the arguments somehow. Varargs is trickier.
    if (isVarargs || isForwardVarargs) {
        RELEASE_ASSERT(!isDirect);
        CallVarargsData* data = node->callVarargsData();

        int numUsedStackSlots = m_jit.graph().m_nextMachineLocal;
        
        if (isForwardVarargs) {
            flushRegisters();
            if (node->child3())
                use(node->child3());
            
            GPRReg scratchGPR1;
            GPRReg scratchGPR2;
            GPRReg scratchGPR3;
            
            scratchGPR1 = JITCompiler::selectScratchGPR();
            scratchGPR2 = JITCompiler::selectScratchGPR(scratchGPR1);
            scratchGPR3 = JITCompiler::selectScratchGPR(scratchGPR1, scratchGPR2);
            
            m_jit.move(TrustedImm32(numUsedStackSlots), scratchGPR2);
            JITCompiler::JumpList slowCase;
            InlineCallFrame* inlineCallFrame;
            if (node->child3())
                inlineCallFrame = node->child3()->origin.semantic.inlineCallFrame;
            else
                inlineCallFrame = node->origin.semantic.inlineCallFrame;
            // emitSetupVarargsFrameFastCase modifies the stack pointer if it succeeds.
            emitSetupVarargsFrameFastCase(*m_jit.vm(), m_jit, scratchGPR2, scratchGPR1, scratchGPR2, scratchGPR3, inlineCallFrame, data->firstVarArgOffset, slowCase);
            JITCompiler::Jump done = m_jit.jump();
            slowCase.link(&m_jit);
            callOperation(operationThrowStackOverflowForVarargs);
            m_jit.exceptionCheck();
            m_jit.abortWithReason(DFGVarargsThrowingPathDidNotThrow);
            done.link(&m_jit);
        } else {
            GPRReg argumentsGPR;
            GPRReg scratchGPR1;
            GPRReg scratchGPR2;
            GPRReg scratchGPR3;
            
            auto loadArgumentsGPR = [&] (GPRReg reservedGPR) {
                if (reservedGPR != InvalidGPRReg)
                    lock(reservedGPR);
                JSValueOperand arguments(this, node->child3());
                argumentsGPR = arguments.gpr();
                if (reservedGPR != InvalidGPRReg)
                    unlock(reservedGPR);
                flushRegisters();
                
                scratchGPR1 = JITCompiler::selectScratchGPR(argumentsGPR, reservedGPR);
                scratchGPR2 = JITCompiler::selectScratchGPR(argumentsGPR, scratchGPR1, reservedGPR);
                scratchGPR3 = JITCompiler::selectScratchGPR(argumentsGPR, scratchGPR1, scratchGPR2, reservedGPR);
            };
            
            loadArgumentsGPR(InvalidGPRReg);
            
            DFG_ASSERT(m_jit.graph(), node, isFlushed());
            
            // Right now, arguments is in argumentsGPR and the register file is flushed.
            callOperation(operationSizeFrameForVarargs, GPRInfo::returnValueGPR, argumentsGPR, numUsedStackSlots, data->firstVarArgOffset);
            m_jit.exceptionCheck();
            
            // Now we have the argument count of the callee frame, but we've lost the arguments operand.
            // Reconstruct the arguments operand while preserving the callee frame.
            loadArgumentsGPR(GPRInfo::returnValueGPR);
            m_jit.move(TrustedImm32(numUsedStackSlots), scratchGPR1);
            emitSetVarargsFrame(m_jit, GPRInfo::returnValueGPR, false, scratchGPR1, scratchGPR1);
            m_jit.addPtr(TrustedImm32(-(sizeof(CallerFrameAndPC) + WTF::roundUpToMultipleOf(stackAlignmentBytes(), 5 * sizeof(void*)))), scratchGPR1, JITCompiler::stackPointerRegister);
            
            callOperation(operationSetupVarargsFrame, GPRInfo::returnValueGPR, scratchGPR1, argumentsGPR, data->firstVarArgOffset, GPRInfo::returnValueGPR);
            m_jit.exceptionCheck();
            m_jit.addPtr(TrustedImm32(sizeof(CallerFrameAndPC)), GPRInfo::returnValueGPR, JITCompiler::stackPointerRegister);
        }
        
        DFG_ASSERT(m_jit.graph(), node, isFlushed());
        
        // We don't need the arguments array anymore.
        if (isVarargs)
            use(node->child3());

        // Now set up the "this" argument.
        JSValueOperand thisArgument(this, node->child2());
        GPRReg thisArgumentGPR = thisArgument.gpr();
        thisArgument.use();
        
        m_jit.store64(thisArgumentGPR, JITCompiler::calleeArgumentSlot(0));
    } else {
        // The call instruction's first child is the function; the subsequent children are the
        // arguments.
        numPassedArgs = node->numChildren() - 1;
        numAllocatedArgs = numPassedArgs;
        
        if (functionExecutable) {
            // Allocate more args if this would let us avoid arity checks. This is throttled by
            // CallLinkInfo's limit. It's probably good to throttle it - if the callee wants a
            // ginormous amount of argument space then it's better for them to do it so that when we
            // make calls to other things, we don't waste space.
            unsigned desiredNumAllocatedArgs = static_cast<unsigned>(functionExecutable->parameterCount()) + 1;
            if (desiredNumAllocatedArgs <= Options::maximumDirectCallStackSize()) {
                numAllocatedArgs = std::max(numAllocatedArgs, desiredNumAllocatedArgs);
                
                // Whoever converts to DirectCall should do this adjustment. It's too late for us to
                // do this adjustment now since we will have already emitted code that relied on the
                // value of m_parameterSlots.
                DFG_ASSERT(
                    m_jit.graph(), node,
                    Graph::parameterSlotsForArgCount(numAllocatedArgs)
                    <= m_jit.graph().m_parameterSlots);
            }
        }

        if (isTail) {
            Edge calleeEdge = m_jit.graph().child(node, 0);
            JSValueOperand callee(this, calleeEdge);
            calleeGPR = callee.gpr();
            if (!isDirect)
                callee.use();

            shuffleData.tagTypeNumber = GPRInfo::tagTypeNumberRegister;
            shuffleData.numLocals = m_jit.graph().frameRegisterCount();
            shuffleData.callee = ValueRecovery::inGPR(calleeGPR, DataFormatJS);
            shuffleData.args.resize(numAllocatedArgs);
            shuffleData.numPassedArgs = numPassedArgs;
            
            for (unsigned i = 0; i < numPassedArgs; ++i) {
                Edge argEdge = m_jit.graph().varArgChild(node, i + 1);
                GenerationInfo& info = generationInfo(argEdge.node());
                if (!isDirect)
                    use(argEdge);
                shuffleData.args[i] = info.recovery(argEdge->virtualRegister());
            }
            
            for (unsigned i = numPassedArgs; i < numAllocatedArgs; ++i)
                shuffleData.args[i] = ValueRecovery::constant(jsUndefined());

            shuffleData.setupCalleeSaveRegisters(m_jit.codeBlock());
        } else {
            m_jit.store32(MacroAssembler::TrustedImm32(numPassedArgs), JITCompiler::calleeFramePayloadSlot(CallFrameSlot::argumentCount));

            for (unsigned i = 0; i < numPassedArgs; i++) {
                Edge argEdge = m_jit.graph().m_varArgChildren[node->firstChild() + 1 + i];
                JSValueOperand arg(this, argEdge);
                GPRReg argGPR = arg.gpr();
                use(argEdge);
                
                m_jit.store64(argGPR, JITCompiler::calleeArgumentSlot(i));
            }
            
            for (unsigned i = numPassedArgs; i < numAllocatedArgs; ++i)
                m_jit.storeTrustedValue(jsUndefined(), JITCompiler::calleeArgumentSlot(i));
        }
    }
    
    if (!isTail || isVarargs || isForwardVarargs) {
        Edge calleeEdge = m_jit.graph().child(node, 0);
        JSValueOperand callee(this, calleeEdge);
        calleeGPR = callee.gpr();
        callee.use();
        m_jit.store64(calleeGPR, JITCompiler::calleeFrameSlot(CallFrameSlot::callee));

        flushRegisters();
    }

    CodeOrigin staticOrigin = node->origin.semantic;
    ASSERT(!isTail || !staticOrigin.inlineCallFrame || !staticOrigin.inlineCallFrame->getCallerSkippingTailCalls());
    ASSERT(!isEmulatedTail || (staticOrigin.inlineCallFrame && staticOrigin.inlineCallFrame->getCallerSkippingTailCalls()));
    CodeOrigin dynamicOrigin =
        isEmulatedTail ? *staticOrigin.inlineCallFrame->getCallerSkippingTailCalls() : staticOrigin;

    CallSiteIndex callSite = m_jit.recordCallSiteAndGenerateExceptionHandlingOSRExitIfNeeded(dynamicOrigin, m_stream->size());
    
    auto setResultAndResetStack = [&] () {
        GPRFlushedCallResult result(this);
        GPRReg resultGPR = result.gpr();
        m_jit.move(GPRInfo::returnValueGPR, resultGPR);

        jsValueResult(resultGPR, m_currentNode, DataFormatJS, UseChildrenCalledExplicitly);

        // After the calls are done, we need to reestablish our stack
        // pointer. We rely on this for varargs calls, calls with arity
        // mismatch (the callframe is slided) and tail calls.
        m_jit.addPtr(TrustedImm32(m_jit.graph().stackPointerOffset() * sizeof(Register)), GPRInfo::callFrameRegister, JITCompiler::stackPointerRegister);
    };
    
    CallLinkInfo* callLinkInfo = m_jit.codeBlock()->addCallLinkInfo();
    callLinkInfo->setUpCall(callType, m_currentNode->origin.semantic, calleeGPR);

    if (node->op() == CallEval) {
        // We want to call operationCallEval but we don't want to overwrite the parameter area in
        // which we have created a prototypical eval call frame. This means that we have to
        // subtract stack to make room for the call. Lucky for us, at this point we have the whole
        // register file to ourselves.
        
        m_jit.emitStoreCallSiteIndex(callSite);
        m_jit.addPtr(TrustedImm32(-static_cast<ptrdiff_t>(sizeof(CallerFrameAndPC))), JITCompiler::stackPointerRegister, GPRInfo::regT0);
        m_jit.storePtr(GPRInfo::callFrameRegister, JITCompiler::Address(GPRInfo::regT0, CallFrame::callerFrameOffset()));
        
        // Now we need to make room for:
        // - The caller frame and PC of a call to operationCallEval.
        // - Potentially two arguments on the stack.
        unsigned requiredBytes = sizeof(CallerFrameAndPC) + sizeof(ExecState*) * 2;
        requiredBytes = WTF::roundUpToMultipleOf(stackAlignmentBytes(), requiredBytes);
        m_jit.subPtr(TrustedImm32(requiredBytes), JITCompiler::stackPointerRegister);
        m_jit.setupArguments<decltype(operationCallEval)>(GPRInfo::regT0);
        prepareForExternalCall();
        m_jit.appendCall(operationCallEval);
        m_jit.exceptionCheck();
        JITCompiler::Jump done = m_jit.branchIfNotEmpty(GPRInfo::returnValueGPR);
        
        // This is the part where we meant to make a normal call. Oops.
        m_jit.addPtr(TrustedImm32(requiredBytes), JITCompiler::stackPointerRegister);
        m_jit.load64(JITCompiler::calleeFrameSlot(CallFrameSlot::callee), GPRInfo::regT0);
        m_jit.emitDumbVirtualCall(*m_jit.vm(), callLinkInfo);
        
        done.link(&m_jit);
        setResultAndResetStack();
        return;
    }
    
    if (isDirect) {
        callLinkInfo->setExecutableDuringCompilation(executable);
        callLinkInfo->setMaxNumArguments(numAllocatedArgs);

        if (isTail) {
            RELEASE_ASSERT(node->op() == DirectTailCall);
            
            JITCompiler::PatchableJump patchableJump = m_jit.patchableJump();
            JITCompiler::Label mainPath = m_jit.label();
            
            m_jit.emitStoreCallSiteIndex(callSite);
            
            callLinkInfo->setFrameShuffleData(shuffleData);
            CallFrameShuffler(m_jit, shuffleData).prepareForTailCall();
            
            JITCompiler::Call call = m_jit.nearTailCall();
            
            JITCompiler::Label slowPath = m_jit.label();
            patchableJump.m_jump.linkTo(slowPath, &m_jit);
            
            silentSpillAllRegisters(InvalidGPRReg);
            callOperation(operationLinkDirectCall, callLinkInfo, calleeGPR);
            silentFillAllRegisters();
            m_jit.exceptionCheck();
            m_jit.jump().linkTo(mainPath, &m_jit);
            
            useChildren(node);
            
            m_jit.addJSDirectTailCall(patchableJump, call, slowPath, callLinkInfo);
            return;
        }
        
        JITCompiler::Label mainPath = m_jit.label();
        
        m_jit.emitStoreCallSiteIndex(callSite);
        
        JITCompiler::Call call = m_jit.nearCall();
        JITCompiler::Jump done = m_jit.jump();
        
        JITCompiler::Label slowPath = m_jit.label();
        if (isX86())
            m_jit.pop(JITCompiler::selectScratchGPR(calleeGPR));

        callOperation(operationLinkDirectCall, callLinkInfo, calleeGPR);
        m_jit.exceptionCheck();
        m_jit.jump().linkTo(mainPath, &m_jit);
        
        done.link(&m_jit);
        
        setResultAndResetStack();
        
        m_jit.addJSDirectCall(call, slowPath, callLinkInfo);
        return;
    }
    
    m_jit.emitStoreCallSiteIndex(callSite);
    
    JITCompiler::DataLabelPtr targetToCheck;
    JITCompiler::Jump slowPath = m_jit.branchPtrWithPatch(MacroAssembler::NotEqual, calleeGPR, targetToCheck, TrustedImmPtr(nullptr));

    if (isTail) {
        if (node->op() == TailCall) {
            callLinkInfo->setFrameShuffleData(shuffleData);
            CallFrameShuffler(m_jit, shuffleData).prepareForTailCall();
        } else {
            m_jit.emitRestoreCalleeSaves();
            m_jit.prepareForTailCallSlow();
        }
    }

    JITCompiler::Call fastCall = isTail ? m_jit.nearTailCall() : m_jit.nearCall();

    JITCompiler::Jump done = m_jit.jump();

    slowPath.link(&m_jit);

    if (node->op() == TailCall) {
        CallFrameShuffler callFrameShuffler(m_jit, shuffleData);
        callFrameShuffler.setCalleeJSValueRegs(JSValueRegs(GPRInfo::regT0));
        callFrameShuffler.prepareForSlowPath();
    } else {
        m_jit.move(calleeGPR, GPRInfo::regT0); // Callee needs to be in regT0

        if (isTail)
            m_jit.emitRestoreCalleeSaves(); // This needs to happen after we moved calleeGPR to regT0
    }

    m_jit.move(TrustedImmPtr(callLinkInfo), GPRInfo::regT2); // Link info needs to be in regT2
    JITCompiler::Call slowCall = m_jit.nearCall();

    done.link(&m_jit);

    if (isTail)
        m_jit.abortWithReason(JITDidReturnFromTailCall);
    else
        setResultAndResetStack();

    m_jit.addJSCall(fastCall, slowCall, targetToCheck, callLinkInfo);
}

// Clang should allow unreachable [[clang::fallthrough]] in template functions if any template expansion uses it
// http://llvm.org/bugs/show_bug.cgi?id=18619
IGNORE_WARNINGS_BEGIN("implicit-fallthrough")
template<bool strict>
GPRReg SpeculativeJIT::fillSpeculateInt32Internal(Edge edge, DataFormat& returnFormat)
{
    AbstractValue& value = m_state.forNode(edge);
    SpeculatedType type = value.m_type;
    ASSERT(edge.useKind() != KnownInt32Use || !(value.m_type & ~SpecInt32Only));

    m_interpreter.filter(value, SpecInt32Only);
    if (value.isClear()) {
        if (mayHaveTypeCheck(edge.useKind()))
            terminateSpeculativeExecution(Uncountable, JSValueRegs(), 0);
        returnFormat = DataFormatInt32;
        return allocate();
    }

    VirtualRegister virtualRegister = edge->virtualRegister();
    GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);

    switch (info.registerFormat()) {
    case DataFormatNone: {
        GPRReg gpr = allocate();

        if (edge->hasConstant()) {
            m_gprs.retain(gpr, virtualRegister, SpillOrderConstant);
            ASSERT(edge->isInt32Constant());
            m_jit.move(MacroAssembler::Imm32(edge->asInt32()), gpr);
            info.fillInt32(*m_stream, gpr);
            returnFormat = DataFormatInt32;
            return gpr;
        }
        
        DataFormat spillFormat = info.spillFormat();
        
        DFG_ASSERT(m_jit.graph(), m_currentNode, (spillFormat & DataFormatJS) || spillFormat == DataFormatInt32, spillFormat);
        
        m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled);
        
        if (spillFormat == DataFormatJSInt32 || spillFormat == DataFormatInt32) {
            // If we know this was spilled as an integer we can fill without checking.
            if (strict) {
                m_jit.load32(JITCompiler::addressFor(virtualRegister), gpr);
                info.fillInt32(*m_stream, gpr);
                returnFormat = DataFormatInt32;
                return gpr;
            }
            if (spillFormat == DataFormatInt32) {
                m_jit.load32(JITCompiler::addressFor(virtualRegister), gpr);
                info.fillInt32(*m_stream, gpr);
                returnFormat = DataFormatInt32;
            } else {
                m_jit.load64(JITCompiler::addressFor(virtualRegister), gpr);
                info.fillJSValue(*m_stream, gpr, DataFormatJSInt32);
                returnFormat = DataFormatJSInt32;
            }
            return gpr;
        }
        m_jit.load64(JITCompiler::addressFor(virtualRegister), gpr);

        // Fill as JSValue, and fall through.
        info.fillJSValue(*m_stream, gpr, DataFormatJSInt32);
        m_gprs.unlock(gpr);
        FALLTHROUGH;
    }

    case DataFormatJS: {
        DFG_ASSERT(m_jit.graph(), m_currentNode, !(type & SpecInt52Only));
        // Check the value is an integer.
        GPRReg gpr = info.gpr();
        m_gprs.lock(gpr);
        if (type & ~SpecInt32Only)
            speculationCheck(BadType, JSValueRegs(gpr), edge, m_jit.branchIfNotInt32(gpr));
        info.fillJSValue(*m_stream, gpr, DataFormatJSInt32);
        // If !strict we're done, return.
        if (!strict) {
            returnFormat = DataFormatJSInt32;
            return gpr;
        }
        // else fall through & handle as DataFormatJSInt32.
        m_gprs.unlock(gpr);
        FALLTHROUGH;
    }

    case DataFormatJSInt32: {
        // In a strict fill we need to strip off the value tag.
        if (strict) {
            GPRReg gpr = info.gpr();
            GPRReg result;
            // If the register has already been locked we need to take a copy.
            // If not, we'll zero extend in place, so mark on the info that this is now type DataFormatInt32, not DataFormatJSInt32.
            if (m_gprs.isLocked(gpr))
                result = allocate();
            else {
                m_gprs.lock(gpr);
                info.fillInt32(*m_stream, gpr);
                result = gpr;
            }
            m_jit.zeroExtend32ToPtr(gpr, result);
            returnFormat = DataFormatInt32;
            return result;
        }

        GPRReg gpr = info.gpr();
        m_gprs.lock(gpr);
        returnFormat = DataFormatJSInt32;
        return gpr;
    }

    case DataFormatInt32: {
        GPRReg gpr = info.gpr();
        m_gprs.lock(gpr);
        returnFormat = DataFormatInt32;
        return gpr;
    }
        
    case DataFormatJSDouble:
    case DataFormatCell:
    case DataFormatBoolean:
    case DataFormatJSCell:
    case DataFormatJSBoolean:
    case DataFormatDouble:
    case DataFormatStorage:
    case DataFormatInt52:
    case DataFormatStrictInt52:
        DFG_CRASH(m_jit.graph(), m_currentNode, "Bad data format");
        
    default:
        DFG_CRASH(m_jit.graph(), m_currentNode, "Corrupt data format");
        return InvalidGPRReg;
    }
}
IGNORE_WARNINGS_END

GPRReg SpeculativeJIT::fillSpeculateInt32(Edge edge, DataFormat& returnFormat)
{
    return fillSpeculateInt32Internal<false>(edge, returnFormat);
}

GPRReg SpeculativeJIT::fillSpeculateInt32Strict(Edge edge)
{
    DataFormat mustBeDataFormatInt32;
    GPRReg result = fillSpeculateInt32Internal<true>(edge, mustBeDataFormatInt32);
    DFG_ASSERT(m_jit.graph(), m_currentNode, mustBeDataFormatInt32 == DataFormatInt32, mustBeDataFormatInt32);
    return result;
}

