MacroAssemblerX86_64.h   [plain text]


/*
 * Copyright (C) 2008, 2012, 2014 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#ifndef MacroAssemblerX86_64_h
#define MacroAssemblerX86_64_h

#if ENABLE(ASSEMBLER) && CPU(X86_64)

#include "MacroAssemblerX86Common.h"

#if USE(MASM_PROBE)
#include <wtf/StdLibExtras.h>
#endif

#define REPTACH_OFFSET_CALL_R11 3

inline bool CAN_SIGN_EXTEND_32_64(int64_t value) { return value == (int64_t)(int32_t)value; }

namespace JSC {

class MacroAssemblerX86_64 : public MacroAssemblerX86Common {
public:
    static const Scale ScalePtr = TimesEight;

    using MacroAssemblerX86Common::add32;
    using MacroAssemblerX86Common::and32;
    using MacroAssemblerX86Common::branchAdd32;
    using MacroAssemblerX86Common::or32;
    using MacroAssemblerX86Common::sub32;
    using MacroAssemblerX86Common::load8;
    using MacroAssemblerX86Common::load32;
    using MacroAssemblerX86Common::store32;
    using MacroAssemblerX86Common::store8;
    using MacroAssemblerX86Common::call;
    using MacroAssemblerX86Common::jump;
    using MacroAssemblerX86Common::addDouble;
    using MacroAssemblerX86Common::loadDouble;
    using MacroAssemblerX86Common::convertInt32ToDouble;

    void add32(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        add32(imm, Address(scratchRegister));
    }
    
    void and32(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        and32(imm, Address(scratchRegister));
    }
    
    void add32(AbsoluteAddress address, RegisterID dest)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        add32(Address(scratchRegister), dest);
    }
    
    void or32(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        or32(imm, Address(scratchRegister));
    }

    void or32(RegisterID reg, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        or32(reg, Address(scratchRegister));
    }

    void sub32(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        sub32(imm, Address(scratchRegister));
    }
    
    void load8(const void* address, RegisterID dest)
    {
        move(TrustedImmPtr(address), dest);
        load8(dest, dest);
    }

    void load32(const void* address, RegisterID dest)
    {
        if (dest == X86Registers::eax)
            m_assembler.movl_mEAX(address);
        else {
            move(TrustedImmPtr(address), dest);
            load32(dest, dest);
        }
    }

    void addDouble(AbsoluteAddress address, FPRegisterID dest)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        m_assembler.addsd_mr(0, scratchRegister, dest);
    }

    void convertInt32ToDouble(TrustedImm32 imm, FPRegisterID dest)
    {
        move(imm, scratchRegister);
        m_assembler.cvtsi2sd_rr(scratchRegister, dest);
    }

    void store32(TrustedImm32 imm, void* address)
    {
        move(TrustedImmPtr(address), scratchRegister);
        store32(imm, scratchRegister);
    }

    void store32(RegisterID source, void* address)
    {
        if (source == X86Registers::eax)
            m_assembler.movl_EAXm(address);
        else {
            move(TrustedImmPtr(address), scratchRegister);
            store32(source, scratchRegister);
        }
    }
    
    void store8(TrustedImm32 imm, void* address)
    {
        move(TrustedImmPtr(address), scratchRegister);
        store8(imm, Address(scratchRegister));
    }

    void store8(RegisterID reg, void* address)
    {
        move(TrustedImmPtr(address), scratchRegister);
        store8(reg, Address(scratchRegister));
    }

#if OS(WINDOWS)
    Call callWithSlowPathReturnType()
    {
        // On Win64, when the return type is larger than 8 bytes, we need to allocate space on the stack for the return value.
        // On entry, rcx should contain a pointer to this stack space. The other parameters are shifted to the right,
        // rdx should contain the first argument, r8 should contain the second argument, and r9 should contain the third argument.
        // On return, rax contains a pointer to this stack value. See http://msdn.microsoft.com/en-us/library/7572ztz4.aspx.
        // We then need to copy the 16 byte return value into rax and rdx, since JIT expects the return value to be split between the two.
        // It is assumed that the parameters are already shifted to the right, when entering this method.
        // Note: this implementation supports up to 3 parameters.

