JSArray.cpp   [plain text]


/*
 *  Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
 *  Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved.
 *  Copyright (C) 2003 Peter Kelly (pmk@post.com)
 *  Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include "config.h"
#include "JSArray.h"

#include "ArrayPrototype.h"
#include "CachedCall.h"
#include "Error.h"
#include "Executable.h"
#include "PropertyNameArray.h"
#include <wtf/AVLTree.h>
#include <wtf/Assertions.h>
#include <wtf/OwnPtr.h>
#include <Operations.h>

using namespace std;
using namespace WTF;

namespace JSC {

ASSERT_CLASS_FITS_IN_CELL(JSArray);

// Overview of JSArray
//
// Properties of JSArray objects may be stored in one of three locations:
//   * The regular JSObject property map.
//   * A storage vector.
//   * A sparse map of array entries.
//
// Properties with non-numeric identifiers, with identifiers that are not representable
// as an unsigned integer, or where the value is greater than  MAX_ARRAY_INDEX
// (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit
// integer) are not considered array indices and will be stored in the JSObject property map.
//
// All properties with a numeric identifer, representable as an unsigned integer i,
// where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the
// storage vector or the sparse map.  An array index i will be handled in the following
// fashion:
//
//   * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector.
//   * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either
//     be stored in the storage vector or in the sparse array, depending on the density of
//     data that would be stored in the vector (a vector being used where at least
//     (1 / minDensityMultiplier) of the entries would be populated).
//   * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored
//     in the sparse array.

// The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize
// function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage
// size calculation cannot overflow.  (sizeof(ArrayStorage) - sizeof(JSValue)) +
// (vectorLength * sizeof(JSValue)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue))

// These values have to be macros to be used in max() and min() without introducing
// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
#define MIN_SPARSE_ARRAY_INDEX 10000U
#define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1)
// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
#define MAX_ARRAY_INDEX 0xFFFFFFFEU

// The value BASE_VECTOR_LEN is the maximum number of vector elements we'll allocate
// for an array that was created with a sepcified length (e.g. a = new Array(123))
#define BASE_VECTOR_LEN 4U
    
// The upper bound to the size we'll grow a zero length array when the first element
// is added.
#define FIRST_VECTOR_GROW 4U

// Our policy for when to use a vector and when to use a sparse map.
// For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector.
// When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector
// as long as it is 1/8 full. If more sparse than that, we use a map.
static const unsigned minDensityMultiplier = 8;

const ClassInfo JSArray::s_info = {"Array", &JSNonFinalObject::s_info, 0, 0};

// We keep track of the size of the last array after it was grown.  We use this
// as a simple heuristic for as the value to grow the next array from size 0.
// This value is capped by the constant FIRST_VECTOR_GROW defined above.
static unsigned lastArraySize = 0;

static inline size_t storageSize(unsigned vectorLength)
{
    ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH);

    // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH)
    // - as asserted above - the following calculation cannot overflow.
    size_t size = (sizeof(ArrayStorage) - sizeof(JSValue)) + (vectorLength * sizeof(JSValue));
    // Assertion to detect integer overflow in previous calculation (should not be possible, provided that
    // MAX_STORAGE_VECTOR_LENGTH is correctly defined).
    ASSERT(((size - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(JSValue))));

    return size;
}

static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
{
    return length / minDensityMultiplier <= numValues;
}

#if !CHECK_ARRAY_CONSISTENCY

inline void JSArray::checkConsistency(ConsistencyCheckType)
{
}

#endif

JSArray::JSArray(VPtrStealingHackType)
    : JSNonFinalObject(VPtrStealingHack)
{
}

JSArray::JSArray(JSGlobalData& globalData, Structure* structure)
    : JSNonFinalObject(globalData, structure)
{
    ASSERT(inherits(&s_info));

    unsigned initialCapacity = 0;

    m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
    m_storage->m_allocBase = m_storage;
    m_indexBias = 0;
    m_vectorLength = initialCapacity;

    checkConsistency();