GPRReg SpeculativeJIT::fillSpeculateInt52(Edge edge, DataFormat desiredFormat)
{
    ASSERT(desiredFormat == DataFormatInt52 || desiredFormat == DataFormatStrictInt52);
    AbstractValue& value = m_state.forNode(edge);

    m_interpreter.filter(value, SpecAnyInt);
    if (value.isClear()) {
        if (mayHaveTypeCheck(edge.useKind()))
            terminateSpeculativeExecution(Uncountable, JSValueRegs(), 0);
        return allocate();
    }

    VirtualRegister virtualRegister = edge->virtualRegister();
    GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);

    switch (info.registerFormat()) {
    case DataFormatNone: {
        GPRReg gpr = allocate();

        if (edge->hasConstant()) {
            JSValue jsValue = edge->asJSValue();
            ASSERT(jsValue.isAnyInt());
            m_gprs.retain(gpr, virtualRegister, SpillOrderConstant);
            int64_t value = jsValue.asAnyInt();
            if (desiredFormat == DataFormatInt52)
                value = value << JSValue::int52ShiftAmount;
            m_jit.move(MacroAssembler::Imm64(value), gpr);
            info.fillGPR(*m_stream, gpr, desiredFormat);
            return gpr;
        }
        
        DataFormat spillFormat = info.spillFormat();
        
        DFG_ASSERT(m_jit.graph(), m_currentNode, spillFormat == DataFormatInt52 || spillFormat == DataFormatStrictInt52, spillFormat);
        
        m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled);
        
        m_jit.load64(JITCompiler::addressFor(virtualRegister), gpr);
        if (desiredFormat == DataFormatStrictInt52) {
            if (spillFormat == DataFormatInt52)
                m_jit.rshift64(TrustedImm32(JSValue::int52ShiftAmount), gpr);
            info.fillStrictInt52(*m_stream, gpr);
            return gpr;
        }
        if (spillFormat == DataFormatStrictInt52)
            m_jit.lshift64(TrustedImm32(JSValue::int52ShiftAmount), gpr);
        info.fillInt52(*m_stream, gpr);
        return gpr;
    }

    case DataFormatStrictInt52: {
        GPRReg gpr = info.gpr();
        bool wasLocked = m_gprs.isLocked(gpr);
        lock(gpr);
        if (desiredFormat == DataFormatStrictInt52)
            return gpr;
        if (wasLocked) {
            GPRReg result = allocate();
            m_jit.move(gpr, result);
            unlock(gpr);
            gpr = result;
        } else
            info.fillInt52(*m_stream, gpr);
        m_jit.lshift64(TrustedImm32(JSValue::int52ShiftAmount), gpr);
        return gpr;
    }
        
    case DataFormatInt52: {
        GPRReg gpr = info.gpr();
        bool wasLocked = m_gprs.isLocked(gpr);
        lock(gpr);
        if (desiredFormat == DataFormatInt52)
            return gpr;
        if (wasLocked) {
            GPRReg result = allocate();
            m_jit.move(gpr, result);
            unlock(gpr);
            gpr = result;
        } else
            info.fillStrictInt52(*m_stream, gpr);
        m_jit.rshift64(TrustedImm32(JSValue::int52ShiftAmount), gpr);
        return gpr;
    }

    default:
        DFG_CRASH(m_jit.graph(), m_currentNode, "Bad data format");
        return InvalidGPRReg;
    }
}

FPRReg SpeculativeJIT::fillSpeculateDouble(Edge edge)
{
    ASSERT(edge.useKind() == DoubleRepUse || edge.useKind() == DoubleRepRealUse || edge.useKind() == DoubleRepAnyIntUse);
    ASSERT(edge->hasDoubleResult());
    VirtualRegister virtualRegister = edge->virtualRegister();
    GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);

    if (info.registerFormat() == DataFormatNone) {
        if (edge->hasConstant()) {
            if (edge->isNumberConstant()) {
                FPRReg fpr = fprAllocate();
                int64_t doubleAsInt = reinterpretDoubleToInt64(edge->asNumber());
                if (!doubleAsInt)
                    m_jit.moveZeroToDouble(fpr);
                else {
                    GPRReg gpr = allocate();
                    m_jit.move(MacroAssembler::Imm64(doubleAsInt), gpr);
                    m_jit.move64ToDouble(gpr, fpr);
                    unlock(gpr);
                }

                m_fprs.retain(fpr, virtualRegister, SpillOrderDouble);
                info.fillDouble(*m_stream, fpr);
                return fpr;
            }
            if (mayHaveTypeCheck(edge.useKind()))
                terminateSpeculativeExecution(Uncountable, JSValueRegs(), 0);
            return fprAllocate();
        }
        
        DataFormat spillFormat = info.spillFormat();
        if (spillFormat != DataFormatDouble) {
            DFG_CRASH(
                m_jit.graph(), m_currentNode, toCString(
                    "Expected ", edge, " to have double format but instead it is spilled as ",
                    dataFormatToString(spillFormat)).data());
        }
        DFG_ASSERT(m_jit.graph(), m_currentNode, spillFormat == DataFormatDouble, spillFormat);
        FPRReg fpr = fprAllocate();
        m_jit.loadDouble(JITCompiler::addressFor(virtualRegister), fpr);
        m_fprs.retain(fpr, virtualRegister, SpillOrderDouble);
        info.fillDouble(*m_stream, fpr);
        return fpr;
    }

    DFG_ASSERT(m_jit.graph(), m_currentNode, info.registerFormat() == DataFormatDouble, info.registerFormat());
    FPRReg fpr = info.fpr();
    m_fprs.lock(fpr);
    return fpr;
}

GPRReg SpeculativeJIT::fillSpeculateCell(Edge edge)
{
    AbstractValue& value = m_state.forNode(edge);
    SpeculatedType type = value.m_type;
    ASSERT((edge.useKind() != KnownCellUse && edge.useKind() != KnownStringUse) || !(value.m_type & ~SpecCellCheck));

    m_interpreter.filter(value, SpecCellCheck);
    if (value.isClear()) {
        if (mayHaveTypeCheck(edge.useKind()))
            terminateSpeculativeExecution(Uncountable, JSValueRegs(), 0);
        return allocate();
    }

    VirtualRegister virtualRegister = edge->virtualRegister();
    GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);

    switch (info.registerFormat()) {
    case DataFormatNone: {
        GPRReg gpr = allocate();

        if (edge->hasConstant()) {
            JSValue jsValue = edge->asJSValue();
            m_gprs.retain(gpr, virtualRegister, SpillOrderConstant);
            m_jit.move(MacroAssembler::TrustedImm64(JSValue::encode(jsValue)), gpr);
            info.fillJSValue(*m_stream, gpr, DataFormatJSCell);
            return gpr;
        }

        m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled);
        m_jit.load64(JITCompiler::addressFor(virtualRegister), gpr);

        info.fillJSValue(*m_stream, gpr, DataFormatJS);
        if (type & ~SpecCellCheck)
            speculationCheck(BadType, JSValueRegs(gpr), edge, m_jit.branchIfNotCell(JSValueRegs(gpr)));
        info.fillJSValue(*m_stream, gpr, DataFormatJSCell);
        return gpr;
    }

    case DataFormatCell:
    case DataFormatJSCell: {
        GPRReg gpr = info.gpr();
        m_gprs.lock(gpr);
        if (!ASSERT_DISABLED) {
            MacroAssembler::Jump checkCell = m_jit.branchIfCell(JSValueRegs(gpr));
            m_jit.abortWithReason(DFGIsNotCell);
            checkCell.link(&m_jit);
        }
        return gpr;
    }

    case DataFormatJS: {
        GPRReg gpr = info.gpr();
        m_gprs.lock(gpr);
        if (type & ~SpecCellCheck)
            speculationCheck(BadType, JSValueRegs(gpr), edge, m_jit.branchIfNotCell(JSValueRegs(gpr)));
        info.fillJSValue(*m_stream, gpr, DataFormatJSCell);
        return gpr;
    }

    case DataFormatJSInt32:
    case DataFormatInt32:
    case DataFormatJSDouble:
    case DataFormatJSBoolean:
    case DataFormatBoolean:
    case DataFormatDouble:
    case DataFormatStorage:
    case DataFormatInt52:
    case DataFormatStrictInt52:
        DFG_CRASH(m_jit.graph(), m_currentNode, "Bad data format");
        
    default:
        DFG_CRASH(m_jit.graph(), m_currentNode, "Corrupt data format");
        return InvalidGPRReg;
    }
}

GPRReg SpeculativeJIT::fillSpeculateBoolean(Edge edge)
{
    AbstractValue& value = m_state.forNode(edge);
    SpeculatedType type = value.m_type;
    ASSERT(edge.useKind() != KnownBooleanUse || !(value.m_type & ~SpecBoolean));

    m_interpreter.filter(value, SpecBoolean);
    if (value.isClear()) {
        if (mayHaveTypeCheck(edge.useKind()))
            terminateSpeculativeExecution(Uncountable, JSValueRegs(), 0);
        return allocate();
    }

    VirtualRegister virtualRegister = edge->virtualRegister();
    GenerationInfo& info = generationInfoFromVirtualRegister(virtualRegister);

    switch (info.registerFormat()) {
    case DataFormatNone: {
        GPRReg gpr = allocate();

        if (edge->hasConstant()) {
            JSValue jsValue = edge->asJSValue();
            m_gprs.retain(gpr, virtualRegister, SpillOrderConstant);
            m_jit.move(MacroAssembler::TrustedImm64(JSValue::encode(jsValue)), gpr);
            info.fillJSValue(*m_stream, gpr, DataFormatJSBoolean);
            return gpr;
        }
        DFG_ASSERT(m_jit.graph(), m_currentNode, info.spillFormat() & DataFormatJS, info.spillFormat());
        m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled);
        m_jit.load64(JITCompiler::addressFor(virtualRegister), gpr);

        info.fillJSValue(*m_stream, gpr, DataFormatJS);
        if (type & ~SpecBoolean) {
            m_jit.xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), gpr);
            speculationCheck(BadType, JSValueRegs(gpr), edge, m_jit.branchTest64(MacroAssembler::NonZero, gpr, TrustedImm32(static_cast<int32_t>(~1))), SpeculationRecovery(BooleanSpeculationCheck, gpr, InvalidGPRReg));
            m_jit.xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), gpr);
        }
        info.fillJSValue(*m_stream, gpr, DataFormatJSBoolean);
        return gpr;
    }

    case DataFormatBoolean:
    case DataFormatJSBoolean: {
        GPRReg gpr = info.gpr();
        m_gprs.lock(gpr);
        return gpr;
    }

    case DataFormatJS: {
        GPRReg gpr = info.gpr();
        m_gprs.lock(gpr);
        if (type & ~SpecBoolean) {
            m_jit.xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), gpr);
            speculationCheck(BadType, JSValueRegs(gpr), edge, m_jit.branchTest64(MacroAssembler::NonZero, gpr, TrustedImm32(static_cast<int32_t>(~1))), SpeculationRecovery(BooleanSpeculationCheck, gpr, InvalidGPRReg));
            m_jit.xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), gpr);
        }
        info.fillJSValue(*m_stream, gpr, DataFormatJSBoolean);
        return gpr;
    }

    case DataFormatJSInt32:
    case DataFormatInt32:
    case DataFormatJSDouble:
    case DataFormatJSCell:
    case DataFormatCell:
    case DataFormatDouble:
    case DataFormatStorage:
    case DataFormatInt52:
    case DataFormatStrictInt52:
        DFG_CRASH(m_jit.graph(), m_currentNode, "Bad data format");
        
    default:
        DFG_CRASH(m_jit.graph(), m_currentNode, "Corrupt data format");
        return InvalidGPRReg;
    }
}

void SpeculativeJIT::compileObjectStrictEquality(Edge objectChild, Edge otherChild)
{
    SpeculateCellOperand op1(this, objectChild);
    JSValueOperand op2(this, otherChild);
    GPRTemporary result(this);

    GPRReg op1GPR = op1.gpr();
    GPRReg op2GPR = op2.gpr();
    GPRReg resultGPR = result.gpr();

    DFG_TYPE_CHECK(JSValueSource::unboxedCell(op1GPR), objectChild, SpecObject, m_jit.branchIfNotObject(op1GPR));

    // At this point we know that we can perform a straight-forward equality comparison on pointer
    // values because we are doing strict equality.
    m_jit.compare64(MacroAssembler::Equal, op1GPR, op2GPR, resultGPR);
    m_jit.or32(TrustedImm32(ValueFalse), resultGPR);
    jsValueResult(resultGPR, m_currentNode, DataFormatJSBoolean);
}
    
void SpeculativeJIT::compilePeepHoleObjectStrictEquality(Edge objectChild, Edge otherChild, Node* branchNode)
{
    BasicBlock* taken = branchNode->branchData()->taken.block;
    BasicBlock* notTaken = branchNode->branchData()->notTaken.block;
    
    SpeculateCellOperand op1(this, objectChild);
    JSValueOperand op2(this, otherChild);
    
    GPRReg op1GPR = op1.gpr();
    GPRReg op2GPR = op2.gpr();
    
    DFG_TYPE_CHECK(JSValueSource::unboxedCell(op1GPR), objectChild, SpecObject, m_jit.branchIfNotObject(op1GPR));

    if (taken == nextBlock()) {
        branchPtr(MacroAssembler::NotEqual, op1GPR, op2GPR, notTaken);
        jump(taken);
    } else {
        branchPtr(MacroAssembler::Equal, op1GPR, op2GPR, taken);
        jump(notTaken);
    }
}

void SpeculativeJIT::compileObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild)
{
    SpeculateCellOperand op1(this, leftChild);
    JSValueOperand op2(this, rightChild, ManualOperandSpeculation);
    GPRTemporary result(this);
    
    GPRReg op1GPR = op1.gpr();
    GPRReg op2GPR = op2.gpr();
    GPRReg resultGPR = result.gpr();

    bool masqueradesAsUndefinedWatchpointValid =
        masqueradesAsUndefinedWatchpointIsStillValid();

    if (masqueradesAsUndefinedWatchpointValid) {
        DFG_TYPE_CHECK(
            JSValueSource::unboxedCell(op1GPR), leftChild, SpecObject, m_jit.branchIfNotObject(op1GPR));
    } else {
        DFG_TYPE_CHECK(
            JSValueSource::unboxedCell(op1GPR), leftChild, SpecObject, m_jit.branchIfNotObject(op1GPR));
        speculationCheck(BadType, JSValueSource::unboxedCell(op1GPR), leftChild,
            m_jit.branchTest8(
                MacroAssembler::NonZero, 
                MacroAssembler::Address(op1GPR, JSCell::typeInfoFlagsOffset()), 
                MacroAssembler::TrustedImm32(MasqueradesAsUndefined)));
    }
    
    // It seems that most of the time when programs do a == b where b may be either null/undefined
    // or an object, b is usually an object. Balance the branches to make that case fast.
    MacroAssembler::Jump rightNotCell = m_jit.branchIfNotCell(JSValueRegs(op2GPR));
    
    // We know that within this branch, rightChild must be a cell. 
    if (masqueradesAsUndefinedWatchpointValid) {
        DFG_TYPE_CHECK(
            JSValueRegs(op2GPR), rightChild, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(op2GPR));
    } else {
        DFG_TYPE_CHECK(
            JSValueRegs(op2GPR), rightChild, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(op2GPR));
        speculationCheck(BadType, JSValueRegs(op2GPR), rightChild,
            m_jit.branchTest8(
                MacroAssembler::NonZero, 
                MacroAssembler::Address(op2GPR, JSCell::typeInfoFlagsOffset()), 
                MacroAssembler::TrustedImm32(MasqueradesAsUndefined)));
    }
    
    // At this point we know that we can perform a straight-forward equality comparison on pointer
    // values because both left and right are pointers to objects that have no special equality
    // protocols.
    m_jit.compare64(MacroAssembler::Equal, op1GPR, op2GPR, resultGPR);
    MacroAssembler::Jump done = m_jit.jump();
    
    rightNotCell.link(&m_jit);
    
    // We know that within this branch, rightChild must not be a cell. Check if that is enough to
    // prove that it is either null or undefined.
    if (needsTypeCheck(rightChild, SpecCellCheck | SpecOther)) {
        m_jit.move(op2GPR, resultGPR);
        m_jit.and64(MacroAssembler::TrustedImm32(~TagBitUndefined), resultGPR);
        
        typeCheck(
            JSValueRegs(op2GPR), rightChild, SpecCellCheck | SpecOther,
            m_jit.branch64(
                MacroAssembler::NotEqual, resultGPR,
                MacroAssembler::TrustedImm64(ValueNull)));
    }
    m_jit.move(TrustedImm32(0), result.gpr());

    done.link(&m_jit);
    m_jit.or32(TrustedImm32(ValueFalse), resultGPR);
    jsValueResult(resultGPR, m_currentNode, DataFormatJSBoolean);
}

void SpeculativeJIT::compilePeepHoleObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild, Node* branchNode)
{
    BasicBlock* taken = branchNode->branchData()->taken.block;
    BasicBlock* notTaken = branchNode->branchData()->notTaken.block;
    
    SpeculateCellOperand op1(this, leftChild);
    JSValueOperand op2(this, rightChild, ManualOperandSpeculation);
    GPRTemporary result(this);
    
    GPRReg op1GPR = op1.gpr();
    GPRReg op2GPR = op2.gpr();
    GPRReg resultGPR = result.gpr();
    
    bool masqueradesAsUndefinedWatchpointValid = 
        masqueradesAsUndefinedWatchpointIsStillValid();

    if (masqueradesAsUndefinedWatchpointValid) {
        DFG_TYPE_CHECK(
            JSValueSource::unboxedCell(op1GPR), leftChild, SpecObject, m_jit.branchIfNotObject(op1GPR));
    } else {
        DFG_TYPE_CHECK(
            JSValueSource::unboxedCell(op1GPR), leftChild, SpecObject, m_jit.branchIfNotObject(op1GPR));
        speculationCheck(BadType, JSValueSource::unboxedCell(op1GPR), leftChild, 
            m_jit.branchTest8(
                MacroAssembler::NonZero, 
                MacroAssembler::Address(op1GPR, JSCell::typeInfoFlagsOffset()), 
                MacroAssembler::TrustedImm32(MasqueradesAsUndefined)));
    }

    // It seems that most of the time when programs do a == b where b may be either null/undefined
    // or an object, b is usually an object. Balance the branches to make that case fast.
    MacroAssembler::Jump rightNotCell = m_jit.branchIfNotCell(JSValueRegs(op2GPR));
    
    // We know that within this branch, rightChild must be a cell. 
    if (masqueradesAsUndefinedWatchpointValid) {
        DFG_TYPE_CHECK(
            JSValueRegs(op2GPR), rightChild, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(op2GPR));
    } else {
        DFG_TYPE_CHECK(
            JSValueRegs(op2GPR), rightChild, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(op2GPR));
        speculationCheck(BadType, JSValueRegs(op2GPR), rightChild,
            m_jit.branchTest8(
                MacroAssembler::NonZero, 
                MacroAssembler::Address(op2GPR, JSCell::typeInfoFlagsOffset()), 
                MacroAssembler::TrustedImm32(MasqueradesAsUndefined)));
    }
    
    // At this point we know that we can perform a straight-forward equality comparison on pointer
    // values because both left and right are pointers to objects that have no special equality
    // protocols.
    branch64(MacroAssembler::Equal, op1GPR, op2GPR, taken);
    
    // We know that within this branch, rightChild must not be a cell. Check if that is enough to
    // prove that it is either null or undefined.
    if (!needsTypeCheck(rightChild, SpecCellCheck | SpecOther))
        rightNotCell.link(&m_jit);
    else {
        jump(notTaken, ForceJump);
        
        rightNotCell.link(&m_jit);
        m_jit.move(op2GPR, resultGPR);
        m_jit.and64(MacroAssembler::TrustedImm32(~TagBitUndefined), resultGPR);
        
        typeCheck(
            JSValueRegs(op2GPR), rightChild, SpecCellCheck | SpecOther, m_jit.branch64(
                MacroAssembler::NotEqual, resultGPR,
                MacroAssembler::TrustedImm64(ValueNull)));
    }
    
    jump(notTaken);
}

void SpeculativeJIT::compileSymbolUntypedEquality(Node* node, Edge symbolEdge, Edge untypedEdge)
{
    SpeculateCellOperand symbol(this, symbolEdge);
    JSValueOperand untyped(this, untypedEdge);
    GPRTemporary result(this, Reuse, symbol, untyped);

    GPRReg symbolGPR = symbol.gpr();
    GPRReg untypedGPR = untyped.gpr();
    GPRReg resultGPR = result.gpr();

    speculateSymbol(symbolEdge, symbolGPR);

