B3LowerMacros.cpp   [plain text]


/*
 * Copyright (C) 2015 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "B3LowerMacros.h"

#if ENABLE(B3_JIT)

#include "B3BasicBlockInlines.h"
#include "B3BlockInsertionSet.h"
#include "B3CCallValue.h"
#include "B3ConstPtrValue.h"
#include "B3ControlValue.h"
#include "B3InsertionSetInlines.h"
#include "B3PhaseScope.h"
#include "B3ProcedureInlines.h"
#include "B3SwitchValue.h"
#include "B3UpsilonValue.h"
#include "B3ValueInlines.h"
#include <cmath>

namespace JSC { namespace B3 {

namespace {

class LowerMacros {
public:
    LowerMacros(Procedure& proc)
        : m_proc(proc)
        , m_blockInsertionSet(proc)
        , m_insertionSet(proc)
    {
    }

    bool run()
    {
        for (BasicBlock* block : m_proc) {
            m_block = block;
            processCurrentBlock();
        }
        m_changed |= m_blockInsertionSet.execute();
        if (m_changed) {
            m_proc.resetReachability();
            m_proc.invalidateCFG();
        }
        return m_changed;
    }
    
private:
    void processCurrentBlock()
    {
        for (m_index = 0; m_index < m_block->size(); ++m_index) {
            m_value = m_block->at(m_index);
            m_origin = m_value->origin();
            switch (m_value->opcode()) {
            case Mod: {
                double (*fmodDouble)(double, double) = fmod;
                if (m_value->type() == Double) {
                    Value* functionAddress = m_insertionSet.insert<ConstPtrValue>(m_index, m_origin, fmodDouble);
                    Value* result = m_insertionSet.insert<CCallValue>(m_index, Double, m_origin,
                        Effects::none(),
                        functionAddress,
                        m_value->child(0),
                        m_value->child(1));
                    m_value->replaceWithIdentity(result);
                    m_changed = true;
                } else if (m_value->type() == Float) {
                    Value* numeratorAsDouble = m_insertionSet.insert<Value>(m_index, FloatToDouble, m_origin, m_value->child(0));
                    Value* denominatorAsDouble = m_insertionSet.insert<Value>(m_index, FloatToDouble, m_origin, m_value->child(1));
                    Value* functionAddress = m_insertionSet.insert<ConstPtrValue>(m_index, m_origin, fmodDouble);
                    Value* doubleMod = m_insertionSet.insert<CCallValue>(m_index, Double, m_origin,
                        Effects::none(),
                        functionAddress,
                        numeratorAsDouble,
                        denominatorAsDouble);
                    Value* result = m_insertionSet.insert<Value>(m_index, DoubleToFloat, m_origin, doubleMod);
                    m_value->replaceWithIdentity(result);
                    m_changed = true;
                } else if (isARM64()) {
                    Value* divResult = m_insertionSet.insert<Value>(m_index, ChillDiv, m_origin, m_value->child(0), m_value->child(1));
                    Value* multipliedBack = m_insertionSet.insert<Value>(m_index, Mul, m_origin, divResult, m_value->child(1));
                    Value* result = m_insertionSet.insert<Value>(m_index, Sub, m_origin, m_value->child(0), multipliedBack);
                    m_value->replaceWithIdentity(result);
                    m_changed = true;
                }
                break;
            }
            case ChillDiv: {
                makeDivisionChill(Div);
                break;
            }

            case ChillMod: {
                if (isARM64()) {
                    BasicBlock* before = m_blockInsertionSet.splitForward(m_block, m_index, &m_insertionSet);
                    BasicBlock* zeroDenCase = m_blockInsertionSet.insertBefore(m_block);
                    BasicBlock* normalModCase = m_blockInsertionSet.insertBefore(m_block);

                    before->replaceLastWithNew<ControlValue>(
                        m_proc, Branch, m_origin, m_value->child(1),
                        FrequentedBlock(normalModCase, FrequencyClass::Normal),
                        FrequentedBlock(zeroDenCase, FrequencyClass::Rare));

                    Value* divResult = normalModCase->appendNew<Value>(m_proc, ChillDiv, m_origin, m_value->child(0), m_value->child(1));
                    Value* multipliedBack = normalModCase->appendNew<Value>(m_proc, Mul, m_origin, divResult, m_value->child(1));
                    Value* result = normalModCase->appendNew<Value>(m_proc, Sub, m_origin, m_value->child(0), multipliedBack);
                    UpsilonValue* normalResult = normalModCase->appendNew<UpsilonValue>(m_proc, m_origin, result);
                    normalModCase->appendNew<ControlValue>(m_proc, Jump, m_origin, FrequentedBlock(m_block));