    Heap::heap(this)->reportExtraMemoryCost(storageSize(0));
}

JSArray::JSArray(JSGlobalData& globalData, Structure* structure, unsigned initialLength, ArrayCreationMode creationMode)
    : JSNonFinalObject(globalData, structure)
{
    ASSERT(inherits(&s_info));

    unsigned initialCapacity;
    if (creationMode == CreateCompact)
        initialCapacity = initialLength;
    else
        initialCapacity = min(BASE_VECTOR_LEN, MIN_SPARSE_ARRAY_INDEX);
    
    m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialCapacity)));
    m_storage->m_allocBase = m_storage;
    m_storage->m_length = initialLength;
    m_indexBias = 0;
    m_vectorLength = initialCapacity;
    m_storage->m_sparseValueMap = 0;
    m_storage->subclassData = 0;
    m_storage->reportedMapCapacity = 0;

    if (creationMode == CreateCompact) {
#if CHECK_ARRAY_CONSISTENCY
        m_storage->m_inCompactInitialization = !!initialCapacity;
#endif
        m_storage->m_length = 0;
        m_storage->m_numValuesInVector = initialCapacity;
    } else {
#if CHECK_ARRAY_CONSISTENCY
        storage->m_inCompactInitialization = false;
#endif
        m_storage->m_length = initialLength;
        m_storage->m_numValuesInVector = 0;
        WriteBarrier<Unknown>* vector = m_storage->m_vector;
        for (size_t i = 0; i < initialCapacity; ++i)
            vector[i].clear();
    }

    checkConsistency();
    
    Heap::heap(this)->reportExtraMemoryCost(storageSize(initialCapacity));
}

JSArray::JSArray(JSGlobalData& globalData, Structure* structure, const ArgList& list)
    : JSNonFinalObject(globalData, structure)
{
    ASSERT(inherits(&s_info));

    unsigned initialCapacity = list.size();
    unsigned initialStorage;
    
    // If the ArgList is empty, allocate space for 3 entries.  This value empirically
    // works well for benchmarks.
    if (!initialCapacity)
        initialStorage = 3;
    else
        initialStorage = initialCapacity;
    
    m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialStorage)));
    m_storage->m_allocBase = m_storage;
    m_indexBias = 0;
    m_storage->m_length = initialCapacity;
    m_vectorLength = initialStorage;
    m_storage->m_numValuesInVector = initialCapacity;
    m_storage->m_sparseValueMap = 0;
    m_storage->subclassData = 0;
    m_storage->reportedMapCapacity = 0;
#if CHECK_ARRAY_CONSISTENCY
    m_storage->m_inCompactInitialization = false;
#endif

    size_t i = 0;
    WriteBarrier<Unknown>* vector = m_storage->m_vector;
    ArgList::const_iterator end = list.end();
    for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i)
        vector[i].set(globalData, this, *it);
    for (; i < initialStorage; i++)
        vector[i].clear();

    checkConsistency();

    Heap::heap(this)->reportExtraMemoryCost(storageSize(initialStorage));
}

JSArray::~JSArray()
{
    ASSERT(vptr() == JSGlobalData::jsArrayVPtr);
    checkConsistency(DestructorConsistencyCheck);

    delete m_storage->m_sparseValueMap;
    fastFree(m_storage->m_allocBase);
}

bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
{
    ArrayStorage* storage = m_storage;
    
    if (i >= storage->m_length) {
        if (i > MAX_ARRAY_INDEX)
            return getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
        return false;
    }

    if (i < m_vectorLength) {
        JSValue value = storage->m_vector[i].get();
        if (value) {
            slot.setValue(value);
            return true;
        }
    } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        if (i >= MIN_SPARSE_ARRAY_INDEX) {
            SparseArrayValueMap::iterator it = map->find(i);
            if (it != map->end()) {
                slot.setValue(it->second.get());
                return true;
            }
        }
    }

    return JSObject::getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
}

bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
    if (propertyName == exec->propertyNames().length) {
        slot.setValue(jsNumber(length()));
        return true;
    }

    bool isArrayIndex;
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
    if (isArrayIndex)
        return JSArray::getOwnPropertySlot(exec, i, slot);

    return JSObject::getOwnPropertySlot(exec, propertyName, slot);
}

bool JSArray::getOwnPropertyDescriptor(ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
{
    if (propertyName == exec->propertyNames().length) {
        descriptor.setDescriptor(jsNumber(length()), DontDelete | DontEnum);
        return true;
    }