    // At this point we know that we can perform a straight-forward equality comparison on pointer
    // values because we are doing strict equality.
    m_jit.compare64(MacroAssembler::Equal, symbolGPR, untypedGPR, resultGPR);
    unblessedBooleanResult(resultGPR, node);
}

void SpeculativeJIT::compileInt52Compare(Node* node, MacroAssembler::RelationalCondition condition)
{
    SpeculateWhicheverInt52Operand op1(this, node->child1());
    SpeculateWhicheverInt52Operand op2(this, node->child2(), op1);
    GPRTemporary result(this, Reuse, op1, op2);
    
    m_jit.compare64(condition, op1.gpr(), op2.gpr(), result.gpr());
    
    // If we add a DataFormatBool, we should use it here.
    m_jit.or32(TrustedImm32(ValueFalse), result.gpr());
    jsValueResult(result.gpr(), m_currentNode, DataFormatJSBoolean);
}

void SpeculativeJIT::compilePeepHoleInt52Branch(Node* node, Node* branchNode, JITCompiler::RelationalCondition condition)
{
    BasicBlock* taken = branchNode->branchData()->taken.block;
    BasicBlock* notTaken = branchNode->branchData()->notTaken.block;

    // The branch instruction will branch to the taken block.
    // If taken is next, switch taken with notTaken & invert the branch condition so we can fall through.
    if (taken == nextBlock()) {
        condition = JITCompiler::invert(condition);
        BasicBlock* tmp = taken;
        taken = notTaken;
        notTaken = tmp;
    }
    
    SpeculateWhicheverInt52Operand op1(this, node->child1());
    SpeculateWhicheverInt52Operand op2(this, node->child2(), op1);
    
    branch64(condition, op1.gpr(), op2.gpr(), taken);
    jump(notTaken);
}

void SpeculativeJIT::compileCompareEqPtr(Node* node)
{
    JSValueOperand value(this, node->child1());
    GPRTemporary result(this);
    GPRReg valueGPR = value.gpr();
    GPRReg resultGPR = result.gpr();

    m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), node->cellOperand()->cell()), resultGPR);
    m_jit.compare64(MacroAssembler::Equal, valueGPR, resultGPR, resultGPR);
    unblessedBooleanResult(resultGPR, node);
}

void SpeculativeJIT::compileObjectOrOtherLogicalNot(Edge nodeUse)
{
    JSValueOperand value(this, nodeUse, ManualOperandSpeculation);
    GPRTemporary result(this);
    GPRReg valueGPR = value.gpr();
    GPRReg resultGPR = result.gpr();
    GPRTemporary structure;
    GPRReg structureGPR = InvalidGPRReg;
    GPRTemporary scratch;
    GPRReg scratchGPR = InvalidGPRReg;

    bool masqueradesAsUndefinedWatchpointValid =
        masqueradesAsUndefinedWatchpointIsStillValid();

    if (!masqueradesAsUndefinedWatchpointValid) {
        // The masquerades as undefined case will use the structure register, so allocate it here.
        // Do this at the top of the function to avoid branching around a register allocation.
        GPRTemporary realStructure(this);
        GPRTemporary realScratch(this);
        structure.adopt(realStructure);
        scratch.adopt(realScratch);
        structureGPR = structure.gpr();
        scratchGPR = scratch.gpr();
    }

    MacroAssembler::Jump notCell = m_jit.branchIfNotCell(JSValueRegs(valueGPR));
    if (masqueradesAsUndefinedWatchpointValid) {
        DFG_TYPE_CHECK(
            JSValueRegs(valueGPR), nodeUse, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(valueGPR));
    } else {
        DFG_TYPE_CHECK(
            JSValueRegs(valueGPR), nodeUse, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(valueGPR));

        MacroAssembler::Jump isNotMasqueradesAsUndefined = 
            m_jit.branchTest8(
                MacroAssembler::Zero, 
                MacroAssembler::Address(valueGPR, JSCell::typeInfoFlagsOffset()), 
                MacroAssembler::TrustedImm32(MasqueradesAsUndefined));

        m_jit.emitLoadStructure(*m_jit.vm(), valueGPR, structureGPR, scratchGPR);
        speculationCheck(BadType, JSValueRegs(valueGPR), nodeUse, 
            m_jit.branchPtr(
                MacroAssembler::Equal, 
                MacroAssembler::Address(structureGPR, Structure::globalObjectOffset()), 
                TrustedImmPtr::weakPointer(m_jit.graph(), m_jit.graph().globalObjectFor(m_currentNode->origin.semantic))));

        isNotMasqueradesAsUndefined.link(&m_jit);
    }
    m_jit.move(TrustedImm32(ValueFalse), resultGPR);
    MacroAssembler::Jump done = m_jit.jump();
    
    notCell.link(&m_jit);

    if (needsTypeCheck(nodeUse, SpecCellCheck | SpecOther)) {
        m_jit.move(valueGPR, resultGPR);
        m_jit.and64(MacroAssembler::TrustedImm32(~TagBitUndefined), resultGPR);
        typeCheck(
            JSValueRegs(valueGPR), nodeUse, SpecCellCheck | SpecOther, m_jit.branch64(
                MacroAssembler::NotEqual, 
                resultGPR, 
                MacroAssembler::TrustedImm64(ValueNull)));
    }
    m_jit.move(TrustedImm32(ValueTrue), resultGPR);
    
    done.link(&m_jit);
    
    jsValueResult(resultGPR, m_currentNode, DataFormatJSBoolean);
}

void SpeculativeJIT::compileLogicalNot(Node* node)
{
    switch (node->child1().useKind()) {
    case ObjectOrOtherUse: {
        compileObjectOrOtherLogicalNot(node->child1());
        return;
    }
        
    case Int32Use: {
        SpeculateInt32Operand value(this, node->child1());
        GPRTemporary result(this, Reuse, value);
        m_jit.compare32(MacroAssembler::Equal, value.gpr(), MacroAssembler::TrustedImm32(0), result.gpr());
        m_jit.or32(TrustedImm32(ValueFalse), result.gpr());
        jsValueResult(result.gpr(), node, DataFormatJSBoolean);
        return;
    }
        
    case DoubleRepUse: {
        SpeculateDoubleOperand value(this, node->child1());
        FPRTemporary scratch(this);
        GPRTemporary result(this);
        m_jit.move(TrustedImm32(ValueFalse), result.gpr());
        MacroAssembler::Jump nonZero = m_jit.branchDoubleNonZero(value.fpr(), scratch.fpr());
        m_jit.xor32(TrustedImm32(true), result.gpr());
        nonZero.link(&m_jit);
        jsValueResult(result.gpr(), node, DataFormatJSBoolean);
        return;
    }
    
    case BooleanUse:
    case KnownBooleanUse: {
        if (!needsTypeCheck(node->child1(), SpecBoolean)) {
            SpeculateBooleanOperand value(this, node->child1());
            GPRTemporary result(this, Reuse, value);
            
            m_jit.move(value.gpr(), result.gpr());
            m_jit.xor64(TrustedImm32(true), result.gpr());
            
            jsValueResult(result.gpr(), node, DataFormatJSBoolean);
            return;
        }
        
        JSValueOperand value(this, node->child1(), ManualOperandSpeculation);
        GPRTemporary result(this); // FIXME: We could reuse, but on speculation fail would need recovery to restore tag (akin to add).
        
        m_jit.move(value.gpr(), result.gpr());
        m_jit.xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), result.gpr());
        typeCheck(
            JSValueRegs(value.gpr()), node->child1(), SpecBoolean, m_jit.branchTest64(
                JITCompiler::NonZero, result.gpr(), TrustedImm32(static_cast<int32_t>(~1))));
        m_jit.xor64(TrustedImm32(static_cast<int32_t>(ValueTrue)), result.gpr());
        
        // If we add a DataFormatBool, we should use it here.
        jsValueResult(result.gpr(), node, DataFormatJSBoolean);
        return;
    }
        
    case UntypedUse: {
        JSValueOperand arg1(this, node->child1());
        GPRTemporary result(this);
    
        GPRReg arg1GPR = arg1.gpr();
        GPRReg resultGPR = result.gpr();

        FPRTemporary valueFPR(this);
        FPRTemporary tempFPR(this);

        bool shouldCheckMasqueradesAsUndefined = !masqueradesAsUndefinedWatchpointIsStillValid();
        JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
        Optional<GPRTemporary> scratch;
        GPRReg scratchGPR = InvalidGPRReg;
        if (shouldCheckMasqueradesAsUndefined) {
            scratch.emplace(this);
            scratchGPR = scratch->gpr();
        }
        bool negateResult = true;
        m_jit.emitConvertValueToBoolean(*m_jit.vm(), JSValueRegs(arg1GPR), resultGPR, scratchGPR, valueFPR.fpr(), tempFPR.fpr(), shouldCheckMasqueradesAsUndefined, globalObject, negateResult);
        m_jit.or32(TrustedImm32(ValueFalse), resultGPR);
        jsValueResult(resultGPR, node, DataFormatJSBoolean);
        return;
    }
    case StringUse:
        return compileStringZeroLength(node);

    case StringOrOtherUse:
        return compileLogicalNotStringOrOther(node);

    default:
        DFG_CRASH(m_jit.graph(), node, "Bad use kind");
        break;
    }
}

void SpeculativeJIT::emitObjectOrOtherBranch(Edge nodeUse, BasicBlock* taken, BasicBlock* notTaken)
{
    JSValueOperand value(this, nodeUse, ManualOperandSpeculation);
    GPRTemporary scratch(this);
    GPRTemporary structure;
    GPRReg valueGPR = value.gpr();
    GPRReg scratchGPR = scratch.gpr();
    GPRReg structureGPR = InvalidGPRReg;

    if (!masqueradesAsUndefinedWatchpointIsStillValid()) {
        GPRTemporary realStructure(this);
        structure.adopt(realStructure);
        structureGPR = structure.gpr();
    }

    MacroAssembler::Jump notCell = m_jit.branchIfNotCell(JSValueRegs(valueGPR));
    if (masqueradesAsUndefinedWatchpointIsStillValid()) {
        DFG_TYPE_CHECK(
            JSValueRegs(valueGPR), nodeUse, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(valueGPR));
    } else {
        DFG_TYPE_CHECK(
            JSValueRegs(valueGPR), nodeUse, (~SpecCellCheck) | SpecObject, m_jit.branchIfNotObject(valueGPR));

        JITCompiler::Jump isNotMasqueradesAsUndefined = m_jit.branchTest8(
            JITCompiler::Zero, 
            MacroAssembler::Address(valueGPR, JSCell::typeInfoFlagsOffset()), 
            TrustedImm32(MasqueradesAsUndefined));

        m_jit.emitLoadStructure(*m_jit.vm(), valueGPR, structureGPR, scratchGPR);
        speculationCheck(BadType, JSValueRegs(valueGPR), nodeUse,
            m_jit.branchPtr(
                MacroAssembler::Equal, 
                MacroAssembler::Address(structureGPR, Structure::globalObjectOffset()), 
                TrustedImmPtr::weakPointer(m_jit.graph(), m_jit.graph().globalObjectFor(m_currentNode->origin.semantic))));

        isNotMasqueradesAsUndefined.link(&m_jit);
    }
    jump(taken, ForceJump);
    
    notCell.link(&m_jit);
    
    if (needsTypeCheck(nodeUse, SpecCellCheck | SpecOther)) {
        m_jit.move(valueGPR, scratchGPR);
        m_jit.and64(MacroAssembler::TrustedImm32(~TagBitUndefined), scratchGPR);
        typeCheck(
            JSValueRegs(valueGPR), nodeUse, SpecCellCheck | SpecOther, m_jit.branch64(
                MacroAssembler::NotEqual, scratchGPR, MacroAssembler::TrustedImm64(ValueNull)));
    }
    jump(notTaken);
    
    noResult(m_currentNode);
}

void SpeculativeJIT::emitBranch(Node* node)
{
    BasicBlock* taken = node->branchData()->taken.block;
    BasicBlock* notTaken = node->branchData()->notTaken.block;
    
    switch (node->child1().useKind()) {
    case ObjectOrOtherUse: {
        emitObjectOrOtherBranch(node->child1(), taken, notTaken);
        return;
    }
        
    case Int32Use:
    case DoubleRepUse: {
        if (node->child1().useKind() == Int32Use) {
            bool invert = false;
            
            if (taken == nextBlock()) {
                invert = true;
                BasicBlock* tmp = taken;
                taken = notTaken;
                notTaken = tmp;
            }

            SpeculateInt32Operand value(this, node->child1());
            branchTest32(invert ? MacroAssembler::Zero : MacroAssembler::NonZero, value.gpr(), taken);
        } else {
            SpeculateDoubleOperand value(this, node->child1());
            FPRTemporary scratch(this);
            branchDoubleNonZero(value.fpr(), scratch.fpr(), taken);
        }
        
        jump(notTaken);
        
        noResult(node);
        return;
    }

    case StringUse: {
        emitStringBranch(node->child1(), taken, notTaken);
        return;
    }

    case StringOrOtherUse: {
        emitStringOrOtherBranch(node->child1(), taken, notTaken);
        return;
    }

    case UntypedUse:
    case BooleanUse:
    case KnownBooleanUse: {
        JSValueOperand value(this, node->child1(), ManualOperandSpeculation);
        GPRReg valueGPR = value.gpr();
        
        if (node->child1().useKind() == BooleanUse || node->child1().useKind() == KnownBooleanUse) {
            if (!needsTypeCheck(node->child1(), SpecBoolean)) {
                MacroAssembler::ResultCondition condition = MacroAssembler::NonZero;
                
                if (taken == nextBlock()) {
                    condition = MacroAssembler::Zero;
                    BasicBlock* tmp = taken;
                    taken = notTaken;
                    notTaken = tmp;
                }
                
                branchTest32(condition, valueGPR, TrustedImm32(true), taken);
                jump(notTaken);
            } else {
                branch64(MacroAssembler::Equal, valueGPR, MacroAssembler::TrustedImm64(JSValue::encode(jsBoolean(false))), notTaken);
                branch64(MacroAssembler::Equal, valueGPR, MacroAssembler::TrustedImm64(JSValue::encode(jsBoolean(true))), taken);
                
                typeCheck(JSValueRegs(valueGPR), node->child1(), SpecBoolean, m_jit.jump());
            }
            value.use();
        } else {
            GPRTemporary result(this);
            FPRTemporary fprValue(this);
            FPRTemporary fprTemp(this);
            Optional<GPRTemporary> scratch;

            GPRReg scratchGPR = InvalidGPRReg;
            bool shouldCheckMasqueradesAsUndefined = !masqueradesAsUndefinedWatchpointIsStillValid();
            if (shouldCheckMasqueradesAsUndefined) {
                scratch.emplace(this);
                scratchGPR = scratch->gpr();
            }

            GPRReg resultGPR = result.gpr();
            FPRReg valueFPR = fprValue.fpr();
            FPRReg tempFPR = fprTemp.fpr();
            
            if (node->child1()->prediction() & SpecInt32Only) {
                branch64(MacroAssembler::Equal, valueGPR, MacroAssembler::TrustedImm64(JSValue::encode(jsNumber(0))), notTaken);
                branch64(MacroAssembler::AboveOrEqual, valueGPR, GPRInfo::tagTypeNumberRegister, taken);
            }
    
            if (node->child1()->prediction() & SpecBoolean) {
                branch64(MacroAssembler::Equal, valueGPR, MacroAssembler::TrustedImm64(JSValue::encode(jsBoolean(false))), notTaken);
                branch64(MacroAssembler::Equal, valueGPR, MacroAssembler::TrustedImm64(JSValue::encode(jsBoolean(true))), taken);
            }
    
            value.use();

            JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
            auto truthy = m_jit.branchIfTruthy(*m_jit.vm(), JSValueRegs(valueGPR), resultGPR, scratchGPR, valueFPR, tempFPR, shouldCheckMasqueradesAsUndefined, globalObject);
            addBranch(truthy, taken);
            jump(notTaken);
        }
        
        noResult(node, UseChildrenCalledExplicitly);
        return;
    }
        
    default:
        DFG_CRASH(m_jit.graph(), m_currentNode, "Bad use kind");
    }
}

void SpeculativeJIT::compile(Node* node)
{
    NodeType op = node->op();
    
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
    m_jit.clearRegisterAllocationOffsets();
#endif

    switch (op) {
    case JSConstant:
    case DoubleConstant:
    case Int52Constant:
    case PhantomDirectArguments:
    case PhantomClonedArguments:
        initConstantInfo(node);
        break;

    case LazyJSConstant:
        compileLazyJSConstant(node);
        break;

    case Identity: {
        compileIdentity(node);
        break;
    }

    case GetLocal: {
        AbstractValue& value = m_state.operand(node->local());

        // If the CFA is tracking this variable and it found that the variable
        // cannot have been assigned, then don't attempt to proceed.
        if (value.isClear()) {
            m_compileOkay = false;
            break;
        }
        
        switch (node->variableAccessData()->flushFormat()) {
        case FlushedDouble: {
            FPRTemporary result(this);
            m_jit.loadDouble(JITCompiler::addressFor(node->machineLocal()), result.fpr());
            VirtualRegister virtualRegister = node->virtualRegister();
            m_fprs.retain(result.fpr(), virtualRegister, SpillOrderDouble);
            generationInfoFromVirtualRegister(virtualRegister).initDouble(node, node->refCount(), result.fpr());
            break;
        }
        
        case FlushedInt32: {
            GPRTemporary result(this);
            m_jit.load32(JITCompiler::payloadFor(node->machineLocal()), result.gpr());
            
            // Like int32Result, but don't useChildren - our children are phi nodes,
            // and don't represent values within this dataflow with virtual registers.
            VirtualRegister virtualRegister = node->virtualRegister();
            m_gprs.retain(result.gpr(), virtualRegister, SpillOrderInteger);
            generationInfoFromVirtualRegister(virtualRegister).initInt32(node, node->refCount(), result.gpr());
            break;
        }
            
        case FlushedInt52: {
            GPRTemporary result(this);
            m_jit.load64(JITCompiler::addressFor(node->machineLocal()), result.gpr());
            
            VirtualRegister virtualRegister = node->virtualRegister();
            m_gprs.retain(result.gpr(), virtualRegister, SpillOrderJS);
            generationInfoFromVirtualRegister(virtualRegister).initInt52(node, node->refCount(), result.gpr());
            break;
        }
            
        default:
            GPRTemporary result(this);
            m_jit.load64(JITCompiler::addressFor(node->machineLocal()), result.gpr());
            
            // Like jsValueResult, but don't useChildren - our children are phi nodes,
            // and don't represent values within this dataflow with virtual registers.
            VirtualRegister virtualRegister = node->virtualRegister();
            m_gprs.retain(result.gpr(), virtualRegister, SpillOrderJS);
            