        // JIT relies on the CallerFrame (frame pointer) being put on the stack,
        // On Win64 we need to manually copy the frame pointer to the stack, since MSVC may not maintain a frame pointer on 64-bit.
        // See http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx where it's stated that rbp MAY be used as a frame pointer.
        store64(X86Registers::ebp, Address(X86Registers::esp, -16));

        // We also need to allocate the shadow space on the stack for the 4 parameter registers.
        // In addition, we need to allocate 16 bytes for the return value.
        // Also, we should allocate 16 bytes for the frame pointer, and return address (not populated).
        sub64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);

        // The first parameter register should contain a pointer to the stack allocated space for the return value.
        move(X86Registers::esp, X86Registers::ecx);
        add64(TrustedImm32(4 * sizeof(int64_t)), X86Registers::ecx);

        DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
        Call result = Call(m_assembler.call(scratchRegister), Call::Linkable);

        add64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);

        // Copy the return value into rax and rdx.
        load64(Address(X86Registers::eax, sizeof(int64_t)), X86Registers::edx);
        load64(Address(X86Registers::eax), X86Registers::eax);

        ASSERT_UNUSED(label, differenceBetween(label, result) == REPTACH_OFFSET_CALL_R11);
        return result;
    }
#endif

    Call call()
    {
#if OS(WINDOWS)
        // JIT relies on the CallerFrame (frame pointer) being put on the stack,
        // On Win64 we need to manually copy the frame pointer to the stack, since MSVC may not maintain a frame pointer on 64-bit.
        // See http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx where it's stated that rbp MAY be used as a frame pointer.
        store64(X86Registers::ebp, Address(X86Registers::esp, -16));

        // On Windows we need to copy the arguments that don't fit in registers to the stack location where the callee expects to find them.
        // We don't know the number of arguments at this point, so the arguments (5, 6, ...) should always be copied.

        // Copy argument 5
        load64(Address(X86Registers::esp, 4 * sizeof(int64_t)), scratchRegister);
        store64(scratchRegister, Address(X86Registers::esp, -4 * static_cast<int32_t>(sizeof(int64_t))));

        // Copy argument 6
        load64(Address(X86Registers::esp, 5 * sizeof(int64_t)), scratchRegister);
        store64(scratchRegister, Address(X86Registers::esp, -3 * static_cast<int32_t>(sizeof(int64_t))));

        // We also need to allocate the shadow space on the stack for the 4 parameter registers.
        // Also, we should allocate 16 bytes for the frame pointer, and return address (not populated).
        // In addition, we need to allocate 16 bytes for two more parameters, since the call can have up to 6 parameters.
        sub64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
#endif
        DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
        Call result = Call(m_assembler.call(scratchRegister), Call::Linkable);
#if OS(WINDOWS)
        add64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
#endif
        ASSERT_UNUSED(label, differenceBetween(label, result) == REPTACH_OFFSET_CALL_R11);
        return result;
    }

    // Address is a memory location containing the address to jump to
    void jump(AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        jump(Address(scratchRegister));
    }

    Call tailRecursiveCall()
    {
        DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
        Jump newJump = Jump(m_assembler.jmp_r(scratchRegister));
        ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPTACH_OFFSET_CALL_R11);
        return Call::fromTailJump(newJump);
    }

    Call makeTailRecursiveCall(Jump oldJump)
    {
        oldJump.link(this);
        DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister);
        Jump newJump = Jump(m_assembler.jmp_r(scratchRegister));
        ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPTACH_OFFSET_CALL_R11);
        return Call::fromTailJump(newJump);
    }