    ArrayStorage* storage = m_storage;
    
    bool isArrayIndex;
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
    if (isArrayIndex) {
        if (i >= storage->m_length)
            return false;
        if (i < m_vectorLength) {
            WriteBarrier<Unknown>& value = storage->m_vector[i];
            if (value) {
                descriptor.setDescriptor(value.get(), 0);
                return true;
            }
        } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
            if (i >= MIN_SPARSE_ARRAY_INDEX) {
                SparseArrayValueMap::iterator it = map->find(i);
                if (it != map->end()) {
                    descriptor.setDescriptor(it->second.get(), 0);
                    return true;
                }
            }
        }
    }
    return JSObject::getOwnPropertyDescriptor(exec, propertyName, descriptor);
}

// ECMA 15.4.5.1
void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot)
{
    bool isArrayIndex;
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
    if (isArrayIndex) {
        put(exec, i, value);
        return;
    }

    if (propertyName == exec->propertyNames().length) {
        unsigned newLength = value.toUInt32(exec);
        if (value.toNumber(exec) != static_cast<double>(newLength)) {
            throwError(exec, createRangeError(exec, "Invalid array length."));
            return;
        }
        setLength(newLength);
        return;
    }

    JSObject::put(exec, propertyName, value, slot);
}

void JSArray::put(ExecState* exec, unsigned i, JSValue value)
{
    checkConsistency();

    ArrayStorage* storage = m_storage;

    unsigned length = storage->m_length;
    if (i >= length && i <= MAX_ARRAY_INDEX) {
        length = i + 1;
        storage->m_length = length;
    }

    if (i < m_vectorLength) {
        WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
        if (valueSlot) {
            valueSlot.set(exec->globalData(), this, value);
            checkConsistency();
            return;
        }
        valueSlot.set(exec->globalData(), this, value);
        ++storage->m_numValuesInVector;
        checkConsistency();
        return;
    }

    putSlowCase(exec, i, value);
}

NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValue value)
{
    ArrayStorage* storage = m_storage;
    
    SparseArrayValueMap* map = storage->m_sparseValueMap;

    if (i >= MIN_SPARSE_ARRAY_INDEX) {
        if (i > MAX_ARRAY_INDEX) {
            PutPropertySlot slot;
            put(exec, Identifier::from(exec, i), value, slot);
            return;
        }

        // We miss some cases where we could compact the storage, such as a large array that is being filled from the end
        // (which will only be compacted as we reach indices that are less than MIN_SPARSE_ARRAY_INDEX) - but this makes the check much faster.
        if ((i > MAX_STORAGE_VECTOR_INDEX) || !isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) {
            if (!map) {
                map = new SparseArrayValueMap;
                storage->m_sparseValueMap = map;
            }

            WriteBarrier<Unknown> temp;
            pair<SparseArrayValueMap::iterator, bool> result = map->add(i, temp);
            result.first->second.set(exec->globalData(), this, value);
            if (!result.second) // pre-existing entry
                return;

            size_t capacity = map->capacity();
            if (capacity != storage->reportedMapCapacity) {
                Heap::heap(this)->reportExtraMemoryCost((capacity - storage->reportedMapCapacity) * (sizeof(unsigned) + sizeof(JSValue)));
                storage->reportedMapCapacity = capacity;
            }
            return;
        }
    }

    // We have decided that we'll put the new item into the vector.
    // Fast case is when there is no sparse map, so we can increase the vector size without moving values from it.
    if (!map || map->isEmpty()) {
        if (increaseVectorLength(i + 1)) {
            storage = m_storage;
            storage->m_vector[i].set(exec->globalData(), this, value);
            ++storage->m_numValuesInVector;
            checkConsistency();
        } else
            throwOutOfMemoryError(exec);
        return;
    }