            DataFormat format;
            if (isCellSpeculation(value.m_type))
                format = DataFormatJSCell;
            else if (isBooleanSpeculation(value.m_type))
                format = DataFormatJSBoolean;
            else
                format = DataFormatJS;
            
            generationInfoFromVirtualRegister(virtualRegister).initJSValue(node, node->refCount(), result.gpr(), format);
            break;
        }
        break;
    }

    case MovHint: {
        compileMovHint(m_currentNode);
        noResult(node);
        break;
    }
        
    case ZombieHint: {
        recordSetLocal(m_currentNode->unlinkedLocal(), VirtualRegister(), DataFormatDead);
        noResult(node);
        break;
    }
        
    case ExitOK: {
        noResult(node);
        break;
    }
        
    case SetLocal: {
        switch (node->variableAccessData()->flushFormat()) {
        case FlushedDouble: {
            SpeculateDoubleOperand value(this, node->child1());
            m_jit.storeDouble(value.fpr(), JITCompiler::addressFor(node->machineLocal()));
            noResult(node);
            // Indicate that it's no longer necessary to retrieve the value of
            // this bytecode variable from registers or other locations in the stack,
            // but that it is stored as a double.
            recordSetLocal(DataFormatDouble);
            break;
        }
            
        case FlushedInt32: {
            SpeculateInt32Operand value(this, node->child1());
            m_jit.store32(value.gpr(), JITCompiler::payloadFor(node->machineLocal()));
            noResult(node);
            recordSetLocal(DataFormatInt32);
            break;
        }
            
        case FlushedInt52: {
            SpeculateInt52Operand value(this, node->child1());
            m_jit.store64(value.gpr(), JITCompiler::addressFor(node->machineLocal()));
            noResult(node);
            recordSetLocal(DataFormatInt52);
            break;
        }
            
        case FlushedCell: {
            SpeculateCellOperand cell(this, node->child1());
            GPRReg cellGPR = cell.gpr();
            m_jit.store64(cellGPR, JITCompiler::addressFor(node->machineLocal()));
            noResult(node);
            recordSetLocal(DataFormatCell);
            break;
        }
            
        case FlushedBoolean: {
            SpeculateBooleanOperand boolean(this, node->child1());
            m_jit.store64(boolean.gpr(), JITCompiler::addressFor(node->machineLocal()));
            noResult(node);
            recordSetLocal(DataFormatBoolean);
            break;
        }
            
        case FlushedJSValue: {
            JSValueOperand value(this, node->child1());
            m_jit.store64(value.gpr(), JITCompiler::addressFor(node->machineLocal()));
            noResult(node);
            recordSetLocal(dataFormatFor(node->variableAccessData()->flushFormat()));
            break;
        }
            
        default:
            DFG_CRASH(m_jit.graph(), node, "Bad flush format");
            break;
        }

        break;
    }

    case SetArgument:
        // This is a no-op; it just marks the fact that the argument is being used.
        // But it may be profitable to use this as a hook to run speculation checks
        // on arguments, thereby allowing us to trivially eliminate such checks if
        // the argument is not used.
        recordSetLocal(dataFormatFor(node->variableAccessData()->flushFormat()));
        break;

    case ArithBitNot:
        compileBitwiseNot(node);
        break;

    case ValueBitAnd:
    case ValueBitXor:
    case ValueBitOr:
        compileValueBitwiseOp(node);
        break;

    case ArithBitAnd:
    case ArithBitOr:
    case ArithBitXor:
        compileBitwiseOp(node);
        break;

    case BitRShift:
    case BitLShift:
    case BitURShift:
        compileShiftOp(node);
        break;

    case UInt32ToNumber: {
        compileUInt32ToNumber(node);
        break;
    }

    case DoubleAsInt32: {
        compileDoubleAsInt32(node);
        break;
    }

    case ValueToInt32: {
        compileValueToInt32(node);
        break;
    }
        
    case DoubleRep: {
        compileDoubleRep(node);
        break;
    }
        
    case ValueRep: {
        compileValueRep(node);
        break;
    }
        
    case Int52Rep: {
        switch (node->child1().useKind()) {
        case Int32Use: {
            SpeculateInt32Operand operand(this, node->child1());
            GPRTemporary result(this, Reuse, operand);
            
            m_jit.signExtend32ToPtr(operand.gpr(), result.gpr());
            
            strictInt52Result(result.gpr(), node);
            break;
        }
            
        case AnyIntUse: {
            GPRTemporary result(this);
            GPRReg resultGPR = result.gpr();
            
            convertAnyInt(node->child1(), resultGPR);
            
            strictInt52Result(resultGPR, node);
            break;
        }
            
        case DoubleRepAnyIntUse: {
            SpeculateDoubleOperand value(this, node->child1());
            FPRReg valueFPR = value.fpr();
            
            flushRegisters();
            GPRFlushedCallResult result(this);
            GPRReg resultGPR = result.gpr();
            callOperation(operationConvertDoubleToInt52, resultGPR, valueFPR);
            
            DFG_TYPE_CHECK_WITH_EXIT_KIND(Int52Overflow,
                JSValueRegs(), node->child1(), SpecAnyIntAsDouble,
                m_jit.branch64(
                    JITCompiler::Equal, resultGPR,
                    JITCompiler::TrustedImm64(JSValue::notInt52)));
            
            strictInt52Result(resultGPR, node);
            break;
        }
            
        default:
            DFG_CRASH(m_jit.graph(), node, "Bad use kind");
        }
        break;
    }

    case ValueNegate:
        compileValueNegate(node);
        break;

    case ValueAdd:
        compileValueAdd(node);
        break;

    case ValueSub:
        compileValueSub(node);
        break;

    case StrCat: {
        compileStrCat(node);
        break;
    }

    case ArithAdd:
        compileArithAdd(node);
        break;

    case ArithClz32:
        compileArithClz32(node);
        break;
        
    case MakeRope:
        compileMakeRope(node);
        break;

    case ArithSub:
        compileArithSub(node);
        break;

    case ArithNegate:
        compileArithNegate(node);
        break;

    case ArithMul:
        compileArithMul(node);
        break;

    case ValueMul:
        compileValueMul(node);
        break;

    case ValueDiv: {
        compileValueDiv(node);
        break;
    }

    case ArithDiv: {
        compileArithDiv(node);
        break;
    }

    case ArithMod: {
        compileArithMod(node);
        break;
    }

    case ArithAbs:
        compileArithAbs(node);
        break;
        
    case ArithMin:
    case ArithMax: {
        compileArithMinMax(node);
        break;
    }

    case ArithPow:
        compileArithPow(node);
        break;

    case ArithSqrt:
        compileArithSqrt(node);
        break;

    case ArithFRound:
        compileArithFRound(node);
        break;

    case ArithRandom:
        compileArithRandom(node);
        break;

    case ArithRound:
    case ArithFloor:
    case ArithCeil:
    case ArithTrunc:
        compileArithRounding(node);
        break;

    case ArithUnary:
        compileArithUnary(node);
        break;

    case LogicalNot:
        compileLogicalNot(node);
        break;

    case CompareLess:
        if (compare(node, JITCompiler::LessThan, JITCompiler::DoubleLessThan, operationCompareLess))
            return;
        break;

    case CompareLessEq:
        if (compare(node, JITCompiler::LessThanOrEqual, JITCompiler::DoubleLessThanOrEqual, operationCompareLessEq))
            return;
        break;

    case CompareGreater:
        if (compare(node, JITCompiler::GreaterThan, JITCompiler::DoubleGreaterThan, operationCompareGreater))
            return;
        break;

    case CompareGreaterEq:
        if (compare(node, JITCompiler::GreaterThanOrEqual, JITCompiler::DoubleGreaterThanOrEqual, operationCompareGreaterEq))
            return;
        break;

    case CompareBelow:
        compileCompareUnsigned(node, JITCompiler::Below);
        break;

    case CompareBelowEq:
        compileCompareUnsigned(node, JITCompiler::BelowOrEqual);
        break;

    case CompareEq:
        if (compare(node, JITCompiler::Equal, JITCompiler::DoubleEqual, operationCompareEq))
            return;
        break;

    case CompareStrictEq:
        if (compileStrictEq(node))
            return;
        break;
        
    case CompareEqPtr:
        compileCompareEqPtr(node);
        break;

    case SameValue:
        compileSameValue(node);
        break;

    case StringCharCodeAt: {
        compileGetCharCodeAt(node);
        break;
    }

    case StringCharAt: {
        // Relies on StringCharAt node having same basic layout as GetByVal
        compileGetByValOnString(node);
        break;
    }

    case StringFromCharCode: {
        compileFromCharCode(node);
        break;
    }
        
    case CheckArray: {
        checkArray(node);
        break;
    }
        
    case Arrayify:
    case ArrayifyToStructure: {
        arrayify(node);
        break;
    }

    case GetByVal: {
        switch (node->arrayMode().type()) {
        case Array::AnyTypedArray:
        case Array::ForceExit:
        case Array::SelectUsingArguments:
        case Array::SelectUsingPredictions:
        case Array::Unprofiled:
            DFG_CRASH(m_jit.graph(), node, "Bad array mode type");
            break;
        case Array::Undecided: {
            SpeculateStrictInt32Operand index(this, m_graph.varArgChild(node, 1));
            GPRTemporary result(this, Reuse, index);
            GPRReg indexGPR = index.gpr();
            GPRReg resultGPR = result.gpr();

            speculationCheck(OutOfBounds, JSValueRegs(), node,
                m_jit.branch32(MacroAssembler::LessThan, indexGPR, MacroAssembler::TrustedImm32(0)));

            use(m_graph.varArgChild(node, 0));
            index.use();

            m_jit.move(MacroAssembler::TrustedImm64(ValueUndefined), resultGPR);
            jsValueResult(resultGPR, node, UseChildrenCalledExplicitly);
            break;
        }
        case Array::Generic: {
            if (m_graph.varArgChild(node, 0).useKind() == ObjectUse) {
                if (m_graph.varArgChild(node, 1).useKind() == StringUse) {
                    compileGetByValForObjectWithString(node);
                    break;
                }

                if (m_graph.varArgChild(node, 1).useKind() == SymbolUse) {
                    compileGetByValForObjectWithSymbol(node);
                    break;
                }
            }
            JSValueOperand base(this, m_graph.varArgChild(node, 0));
            JSValueOperand property(this, m_graph.varArgChild(node, 1));
            GPRReg baseGPR = base.gpr();
            GPRReg propertyGPR = property.gpr();
            
            flushRegisters();
            GPRFlushedCallResult result(this);
            callOperation(operationGetByVal, result.gpr(), baseGPR, propertyGPR);
            m_jit.exceptionCheck();
            
            jsValueResult(result.gpr(), node);
            break;
        }
        case Array::Int32:
        case Array::Contiguous: {
            if (node->arrayMode().isInBounds()) {
                SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
                StorageOperand storage(this, m_graph.varArgChild(node, 2));

                GPRReg propertyReg = property.gpr();
                GPRReg storageReg = storage.gpr();

                if (!m_compileOkay)
                    return;
                
                speculationCheck(OutOfBounds, JSValueRegs(), 0, m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength())));
                
                GPRTemporary result(this);

                m_jit.load64(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight), result.gpr());
                if (node->arrayMode().isSaneChain()) {
                    ASSERT(node->arrayMode().type() == Array::Contiguous);
                    JITCompiler::Jump notHole = m_jit.branchIfNotEmpty(result.gpr());
                    m_jit.move(TrustedImm64(JSValue::encode(jsUndefined())), result.gpr());
                    notHole.link(&m_jit);
                } else {
                    speculationCheck(
                        LoadFromHole, JSValueRegs(), 0,
                        m_jit.branchIfEmpty(result.gpr()));
                }
                jsValueResult(result.gpr(), node, node->arrayMode().type() == Array::Int32 ? DataFormatJSInt32 : DataFormatJS);
                break;
            }
            
            SpeculateCellOperand base(this, m_graph.varArgChild(node, 0));
            SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
            StorageOperand storage(this, m_graph.varArgChild(node, 2));
            
            GPRReg baseReg = base.gpr();
            GPRReg propertyReg = property.gpr();
            GPRReg storageReg = storage.gpr();
            
            if (!m_compileOkay)
                return;
            
            GPRTemporary result(this);
            GPRReg resultReg = result.gpr();
            
            MacroAssembler::JumpList slowCases;
            
            slowCases.append(m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength())));

            m_jit.load64(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight), resultReg);
            slowCases.append(m_jit.branchIfEmpty(resultReg));
            
            addSlowPathGenerator(
                slowPathCall(
                    slowCases, this, operationGetByValObjectInt,
                    result.gpr(), baseReg, propertyReg));
            
            jsValueResult(resultReg, node);
            break;
        }

        case Array::Double: {
            if (node->arrayMode().isInBounds()) {
                SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
                StorageOperand storage(this, m_graph.varArgChild(node, 2));

                GPRReg propertyReg = property.gpr();
                GPRReg storageReg = storage.gpr();

                if (!m_compileOkay)
                    return;

                FPRTemporary result(this);
                FPRReg resultReg = result.fpr();

                speculationCheck(OutOfBounds, JSValueRegs(), 0, m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength())));

                m_jit.loadDouble(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight), resultReg);
                if (!node->arrayMode().isSaneChain())
                    speculationCheck(LoadFromHole, JSValueRegs(), 0, m_jit.branchIfNaN(resultReg));
                doubleResult(resultReg, node);
                break;
            }

            SpeculateCellOperand base(this, m_graph.varArgChild(node, 0));
            SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
            StorageOperand storage(this, m_graph.varArgChild(node, 2));
            
            GPRReg baseReg = base.gpr();
            GPRReg propertyReg = property.gpr();
            GPRReg storageReg = storage.gpr();
            
            if (!m_compileOkay)
                return;
            
            GPRTemporary result(this);
            FPRTemporary temp(this);
            GPRReg resultReg = result.gpr();
            FPRReg tempReg = temp.fpr();
            
            MacroAssembler::JumpList slowCases;
            
            slowCases.append(m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength())));

            m_jit.loadDouble(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight), tempReg);
            slowCases.append(m_jit.branchIfNaN(tempReg));
            boxDouble(tempReg, resultReg);
            
            addSlowPathGenerator(
                slowPathCall(
                    slowCases, this, operationGetByValObjectInt,
                    result.gpr(), baseReg, propertyReg));
            
            jsValueResult(resultReg, node);
            break;
        }

        case Array::ArrayStorage:
        case Array::SlowPutArrayStorage: {
            if (node->arrayMode().isInBounds()) {
                SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
                StorageOperand storage(this, m_graph.varArgChild(node, 2));
            
                GPRReg propertyReg = property.gpr();
                GPRReg storageReg = storage.gpr();
            
                if (!m_compileOkay)
                    return;
            
                speculationCheck(OutOfBounds, JSValueRegs(), 0, m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, ArrayStorage::vectorLengthOffset())));
            
                GPRTemporary result(this);
                m_jit.load64(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight, ArrayStorage::vectorOffset()), result.gpr());
                speculationCheck(LoadFromHole, JSValueRegs(), 0, m_jit.branchIfEmpty(result.gpr()));
            
                jsValueResult(result.gpr(), node);
                break;
            }

            SpeculateCellOperand base(this, m_graph.varArgChild(node, 0));
            SpeculateStrictInt32Operand property(this, m_graph.varArgChild(node, 1));
            StorageOperand storage(this, m_graph.varArgChild(node, 2));
            
            GPRReg baseReg = base.gpr();
            GPRReg propertyReg = property.gpr();
            GPRReg storageReg = storage.gpr();
            
            if (!m_compileOkay)
                return;
            
            GPRTemporary result(this);
            GPRReg resultReg = result.gpr();
            
            MacroAssembler::JumpList slowCases;
            
            slowCases.append(m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, ArrayStorage::vectorLengthOffset())));
    
            m_jit.load64(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight, ArrayStorage::vectorOffset()), resultReg);
            slowCases.append(m_jit.branchIfEmpty(resultReg));
    
            addSlowPathGenerator(
                slowPathCall(
                    slowCases, this, operationGetByValObjectInt,
                    result.gpr(), baseReg, propertyReg));
            
            jsValueResult(resultReg, node);
            break;
        }
        case Array::String:
            compileGetByValOnString(node);
            break;
        case Array::DirectArguments:
            compileGetByValOnDirectArguments(node);
            break;
        case Array::ScopedArguments:
            compileGetByValOnScopedArguments(node);
            break;
        case Array::Int8Array:
        case Array::Int16Array:
        case Array::Int32Array:
        case Array::Uint8Array:
        case Array::Uint8ClampedArray:
        case Array::Uint16Array:
        case Array::Uint32Array:
        case Array::Float32Array:
        case Array::Float64Array: {
            TypedArrayType type = node->arrayMode().typedArrayType();
            if (isInt(type))
                compileGetByValOnIntTypedArray(node, type);
            else
                compileGetByValOnFloatTypedArray(node, type);
        } }
        break;
    }

    case GetByValWithThis: {
        compileGetByValWithThis(node);
        break;
    }

    case PutByValDirect:
    case PutByVal:
    case PutByValAlias: {
        Edge child1 = m_jit.graph().varArgChild(node, 0);
        Edge child2 = m_jit.graph().varArgChild(node, 1);
        Edge child3 = m_jit.graph().varArgChild(node, 2);
        Edge child4 = m_jit.graph().varArgChild(node, 3);
        
        ArrayMode arrayMode = node->arrayMode().modeForPut();
        bool alreadyHandled = false;
        
        switch (arrayMode.type()) {
        case Array::SelectUsingPredictions:
        case Array::ForceExit:
            DFG_CRASH(m_jit.graph(), node, "Bad array mode type");
            break;
        case Array::Generic: {
            DFG_ASSERT(m_jit.graph(), node, node->op() == PutByVal || node->op() == PutByValDirect, node->op());

            if (child1.useKind() == CellUse) {
                if (child2.useKind() == StringUse) {
                    compilePutByValForCellWithString(node, child1, child2, child3);
                    alreadyHandled = true;
                    break;
                }

                if (child2.useKind() == SymbolUse) {
                    compilePutByValForCellWithSymbol(node, child1, child2, child3);
                    alreadyHandled = true;
                    break;
                }
            }
            
            JSValueOperand arg1(this, child1);
            JSValueOperand arg2(this, child2);
            JSValueOperand arg3(this, child3);
            GPRReg arg1GPR = arg1.gpr();
            GPRReg arg2GPR = arg2.gpr();
            GPRReg arg3GPR = arg3.gpr();
            flushRegisters();
            if (node->op() == PutByValDirect)
                callOperation(m_jit.isStrictModeFor(node->origin.semantic) ? operationPutByValDirectStrict : operationPutByValDirectNonStrict, arg1GPR, arg2GPR, arg3GPR);
            else
                callOperation(m_jit.isStrictModeFor(node->origin.semantic) ? operationPutByValStrict : operationPutByValNonStrict, arg1GPR, arg2GPR, arg3GPR);
            m_jit.exceptionCheck();
            
            noResult(node);
            alreadyHandled = true;
            break;
        }
        default:
            break;
        }
        
        if (alreadyHandled)
            break;

        SpeculateCellOperand base(this, child1);
        SpeculateStrictInt32Operand property(this, child2);
        
        GPRReg baseReg = base.gpr();
        GPRReg propertyReg = property.gpr();

        switch (arrayMode.type()) {
        case Array::Int32:
        case Array::Contiguous: {
            JSValueOperand value(this, child3, ManualOperandSpeculation);

            GPRReg valueReg = value.gpr();
        
            if (!m_compileOkay)
                return;
            
            if (arrayMode.type() == Array::Int32) {
                DFG_TYPE_CHECK(
                    JSValueRegs(valueReg), child3, SpecInt32Only,
                    m_jit.branchIfNotInt32(valueReg));
            }

            StorageOperand storage(this, child4);
            GPRReg storageReg = storage.gpr();

            if (node->op() == PutByValAlias) {
                // Store the value to the array.
                GPRReg propertyReg = property.gpr();
                GPRReg valueReg = value.gpr();
                m_jit.store64(valueReg, MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight));
                
                noResult(node);
                break;
            }
            
            GPRTemporary temporary;
            GPRReg temporaryReg = temporaryRegisterForPutByVal(temporary, node);

            MacroAssembler::Jump slowCase;
            
            if (arrayMode.isInBounds()) {
                speculationCheck(
                    OutOfBounds, JSValueRegs(), 0,
                    m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength())));
            } else {
                MacroAssembler::Jump inBounds = m_jit.branch32(MacroAssembler::Below, propertyReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength()));
                
                slowCase = m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfVectorLength()));
                
                if (!arrayMode.isOutOfBounds())
                    speculationCheck(OutOfBounds, JSValueRegs(), 0, slowCase);
                
                m_jit.add32(TrustedImm32(1), propertyReg, temporaryReg);
                m_jit.store32(temporaryReg, MacroAssembler::Address(storageReg, Butterfly::offsetOfPublicLength()));

                inBounds.link(&m_jit);
            }

            m_jit.store64(valueReg, MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight));

            base.use();
            property.use();
            value.use();
            storage.use();
            
            if (arrayMode.isOutOfBounds()) {
                addSlowPathGenerator(slowPathCall(
                    slowCase, this,
                    m_jit.codeBlock()->isStrictMode()
                        ? (node->op() == PutByValDirect ? operationPutByValDirectBeyondArrayBoundsStrict : operationPutByValBeyondArrayBoundsStrict)
                        : (node->op() == PutByValDirect ? operationPutByValDirectBeyondArrayBoundsNonStrict : operationPutByValBeyondArrayBoundsNonStrict),
                    NoResult, baseReg, propertyReg, valueReg));
            }

            noResult(node, UseChildrenCalledExplicitly);
            break;
        }
            
        case Array::Double: {
            compileDoublePutByVal(node, base, property);
            break;
        }
            
        case Array::ArrayStorage:
        case Array::SlowPutArrayStorage: {
            JSValueOperand value(this, child3);

            GPRReg valueReg = value.gpr();
        
            if (!m_compileOkay)
                return;

            StorageOperand storage(this, child4);
            GPRReg storageReg = storage.gpr();

            if (node->op() == PutByValAlias) {
                // Store the value to the array.
                GPRReg propertyReg = property.gpr();
                GPRReg valueReg = value.gpr();
                m_jit.store64(valueReg, MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight, ArrayStorage::vectorOffset()));
                
                noResult(node);
                break;
            }
            
            GPRTemporary temporary;
            GPRReg temporaryReg = temporaryRegisterForPutByVal(temporary, node);

            MacroAssembler::JumpList slowCases;

            MacroAssembler::Jump beyondArrayBounds = m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(storageReg, ArrayStorage::vectorLengthOffset()));
            if (!arrayMode.isOutOfBounds())
                speculationCheck(OutOfBounds, JSValueRegs(), 0, beyondArrayBounds);
            else
                slowCases.append(beyondArrayBounds);