    Jump branchAdd32(ResultCondition cond, TrustedImm32 src, AbsoluteAddress dest)
    {
        move(TrustedImmPtr(dest.m_ptr), scratchRegister);
        add32(src, Address(scratchRegister));
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    void add64(RegisterID src, RegisterID dest)
    {
        m_assembler.addq_rr(src, dest);
    }
    
    void add64(Address src, RegisterID dest)
    {
        m_assembler.addq_mr(src.offset, src.base, dest);
    }

    void add64(AbsoluteAddress src, RegisterID dest)
    {
        move(TrustedImmPtr(src.m_ptr), scratchRegister);
        add64(Address(scratchRegister), dest);
    }

    void add64(TrustedImm32 imm, RegisterID srcDest)
    {
        if (imm.m_value == 1)
            m_assembler.incq_r(srcDest);
        else
            m_assembler.addq_ir(imm.m_value, srcDest);
    }

    void add64(TrustedImm64 imm, RegisterID dest)
    {
        if (imm.m_value == 1)
            m_assembler.incq_r(dest);
        else {
            move(imm, scratchRegister);
            add64(scratchRegister, dest);
        }
    }

    void add64(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        m_assembler.leaq_mr(imm.m_value, src, dest);
    }

    void add64(TrustedImm32 imm, Address address)
    {
        m_assembler.addq_im(imm.m_value, address.offset, address.base);
    }

    void add64(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister);
        add64(imm, Address(scratchRegister));
    }

    void addPtrNoFlags(TrustedImm32 imm, RegisterID srcDest)
    {
        m_assembler.leaq_mr(imm.m_value, srcDest, srcDest);
    }

    void and64(RegisterID src, RegisterID dest)
    {
        m_assembler.andq_rr(src, dest);
    }

    void and64(TrustedImm32 imm, RegisterID srcDest)
    {
        m_assembler.andq_ir(imm.m_value, srcDest);
    }

    void and64(TrustedImmPtr imm, RegisterID srcDest)
    {
        move(imm, scratchRegister);
        and64(scratchRegister, srcDest);
    }

    void lshift64(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.shlq_i8r(imm.m_value, dest);
    }
    
    void rshift64(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.sarq_i8r(imm.m_value, dest);
    }
    
    void mul64(RegisterID src, RegisterID dest)
    {
        m_assembler.imulq_rr(src, dest);
    }
    
    void neg64(RegisterID dest)
    {
        m_assembler.negq_r(dest);
    }

    void or64(RegisterID src, RegisterID dest)
    {
        m_assembler.orq_rr(src, dest);
    }

    void or64(TrustedImm64 imm, RegisterID dest)
    {
        move(imm, scratchRegister);
        or64(scratchRegister, dest);
    }

    void or64(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.orq_ir(imm.m_value, dest);
    }

    void or64(RegisterID op1, RegisterID op2, RegisterID dest)
    {
        if (op1 == op2)
            move(op1, dest);
        else if (op1 == dest)
            or64(op2, dest);
        else {
            move(op2, dest);
            or64(op1, dest);
        }
    }

    void or64(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        move(src, dest);
        or64(imm, dest);
    }
    
    void rotateRight64(TrustedImm32 imm, RegisterID srcDst)
    {
        m_assembler.rorq_i8r(imm.m_value, srcDst);
    }

    void sub64(RegisterID src, RegisterID dest)
    {
        m_assembler.subq_rr(src, dest);
    }
    
    void sub64(TrustedImm32 imm, RegisterID dest)
    {
        if (imm.m_value == 1)
            m_assembler.decq_r(dest);
        else
            m_assembler.subq_ir(imm.m_value, dest);
    }
    
    void sub64(TrustedImm64 imm, RegisterID dest)
    {
        if (imm.m_value == 1)
            m_assembler.decq_r(dest);
        else {
            move(imm, scratchRegister);
            sub64(scratchRegister, dest);
        }
    }

    void xor64(RegisterID src, RegisterID dest)
    {
        m_assembler.xorq_rr(src, dest);
    }
    
    void xor64(RegisterID src, Address dest)
    {
        m_assembler.xorq_rm(src, dest.offset, dest.base);
    }