    // Decide how many values it would be best to move from the map.
    unsigned newNumValuesInVector = storage->m_numValuesInVector + 1;
    unsigned newVectorLength = getNewVectorLength(i + 1);
    for (unsigned j = max(m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
        newNumValuesInVector += map->contains(j);
    if (i >= MIN_SPARSE_ARRAY_INDEX)
        newNumValuesInVector -= map->contains(i);
    if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) {
        unsigned needLength = max(i + 1, storage->m_length);
        unsigned proposedNewNumValuesInVector = newNumValuesInVector;
        // If newVectorLength is already the maximum - MAX_STORAGE_VECTOR_LENGTH - then do not attempt to grow any further.
        while ((newVectorLength < needLength) && (newVectorLength < MAX_STORAGE_VECTOR_LENGTH)) {
            unsigned proposedNewVectorLength = getNewVectorLength(newVectorLength + 1);
            for (unsigned j = max(newVectorLength, MIN_SPARSE_ARRAY_INDEX); j < proposedNewVectorLength; ++j)
                proposedNewNumValuesInVector += map->contains(j);
            if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector))
                break;
            newVectorLength = proposedNewVectorLength;
            newNumValuesInVector = proposedNewNumValuesInVector;
        }
    }

    void* baseStorage = storage->m_allocBase;
    
    if (!tryFastRealloc(baseStorage, storageSize(newVectorLength + m_indexBias)).getValue(baseStorage)) {
        throwOutOfMemoryError(exec);
        return;
    }

    m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(baseStorage) + m_indexBias * sizeof(JSValue));
    m_storage->m_allocBase = baseStorage;
    storage = m_storage;
    
    unsigned vectorLength = m_vectorLength;
    WriteBarrier<Unknown>* vector = storage->m_vector;

    if (newNumValuesInVector == storage->m_numValuesInVector + 1) {
        for (unsigned j = vectorLength; j < newVectorLength; ++j)
            vector[j].clear();
        if (i > MIN_SPARSE_ARRAY_INDEX)
            map->remove(i);
    } else {
        for (unsigned j = vectorLength; j < max(vectorLength, MIN_SPARSE_ARRAY_INDEX); ++j)
            vector[j].clear();
        JSGlobalData& globalData = exec->globalData();
        for (unsigned j = max(vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
            vector[j].set(globalData, this, map->take(j).get());
    }

    ASSERT(i < newVectorLength);

    m_vectorLength = newVectorLength;
    storage->m_numValuesInVector = newNumValuesInVector;

    storage->m_vector[i].set(exec->globalData(), this, value);

    checkConsistency();

    Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
}

bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName)
{
    bool isArrayIndex;
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
    if (isArrayIndex)
        return deleteProperty(exec, i);

    if (propertyName == exec->propertyNames().length)
        return false;

    return JSObject::deleteProperty(exec, propertyName);
}

bool JSArray::deleteProperty(ExecState* exec, unsigned i)
{
    checkConsistency();

    ArrayStorage* storage = m_storage;
    
    if (i < m_vectorLength) {
        WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
        if (!valueSlot) {
            checkConsistency();
            return false;
        }
        valueSlot.clear();
        --storage->m_numValuesInVector;
        checkConsistency();
        return true;
    }

    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        if (i >= MIN_SPARSE_ARRAY_INDEX) {
            SparseArrayValueMap::iterator it = map->find(i);
            if (it != map->end()) {
                map->remove(it);
                checkConsistency();
                return true;
            }
        }
    }

    checkConsistency();

    if (i > MAX_ARRAY_INDEX)
        return deleteProperty(exec, Identifier::from(exec, i));

    return false;
}

void JSArray::getOwnPropertyNames(ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
{
    // FIXME: Filling PropertyNameArray with an identifier for every integer
    // is incredibly inefficient for large arrays. We need a different approach,
    // which almost certainly means a different structure for PropertyNameArray.