            // Check if we're writing to a hole; if so increment m_numValuesInVector.
            if (arrayMode.isInBounds()) {
                speculationCheck(
                    StoreToHole, JSValueRegs(), 0,
                    m_jit.branchTest64(MacroAssembler::Zero, MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight, ArrayStorage::vectorOffset())));
            } else {
                MacroAssembler::Jump notHoleValue = m_jit.branchTest64(MacroAssembler::NonZero, MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight, ArrayStorage::vectorOffset()));
                if (arrayMode.isSlowPut()) {
                    // This is sort of strange. If we wanted to optimize this code path, we would invert
                    // the above branch. But it's simply not worth it since this only happens if we're
                    // already having a bad time.
                    slowCases.append(m_jit.jump());
                } else {
                    m_jit.add32(TrustedImm32(1), MacroAssembler::Address(storageReg, ArrayStorage::numValuesInVectorOffset()));
                
                    // If we're writing to a hole we might be growing the array; 
                    MacroAssembler::Jump lengthDoesNotNeedUpdate = m_jit.branch32(MacroAssembler::Below, propertyReg, MacroAssembler::Address(storageReg, ArrayStorage::lengthOffset()));
                    m_jit.add32(TrustedImm32(1), propertyReg, temporaryReg);
                    m_jit.store32(temporaryReg, MacroAssembler::Address(storageReg, ArrayStorage::lengthOffset()));
                
                    lengthDoesNotNeedUpdate.link(&m_jit);
                }
                notHoleValue.link(&m_jit);
            }
    
            // Store the value to the array.
            m_jit.store64(valueReg, MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::TimesEight, ArrayStorage::vectorOffset()));

            base.use();
            property.use();
            value.use();
            storage.use();
            
            if (!slowCases.empty()) {
                addSlowPathGenerator(slowPathCall(
                    slowCases, this,
                    m_jit.codeBlock()->isStrictMode()
                        ? (node->op() == PutByValDirect ? operationPutByValDirectBeyondArrayBoundsStrict : operationPutByValBeyondArrayBoundsStrict)
                        : (node->op() == PutByValDirect ? operationPutByValDirectBeyondArrayBoundsNonStrict : operationPutByValBeyondArrayBoundsNonStrict),
                    NoResult, baseReg, propertyReg, valueReg));
            }

            noResult(node, UseChildrenCalledExplicitly);
            break;
        }
            
        case Array::Int8Array:
        case Array::Int16Array:
        case Array::Int32Array:
        case Array::Uint8Array:
        case Array::Uint8ClampedArray:
        case Array::Uint16Array:
        case Array::Uint32Array:
        case Array::Float32Array:
        case Array::Float64Array: {
            TypedArrayType type = arrayMode.typedArrayType();
            if (isInt(type))
                compilePutByValForIntTypedArray(base.gpr(), property.gpr(), node, type);
            else
                compilePutByValForFloatTypedArray(base.gpr(), property.gpr(), node, type);
            break;
        }

        case Array::AnyTypedArray:
        case Array::String:
        case Array::DirectArguments:
        case Array::ForceExit:
        case Array::Generic:
        case Array::ScopedArguments:
        case Array::SelectUsingArguments:
        case Array::SelectUsingPredictions:
        case Array::Undecided:
        case Array::Unprofiled:
            RELEASE_ASSERT_NOT_REACHED();
        }
        break;
    }
        
    case AtomicsAdd:
    case AtomicsAnd:
    case AtomicsCompareExchange:
    case AtomicsExchange:
    case AtomicsLoad:
    case AtomicsOr:
    case AtomicsStore:
    case AtomicsSub:
    case AtomicsXor: {
        unsigned numExtraArgs = numExtraAtomicsArgs(node->op());
        Edge baseEdge = m_jit.graph().child(node, 0);
        Edge indexEdge = m_jit.graph().child(node, 1);
        Edge argEdges[maxNumExtraAtomicsArgs];
        for (unsigned i = numExtraArgs; i--;)
            argEdges[i] = m_jit.graph().child(node, 2 + i);
        Edge storageEdge = m_jit.graph().child(node, 2 + numExtraArgs);

        GPRReg baseGPR;
        GPRReg indexGPR;
        GPRReg argGPRs[2];
        GPRReg resultGPR;

        auto callSlowPath = [&] () {
            switch (node->op()) {
            case AtomicsAdd:
                callOperation(operationAtomicsAdd, resultGPR, baseGPR, indexGPR, argGPRs[0]);
                break;
            case AtomicsAnd:
                callOperation(operationAtomicsAnd, resultGPR, baseGPR, indexGPR, argGPRs[0]);
                break;
            case AtomicsCompareExchange:
                callOperation(operationAtomicsCompareExchange, resultGPR, baseGPR, indexGPR, argGPRs[0], argGPRs[1]);
                break;
            case AtomicsExchange:
                callOperation(operationAtomicsExchange, resultGPR, baseGPR, indexGPR, argGPRs[0]);
                break;
            case AtomicsLoad:
                callOperation(operationAtomicsLoad, resultGPR, baseGPR, indexGPR);
                break;
            case AtomicsOr:
                callOperation(operationAtomicsOr, resultGPR, baseGPR, indexGPR, argGPRs[0]);
                break;
            case AtomicsStore:
                callOperation(operationAtomicsStore, resultGPR, baseGPR, indexGPR, argGPRs[0]);
                break;
            case AtomicsSub:
                callOperation(operationAtomicsSub, resultGPR, baseGPR, indexGPR, argGPRs[0]);
                break;
            case AtomicsXor:
                callOperation(operationAtomicsXor, resultGPR, baseGPR, indexGPR, argGPRs[0]);
                break;
            default:
                RELEASE_ASSERT_NOT_REACHED();
                break;
            }
        };
        
        if (!storageEdge) {
            // We are in generic mode!
            JSValueOperand base(this, baseEdge);
            JSValueOperand index(this, indexEdge);
            Optional<JSValueOperand> args[2];
            baseGPR = base.gpr();
            indexGPR = index.gpr();
            for (unsigned i = numExtraArgs; i--;) {
                args[i].emplace(this, argEdges[i]);
                argGPRs[i] = args[i]->gpr();
            }
            
            flushRegisters();
            GPRFlushedCallResult result(this);
            resultGPR = result.gpr();
            callSlowPath();
            m_jit.exceptionCheck();
            
            jsValueResult(resultGPR, node);
            break;
        }
        
        TypedArrayType type = node->arrayMode().typedArrayType();
        
        SpeculateCellOperand base(this, baseEdge);
        SpeculateStrictInt32Operand index(this, indexEdge);

        baseGPR = base.gpr();
        indexGPR = index.gpr();
        
        emitTypedArrayBoundsCheck(node, baseGPR, indexGPR);
        
        GPRTemporary args[2];
        
        JITCompiler::JumpList slowPathCases;
        
        bool ok = true;
        for (unsigned i = numExtraArgs; i--;) {
            if (!getIntTypedArrayStoreOperand(args[i], indexGPR, argEdges[i], slowPathCases)) {
                noResult(node);
                ok = false;
            }
            argGPRs[i] = args[i].gpr();
        }
        if (!ok)
            break;
        
        StorageOperand storage(this, storageEdge);
        GPRTemporary oldValue(this);
        GPRTemporary result(this);
        GPRTemporary newValue(this);
        GPRReg storageGPR = storage.gpr();
        GPRReg oldValueGPR = oldValue.gpr();
        resultGPR = result.gpr();
        GPRReg newValueGPR = newValue.gpr();
        
        // FIXME: It shouldn't be necessary to nop-pad between register allocation and a jump label.
        // https://bugs.webkit.org/show_bug.cgi?id=170974
        m_jit.nop();
        
        JITCompiler::Label loop = m_jit.label();
        
        loadFromIntTypedArray(storageGPR, indexGPR, oldValueGPR, type);
        m_jit.move(oldValueGPR, newValueGPR);
        m_jit.move(oldValueGPR, resultGPR);
        
        switch (node->op()) {
        case AtomicsAdd:
            m_jit.add32(argGPRs[0], newValueGPR);
            break;
        case AtomicsAnd:
            m_jit.and32(argGPRs[0], newValueGPR);
            break;
        case AtomicsCompareExchange: {
            switch (elementSize(type)) {
            case 1:
                if (isSigned(type))
                    m_jit.signExtend8To32(argGPRs[0], argGPRs[0]);
                else
                    m_jit.and32(TrustedImm32(0xff), argGPRs[0]);
                break;
            case 2:
                if (isSigned(type))
                    m_jit.signExtend16To32(argGPRs[0], argGPRs[0]);
                else
                    m_jit.and32(TrustedImm32(0xffff), argGPRs[0]);
                break;
            case 4:
                break;
            default:
                RELEASE_ASSERT_NOT_REACHED();
                break;
            }
            JITCompiler::Jump fail = m_jit.branch32(JITCompiler::NotEqual, oldValueGPR, argGPRs[0]);
            m_jit.move(argGPRs[1], newValueGPR);
            fail.link(&m_jit);
            break;
        }
        case AtomicsExchange:
            m_jit.move(argGPRs[0], newValueGPR);
            break;
        case AtomicsLoad:
            break;
        case AtomicsOr:
            m_jit.or32(argGPRs[0], newValueGPR);
            break;
        case AtomicsStore:
            m_jit.move(argGPRs[0], newValueGPR);
            m_jit.move(argGPRs[0], resultGPR);
            break;
        case AtomicsSub:
            m_jit.sub32(argGPRs[0], newValueGPR);
            break;
        case AtomicsXor:
            m_jit.xor32(argGPRs[0], newValueGPR);
            break;
        default:
            RELEASE_ASSERT_NOT_REACHED();
            break;
        }
        
        JITCompiler::JumpList success;
        switch (elementSize(type)) {
        case 1:
            success = m_jit.branchAtomicWeakCAS8(JITCompiler::Success, oldValueGPR, newValueGPR, JITCompiler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesOne));
            break;
        case 2:
            success = m_jit.branchAtomicWeakCAS16(JITCompiler::Success, oldValueGPR, newValueGPR, JITCompiler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesTwo));
            break;
        case 4:
            success = m_jit.branchAtomicWeakCAS32(JITCompiler::Success, oldValueGPR, newValueGPR, JITCompiler::BaseIndex(storageGPR, indexGPR, MacroAssembler::TimesFour));
            break;
        default:
            RELEASE_ASSERT_NOT_REACHED();
            break;
        }
        m_jit.jump().linkTo(loop, &m_jit);
        
        if (!slowPathCases.empty()) {
            slowPathCases.link(&m_jit);
            silentSpillAllRegisters(resultGPR);
            // Since we spilled, we can do things to registers.
            m_jit.boxCell(baseGPR, JSValueRegs(baseGPR));
            m_jit.boxInt32(indexGPR, JSValueRegs(indexGPR));
            for (unsigned i = numExtraArgs; i--;)
                m_jit.boxInt32(argGPRs[i], JSValueRegs(argGPRs[i]));
            callSlowPath();
            silentFillAllRegisters();
            m_jit.exceptionCheck();
        }
        
        success.link(&m_jit);
        setIntTypedArrayLoadResult(node, resultGPR, type);
        break;
    }
        
    case AtomicsIsLockFree: {
        if (node->child1().useKind() != Int32Use) {
            JSValueOperand operand(this, node->child1());
            GPRReg operandGPR = operand.gpr();
            flushRegisters();
            GPRFlushedCallResult result(this);
            GPRReg resultGPR = result.gpr();
            callOperation(operationAtomicsIsLockFree, resultGPR, operandGPR);
            m_jit.exceptionCheck();
            jsValueResult(resultGPR, node);
            break;
        }

        SpeculateInt32Operand operand(this, node->child1());
        GPRTemporary result(this);
        GPRReg operandGPR = operand.gpr();
        GPRReg resultGPR = result.gpr();
        m_jit.move(TrustedImm32(ValueTrue), resultGPR);
        JITCompiler::JumpList done;
        done.append(m_jit.branch32(JITCompiler::Equal, operandGPR, TrustedImm32(4)));
        done.append(m_jit.branch32(JITCompiler::Equal, operandGPR, TrustedImm32(1)));
        done.append(m_jit.branch32(JITCompiler::Equal, operandGPR, TrustedImm32(2)));
        m_jit.move(TrustedImm32(ValueFalse), resultGPR);
        done.link(&m_jit);
        jsValueResult(resultGPR, node);
        break;
    }

    case RegExpExec: {
        compileRegExpExec(node);
        break;
    }

    case RegExpExecNonGlobalOrSticky: {
        compileRegExpExecNonGlobalOrSticky(node);
        break;
    }

    case RegExpMatchFastGlobal: {
        compileRegExpMatchFastGlobal(node);
        break;
    }

    case RegExpTest: {
        compileRegExpTest(node);
        break;
    }

    case RegExpMatchFast: {
        compileRegExpMatchFast(node);
        break;
    }

    case StringReplace:
    case StringReplaceRegExp: {
        compileStringReplace(node);
        break;
    }
        
    case GetRegExpObjectLastIndex: {
        compileGetRegExpObjectLastIndex(node);
        break;
    }
        
    case SetRegExpObjectLastIndex: {
        compileSetRegExpObjectLastIndex(node);
        break;
    }

    case RecordRegExpCachedResult: {
        compileRecordRegExpCachedResult(node);
        break;
    }
        
    case ArrayPush: {
        compileArrayPush(node);
        break;
    }

    case ArraySlice: {
        compileArraySlice(node);
        break;
    }

    case ArrayIndexOf: {
        compileArrayIndexOf(node);
        break;
    }
        
    case ArrayPop: {
        ASSERT(node->arrayMode().isJSArray());

        SpeculateCellOperand base(this, node->child1());
        StorageOperand storage(this, node->child2());
        GPRTemporary value(this);
        GPRTemporary storageLength(this);
        FPRTemporary temp(this); // This is kind of lame, since we don't always need it. I'm relying on the fact that we don't have FPR pressure, especially in code that uses pop().
        
        GPRReg baseGPR = base.gpr();
        GPRReg storageGPR = storage.gpr();
        GPRReg valueGPR = value.gpr();
        GPRReg storageLengthGPR = storageLength.gpr();
        FPRReg tempFPR = temp.fpr();
        
        switch (node->arrayMode().type()) {
        case Array::Int32:
        case Array::Double:
        case Array::Contiguous: {
            m_jit.load32(
                MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()), storageLengthGPR);
            MacroAssembler::Jump undefinedCase =
                m_jit.branchTest32(MacroAssembler::Zero, storageLengthGPR);
            m_jit.sub32(TrustedImm32(1), storageLengthGPR);
            m_jit.store32(
                storageLengthGPR, MacroAssembler::Address(storageGPR, Butterfly::offsetOfPublicLength()));
            MacroAssembler::Jump slowCase;
            if (node->arrayMode().type() == Array::Double) {
                m_jit.loadDouble(
                    MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight),
                    tempFPR);
                // FIXME: This would not have to be here if changing the publicLength also zeroed the values between the old
                // length and the new length.
                m_jit.store64(
                    MacroAssembler::TrustedImm64(bitwise_cast<int64_t>(PNaN)), MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight));
                slowCase = m_jit.branchIfNaN(tempFPR);
                boxDouble(tempFPR, valueGPR);
            } else {
                m_jit.load64(
                    MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight),
                    valueGPR);
                // FIXME: This would not have to be here if changing the publicLength also zeroed the values between the old
                // length and the new length.
                m_jit.store64(
                MacroAssembler::TrustedImm64((int64_t)0), MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight));
                slowCase = m_jit.branchIfEmpty(valueGPR);
            }

            addSlowPathGenerator(
                slowPathMove(
                    undefinedCase, this,
                    MacroAssembler::TrustedImm64(JSValue::encode(jsUndefined())), valueGPR));
            addSlowPathGenerator(
                slowPathCall(
                    slowCase, this, operationArrayPopAndRecoverLength, valueGPR, baseGPR));
            
            // We can't know for sure that the result is an int because of the slow paths. :-/
            jsValueResult(valueGPR, node);
            break;
        }
            
        case Array::ArrayStorage: {
            m_jit.load32(MacroAssembler::Address(storageGPR, ArrayStorage::lengthOffset()), storageLengthGPR);
        
            JITCompiler::Jump undefinedCase =
                m_jit.branchTest32(MacroAssembler::Zero, storageLengthGPR);
        
            m_jit.sub32(TrustedImm32(1), storageLengthGPR);
        
            JITCompiler::JumpList slowCases;
            slowCases.append(m_jit.branch32(MacroAssembler::AboveOrEqual, storageLengthGPR, MacroAssembler::Address(storageGPR, ArrayStorage::vectorLengthOffset())));
        
            m_jit.load64(MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight, ArrayStorage::vectorOffset()), valueGPR);
            slowCases.append(m_jit.branchIfEmpty(valueGPR));
        
            m_jit.store32(storageLengthGPR, MacroAssembler::Address(storageGPR, ArrayStorage::lengthOffset()));
        
            m_jit.store64(MacroAssembler::TrustedImm64((int64_t)0), MacroAssembler::BaseIndex(storageGPR, storageLengthGPR, MacroAssembler::TimesEight,  ArrayStorage::vectorOffset()));
            m_jit.sub32(MacroAssembler::TrustedImm32(1), MacroAssembler::Address(storageGPR, OBJECT_OFFSETOF(ArrayStorage, m_numValuesInVector)));
        
            addSlowPathGenerator(
                slowPathMove(
                    undefinedCase, this,
                    MacroAssembler::TrustedImm64(JSValue::encode(jsUndefined())), valueGPR));
        
            addSlowPathGenerator(
                slowPathCall(
                    slowCases, this, operationArrayPop, valueGPR, baseGPR));

            jsValueResult(valueGPR, node);
            break;
        }
            
        default:
            CRASH();
            break;
        }
        break;
    }

    case DFG::Jump: {
        jump(node->targetBlock());
        noResult(node);
        break;
    }

    case Branch:
        emitBranch(node);
        break;
        
    case Switch:
        emitSwitch(node);
        break;

    case Return: {
        ASSERT(GPRInfo::callFrameRegister != GPRInfo::regT1);
        ASSERT(GPRInfo::regT1 != GPRInfo::returnValueGPR);
        ASSERT(GPRInfo::returnValueGPR != GPRInfo::callFrameRegister);

        // Return the result in returnValueGPR.
        JSValueOperand op1(this, node->child1());
        m_jit.move(op1.gpr(), GPRInfo::returnValueGPR);

        m_jit.emitRestoreCalleeSaves();
        m_jit.emitFunctionEpilogue();
        m_jit.ret();
        
        noResult(node);
        break;
    }
        
    case Throw: {
        compileThrow(node);
        break;
    }

    case ThrowStaticError: {
        compileThrowStaticError(node);
        break;
    }
        
    case BooleanToNumber: {
        switch (node->child1().useKind()) {
        case BooleanUse: {
            JSValueOperand value(this, node->child1(), ManualOperandSpeculation);
            GPRTemporary result(this); // FIXME: We could reuse, but on speculation fail would need recovery to restore tag (akin to add).
            
            m_jit.move(value.gpr(), result.gpr());
            m_jit.xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), result.gpr());
            DFG_TYPE_CHECK(
                JSValueRegs(value.gpr()), node->child1(), SpecBoolean, m_jit.branchTest64(
                    JITCompiler::NonZero, result.gpr(), TrustedImm32(static_cast<int32_t>(~1))));

            int32Result(result.gpr(), node);
            break;
        }
            
        case UntypedUse: {
            JSValueOperand value(this, node->child1());
            GPRTemporary result(this);
            
            if (!m_interpreter.needsTypeCheck(node->child1(), SpecBoolInt32 | SpecBoolean)) {
                m_jit.move(value.gpr(), result.gpr());
                m_jit.and32(TrustedImm32(1), result.gpr());
                int32Result(result.gpr(), node);
                break;
            }
            
            m_jit.move(value.gpr(), result.gpr());
            m_jit.xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), result.gpr());
            JITCompiler::Jump isBoolean = m_jit.branchTest64(
                JITCompiler::Zero, result.gpr(), TrustedImm32(static_cast<int32_t>(~1)));
            m_jit.move(value.gpr(), result.gpr());
            JITCompiler::Jump done = m_jit.jump();
            isBoolean.link(&m_jit);
            m_jit.or64(GPRInfo::tagTypeNumberRegister, result.gpr());
            done.link(&m_jit);
            
            jsValueResult(result.gpr(), node);
            break;
        }
            
        default:
            DFG_CRASH(m_jit.graph(), node, "Bad use kind");
            break;
        }
        break;
    }
        
    case ToPrimitive: {
        compileToPrimitive(node);
        break;
    }

    case ToNumber: {
        JSValueOperand argument(this, node->child1());
        GPRTemporary result(this, Reuse, argument);