    void xor64(TrustedImm32 imm, RegisterID srcDest)
    {
        m_assembler.xorq_ir(imm.m_value, srcDest);
    }

    void load64(ImplicitAddress address, RegisterID dest)
    {
        m_assembler.movq_mr(address.offset, address.base, dest);
    }

    void load64(BaseIndex address, RegisterID dest)
    {
        m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest);
    }

    void load64(const void* address, RegisterID dest)
    {
        if (dest == X86Registers::eax)
            m_assembler.movq_mEAX(address);
        else {
            move(TrustedImmPtr(address), dest);
            load64(dest, dest);
        }
    }

    DataLabel32 load64WithAddressOffsetPatch(Address address, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movq_mr_disp32(address.offset, address.base, dest);
        return DataLabel32(this);
    }
    
    DataLabelCompact load64WithCompactAddressOffsetPatch(Address address, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movq_mr_disp8(address.offset, address.base, dest);
        return DataLabelCompact(this);
    }

    void store64(RegisterID src, ImplicitAddress address)
    {
        m_assembler.movq_rm(src, address.offset, address.base);
    }

    void store64(RegisterID src, BaseIndex address)
    {
        m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale);
    }
    
    void store64(RegisterID src, void* address)
    {
        if (src == X86Registers::eax)
            m_assembler.movq_EAXm(address);
        else {
            move(TrustedImmPtr(address), scratchRegister);
            store64(src, scratchRegister);
        }
    }

    void store64(TrustedImm64 imm, ImplicitAddress address)
    {
        if (CAN_SIGN_EXTEND_32_64(imm.m_value))
            m_assembler.movq_i32m(static_cast<int>(imm.m_value), address.offset, address.base);
        else {
            move(imm, scratchRegister);
            store64(scratchRegister, address);
        }
    }

    void store64(TrustedImm64 imm, BaseIndex address)
    {
        move(imm, scratchRegister);
        m_assembler.movq_rm(scratchRegister, address.offset, address.base, address.index, address.scale);
    }
    
    DataLabel32 store64WithAddressOffsetPatch(RegisterID src, Address address)
    {
        padBeforePatch();
        m_assembler.movq_rm_disp32(src, address.offset, address.base);
        return DataLabel32(this);
    }

    void move64ToDouble(RegisterID src, FPRegisterID dest)
    {
        m_assembler.movq_rr(src, dest);
    }

    void moveDoubleTo64(FPRegisterID src, RegisterID dest)
    {
        m_assembler.movq_rr(src, dest);
    }

    void compare64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
    {
        if (((cond == Equal) || (cond == NotEqual)) && !right.m_value)
            m_assembler.testq_rr(left, left);
        else
            m_assembler.cmpq_ir(right.m_value, left);
        m_assembler.setCC_r(x86Condition(cond), dest);
        m_assembler.movzbl_rr(dest, dest);
    }
    
    void compare64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
    {
        m_assembler.cmpq_rr(right, left);
        m_assembler.setCC_r(x86Condition(cond), dest);
        m_assembler.movzbl_rr(dest, dest);
    }
    
    Jump branch64(RelationalCondition cond, RegisterID left, RegisterID right)
    {
        m_assembler.cmpq_rr(right, left);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm64 right)
    {
        if (((cond == Equal) || (cond == NotEqual)) && !right.m_value) {
            m_assembler.testq_rr(left, left);
            return Jump(m_assembler.jCC(x86Condition(cond)));
        }
        move(right, scratchRegister);
        return branch64(cond, left, scratchRegister);
    }

    Jump branch64(RelationalCondition cond, RegisterID left, Address right)
    {
        m_assembler.cmpq_mr(right.offset, right.base, left);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch64(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
    {
        move(TrustedImmPtr(left.m_ptr), scratchRegister);
        return branch64(cond, Address(scratchRegister), right);
    }