    ArrayStorage* storage = m_storage;
    
    unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
    for (unsigned i = 0; i < usedVectorLength; ++i) {
        if (storage->m_vector[i])
            propertyNames.add(Identifier::from(exec, i));
    }

    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        SparseArrayValueMap::iterator end = map->end();
        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
            propertyNames.add(Identifier::from(exec, it->first));
    }

    if (mode == IncludeDontEnumProperties)
        propertyNames.add(exec->propertyNames().length);

    JSObject::getOwnPropertyNames(exec, propertyNames, mode);
}

ALWAYS_INLINE unsigned JSArray::getNewVectorLength(unsigned desiredLength)
{
    ASSERT(desiredLength <= MAX_STORAGE_VECTOR_LENGTH);

    unsigned increasedLength;
    unsigned maxInitLength = min(m_storage->m_length, 100000U);

    if (desiredLength < maxInitLength)
        increasedLength = maxInitLength;
    else if (!m_vectorLength)
        increasedLength = max(desiredLength, lastArraySize);
    else {
        // Mathematically equivalent to:
        //   increasedLength = (newLength * 3 + 1) / 2;
        // or:
        //   increasedLength = (unsigned)ceil(newLength * 1.5));
        // This form is not prone to internal overflow.
        increasedLength = desiredLength + (desiredLength >> 1) + (desiredLength & 1);
    }

    ASSERT(increasedLength >= desiredLength);

    lastArraySize = min(increasedLength, FIRST_VECTOR_GROW);

    return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
}

bool JSArray::increaseVectorLength(unsigned newLength)
{
    // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
    // to the vector. Callers have to account for that, because they can do it more efficiently.

    ArrayStorage* storage = m_storage;

    unsigned vectorLength = m_vectorLength;
    ASSERT(newLength > vectorLength);
    ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
    unsigned newVectorLength = getNewVectorLength(newLength);
    void* baseStorage = storage->m_allocBase;

    if (!tryFastRealloc(baseStorage, storageSize(newVectorLength + m_indexBias)).getValue(baseStorage))
        return false;

    storage = m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(baseStorage) + m_indexBias * sizeof(JSValue));
    m_storage->m_allocBase = baseStorage;

    WriteBarrier<Unknown>* vector = storage->m_vector;
    for (unsigned i = vectorLength; i < newVectorLength; ++i)
        vector[i].clear();

    m_vectorLength = newVectorLength;
    
    Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));

    return true;
}

bool JSArray::increaseVectorPrefixLength(unsigned newLength)
{
    // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
    // to the vector. Callers have to account for that, because they can do it more efficiently.
    
    ArrayStorage* storage = m_storage;
    
    unsigned vectorLength = m_vectorLength;
    ASSERT(newLength > vectorLength);
    ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
    unsigned newVectorLength = getNewVectorLength(newLength);

    void* newBaseStorage = fastMalloc(storageSize(newVectorLength + m_indexBias));
    if (!newBaseStorage)
        return false;
    
    m_indexBias += newVectorLength - newLength;
    
    m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(newBaseStorage) + m_indexBias * sizeof(JSValue));

    memcpy(m_storage, storage, storageSize(0));
    memcpy(&m_storage->m_vector[newLength - m_vectorLength], &storage->m_vector[0], vectorLength * sizeof(JSValue));
    
    m_storage->m_allocBase = newBaseStorage;
    m_vectorLength = newLength;
    
    fastFree(storage->m_allocBase);

    Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
    
    return true;
}
    

void JSArray::setLength(unsigned newLength)
{
    ArrayStorage* storage = m_storage;
    
#if CHECK_ARRAY_CONSISTENCY
    if (!storage->m_inCompactInitialization)
        checkConsistency();
    else
        storage->m_inCompactInitialization = false;
#endif

    unsigned length = storage->m_length;

    if (newLength < length) {
        unsigned usedVectorLength = min(length, m_vectorLength);
        for (unsigned i = newLength; i < usedVectorLength; ++i) {
            WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
            bool hadValue = valueSlot;
            valueSlot.clear();
            storage->m_numValuesInVector -= hadValue;
        }

        if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
            SparseArrayValueMap copy = *map;
            SparseArrayValueMap::iterator end = copy.end();
            for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) {
                if (it->first >= newLength)
                    map->remove(it->first);
            }
            if (map->isEmpty()) {
                delete map;
                storage->m_sparseValueMap = 0;
            }
        }
    }

    storage->m_length = newLength;

    checkConsistency();
}

JSValue JSArray::pop()
{
    checkConsistency();