                    UpsilonValue* zeroResult = zeroDenCase->appendNew<UpsilonValue>(
                        m_proc, m_origin,
                        zeroDenCase->appendIntConstant(m_proc, m_value, 0));
                    zeroDenCase->appendNew<ControlValue>(m_proc, Jump, m_origin, FrequentedBlock(m_block));

                    Value* phi = m_insertionSet.insert<Value>(m_index, Phi, m_value->type(), m_origin);
                    normalResult->setPhi(phi);
                    zeroResult->setPhi(phi);
                    m_value->replaceWithIdentity(phi);
                    m_changed = true;
                } else
                    makeDivisionChill(Mod);
                break;
            }

            case Switch: {
                SwitchValue* switchValue = m_value->as<SwitchValue>();
                Vector<SwitchCase> cases;
                for (const SwitchCase& switchCase : *switchValue)
                    cases.append(switchCase);
                std::sort(
                    cases.begin(), cases.end(),
                    [] (const SwitchCase& left, const SwitchCase& right) {
                        return left.caseValue() < right.caseValue();
                    });
                m_block->values().removeLast();
                recursivelyBuildSwitch(cases, 0, false, cases.size(), m_block);
                m_proc.deleteValue(switchValue);
                m_block->updatePredecessorsAfter();
                m_changed = true;
                break;
            }

            default:
                break;
            }
        }
        m_insertionSet.execute(m_block);
    }

    void makeDivisionChill(Opcode nonChillOpcode)
    {
        ASSERT(nonChillOpcode == Div || nonChillOpcode == Mod);

        // ARM supports this instruction natively.
        if (isARM64())
            return;

        // We implement "res = ChillDiv/ChillMod(num, den)" as follows:
        //
        //     if (den + 1 <=_unsigned 1) {
        //         if (!den) {
        //             res = 0;
        //             goto done;
        //         }
        //         if (num == -2147483648) {
        //             res = isDiv ? num : 0;
        //             goto done;
        //         }
        //     }
        //     res = num (/ or %) dev;
        // done:
        m_changed = true;

        Value* num = m_value->child(0);
        Value* den = m_value->child(1);

        Value* one = m_insertionSet.insertIntConstant(m_index, m_value, 1);
        Value* isDenOK = m_insertionSet.insert<Value>(
            m_index, Above, m_origin,
            m_insertionSet.insert<Value>(m_index, Add, m_origin, den, one),
            one);

        BasicBlock* before = m_blockInsertionSet.splitForward(m_block, m_index, &m_insertionSet);

        BasicBlock* normalDivCase = m_blockInsertionSet.insertBefore(m_block);
        BasicBlock* shadyDenCase = m_blockInsertionSet.insertBefore(m_block);
        BasicBlock* zeroDenCase = m_blockInsertionSet.insertBefore(m_block);
        BasicBlock* neg1DenCase = m_blockInsertionSet.insertBefore(m_block);
        BasicBlock* intMinCase = m_blockInsertionSet.insertBefore(m_block);

        before->replaceLastWithNew<ControlValue>(
            m_proc, Branch, m_origin, isDenOK,
            FrequentedBlock(normalDivCase, FrequencyClass::Normal),
            FrequentedBlock(shadyDenCase, FrequencyClass::Rare));

        UpsilonValue* normalResult = normalDivCase->appendNew<UpsilonValue>(
            m_proc, m_origin,
            normalDivCase->appendNew<Value>(m_proc, nonChillOpcode, m_origin, num, den));
        normalDivCase->appendNew<ControlValue>(
            m_proc, Jump, m_origin, FrequentedBlock(m_block));

        shadyDenCase->appendNew<ControlValue>(
            m_proc, Branch, m_origin, den,
            FrequentedBlock(neg1DenCase, FrequencyClass::Normal),
            FrequentedBlock(zeroDenCase, FrequencyClass::Rare));

        UpsilonValue* zeroResult = zeroDenCase->appendNew<UpsilonValue>(
            m_proc, m_origin,
            zeroDenCase->appendIntConstant(m_proc, m_value, 0));
        zeroDenCase->appendNew<ControlValue>(
            m_proc, Jump, m_origin, FrequentedBlock(m_block));

        int64_t badNumeratorConst = 0;
        switch (m_value->type()) {
        case Int32:
            badNumeratorConst = std::numeric_limits<int32_t>::min();
            break;
        case Int64:
            badNumeratorConst = std::numeric_limits<int64_t>::min();
            break;
        default:
            ASSERT_NOT_REACHED();
            badNumeratorConst = 0;
        }