    Jump branch64(RelationalCondition cond, Address left, RegisterID right)
    {
        m_assembler.cmpq_rm(right, left.offset, left.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch64(RelationalCondition cond, Address left, TrustedImm64 right)
    {
        move(right, scratchRegister);
        return branch64(cond, left, scratchRegister);
    }

    Jump branch64(RelationalCondition cond, BaseIndex address, RegisterID right)
    {
        m_assembler.cmpq_rm(right, address.offset, address.base, address.index, address.scale);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchPtr(RelationalCondition cond, BaseIndex left, RegisterID right)
    {
        return branch64(cond, left, right);
    }

    Jump branchPtr(RelationalCondition cond, BaseIndex left, TrustedImmPtr right)
    {
        move(right, scratchRegister);
        return branchPtr(cond, left, scratchRegister);
    }

    Jump branchTest64(ResultCondition cond, RegisterID reg, RegisterID mask)
    {
        m_assembler.testq_rr(reg, mask);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }
    
    Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
    {
        // if we are only interested in the low seven bits, this can be tested with a testb
        if (mask.m_value == -1)
            m_assembler.testq_rr(reg, reg);
        else if ((mask.m_value & ~0x7f) == 0)
            m_assembler.testb_i8r(mask.m_value, reg);
        else
            m_assembler.testq_i32r(mask.m_value, reg);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    void test64(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest)
    {
        if (mask.m_value == -1)
            m_assembler.testq_rr(reg, reg);
        else if ((mask.m_value & ~0x7f) == 0)
            m_assembler.testb_i8r(mask.m_value, reg);
        else
            m_assembler.testq_i32r(mask.m_value, reg);
        set32(x86Condition(cond), dest);
    }

    void test64(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest)
    {
        m_assembler.testq_rr(reg, mask);
        set32(x86Condition(cond), dest);
    }

    Jump branchTest64(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
    {
        load64(address.m_ptr, scratchRegister);
        return branchTest64(cond, scratchRegister, mask);
    }

    Jump branchTest64(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
    {
        if (mask.m_value == -1)
            m_assembler.cmpq_im(0, address.offset, address.base);
        else
            m_assembler.testq_i32m(mask.m_value, address.offset, address.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchTest64(ResultCondition cond, Address address, RegisterID reg)
    {
        m_assembler.testq_rm(reg, address.offset, address.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchTest64(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
    {
        if (mask.m_value == -1)
            m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale);
        else
            m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }


    Jump branchAdd64(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
    {
        add64(imm, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchAdd64(ResultCondition cond, RegisterID src, RegisterID dest)
    {
        add64(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchMul64(ResultCondition cond, RegisterID src, RegisterID dest)
    {
        mul64(src, dest);
        if (cond != Overflow)
            m_assembler.testq_rr(dest, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchSub64(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
    {
        sub64(imm, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchSub64(ResultCondition cond, RegisterID src, RegisterID dest)
    {
        sub64(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchSub64(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest)
    {
        move(src1, dest);
        return branchSub64(cond, src2, dest);
    }

    Jump branchNeg64(ResultCondition cond, RegisterID srcDest)
    {
        neg64(srcDest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    void abortWithReason(AbortReason reason)
    {
        move(TrustedImm32(reason), X86Registers::r11);
        breakpoint();
    }

    void abortWithReason(AbortReason reason, intptr_t misc)
    {
        move(TrustedImm64(misc), X86Registers::r10);
        abortWithReason(reason);
    }

    ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest)
    {
        ConvertibleLoadLabel result = ConvertibleLoadLabel(this);
        m_assembler.movq_mr(address.offset, address.base, dest);
        return result;
    }

    DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movq_i64r(initialValue.asIntptr(), dest);
        return DataLabelPtr(this);
    }

    DataLabelPtr moveWithPatch(TrustedImm32 initialValue, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movq_i64r(initialValue.m_value, dest);
        return DataLabelPtr(this);
    }

    Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
    {
        dataLabel = moveWithPatch(initialRightValue, scratchRegister);
        return branch64(cond, left, scratchRegister);
    }

    Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
    {
        dataLabel = moveWithPatch(initialRightValue, scratchRegister);
        return branch64(cond, left, scratchRegister);
    }

    Jump branch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0))
    {
        padBeforePatch();
        m_assembler.movl_i32r(initialRightValue.m_value, scratchRegister);
        dataLabel = DataLabel32(this);
        return branch32(cond, left, scratchRegister);
    }

    DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address)
    {
        DataLabelPtr label = moveWithPatch(initialValue, scratchRegister);
        store64(scratchRegister, address);
        return label;
    }
    
    using MacroAssemblerX86Common::branch8;
    Jump branch8(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right)
    {
        MacroAssemblerX86Common::move(TrustedImmPtr(left.m_ptr), scratchRegister);
        return MacroAssemblerX86Common::branch8(cond, Address(scratchRegister), right);
    }
    
    using MacroAssemblerX86Common::branchTest8;
    Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1))
    {
        TrustedImmPtr addr(reinterpret_cast<void*>(address.offset));
        MacroAssemblerX86Common::move(addr, scratchRegister);
        return MacroAssemblerX86Common::branchTest8(cond, BaseIndex(scratchRegister, address.base, TimesOne), mask);
    }
    
    Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
    {
        MacroAssemblerX86Common::move(TrustedImmPtr(address.m_ptr), scratchRegister);
        return MacroAssemblerX86Common::branchTest8(cond, Address(scratchRegister), mask);
    }

    void convertInt64ToDouble(RegisterID src, FPRegisterID dest)
    {
        m_assembler.cvtsi2sdq_rr(src, dest);
    }

    static bool supportsFloatingPoint() { return true; }
    // See comment on MacroAssemblerARMv7::supportsFloatingPointTruncate()
    static bool supportsFloatingPointTruncate() { return true; }
    static bool supportsFloatingPointSqrt() { return true; }
    static bool supportsFloatingPointAbs() { return true; }
    
    static FunctionPtr readCallTarget(CodeLocationCall call)
    {
        return FunctionPtr(X86Assembler::readPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation()));
    }

    static bool haveScratchRegisterForBlinding() { return true; }
    static RegisterID scratchRegisterForBlinding() { return scratchRegister; }

    static bool canJumpReplacePatchableBranchPtrWithPatch() { return true; }
    static bool canJumpReplacePatchableBranch32WithPatch() { return true; }
    
    static CodeLocationLabel startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr label)
    {
        const int rexBytes = 1;
        const int opcodeBytes = 1;
        const int immediateBytes = 8;
        const int totalBytes = rexBytes + opcodeBytes + immediateBytes;
        ASSERT(totalBytes >= maxJumpReplacementSize());
        return label.labelAtOffset(-totalBytes);
    }
    
    static CodeLocationLabel startOfBranch32WithPatchOnRegister(CodeLocationDataLabel32 label)
    {
        const int rexBytes = 1;
        const int opcodeBytes = 1;
        const int immediateBytes = 4;
        const int totalBytes = rexBytes + opcodeBytes + immediateBytes;
        ASSERT(totalBytes >= maxJumpReplacementSize());
        return label.labelAtOffset(-totalBytes);
    }
    
    static CodeLocationLabel startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr label)
    {
        return startOfBranchPtrWithPatchOnRegister(label);
    }

    static CodeLocationLabel startOfPatchableBranch32WithPatchOnAddress(CodeLocationDataLabel32 label)
    {
        return startOfBranch32WithPatchOnRegister(label);
    }
    
    static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel instructionStart, Address, void* initialValue)
    {
        X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), scratchRegister);
    }

    static void revertJumpReplacementToPatchableBranch32WithPatch(CodeLocationLabel instructionStart, Address, int32_t initialValue)
    {
        X86Assembler::revertJumpTo_movl_i32r(instructionStart.executableAddress(), initialValue, scratchRegister);
    }

    static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel instructionStart, RegisterID, void* initialValue)
    {
        X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), scratchRegister);
    }