    ArrayStorage* storage = m_storage;
    
    unsigned length = storage->m_length;
    if (!length)
        return jsUndefined();

    --length;

    JSValue result;

    if (length < m_vectorLength) {
        WriteBarrier<Unknown>& valueSlot = storage->m_vector[length];
        if (valueSlot) {
            --storage->m_numValuesInVector;
            result = valueSlot.get();
            valueSlot.clear();
        } else
            result = jsUndefined();
    } else {
        result = jsUndefined();
        if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
            SparseArrayValueMap::iterator it = map->find(length);
            if (it != map->end()) {
                result = it->second.get();
                map->remove(it);
                if (map->isEmpty()) {
                    delete map;
                    storage->m_sparseValueMap = 0;
                }
            }
        }
    }

    storage->m_length = length;

    checkConsistency();

    return result;
}

void JSArray::push(ExecState* exec, JSValue value)
{
    checkConsistency();
    
    ArrayStorage* storage = m_storage;

    if (storage->m_length < m_vectorLength) {
        storage->m_vector[storage->m_length].set(exec->globalData(), this, value);
        ++storage->m_numValuesInVector;
        ++storage->m_length;
        checkConsistency();
        return;
    }

    if (storage->m_length < MIN_SPARSE_ARRAY_INDEX) {
        SparseArrayValueMap* map = storage->m_sparseValueMap;
        if (!map || map->isEmpty()) {
            if (increaseVectorLength(storage->m_length + 1)) {
                storage = m_storage;
                storage->m_vector[storage->m_length].set(exec->globalData(), this, value);
                ++storage->m_numValuesInVector;
                ++storage->m_length;
                checkConsistency();
                return;
            }
            checkConsistency();
            throwOutOfMemoryError(exec);
            return;
        }
    }

    putSlowCase(exec, storage->m_length++, value);
}

void JSArray::shiftCount(ExecState* exec, int count)
{
    ASSERT(count > 0);
    
    ArrayStorage* storage = m_storage;
    
    unsigned oldLength = storage->m_length;
    
    if (!oldLength)
        return;
    
    if (oldLength != storage->m_numValuesInVector) {
        // If m_length and m_numValuesInVector aren't the same, we have a sparse vector
        // which means we need to go through each entry looking for the the "empty"
        // slots and then fill them with possible properties.  See ECMA spec.
        // 15.4.4.9 steps 11 through 13.
        for (unsigned i = count; i < oldLength; ++i) {
            if ((i >= m_vectorLength) || (!m_storage->m_vector[i])) {
                PropertySlot slot(this);
                JSValue p = prototype();
                if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot)))
                    put(exec, i, slot.getValue(exec, i));
            }
        }

        storage = m_storage; // The put() above could have grown the vector and realloc'ed storage.

        // Need to decrement numValuesInvector based on number of real entries
        for (unsigned i = 0; i < (unsigned)count; ++i)
            if ((i < m_vectorLength) && (storage->m_vector[i]))
                --storage->m_numValuesInVector;
    } else
        storage->m_numValuesInVector -= count;
    
    storage->m_length -= count;
    
    if (m_vectorLength) {
        count = min(m_vectorLength, (unsigned)count);
        
        m_vectorLength -= count;
        
        if (m_vectorLength) {
            char* newBaseStorage = reinterpret_cast<char*>(storage) + count * sizeof(JSValue);
            memmove(newBaseStorage, storage, storageSize(0));
            m_storage = reinterpret_cast_ptr<ArrayStorage*>(newBaseStorage);

            m_indexBias += count;
        }
    }
}
    
void JSArray::unshiftCount(ExecState* exec, int count)
{
    ArrayStorage* storage = m_storage;