        GPRReg argumentGPR = argument.gpr();
        GPRReg resultGPR = result.gpr();

        argument.use();

        // We have several attempts to remove ToNumber. But ToNumber still exists.
        // It means that converting non-numbers to numbers by this ToNumber is not rare.
        // Instead of the slow path generator, we emit callOperation here.
        if (!(m_state.forNode(node->child1()).m_type & SpecBytecodeNumber)) {
            flushRegisters();
            callOperation(operationToNumber, resultGPR, argumentGPR);
            m_jit.exceptionCheck();
        } else {
            MacroAssembler::Jump notNumber = m_jit.branchIfNotNumber(argumentGPR);
            m_jit.move(argumentGPR, resultGPR);
            MacroAssembler::Jump done = m_jit.jump();

            notNumber.link(&m_jit);
            silentSpillAllRegisters(resultGPR);
            callOperation(operationToNumber, resultGPR, argumentGPR);
            silentFillAllRegisters();
            m_jit.exceptionCheck();

            done.link(&m_jit);
        }

        jsValueResult(resultGPR, node, UseChildrenCalledExplicitly);
        break;
    }
        
    case ToString:
    case CallStringConstructor:
    case StringValueOf: {
        compileToStringOrCallStringConstructorOrStringValueOf(node);
        break;
    }
        
    case NewStringObject: {
        compileNewStringObject(node);
        break;
    }

    case NewSymbol: {
        compileNewSymbol(node);
        break;
    }
        
    case NewArray: {
        compileNewArray(node);
        break;
    }

    case NewArrayWithSpread: {
        compileNewArrayWithSpread(node);
        break;
    }

    case Spread: {
        compileSpread(node);
        break;
    }
        
    case NewArrayWithSize: {
        compileNewArrayWithSize(node);
        break;
    }
        
    case NewArrayBuffer: {
        compileNewArrayBuffer(node);
        break;
    }
        
    case NewTypedArray: {
        compileNewTypedArray(node);
        break;
    }
        
    case NewRegexp: {
        compileNewRegexp(node);
        break;
    }

    case ToObject:
    case CallObjectConstructor: {
        compileToObjectOrCallObjectConstructor(node);
        break;
    }

    case ToThis: {
        compileToThis(node);
        break;
    }

    case ObjectCreate: {
        compileObjectCreate(node);
        break;
    }

    case ObjectKeys: {
        compileObjectKeys(node);
        break;
    }

    case CreateThis: {
        compileCreateThis(node);
        break;
    }
        
    case NewObject: {
        compileNewObject(node);
        break;
    }

    case GetCallee: {
        compileGetCallee(node);
        break;
    }

    case SetCallee: {
        compileSetCallee(node);
        break;
    }
        
    case GetArgumentCountIncludingThis: {
        compileGetArgumentCountIncludingThis(node);
        break;
    }

    case SetArgumentCountIncludingThis:
        compileSetArgumentCountIncludingThis(node);
        break;

    case GetRestLength: {
        compileGetRestLength(node);
        break;
    }
        
    case GetScope:
        compileGetScope(node);
        break;
            
    case SkipScope:
        compileSkipScope(node);
        break;

    case GetGlobalObject:
        compileGetGlobalObject(node);
        break;

    case GetGlobalThis:
        compileGetGlobalThis(node);
        break;
        
    case GetClosureVar: {
        compileGetClosureVar(node);
        break;
    }
    case PutClosureVar: {
        compilePutClosureVar(node);
        break;
    }

    case TryGetById: {
        compileGetById(node, AccessType::TryGet);
        break;
    }

    case GetByIdDirect: {
        compileGetById(node, AccessType::GetDirect);
        break;
    }

    case GetByIdDirectFlush: {
        compileGetByIdFlush(node, AccessType::GetDirect);
        break;
    }

    case GetById: {
        compileGetById(node, AccessType::Get);
        break;
    }

    case GetByIdFlush: {
        compileGetByIdFlush(node, AccessType::Get);
        break;
    }

    case GetByIdWithThis: {
        if (node->child1().useKind() == CellUse && node->child2().useKind() == CellUse) {
            SpeculateCellOperand base(this, node->child1());
            GPRReg baseGPR = base.gpr();
            SpeculateCellOperand thisValue(this, node->child2());
            GPRReg thisValueGPR = thisValue.gpr();
            
            GPRFlushedCallResult result(this);
            GPRReg resultGPR = result.gpr();
            
            flushRegisters();
            
            cachedGetByIdWithThis(node->origin.semantic, baseGPR, thisValueGPR, resultGPR, node->identifierNumber(), JITCompiler::JumpList());
            
            jsValueResult(resultGPR, node);
            
        } else {
            JSValueOperand base(this, node->child1());
            GPRReg baseGPR = base.gpr();
            JSValueOperand thisValue(this, node->child2());
            GPRReg thisValueGPR = thisValue.gpr();
            
            GPRFlushedCallResult result(this);
            GPRReg resultGPR = result.gpr();
            
            flushRegisters();
            
            JITCompiler::JumpList notCellList;
            notCellList.append(m_jit.branchIfNotCell(JSValueRegs(baseGPR)));
            notCellList.append(m_jit.branchIfNotCell(JSValueRegs(thisValueGPR)));
            
            cachedGetByIdWithThis(node->origin.semantic, baseGPR, thisValueGPR, resultGPR, node->identifierNumber(), notCellList);
            
            jsValueResult(resultGPR, node);
        }
        
        break;
    }

    case GetArrayLength:
        compileGetArrayLength(node);
        break;

    case DeleteById: {
        compileDeleteById(node);
        break;
    }

    case DeleteByVal: {
        compileDeleteByVal(node);
        break;
    }
        
    case CheckCell: {
        compileCheckCell(node);
        break;
    }

    case CheckNotEmpty: {
        compileCheckNotEmpty(node);
        break;
    }

    case AssertNotEmpty: {
        if (validationEnabled()) {
            JSValueOperand operand(this, node->child1());
            GPRReg input = operand.gpr();
            auto done = m_jit.branchIfNotEmpty(input);
            m_jit.breakpoint();
            done.link(&m_jit);
        }
        noResult(node);
        break;
    }

    case CheckStringIdent:
        compileCheckStringIdent(node);
        break;

    case GetExecutable: {
        compileGetExecutable(node);
        break;
    }
        
    case CheckStructureOrEmpty: {
        SpeculateCellOperand cell(this, node->child1());
        GPRReg cellGPR = cell.gpr();

        GPRReg tempGPR = InvalidGPRReg;
        Optional<GPRTemporary> temp;
        if (node->structureSet().size() > 1) {
            temp.emplace(this);
            tempGPR = temp->gpr();
        }

        MacroAssembler::Jump isEmpty;
        if (m_interpreter.forNode(node->child1()).m_type & SpecEmpty)
            isEmpty = m_jit.branchIfEmpty(cellGPR);

        emitStructureCheck(node, cellGPR, tempGPR);

        if (isEmpty.isSet())
            isEmpty.link(&m_jit);

        noResult(node);
        break;
    }

    case CheckStructure: {
        compileCheckStructure(node);
        break;
    }
        
    case PutStructure: {
        RegisteredStructure oldStructure = node->transition()->previous;
        RegisteredStructure newStructure = node->transition()->next;

        m_jit.jitCode()->common.notifyCompilingStructureTransition(m_jit.graph().m_plan, m_jit.codeBlock(), node);

        SpeculateCellOperand base(this, node->child1());
        GPRReg baseGPR = base.gpr();
        
        ASSERT_UNUSED(oldStructure, oldStructure->indexingMode() == newStructure->indexingMode());
        ASSERT(oldStructure->typeInfo().type() == newStructure->typeInfo().type());
        ASSERT(oldStructure->typeInfo().inlineTypeFlags() == newStructure->typeInfo().inlineTypeFlags());
        m_jit.store32(MacroAssembler::TrustedImm32(newStructure->id()), MacroAssembler::Address(baseGPR, JSCell::structureIDOffset()));
        
        noResult(node);
        break;
    }
        
    case AllocatePropertyStorage:
        compileAllocatePropertyStorage(node);
        break;
        
    case ReallocatePropertyStorage:
        compileReallocatePropertyStorage(node);
        break;
        
    case NukeStructureAndSetButterfly:
        compileNukeStructureAndSetButterfly(node);
        break;
        
    case GetButterfly:
        compileGetButterfly(node);
        break;

    case GetIndexedPropertyStorage: {
        compileGetIndexedPropertyStorage(node);
        break;
    }
        
    case ConstantStoragePointer: {
        compileConstantStoragePointer(node);
        break;
    }
        
    case GetTypedArrayByteOffset: {
        compileGetTypedArrayByteOffset(node);
        break;
    }

    case GetPrototypeOf: {
        compileGetPrototypeOf(node);
        break;
    }
        
    case GetByOffset:
    case GetGetterSetterByOffset: {
        compileGetByOffset(node);
        break;
    }
        
    case MatchStructure: {
        compileMatchStructure(node);
        break;
    }
        
    case GetGetter: {
        compileGetGetter(node);
        break;
    }
        
    case GetSetter: {
        compileGetSetter(node);
        break;
    }
        
    case PutByOffset: {
        compilePutByOffset(node);
        break;
    }

    case PutByIdFlush: {
        compilePutByIdFlush(node);
        break;
    }
        
    case PutById: {
        compilePutById(node);
        break;
    }

    case PutByIdWithThis: {
        compilePutByIdWithThis(node);
        break;
    }

    case PutByValWithThis: {
        JSValueOperand base(this, m_jit.graph().varArgChild(node, 0));
        GPRReg baseGPR = base.gpr();
        JSValueOperand thisValue(this, m_jit.graph().varArgChild(node, 1));
        GPRReg thisValueGPR = thisValue.gpr();
        JSValueOperand property(this, m_jit.graph().varArgChild(node, 2));
        GPRReg propertyGPR = property.gpr();
        JSValueOperand value(this, m_jit.graph().varArgChild(node, 3));
        GPRReg valueGPR = value.gpr();

        flushRegisters();
        callOperation(m_jit.isStrictModeFor(node->origin.semantic) ? operationPutByValWithThisStrict : operationPutByValWithThis, NoResult, baseGPR, thisValueGPR, propertyGPR, valueGPR);
        m_jit.exceptionCheck();

        noResult(node);
        break;
    }

    case PutByIdDirect: {
        compilePutByIdDirect(node);
        break;
    }

    case PutGetterById:
    case PutSetterById: {
        compilePutAccessorById(node);
        break;
    }

    case PutGetterSetterById: {
        compilePutGetterSetterById(node);
        break;
    }

    case PutGetterByVal:
    case PutSetterByVal: {
        compilePutAccessorByVal(node);
        break;
    }

    case DefineDataProperty: {
        compileDefineDataProperty(node);
        break;
    }

    case DefineAccessorProperty: {
        compileDefineAccessorProperty(node);
        break;
    }

    case GetGlobalLexicalVariable:
    case GetGlobalVar: {
        compileGetGlobalVariable(node);
        break;
    }

    case PutGlobalVariable: {
        compilePutGlobalVariable(node);
        break;
    }

    case PutDynamicVar: {
        compilePutDynamicVar(node);
        break;
    }

    case GetDynamicVar: {
        compileGetDynamicVar(node);
        break;
    }
    
    case ResolveScopeForHoistingFuncDeclInEval: {
        compileResolveScopeForHoistingFuncDeclInEval(node);
        break;
    }

    case ResolveScope: {
        compileResolveScope(node);
        break;
    }

    case NotifyWrite: {
        compileNotifyWrite(node);
        break;
    }

    case CheckTypeInfoFlags: {
        compileCheckTypeInfoFlags(node);
        break;
    }

    case ParseInt: {
        compileParseInt(node);
        break;
    }

    case OverridesHasInstance: {
        compileOverridesHasInstance(node);
        break;
    }

    case InstanceOf: {
        compileInstanceOf(node);
        break;
    }

    case InstanceOfCustom: {
        compileInstanceOfCustom(node);
        break;
    }

    case IsEmpty: {
        JSValueOperand value(this, node->child1());
        GPRTemporary result(this, Reuse, value);

        m_jit.comparePtr(JITCompiler::Equal, value.gpr(), TrustedImm32(JSValue::encode(JSValue())), result.gpr());
        m_jit.or32(TrustedImm32(ValueFalse), result.gpr());

        jsValueResult(result.gpr(), node, DataFormatJSBoolean);
        break;
    }
        
    case IsUndefined: {
        JSValueOperand value(this, node->child1());
        GPRTemporary result(this);
        GPRTemporary localGlobalObject(this);
        GPRTemporary remoteGlobalObject(this);
        GPRTemporary scratch(this);

        JITCompiler::Jump isCell = m_jit.branchIfCell(value.jsValueRegs());

        m_jit.compare64(JITCompiler::Equal, value.gpr(), TrustedImm32(ValueUndefined), result.gpr());
        JITCompiler::Jump done = m_jit.jump();
        
        isCell.link(&m_jit);
        JITCompiler::Jump notMasqueradesAsUndefined;
        if (masqueradesAsUndefinedWatchpointIsStillValid()) {
            m_jit.move(TrustedImm32(0), result.gpr());
            notMasqueradesAsUndefined = m_jit.jump();
        } else {
            JITCompiler::Jump isMasqueradesAsUndefined = m_jit.branchTest8(
                JITCompiler::NonZero, 
                JITCompiler::Address(value.gpr(), JSCell::typeInfoFlagsOffset()), 
                TrustedImm32(MasqueradesAsUndefined));
            m_jit.move(TrustedImm32(0), result.gpr());
            notMasqueradesAsUndefined = m_jit.jump();

            isMasqueradesAsUndefined.link(&m_jit);
            GPRReg localGlobalObjectGPR = localGlobalObject.gpr();
            GPRReg remoteGlobalObjectGPR = remoteGlobalObject.gpr();
            m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), m_jit.globalObjectFor(node->origin.semantic)), localGlobalObjectGPR);
            m_jit.emitLoadStructure(*m_jit.vm(), value.gpr(), result.gpr(), scratch.gpr());
            m_jit.loadPtr(JITCompiler::Address(result.gpr(), Structure::globalObjectOffset()), remoteGlobalObjectGPR); 
            m_jit.comparePtr(JITCompiler::Equal, localGlobalObjectGPR, remoteGlobalObjectGPR, result.gpr());
        }

        notMasqueradesAsUndefined.link(&m_jit);
        done.link(&m_jit);
        m_jit.or32(TrustedImm32(ValueFalse), result.gpr());
        jsValueResult(result.gpr(), node, DataFormatJSBoolean);
        break;
    }
        
    case IsBoolean: {
        JSValueOperand value(this, node->child1());
        GPRTemporary result(this, Reuse, value);
        
        m_jit.move(value.gpr(), result.gpr());
        m_jit.xor64(JITCompiler::TrustedImm32(ValueFalse), result.gpr());
        m_jit.test64(JITCompiler::Zero, result.gpr(), JITCompiler::TrustedImm32(static_cast<int32_t>(~1)), result.gpr());
        m_jit.or32(TrustedImm32(ValueFalse), result.gpr());
        jsValueResult(result.gpr(), node, DataFormatJSBoolean);
        break;
    }
        
    case IsNumber: {
        JSValueOperand value(this, node->child1());
        GPRTemporary result(this, Reuse, value);
        
        m_jit.test64(JITCompiler::NonZero, value.gpr(), GPRInfo::tagTypeNumberRegister, result.gpr());
        m_jit.or32(TrustedImm32(ValueFalse), result.gpr());
        jsValueResult(result.gpr(), node, DataFormatJSBoolean);
        break;
    }

    case NumberIsInteger: {
        JSValueOperand value(this, node->child1());
        GPRTemporary result(this, Reuse, value);

        FPRTemporary temp1(this);
        FPRTemporary temp2(this);

        JSValueRegs valueRegs = JSValueRegs(value.gpr());
        GPRReg resultGPR = result.gpr();

        FPRReg tempFPR1 = temp1.fpr();
        FPRReg tempFPR2 = temp2.fpr();

        MacroAssembler::JumpList done;

        auto isInt32 = m_jit.branchIfInt32(valueRegs);
        auto notNumber = m_jit.branchIfNotDoubleKnownNotInt32(valueRegs);

        // We're a double here.
        m_jit.unboxDouble(valueRegs.gpr(), resultGPR, tempFPR1);
        m_jit.urshift64(TrustedImm32(52), resultGPR);
        m_jit.and32(TrustedImm32(0x7ff), resultGPR);
        auto notNanNorInfinity = m_jit.branch32(JITCompiler::NotEqual, TrustedImm32(0x7ff), resultGPR);
        m_jit.move(TrustedImm32(ValueFalse), resultGPR);
        done.append(m_jit.jump());

        notNanNorInfinity.link(&m_jit);
        m_jit.roundTowardZeroDouble(tempFPR1, tempFPR2);
        m_jit.compareDouble(JITCompiler::DoubleEqual, tempFPR1, tempFPR2, resultGPR);
        m_jit.or32(TrustedImm32(ValueFalse), resultGPR);
        done.append(m_jit.jump());

        isInt32.link(&m_jit);
        m_jit.move(TrustedImm32(ValueTrue), resultGPR);
        done.append(m_jit.jump());

        notNumber.link(&m_jit);
        m_jit.move(TrustedImm32(ValueFalse), resultGPR);

        done.link(&m_jit);
        jsValueResult(resultGPR, node, DataFormatJSBoolean);
        break;
    }

    case MapHash: {
        switch (node->child1().useKind()) {
        case BooleanUse:
        case Int32Use:
        case SymbolUse:
        case ObjectUse: {
            JSValueOperand input(this, node->child1(), ManualOperandSpeculation);
            GPRTemporary result(this, Reuse, input);
            GPRTemporary temp(this);

            GPRReg inputGPR = input.gpr();
            GPRReg resultGPR = result.gpr();
            GPRReg tempGPR = temp.gpr();

            speculate(node, node->child1());

            m_jit.move(inputGPR, resultGPR);
            m_jit.wangsInt64Hash(resultGPR, tempGPR);
            int32Result(resultGPR, node);
            break;
        }
        case CellUse:
        case StringUse: {
            SpeculateCellOperand input(this, node->child1());
            GPRTemporary result(this);
            Optional<GPRTemporary> temp;

            GPRReg tempGPR = InvalidGPRReg;
            if (node->child1().useKind() == CellUse) {
                temp.emplace(this);
                tempGPR = temp->gpr();
            }

            GPRReg inputGPR = input.gpr();
            GPRReg resultGPR = result.gpr();

            MacroAssembler::JumpList slowPath;
            MacroAssembler::JumpList done;

            if (node->child1().useKind() == StringUse)
                speculateString(node->child1(), inputGPR);
            else {
                auto isString = m_jit.branchIfString(inputGPR);
                m_jit.move(inputGPR, resultGPR);
                m_jit.wangsInt64Hash(resultGPR, tempGPR);
                done.append(m_jit.jump());
                isString.link(&m_jit);
            }

            m_jit.loadPtr(MacroAssembler::Address(inputGPR, JSString::offsetOfValue()), resultGPR);
            slowPath.append(m_jit.branchTestPtr(MacroAssembler::Zero, resultGPR));
            m_jit.load32(MacroAssembler::Address(resultGPR, StringImpl::flagsOffset()), resultGPR);
            m_jit.urshift32(MacroAssembler::TrustedImm32(StringImpl::s_flagCount), resultGPR);
            slowPath.append(m_jit.branchTest32(MacroAssembler::Zero, resultGPR));
            done.append(m_jit.jump());

            slowPath.link(&m_jit);
            silentSpillAllRegisters(resultGPR);
            callOperation(operationMapHash, resultGPR, JSValueRegs(inputGPR));
            silentFillAllRegisters();
            m_jit.exceptionCheck();

            done.link(&m_jit);
            int32Result(resultGPR, node);
            break;
        }
        default:
            RELEASE_ASSERT(node->child1().useKind() == UntypedUse);
            break;
        }
        
        if (node->child1().useKind() != UntypedUse)
            break;

        JSValueOperand input(this, node->child1());
        GPRTemporary temp(this);
        GPRTemporary result(this);

        GPRReg inputGPR = input.gpr();
        GPRReg resultGPR = result.gpr();
        GPRReg tempGPR = temp.gpr();