#if USE(MASM_PROBE)
    // This function emits code to preserve the CPUState (e.g. registers),
    // call a user supplied probe function, and restore the CPUState before
    // continuing with other JIT generated code.
    //
    // The user supplied probe function will be called with a single pointer to
    // a ProbeContext struct (defined above) which contains, among other things,
    // the preserved CPUState. This allows the user probe function to inspect
    // the CPUState at that point in the JIT generated code.
    //
    // If the user probe function alters the register values in the ProbeContext,
    // the altered values will be loaded into the CPU registers when the probe
    // returns.
    //
    // The ProbeContext is stack allocated and is only valid for the duration
    // of the call to the user probe function.

    void probe(ProbeFunction, void* arg1 = 0, void* arg2 = 0);
#endif // USE(MASM_PROBE)

private:
    friend class LinkBuffer;
    friend class RepatchBuffer;

    static void linkCall(void* code, Call call, FunctionPtr function)
    {
        if (!call.isFlagSet(Call::Near))
            X86Assembler::linkPointer(code, call.m_label.labelAtOffset(-REPTACH_OFFSET_CALL_R11), function.value());
        else
            X86Assembler::linkCall(code, call.m_label, function.value());
    }

    static void repatchCall(CodeLocationCall call, CodeLocationLabel destination)
    {
        X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress());
    }

    static void repatchCall(CodeLocationCall call, FunctionPtr destination)
    {
        X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress());
    }

#if USE(MASM_PROBE)
    inline TrustedImm64 trustedImm64FromPtr(void* ptr)
    {
        return TrustedImm64(TrustedImmPtr(ptr));
    }

    inline TrustedImm64 trustedImm64FromPtr(ProbeFunction function)
    {
        return TrustedImm64(TrustedImmPtr(reinterpret_cast<void*>(function)));
    }

    inline TrustedImm64 trustedImm64FromPtr(void (*function)())
    {
        return TrustedImm64(TrustedImmPtr(reinterpret_cast<void*>(function)));
    }
#endif
};

#if USE(MASM_PROBE)

extern "C" void ctiMasmProbeTrampoline();

// What code is emitted for the probe?
// ==================================
// We want to keep the size of the emitted probe invocation code as compact as
// possible to minimize the perturbation to the JIT generated code. However,
// we also need to preserve the CPU registers and set up the ProbeContext to be
// passed to the user probe function.
//
// Hence, we do only the minimum here to preserve a scratch register (i.e. rax
// in this case) and the stack pointer (i.e. rsp), and pass the probe arguments.
// We'll let the ctiMasmProbeTrampoline handle the rest of the probe invocation
// work i.e. saving the CPUState (and setting up the ProbeContext), calling the
// user probe function, and restoring the CPUState before returning to JIT
// generated code.
//
// What values are in the saved registers?
// ======================================
// Conceptually, the saved registers should contain values as if the probe
// is not present in the JIT generated code. Hence, they should contain values
// that are expected at the start of the instruction immediately following the
// probe.
//
// Specifcally, the saved stack pointer register will point to the stack
// position before we push the ProbeContext frame. The saved rip will point to
// the address of the instruction immediately following the probe. 

inline void MacroAssemblerX86_64::probe(MacroAssemblerX86_64::ProbeFunction function, void* arg1, void* arg2)
{
    push(RegisterID::esp);
    push(RegisterID::eax);
    move(trustedImm64FromPtr(arg2), RegisterID::eax);
    push(RegisterID::eax);
    move(trustedImm64FromPtr(arg1), RegisterID::eax);
    push(RegisterID::eax);
    move(trustedImm64FromPtr(function), RegisterID::eax);
    push(RegisterID::eax);
    move(trustedImm64FromPtr(ctiMasmProbeTrampoline), RegisterID::eax);
    call(RegisterID::eax);
}
#endif // USE(MASM_PROBE)

} // namespace JSC

#endif // ENABLE(ASSEMBLER)

#endif // MacroAssemblerX86_64_h