    ASSERT(m_indexBias >= 0);
    ASSERT(count >= 0);
    
    unsigned length = storage->m_length;
    
    if (length != storage->m_numValuesInVector) {
        // If m_length and m_numValuesInVector aren't the same, we have a sparse vector
        // which means we need to go through each entry looking for the the "empty"
        // slots and then fill them with possible properties.  See ECMA spec.
        // 15.4.4.13 steps 8 through 10.
        for (unsigned i = 0; i < length; ++i) {
            if ((i >= m_vectorLength) || (!m_storage->m_vector[i])) {
                PropertySlot slot(this);
                JSValue p = prototype();
                if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot)))
                    put(exec, i, slot.getValue(exec, i));
            }
        }
    }
    
    storage = m_storage; // The put() above could have grown the vector and realloc'ed storage.
    
    if (m_indexBias >= count) {
        m_indexBias -= count;
        char* newBaseStorage = reinterpret_cast<char*>(storage) - count * sizeof(JSValue);
        memmove(newBaseStorage, storage, storageSize(0));
        m_storage = reinterpret_cast_ptr<ArrayStorage*>(newBaseStorage);
        m_vectorLength += count;
    } else if (!increaseVectorPrefixLength(m_vectorLength + count)) {
        throwOutOfMemoryError(exec);
        return;
    }

    WriteBarrier<Unknown>* vector = m_storage->m_vector;
    for (int i = 0; i < count; i++)
        vector[i].clear();
}

void JSArray::visitChildren(SlotVisitor& visitor)
{
    ASSERT_GC_OBJECT_INHERITS(this, &s_info);
    COMPILE_ASSERT(StructureFlags & OverridesVisitChildren, OverridesVisitChildrenWithoutSettingFlag);
    ASSERT(structure()->typeInfo().overridesVisitChildren());
    visitChildrenDirect(visitor);
}

static int compareNumbersForQSort(const void* a, const void* b)
{
    double da = static_cast<const JSValue*>(a)->uncheckedGetNumber();
    double db = static_cast<const JSValue*>(b)->uncheckedGetNumber();
    return (da > db) - (da < db);
}

static int compareByStringPairForQSort(const void* a, const void* b)
{
    const ValueStringPair* va = static_cast<const ValueStringPair*>(a);
    const ValueStringPair* vb = static_cast<const ValueStringPair*>(b);
    return codePointCompare(va->second, vb->second);
}

void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
    ArrayStorage* storage = m_storage;

    unsigned lengthNotIncludingUndefined = compactForSorting();
    if (storage->m_sparseValueMap) {
        throwOutOfMemoryError(exec);
        return;
    }

    if (!lengthNotIncludingUndefined)
        return;
        
    bool allValuesAreNumbers = true;
    size_t size = storage->m_numValuesInVector;
    for (size_t i = 0; i < size; ++i) {
        if (!storage->m_vector[i].isNumber()) {
            allValuesAreNumbers = false;
            break;
        }
    }

    if (!allValuesAreNumbers)
        return sort(exec, compareFunction, callType, callData);

    // For numeric comparison, which is fast, qsort is faster than mergesort. We
    // also don't require mergesort's stability, since there's no user visible
    // side-effect from swapping the order of equal primitive values.
    qsort(storage->m_vector, size, sizeof(JSValue), compareNumbersForQSort);

    checkConsistency(SortConsistencyCheck);
}

void JSArray::sort(ExecState* exec)
{
    ArrayStorage* storage = m_storage;

    unsigned lengthNotIncludingUndefined = compactForSorting();
    if (storage->m_sparseValueMap) {
        throwOutOfMemoryError(exec);
        return;
    }

    if (!lengthNotIncludingUndefined)
        return;

    // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
    // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
    // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return
    // random or otherwise changing results, effectively making compare function inconsistent.

    Vector<ValueStringPair> values(lengthNotIncludingUndefined);
    if (!values.begin()) {
        throwOutOfMemoryError(exec);
        return;
    }
    
    Heap::heap(this)->pushTempSortVector(&values);

    for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
        JSValue value = storage->m_vector[i].get();
        ASSERT(!value.isUndefined());
        values[i].first = value;
    }

    // FIXME: The following loop continues to call toString on subsequent values even after
    // a toString call raises an exception.

    for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
        values[i].second = values[i].first.toString(exec);

    if (exec->hadException()) {
        Heap::heap(this)->popTempSortVector(&values);
        return;
    }

    // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
    // than O(N log N).