        MacroAssembler::JumpList straightHash;
        MacroAssembler::JumpList done;
        straightHash.append(m_jit.branchIfNotCell(inputGPR));
        MacroAssembler::JumpList slowPath;
        straightHash.append(m_jit.branchIfNotString(inputGPR));
        m_jit.loadPtr(MacroAssembler::Address(inputGPR, JSString::offsetOfValue()), resultGPR);
        slowPath.append(m_jit.branchTestPtr(MacroAssembler::Zero, resultGPR));
        m_jit.load32(MacroAssembler::Address(resultGPR, StringImpl::flagsOffset()), resultGPR);
        m_jit.urshift32(MacroAssembler::TrustedImm32(StringImpl::s_flagCount), resultGPR);
        slowPath.append(m_jit.branchTest32(MacroAssembler::Zero, resultGPR));
        done.append(m_jit.jump());

        straightHash.link(&m_jit);
        m_jit.move(inputGPR, resultGPR);
        m_jit.wangsInt64Hash(resultGPR, tempGPR);
        done.append(m_jit.jump());

        slowPath.link(&m_jit);
        silentSpillAllRegisters(resultGPR);
        callOperation(operationMapHash, resultGPR, JSValueRegs(inputGPR));
        silentFillAllRegisters();
        m_jit.exceptionCheck();

        done.link(&m_jit);
        int32Result(resultGPR, node);
        break;
    }

    case NormalizeMapKey: {
        compileNormalizeMapKey(node);
        break;
    }

    case GetMapBucket: {
        SpeculateCellOperand map(this, node->child1());
        JSValueOperand key(this, node->child2(), ManualOperandSpeculation);
        SpeculateInt32Operand hash(this, node->child3());
        GPRTemporary mask(this);
        GPRTemporary index(this);
        GPRTemporary buffer(this);
        GPRTemporary bucket(this);
        GPRTemporary result(this);

        GPRReg hashGPR = hash.gpr();
        GPRReg mapGPR = map.gpr();
        GPRReg maskGPR = mask.gpr();
        GPRReg indexGPR = index.gpr();
        GPRReg bufferGPR = buffer.gpr();
        GPRReg bucketGPR = bucket.gpr();
        GPRReg keyGPR = key.gpr();
        GPRReg resultGPR = result.gpr();

        if (node->child1().useKind() == MapObjectUse)
            speculateMapObject(node->child1(), mapGPR);
        else if (node->child1().useKind() == SetObjectUse)
            speculateSetObject(node->child1(), mapGPR);
        else
            RELEASE_ASSERT_NOT_REACHED();

        if (node->child2().useKind() != UntypedUse)
            speculate(node, node->child2());

        m_jit.load32(MacroAssembler::Address(mapGPR, HashMapImpl<HashMapBucket<HashMapBucketDataKey>>::offsetOfCapacity()), maskGPR);
        m_jit.loadPtr(MacroAssembler::Address(mapGPR, HashMapImpl<HashMapBucket<HashMapBucketDataKey>>::offsetOfBuffer()), bufferGPR);
        m_jit.sub32(TrustedImm32(1), maskGPR);
        m_jit.move(hashGPR, indexGPR);

        MacroAssembler::Label loop = m_jit.label();
        MacroAssembler::JumpList done;
        MacroAssembler::JumpList slowPathCases;
        MacroAssembler::JumpList loopAround;

        m_jit.and32(maskGPR, indexGPR);
        m_jit.loadPtr(MacroAssembler::BaseIndex(bufferGPR, indexGPR, MacroAssembler::TimesEight), bucketGPR);
        m_jit.move(bucketGPR, resultGPR);
        auto notPresentInTable = m_jit.branchPtr(MacroAssembler::Equal, 
            bucketGPR, TrustedImmPtr(bitwise_cast<size_t>(HashMapImpl<HashMapBucket<HashMapBucketDataKey>>::emptyValue())));
        loopAround.append(m_jit.branchPtr(MacroAssembler::Equal, 
            bucketGPR, TrustedImmPtr(bitwise_cast<size_t>(HashMapImpl<HashMapBucket<HashMapBucketDataKey>>::deletedValue()))));

        m_jit.load64(MacroAssembler::Address(bucketGPR, HashMapBucket<HashMapBucketDataKey>::offsetOfKey()), bucketGPR);

        // Perform Object.is()
        switch (node->child2().useKind()) {
        case BooleanUse:
        case Int32Use:
        case SymbolUse:
        case ObjectUse: {
            done.append(m_jit.branch64(MacroAssembler::Equal, bucketGPR, keyGPR)); // They're definitely the same value, we found the bucket we were looking for!
            // Otherwise, loop around.
            break;
        }
        case CellUse: {
            done.append(m_jit.branch64(MacroAssembler::Equal, bucketGPR, keyGPR));
            loopAround.append(m_jit.branchIfNotCell(JSValueRegs(bucketGPR)));
            loopAround.append(m_jit.branchIfNotString(bucketGPR));
            loopAround.append(m_jit.branchIfNotString(keyGPR));
            // They're both strings.
            slowPathCases.append(m_jit.jump());
            break;
        }
        case StringUse: {
            done.append(m_jit.branch64(MacroAssembler::Equal, bucketGPR, keyGPR)); // They're definitely the same value, we found the bucket we were looking for!
            loopAround.append(m_jit.branchIfNotCell(JSValueRegs(bucketGPR)));
            loopAround.append(m_jit.branchIfNotString(bucketGPR));
            slowPathCases.append(m_jit.jump());
            break;
        }
        case UntypedUse: { 
            done.append(m_jit.branch64(MacroAssembler::Equal, bucketGPR, keyGPR)); // They're definitely the same value, we found the bucket we were looking for!
            // The input key and bucket's key are already normalized. So if 64-bit compare fails and one is not a cell, they're definitely not equal.
            loopAround.append(m_jit.branchIfNotCell(JSValueRegs(bucketGPR)));
            // first is a cell here.
            loopAround.append(m_jit.branchIfNotCell(JSValueRegs(keyGPR)));
            // Both are cells here.
            loopAround.append(m_jit.branchIfNotString(bucketGPR));
            // The first is a string here.
            slowPathCases.append(m_jit.branchIfString(keyGPR));
            // The first is a string, but the second is not, we continue to loop around.
            loopAround.append(m_jit.jump());
            break;
        }
        default:
            RELEASE_ASSERT_NOT_REACHED();
        }

            
        if (!loopAround.empty())
            loopAround.link(&m_jit);

        m_jit.add32(TrustedImm32(1), indexGPR);
        m_jit.jump().linkTo(loop, &m_jit);

        if (!slowPathCases.empty()) {
            slowPathCases.link(&m_jit);
            silentSpillAllRegisters(indexGPR);
            if (node->child1().useKind() == MapObjectUse)
                callOperation(operationJSMapFindBucket, resultGPR, mapGPR, keyGPR, hashGPR);
            else
                callOperation(operationJSSetFindBucket, resultGPR, mapGPR, keyGPR, hashGPR);
            silentFillAllRegisters();
            m_jit.exceptionCheck();
            done.append(m_jit.jump());
        }

        notPresentInTable.link(&m_jit);
        if (node->child1().useKind() == MapObjectUse)
            m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), m_jit.vm()->sentinelMapBucket.get()), resultGPR);
        else
            m_jit.move(TrustedImmPtr::weakPointer(m_jit.graph(), m_jit.vm()->sentinelSetBucket.get()), resultGPR);
        done.link(&m_jit);
        cellResult(resultGPR, node);
        break;
    }

    case GetMapBucketHead:
        compileGetMapBucketHead(node);
        break;

    case GetMapBucketNext:
        compileGetMapBucketNext(node);
        break;

    case LoadKeyFromMapBucket:
        compileLoadKeyFromMapBucket(node);
        break;

    case LoadValueFromMapBucket:
        compileLoadValueFromMapBucket(node);
        break;

    case ExtractValueFromWeakMapGet:
        compileExtractValueFromWeakMapGet(node);
        break;

    case SetAdd:
        compileSetAdd(node);
        break;

    case MapSet:
        compileMapSet(node);
        break;

    case WeakMapGet:
        compileWeakMapGet(node);
        break;

    case WeakSetAdd:
        compileWeakSetAdd(node);
        break;

    case WeakMapSet:
        compileWeakMapSet(node);
        break;

    case StringSlice: {
        compileStringSlice(node);
        break;
    }

    case ToLowerCase: {
        compileToLowerCase(node);
        break;
    }

    case NumberToStringWithRadix: {
        compileNumberToStringWithRadix(node);
        break;
    }

    case NumberToStringWithValidRadixConstant: {
        compileNumberToStringWithValidRadixConstant(node);
        break;
    }

    case IsObject: {
        compileIsObject(node);
        break;
    }

    case IsObjectOrNull: {
        compileIsObjectOrNull(node);
        break;
    }

    case IsFunction: {
        compileIsFunction(node);
        break;
    }

    case IsCellWithType: {
        compileIsCellWithType(node);
        break;
    }

    case IsTypedArrayView: {
        compileIsTypedArrayView(node);
        break;
    }

    case TypeOf: {
        compileTypeOf(node);
        break;
    }

    case Flush:
        break;

    case Call:
    case TailCall:
    case TailCallInlinedCaller:
    case Construct:
    case CallVarargs:
    case TailCallVarargs:
    case TailCallVarargsInlinedCaller:
    case CallForwardVarargs:
    case ConstructVarargs:
    case ConstructForwardVarargs:
    case TailCallForwardVarargs:
    case TailCallForwardVarargsInlinedCaller:
    case CallEval:
    case DirectCall:
    case DirectConstruct:
    case DirectTailCall:
    case DirectTailCallInlinedCaller:
        emitCall(node);
        break;

    case LoadVarargs: {
        compileLoadVarargs(node);
        break;
    }
        
    case ForwardVarargs: {
        compileForwardVarargs(node);
        break;
    }
        
    case CreateActivation: {
        compileCreateActivation(node);
        break;
    }
    
    case PushWithScope: {
        compilePushWithScope(node);
        break;
    }

    case CreateDirectArguments: {
        compileCreateDirectArguments(node);
        break;
    }
        
    case GetFromArguments: {
        compileGetFromArguments(node);
        break;
    }
        
    case PutToArguments: {
        compilePutToArguments(node);
        break;
    }

    case GetArgument: {
        compileGetArgument(node);
        break;
    }
        
    case CreateScopedArguments: {
        compileCreateScopedArguments(node);
        break;
    }
        
    case CreateClonedArguments: {
        compileCreateClonedArguments(node);
        break;
    }
    case CreateRest: {
        compileCreateRest(node);
        break;
    }

    case NewFunction:
    case NewGeneratorFunction:
    case NewAsyncGeneratorFunction:
    case NewAsyncFunction:
        compileNewFunction(node);
        break;

    case SetFunctionName:
        compileSetFunctionName(node);
        break;

    case InById:
        compileInById(node);
        break;

    case InByVal:
        compileInByVal(node);
        break;

    case HasOwnProperty: {
        SpeculateCellOperand object(this, node->child1());
        GPRTemporary uniquedStringImpl(this);
        GPRTemporary temp(this);
        GPRTemporary hash(this);
        GPRTemporary structureID(this);
        GPRTemporary result(this);

        Optional<SpeculateCellOperand> keyAsCell;
        Optional<JSValueOperand> keyAsValue;
        GPRReg keyGPR;
        if (node->child2().useKind() == UntypedUse) {
            keyAsValue.emplace(this, node->child2());
            keyGPR = keyAsValue->gpr();
        } else {
            ASSERT(node->child2().useKind() == StringUse || node->child2().useKind() == SymbolUse);
            keyAsCell.emplace(this, node->child2());
            keyGPR = keyAsCell->gpr();
        }

        GPRReg objectGPR = object.gpr();
        GPRReg implGPR = uniquedStringImpl.gpr();
        GPRReg tempGPR = temp.gpr();
        GPRReg hashGPR = hash.gpr();
        GPRReg structureIDGPR = structureID.gpr();
        GPRReg resultGPR = result.gpr();

        speculateObject(node->child1());

        MacroAssembler::JumpList slowPath;
        switch (node->child2().useKind()) {
        case SymbolUse: {
            speculateSymbol(node->child2(), keyGPR);
            m_jit.loadPtr(MacroAssembler::Address(keyGPR, Symbol::offsetOfSymbolImpl()), implGPR);
            break;
        }
        case StringUse: {
            speculateString(node->child2(), keyGPR);
            m_jit.loadPtr(MacroAssembler::Address(keyGPR, JSString::offsetOfValue()), implGPR);
            slowPath.append(m_jit.branchTestPtr(MacroAssembler::Zero, implGPR));
            slowPath.append(m_jit.branchTest32(
                MacroAssembler::Zero, MacroAssembler::Address(implGPR, StringImpl::flagsOffset()),
                MacroAssembler::TrustedImm32(StringImpl::flagIsAtomic())));
            break;
        }
        case UntypedUse: {
            slowPath.append(m_jit.branchIfNotCell(JSValueRegs(keyGPR)));
            auto isNotString = m_jit.branchIfNotString(keyGPR);
            m_jit.loadPtr(MacroAssembler::Address(keyGPR, JSString::offsetOfValue()), implGPR);
            slowPath.append(m_jit.branchTestPtr(MacroAssembler::Zero, implGPR));
            slowPath.append(m_jit.branchTest32(
                MacroAssembler::Zero, MacroAssembler::Address(implGPR, StringImpl::flagsOffset()),
                MacroAssembler::TrustedImm32(StringImpl::flagIsAtomic())));
            auto hasUniquedImpl = m_jit.jump();

            isNotString.link(&m_jit);
            slowPath.append(m_jit.branchIfNotSymbol(keyGPR));
            m_jit.loadPtr(MacroAssembler::Address(keyGPR, Symbol::offsetOfSymbolImpl()), implGPR);

            hasUniquedImpl.link(&m_jit);
            break;
        }
        default:
            RELEASE_ASSERT_NOT_REACHED();
        }

        // Note that we don't test if the hash is zero here. AtomicStringImpl's can't have a zero
        // hash, however, a SymbolImpl may. But, because this is a cache, we don't care. We only
        // ever load the result from the cache if the cache entry matches what we are querying for.
        // So we either get super lucky and use zero for the hash and somehow collide with the entity
        // we're looking for, or we realize we're comparing against another entity, and go to the
        // slow path anyways.
        m_jit.load32(MacroAssembler::Address(implGPR, UniquedStringImpl::flagsOffset()), hashGPR);
        m_jit.urshift32(MacroAssembler::TrustedImm32(StringImpl::s_flagCount), hashGPR);
        m_jit.load32(MacroAssembler::Address(objectGPR, JSCell::structureIDOffset()), structureIDGPR);
        m_jit.add32(structureIDGPR, hashGPR);
        m_jit.and32(TrustedImm32(HasOwnPropertyCache::mask), hashGPR);
        if (hasOneBitSet(sizeof(HasOwnPropertyCache::Entry))) // is a power of 2
            m_jit.lshift32(TrustedImm32(getLSBSet(sizeof(HasOwnPropertyCache::Entry))), hashGPR);
        else
            m_jit.mul32(TrustedImm32(sizeof(HasOwnPropertyCache::Entry)), hashGPR, hashGPR);
        ASSERT(m_jit.vm()->hasOwnPropertyCache());
        m_jit.move(TrustedImmPtr(m_jit.vm()->hasOwnPropertyCache()), tempGPR);
        slowPath.append(m_jit.branchPtr(MacroAssembler::NotEqual, 
            MacroAssembler::BaseIndex(tempGPR, hashGPR, MacroAssembler::TimesOne, HasOwnPropertyCache::Entry::offsetOfImpl()), implGPR));
        m_jit.load8(MacroAssembler::BaseIndex(tempGPR, hashGPR, MacroAssembler::TimesOne, HasOwnPropertyCache::Entry::offsetOfResult()), resultGPR);
        m_jit.load32(MacroAssembler::BaseIndex(tempGPR, hashGPR, MacroAssembler::TimesOne, HasOwnPropertyCache::Entry::offsetOfStructureID()), tempGPR);
        slowPath.append(m_jit.branch32(MacroAssembler::NotEqual, tempGPR, structureIDGPR));
        auto done = m_jit.jump();

        slowPath.link(&m_jit);
        silentSpillAllRegisters(resultGPR);
        callOperation(operationHasOwnProperty, resultGPR, objectGPR, keyGPR);
        silentFillAllRegisters();
        m_jit.exceptionCheck();

        done.link(&m_jit);
        m_jit.or32(TrustedImm32(ValueFalse), resultGPR);
        jsValueResult(resultGPR, node, DataFormatJSBoolean);
        break;
    }
        
    case CountExecution:
        m_jit.add64(TrustedImm32(1), MacroAssembler::AbsoluteAddress(node->executionCounter()->address()));
        break;

    case SuperSamplerBegin:
        m_jit.add32(TrustedImm32(1), MacroAssembler::AbsoluteAddress(bitwise_cast<void*>(&g_superSamplerCount)));
        break;

    case SuperSamplerEnd:
        m_jit.sub32(TrustedImm32(1), MacroAssembler::AbsoluteAddress(bitwise_cast<void*>(&g_superSamplerCount)));
        break;

    case ForceOSRExit: {
        terminateSpeculativeExecution(InadequateCoverage, JSValueRegs(), 0);
        break;
    }
        
    case InvalidationPoint:
        emitInvalidationPoint(node);
        break;

    case CheckTraps:
        compileCheckTraps(node);
        break;

    case Phantom:
    case Check:
    case CheckVarargs:
        DFG_NODE_DO_TO_CHILDREN(m_jit.graph(), node, speculate);
        noResult(node);
        break;
        
    case PhantomLocal:
    case LoopHint:
        // This is a no-op.
        noResult(node);
        break;

    case Unreachable:
        unreachable(node);
        break;

    case StoreBarrier:
    case FencedStoreBarrier: {
        compileStoreBarrier(node);
        break;
    }
        
    case GetEnumerableLength: {
        compileGetEnumerableLength(node);
        break;
    }
    case HasGenericProperty: {
        compileHasGenericProperty(node);
        break;
    }
    case HasStructureProperty: {
        compileHasStructureProperty(node);
        break;
    }
    case HasIndexedProperty: {
        compileHasIndexedProperty(node);
        break;
    }
    case GetDirectPname: {
        compileGetDirectPname(node);
        break;
    }
    case GetPropertyEnumerator: {
        compileGetPropertyEnumerator(node);
        break;
    }
    case GetEnumeratorStructurePname:
    case GetEnumeratorGenericPname: {
        compileGetEnumeratorPname(node);
        break;
    }
    case ToIndexString: {
        compileToIndexString(node);
        break;
    }
    case ProfileType: {
        compileProfileType(node);
        break;
    }
    case ProfileControlFlow: {
        BasicBlockLocation* basicBlockLocation = node->basicBlockLocation();
        basicBlockLocation->emitExecuteCode(m_jit);
        noResult(node);
        break;
    }
        
    case LogShadowChickenPrologue: {
        compileLogShadowChickenPrologue(node);
        break;
    }

    case LogShadowChickenTail: {
        compileLogShadowChickenTail(node);
        break;
    }

    case MaterializeNewObject:
        compileMaterializeNewObject(node);
        break;

    case CallDOM:
        compileCallDOM(node);
        break;

    case CallDOMGetter:
        compileCallDOMGetter(node);
        break;

    case CheckSubClass:
        compileCheckSubClass(node);
        break;

    case ExtractCatchLocal: {
        compileExtractCatchLocal(node);
        break;
    }

    case ClearCatchLocals:
        compileClearCatchLocals(node);
        break;

    case DataViewGetFloat:
    case DataViewGetInt: {
        SpeculateCellOperand dataView(this, node->child1());
        GPRReg dataViewGPR = dataView.gpr();
        speculateDataViewObject(node->child1(), dataViewGPR);

        SpeculateInt32Operand index(this, node->child2());
        GPRReg indexGPR = index.gpr();

        GPRTemporary temp1(this);
        GPRReg t1 = temp1.gpr();
        GPRTemporary temp2(this);
        GPRReg t2 = temp2.gpr();

        Optional<SpeculateBooleanOperand> isLittleEndianOperand;
        if (node->child3())
            isLittleEndianOperand.emplace(this, node->child3());
        GPRReg isLittleEndianGPR = isLittleEndianOperand ? isLittleEndianOperand->gpr() : InvalidGPRReg;