        Value* badNumerator =
            neg1DenCase->appendIntConstant(m_proc, m_value, badNumeratorConst);

        neg1DenCase->appendNew<ControlValue>(
            m_proc, Branch, m_origin,
            neg1DenCase->appendNew<Value>(
                m_proc, Equal, m_origin, num, badNumerator),
            FrequentedBlock(intMinCase, FrequencyClass::Rare),
            FrequentedBlock(normalDivCase, FrequencyClass::Normal));

        Value* intMinResult = nonChillOpcode == Div ? badNumerator : intMinCase->appendIntConstant(m_proc, m_value, 0);
        UpsilonValue* intMinResultUpsilon = intMinCase->appendNew<UpsilonValue>(
            m_proc, m_origin, intMinResult);
        intMinCase->appendNew<ControlValue>(
            m_proc, Jump, m_origin, FrequentedBlock(m_block));

        Value* phi = m_insertionSet.insert<Value>(
            m_index, Phi, m_value->type(), m_origin);
        normalResult->setPhi(phi);
        zeroResult->setPhi(phi);
        intMinResultUpsilon->setPhi(phi);

        m_value->replaceWithIdentity(phi);
        before->updatePredecessorsAfter();
    }

    void recursivelyBuildSwitch(
        const Vector<SwitchCase>& cases, unsigned start, bool hardStart, unsigned end,
        BasicBlock* before)
    {
        // FIXME: Add table-based switch lowering.
        // https://bugs.webkit.org/show_bug.cgi?id=151141
        
        // See comments in jit/BinarySwitch.cpp for a justification of this algorithm. The only
        // thing we do differently is that we don't use randomness.

        const unsigned leafThreshold = 3;

        unsigned size = end - start;

        if (size <= leafThreshold) {
            bool allConsecutive = false;

            if ((hardStart || (start && cases[start - 1].caseValue() == cases[start].caseValue() - 1))
                && end < cases.size()
                && cases[end - 1].caseValue() == cases[end].caseValue() - 1) {
                allConsecutive = true;
                for (unsigned i = 0; i < size - 1; ++i) {
                    if (cases[start + i].caseValue() + 1 != cases[start + i + 1].caseValue()) {
                        allConsecutive = false;
                        break;
                    }
                }
            }

            unsigned limit = allConsecutive ? size - 1 : size;
            
            for (unsigned i = 0; i < limit; ++i) {
                BasicBlock* nextCheck = m_blockInsertionSet.insertAfter(m_block);
                before->appendNew<ControlValue>(
                    m_proc, Branch, m_origin,
                    before->appendNew<Value>(
                        m_proc, Equal, m_origin, m_value->child(0),
                        before->appendIntConstant(
                            m_proc, m_origin, m_value->child(0)->type(),
                            cases[start + i].caseValue())),
                    cases[start + i].target(), FrequentedBlock(nextCheck));

                before = nextCheck;
            }

            if (allConsecutive) {
                before->appendNew<ControlValue>(
                    m_proc, Jump, m_origin, cases[end - 1].target());
            } else {
                before->appendNew<ControlValue>(
                    m_proc, Jump, m_origin, m_value->as<SwitchValue>()->fallThrough());
            }
            return;
        }

        unsigned medianIndex = (start + end) / 2;

        BasicBlock* left = m_blockInsertionSet.insertAfter(m_block);
        BasicBlock* right = m_blockInsertionSet.insertAfter(m_block);

        before->appendNew<ControlValue>(
            m_proc, Branch, m_origin,
            before->appendNew<Value>(
                m_proc, LessThan, m_origin, m_value->child(0),
                before->appendIntConstant(
                    m_proc, m_origin, m_value->child(0)->type(),
                    cases[medianIndex].caseValue())),
            FrequentedBlock(left), FrequentedBlock(right));

        recursivelyBuildSwitch(cases, start, hardStart, medianIndex, left);
        recursivelyBuildSwitch(cases, medianIndex, true, end, right);
    }
    
    Procedure& m_proc;
    BlockInsertionSet m_blockInsertionSet;
    InsertionSet m_insertionSet;
    BasicBlock* m_block;
    unsigned m_index;
    Value* m_value;
    Origin m_origin;
    bool m_changed { false };
};

bool lowerMacrosImpl(Procedure& proc)
{
    LowerMacros lowerMacros(proc);
    return lowerMacros.run();
}

} // anonymous namespace

bool lowerMacros(Procedure& proc)
{
    PhaseScope phaseScope(proc, "lowerMacros");
    bool result = lowerMacrosImpl(proc);
    if (shouldValidateIR())
        RELEASE_ASSERT(!lowerMacrosImpl(proc));
    return result;
}

} } // namespace JSC::B3

#endif // ENABLE(B3_JIT)