        DataViewData data = node->dataViewData();

        m_jit.zeroExtend32ToPtr(indexGPR, t2);
        if (data.byteSize > 1)
            m_jit.add64(TrustedImm32(data.byteSize - 1), t2);
        m_jit.load32(MacroAssembler::Address(dataViewGPR, JSArrayBufferView::offsetOfLength()), t1);
        speculationCheck(OutOfBounds, JSValueRegs(), node,
            m_jit.branch64(MacroAssembler::AboveOrEqual, t2, t1));

        m_jit.loadPtr(JITCompiler::Address(dataViewGPR, JSArrayBufferView::offsetOfVector()), t2);
        cageTypedArrayStorage(t2);

        m_jit.zeroExtend32ToPtr(indexGPR, t1);
        auto baseIndex = JITCompiler::BaseIndex(t2, t1, MacroAssembler::TimesOne);

        if (node->op() == DataViewGetInt) {
            switch (data.byteSize) {
            case 1:
                if (data.isSigned)
                    m_jit.load8SignedExtendTo32(baseIndex, t2);
                else
                    m_jit.load8(baseIndex, t2);
                int32Result(t2, node);
                break;
            case 2: {
                auto emitLittleEndianLoad = [&] {
                    if (data.isSigned)
                        m_jit.load16SignedExtendTo32(baseIndex, t2);
                    else
                        m_jit.load16(baseIndex, t2);
                };
                auto emitBigEndianLoad = [&] {
                    m_jit.load16(baseIndex, t2);
                    m_jit.byteSwap16(t2);
                    if (data.isSigned)
                        m_jit.signExtend16To32(t2, t2);
                };

                if (data.isLittleEndian == FalseTriState)
                    emitBigEndianLoad();
                else if (data.isLittleEndian == TrueTriState)
                    emitLittleEndianLoad();
                else {
                    RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
                    auto isBigEndian = m_jit.branchTest32(MacroAssembler::Zero, isLittleEndianGPR, TrustedImm32(1));
                    emitLittleEndianLoad();
                    auto done = m_jit.jump();
                    isBigEndian.link(&m_jit);
                    emitBigEndianLoad();
                    done.link(&m_jit);
                }
                int32Result(t2, node);
                break;
            }
            case 4: {
                m_jit.load32(baseIndex, t2);

                if (data.isLittleEndian == FalseTriState)
                    m_jit.byteSwap32(t2);
                else if (data.isLittleEndian == MixedTriState) {
                    RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
                    auto isLittleEndian = m_jit.branchTest32(MacroAssembler::NonZero, isLittleEndianGPR, TrustedImm32(1));
                    m_jit.byteSwap32(t2);
                    isLittleEndian.link(&m_jit);
                }

                if (data.isSigned)
                    int32Result(t2, node);
                else
                    strictInt52Result(t2, node);
                break;
            }
            default:
                RELEASE_ASSERT_NOT_REACHED();
            }
        } else {
            FPRTemporary result(this);
            FPRReg resultFPR = result.fpr();

            switch (data.byteSize) {
            case 4: {
                auto emitLittleEndianCode = [&] {
                    m_jit.loadFloat(baseIndex, resultFPR);
                    m_jit.convertFloatToDouble(resultFPR, resultFPR);
                };

                auto emitBigEndianCode = [&] {
                    m_jit.load32(baseIndex, t2);
                    m_jit.byteSwap32(t2);
                    m_jit.move32ToFloat(t2, resultFPR);
                    m_jit.convertFloatToDouble(resultFPR, resultFPR);
                };

                if (data.isLittleEndian == TrueTriState)
                    emitLittleEndianCode();
                else if (data.isLittleEndian == FalseTriState)
                    emitBigEndianCode();
                else {
                    RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
                    auto isBigEndian = m_jit.branchTest32(MacroAssembler::Zero, isLittleEndianGPR, TrustedImm32(1));
                    emitLittleEndianCode();
                    auto done = m_jit.jump();
                    isBigEndian.link(&m_jit);
                    emitBigEndianCode();
                    done.link(&m_jit);
                }

                break;
            }
            case 8: {
                auto emitLittleEndianCode = [&] {
                    m_jit.loadDouble(baseIndex, resultFPR);
                };

                auto emitBigEndianCode = [&] {
                    m_jit.load64(baseIndex, t2);
                    m_jit.byteSwap64(t2);
                    m_jit.move64ToDouble(t2, resultFPR);
                };

                if (data.isLittleEndian == TrueTriState)
                    emitLittleEndianCode();
                else if (data.isLittleEndian == FalseTriState)
                    emitBigEndianCode();
                else {
                    RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
                    auto isBigEndian = m_jit.branchTest32(MacroAssembler::Zero, isLittleEndianGPR, TrustedImm32(1));
                    emitLittleEndianCode();
                    auto done = m_jit.jump();
                    isBigEndian.link(&m_jit);
                    emitBigEndianCode();
                    done.link(&m_jit);
                }

                break;
            }
            default:
                RELEASE_ASSERT_NOT_REACHED();
            }

            doubleResult(resultFPR, node);
        }

        break;
    }

    case DataViewSet: {
        SpeculateCellOperand dataView(this, m_graph.varArgChild(node, 0));
        GPRReg dataViewGPR = dataView.gpr();
        speculateDataViewObject(m_graph.varArgChild(node, 0), dataViewGPR);

        SpeculateInt32Operand index(this, m_graph.varArgChild(node, 1));
        GPRReg indexGPR = index.gpr();

        Optional<SpeculateStrictInt52Operand> int52Value;
        Optional<SpeculateDoubleOperand> doubleValue;
        Optional<SpeculateInt32Operand> int32Value;
        Optional<FPRTemporary> fprTemporary;
        GPRReg valueGPR = InvalidGPRReg;
        FPRReg valueFPR = InvalidFPRReg;
        FPRReg tempFPR = InvalidFPRReg;

        DataViewData data = node->dataViewData();

        Edge& valueEdge = m_graph.varArgChild(node, 2);
        switch (valueEdge.useKind()) {
        case Int32Use:
            int32Value.emplace(this, valueEdge);
            valueGPR = int32Value->gpr();
            break;
        case DoubleRepUse:
            doubleValue.emplace(this, valueEdge);
            valueFPR = doubleValue->fpr();
            if (data.byteSize == 4) {
                fprTemporary.emplace(this);
                tempFPR = fprTemporary->fpr();
            }
            break;
        case Int52RepUse:
            int52Value.emplace(this, valueEdge);
            valueGPR = int52Value->gpr();
            break;
        default:
            RELEASE_ASSERT_NOT_REACHED();
        }

        GPRTemporary temp1(this);
        GPRReg t1 = temp1.gpr();
        GPRTemporary temp2(this);
        GPRReg t2 = temp2.gpr();
        GPRTemporary temp3(this);
        GPRReg t3 = temp3.gpr();

        Optional<SpeculateBooleanOperand> isLittleEndianOperand;
        if (m_graph.varArgChild(node, 3))
            isLittleEndianOperand.emplace(this, m_graph.varArgChild(node, 3));
        GPRReg isLittleEndianGPR = isLittleEndianOperand ? isLittleEndianOperand->gpr() : InvalidGPRReg;

        m_jit.zeroExtend32ToPtr(indexGPR, t2);
        if (data.byteSize > 1)
            m_jit.add64(TrustedImm32(data.byteSize - 1), t2);
        m_jit.load32(MacroAssembler::Address(dataViewGPR, JSArrayBufferView::offsetOfLength()), t1);
        speculationCheck(OutOfBounds, JSValueRegs(), node,
            m_jit.branch64(MacroAssembler::AboveOrEqual, t2, t1));

        m_jit.loadPtr(JITCompiler::Address(dataViewGPR, JSArrayBufferView::offsetOfVector()), t2);
        cageTypedArrayStorage(t2);

        m_jit.zeroExtend32ToPtr(indexGPR, t1);
        auto baseIndex = JITCompiler::BaseIndex(t2, t1, MacroAssembler::TimesOne);

        if (data.isFloatingPoint) {
            RELEASE_ASSERT(valueFPR != InvalidFPRReg);
            if (data.byteSize == 4) {
                RELEASE_ASSERT(tempFPR != InvalidFPRReg);
                m_jit.convertDoubleToFloat(valueFPR, tempFPR);

                auto emitLittleEndianCode = [&] {
                    m_jit.storeFloat(tempFPR, baseIndex);
                };

                auto emitBigEndianCode = [&] {
                    m_jit.moveFloatTo32(tempFPR, t3);
                    m_jit.byteSwap32(t3);
                    m_jit.store32(t3, baseIndex);
                };

                if (data.isLittleEndian == FalseTriState)
                    emitBigEndianCode();
                else if (data.isLittleEndian == TrueTriState)
                    emitLittleEndianCode();
                else {
                    RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
                    auto isBigEndian = m_jit.branchTest32(MacroAssembler::Zero, isLittleEndianGPR, TrustedImm32(1));
                    emitLittleEndianCode();
                    auto done = m_jit.jump();
                    isBigEndian.link(&m_jit);
                    emitBigEndianCode();
                    done.link(&m_jit);
                }
            } else {
                RELEASE_ASSERT(data.byteSize == 8);
                RELEASE_ASSERT(valueFPR != InvalidFPRReg);

                auto emitLittleEndianCode = [&] {
                    m_jit.storeDouble(valueFPR, baseIndex);
                };
                auto emitBigEndianCode = [&] {
                    m_jit.moveDoubleTo64(valueFPR, t3);
                    m_jit.byteSwap64(t3);
                    m_jit.store64(t3, baseIndex);
                };

                if (data.isLittleEndian == FalseTriState)
                    emitBigEndianCode();
                else if (data.isLittleEndian == TrueTriState)
                    emitLittleEndianCode();
                else {
                    RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
                    auto isBigEndian = m_jit.branchTest32(MacroAssembler::Zero, isLittleEndianGPR, TrustedImm32(1));
                    emitLittleEndianCode();
                    auto done = m_jit.jump();
                    isBigEndian.link(&m_jit);
                    emitBigEndianCode();
                    done.link(&m_jit);
                }
            }
        } else {
            switch (data.byteSize) {
            case 1:
                RELEASE_ASSERT(valueEdge.useKind() == Int32Use);
                RELEASE_ASSERT(valueGPR != InvalidGPRReg);
                m_jit.store8(valueGPR, baseIndex);
                break;
            case 2: {
                RELEASE_ASSERT(valueEdge.useKind() == Int32Use);
                RELEASE_ASSERT(valueGPR != InvalidGPRReg);

                auto emitLittleEndianCode = [&] {
                    m_jit.store16(valueGPR, baseIndex);
                };
                auto emitBigEndianCode = [&] {
                    m_jit.move(valueGPR, t3);
                    m_jit.byteSwap16(t3);
                    m_jit.store16(t3, baseIndex);
                };

                if (data.isLittleEndian == FalseTriState)
                    emitBigEndianCode();
                else if (data.isLittleEndian == TrueTriState)
                    emitLittleEndianCode();
                else {
                    RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
                    auto isBigEndian = m_jit.branchTest32(MacroAssembler::Zero, isLittleEndianGPR, TrustedImm32(1));
                    emitLittleEndianCode();
                    auto done = m_jit.jump();
                    isBigEndian.link(&m_jit);
                    emitBigEndianCode();
                    done.link(&m_jit);
                }
                break;
            }
            case 4: {
                RELEASE_ASSERT(valueEdge.useKind() == Int32Use || valueEdge.useKind() == Int52RepUse);

                auto emitLittleEndianCode = [&] {
                    m_jit.store32(valueGPR, baseIndex);
                };

                auto emitBigEndianCode = [&] {
                    m_jit.zeroExtend32ToPtr(valueGPR, t3);
                    m_jit.byteSwap32(t3);
                    m_jit.store32(t3, baseIndex);
                };

                if (data.isLittleEndian == FalseTriState)
                    emitBigEndianCode();
                else if (data.isLittleEndian == TrueTriState)
                    emitLittleEndianCode();
                else {
                    RELEASE_ASSERT(isLittleEndianGPR != InvalidGPRReg);
                    auto isBigEndian = m_jit.branchTest32(MacroAssembler::Zero, isLittleEndianGPR, TrustedImm32(1));
                    emitLittleEndianCode();
                    auto done = m_jit.jump();
                    isBigEndian.link(&m_jit);
                    emitBigEndianCode();
                    done.link(&m_jit);
                }

                break;
            }
            default:
                RELEASE_ASSERT_NOT_REACHED();
            }
        }

        noResult(node);
        break;
    }

#if ENABLE(FTL_JIT)        
    case CheckTierUpInLoop: {
        MacroAssembler::Jump callTierUp = m_jit.branchAdd32(
            MacroAssembler::PositiveOrZero,
            TrustedImm32(Options::ftlTierUpCounterIncrementForLoop()),
            MacroAssembler::AbsoluteAddress(&m_jit.jitCode()->tierUpCounter.m_counter));

        MacroAssembler::Label toNextOperation = m_jit.label();

        Vector<SilentRegisterSavePlan> savePlans;
        silentSpillAllRegistersImpl(false, savePlans, InvalidGPRReg);
        unsigned bytecodeIndex = node->origin.semantic.bytecodeIndex;

        addSlowPathGeneratorLambda([=]() {
            callTierUp.link(&m_jit);

            silentSpill(savePlans);
            callOperation(triggerTierUpNowInLoop, TrustedImm32(bytecodeIndex));
            silentFill(savePlans);

            m_jit.jump().linkTo(toNextOperation, &m_jit);
        });
        break;
    }
        
    case CheckTierUpAtReturn: {
        MacroAssembler::Jump done = m_jit.branchAdd32(
            MacroAssembler::Signed,
            TrustedImm32(Options::ftlTierUpCounterIncrementForReturn()),
            MacroAssembler::AbsoluteAddress(&m_jit.jitCode()->tierUpCounter.m_counter));
        
        silentSpillAllRegisters(InvalidGPRReg);
        callOperation(triggerTierUpNow);
        silentFillAllRegisters();
        
        done.link(&m_jit);
        break;
    }
        
    case CheckTierUpAndOSREnter: {
        ASSERT(!node->origin.semantic.inlineCallFrame);

        GPRTemporary temp(this);
        GPRReg tempGPR = temp.gpr();

        unsigned bytecodeIndex = node->origin.semantic.bytecodeIndex;
        auto triggerIterator = m_jit.jitCode()->tierUpEntryTriggers.find(bytecodeIndex);
        DFG_ASSERT(m_jit.graph(), node, triggerIterator != m_jit.jitCode()->tierUpEntryTriggers.end());
        JITCode::TriggerReason* forceEntryTrigger = &(m_jit.jitCode()->tierUpEntryTriggers.find(bytecodeIndex)->value);
        static_assert(!static_cast<uint8_t>(JITCode::TriggerReason::DontTrigger), "the JIT code assumes non-zero means 'enter'");
        static_assert(sizeof(JITCode::TriggerReason) == 1, "branchTest8 assumes this size");

        MacroAssembler::Jump forceOSREntry = m_jit.branchTest8(MacroAssembler::NonZero, MacroAssembler::AbsoluteAddress(forceEntryTrigger));
        MacroAssembler::Jump overflowedCounter = m_jit.branchAdd32(
            MacroAssembler::PositiveOrZero,
            TrustedImm32(Options::ftlTierUpCounterIncrementForLoop()),
            MacroAssembler::AbsoluteAddress(&m_jit.jitCode()->tierUpCounter.m_counter));
        MacroAssembler::Label toNextOperation = m_jit.label();

        Vector<SilentRegisterSavePlan> savePlans;
        silentSpillAllRegistersImpl(false, savePlans, tempGPR);

        unsigned streamIndex = m_stream->size();
        m_jit.jitCode()->bytecodeIndexToStreamIndex.add(bytecodeIndex, streamIndex);

        addSlowPathGeneratorLambda([=]() {
            forceOSREntry.link(&m_jit);
            overflowedCounter.link(&m_jit);

            silentSpill(savePlans);
            callOperation(triggerOSREntryNow, tempGPR, TrustedImm32(bytecodeIndex));

            if (savePlans.isEmpty())
                m_jit.branchTestPtr(MacroAssembler::Zero, tempGPR).linkTo(toNextOperation, &m_jit);
            else {
                MacroAssembler::Jump osrEnter = m_jit.branchTestPtr(MacroAssembler::NonZero, tempGPR);
                silentFill(savePlans);
                m_jit.jump().linkTo(toNextOperation, &m_jit);
                osrEnter.link(&m_jit);
            }
            m_jit.emitRestoreCalleeSaves();
            m_jit.jump(tempGPR, GPRInfo::callFrameRegister);
        });
        break;
    }

#else // ENABLE(FTL_JIT)
    case CheckTierUpInLoop:
    case CheckTierUpAtReturn:
    case CheckTierUpAndOSREnter:
        DFG_CRASH(m_jit.graph(), node, "Unexpected tier-up node");
        break;
#endif // ENABLE(FTL_JIT)

    case FilterCallLinkStatus:
    case FilterGetByIdStatus:
    case FilterPutByIdStatus:
    case FilterInByIdStatus:
        m_interpreter.filterICStatus(node);
        noResult(node);
        break;

    case LastNodeType:
    case EntrySwitch:
    case InitializeEntrypointArguments:
    case Phi:
    case Upsilon:
    case ExtractOSREntryLocal:
    case CheckInBounds:
    case ArithIMul:
    case MultiGetByOffset:
    case MultiPutByOffset:
    case FiatInt52:
    case CheckBadCell:
    case BottomValue:
    case PhantomNewObject:
    case PhantomNewFunction:
    case PhantomNewGeneratorFunction:
    case PhantomNewAsyncFunction:
    case PhantomNewAsyncGeneratorFunction:
    case PhantomCreateActivation:
    case PhantomNewRegexp:
    case GetMyArgumentByVal:
    case GetMyArgumentByValOutOfBounds:
    case GetVectorLength:
    case PutHint:
    case CheckStructureImmediate:
    case MaterializeCreateActivation:
    case PutStack:
    case KillStack:
    case GetStack:
    case PhantomCreateRest:
    case PhantomSpread:
    case PhantomNewArrayWithSpread:
    case PhantomNewArrayBuffer:
    case IdentityWithProfile:
    case CPUIntrinsic:
        DFG_CRASH(m_jit.graph(), node, "Unexpected node");
        break;
    }

    if (!m_compileOkay)
        return;
    
    if (node->hasResult() && node->mustGenerate())
        use(node);
}

void SpeculativeJIT::moveTrueTo(GPRReg gpr)
{
    m_jit.move(TrustedImm32(ValueTrue), gpr);
}

void SpeculativeJIT::moveFalseTo(GPRReg gpr)
{
    m_jit.move(TrustedImm32(ValueFalse), gpr);
}

void SpeculativeJIT::blessBoolean(GPRReg gpr)
{
    m_jit.or32(TrustedImm32(ValueFalse), gpr);
}

void SpeculativeJIT::convertAnyInt(Edge valueEdge, GPRReg resultGPR)
{
    JSValueOperand value(this, valueEdge, ManualOperandSpeculation);
    GPRReg valueGPR = value.gpr();
    
    JITCompiler::Jump notInt32 = m_jit.branchIfNotInt32(valueGPR);
    
    m_jit.signExtend32ToPtr(valueGPR, resultGPR);
    JITCompiler::Jump done = m_jit.jump();
    
    notInt32.link(&m_jit);
    silentSpillAllRegisters(resultGPR);
    callOperation(operationConvertBoxedDoubleToInt52, resultGPR, valueGPR);
    silentFillAllRegisters();

    DFG_TYPE_CHECK(
        JSValueRegs(valueGPR), valueEdge, SpecInt32Only | SpecAnyIntAsDouble,
        m_jit.branch64(
            JITCompiler::Equal, resultGPR,
            JITCompiler::TrustedImm64(JSValue::notInt52)));
    done.link(&m_jit);
}

void SpeculativeJIT::speculateAnyInt(Edge edge)
{
    if (!needsTypeCheck(edge, SpecInt32Only | SpecAnyIntAsDouble))
        return;
    
    GPRTemporary temp(this);
    convertAnyInt(edge, temp.gpr());
}

void SpeculativeJIT::speculateInt32(Edge edge, JSValueRegs regs)
{
    DFG_TYPE_CHECK(regs, edge, SpecInt32Only, m_jit.branchIfNotInt32(regs));
}

void SpeculativeJIT::speculateDoubleRepAnyInt(Edge edge)
{
    if (!needsTypeCheck(edge, SpecAnyIntAsDouble))
        return;
    
    SpeculateDoubleOperand value(this, edge);
    FPRReg valueFPR = value.fpr();
    
    flushRegisters();
    GPRFlushedCallResult result(this);
    GPRReg resultGPR = result.gpr();
    callOperation(operationConvertDoubleToInt52, resultGPR, valueFPR);
    
    DFG_TYPE_CHECK(
        JSValueRegs(), edge, SpecAnyIntAsDouble,
        m_jit.branch64(
            JITCompiler::Equal, resultGPR,
            JITCompiler::TrustedImm64(JSValue::notInt52)));
}

void SpeculativeJIT::compileArithRandom(Node* node)
{
    JSGlobalObject* globalObject = m_jit.graph().globalObjectFor(node->origin.semantic);
    GPRTemporary temp1(this);
    GPRTemporary temp2(this);
    GPRTemporary temp3(this);
    FPRTemporary result(this);
    m_jit.emitRandomThunk(globalObject, temp1.gpr(), temp2.gpr(), temp3.gpr(), result.fpr());
    doubleResult(result.fpr(), node);
}

#endif

} } // namespace JSC::DFG

#endif