#if HAVE(MERGESORT)
    mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
#else
    // FIXME: The qsort library function is likely to not be a stable sort.
    // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort.
    qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
#endif

    // If the toString function changed the length of the array or vector storage,
    // increase the length to handle the orignal number of actual values.
    if (m_vectorLength < lengthNotIncludingUndefined)
        increaseVectorLength(lengthNotIncludingUndefined);
    if (storage->m_length < lengthNotIncludingUndefined)
        storage->m_length = lengthNotIncludingUndefined;

    JSGlobalData& globalData = exec->globalData();
    for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
        storage->m_vector[i].set(globalData, this, values[i].first);

    Heap::heap(this)->popTempSortVector(&values);
    
    checkConsistency(SortConsistencyCheck);
}

struct AVLTreeNodeForArrayCompare {
    JSValue value;

    // Child pointers.  The high bit of gt is robbed and used as the
    // balance factor sign.  The high bit of lt is robbed and used as
    // the magnitude of the balance factor.
    int32_t gt;
    int32_t lt;
};

struct AVLTreeAbstractorForArrayCompare {
    typedef int32_t handle; // Handle is an index into m_nodes vector.
    typedef JSValue key;
    typedef int32_t size;

    Vector<AVLTreeNodeForArrayCompare> m_nodes;
    ExecState* m_exec;
    JSValue m_compareFunction;
    CallType m_compareCallType;
    const CallData* m_compareCallData;
    JSValue m_globalThisValue;
    OwnPtr<CachedCall> m_cachedCall;

    handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
    void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
    handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; }
    void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; }

    int get_balance_factor(handle h)
    {
        if (m_nodes[h].gt & 0x80000000)
            return -1;
        return static_cast<unsigned>(m_nodes[h].lt) >> 31;
    }

    void set_balance_factor(handle h, int bf)
    {
        if (bf == 0) {
            m_nodes[h].lt &= 0x7FFFFFFF;
            m_nodes[h].gt &= 0x7FFFFFFF;
        } else {
            m_nodes[h].lt |= 0x80000000;
            if (bf < 0)
                m_nodes[h].gt |= 0x80000000;
            else
                m_nodes[h].gt &= 0x7FFFFFFF;
        }
    }

    int compare_key_key(key va, key vb)
    {
        ASSERT(!va.isUndefined());
        ASSERT(!vb.isUndefined());

        if (m_exec->hadException())
            return 1;

        double compareResult;
        if (m_cachedCall) {
            m_cachedCall->setThis(m_globalThisValue);
            m_cachedCall->setArgument(0, va);
            m_cachedCall->setArgument(1, vb);
            compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame(m_exec));
        } else {
            MarkedArgumentBuffer arguments;
            arguments.append(va);
            arguments.append(vb);
            compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments).toNumber(m_exec);
        }
        return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
    }

    int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); }
    int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); }

    static handle null() { return 0x7FFFFFFF; }
};

void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
    checkConsistency();

    ArrayStorage* storage = m_storage;

    // FIXME: This ignores exceptions raised in the compare function or in toNumber.

    // The maximum tree depth is compiled in - but the caller is clearly up to no good
    // if a larger array is passed.
    ASSERT(storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max()));
    if (storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max()))
        return;

    unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
    unsigned nodeCount = usedVectorLength + (storage->m_sparseValueMap ? storage->m_sparseValueMap->size() : 0);

    if (!nodeCount)
        return;

    AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
    tree.abstractor().m_exec = exec;
    tree.abstractor().m_compareFunction = compareFunction;
    tree.abstractor().m_compareCallType = callType;
    tree.abstractor().m_compareCallData = &callData;
    tree.abstractor().m_globalThisValue = exec->globalThisValue();
    tree.abstractor().m_nodes.grow(nodeCount);

    if (callType == CallTypeJS)
        tree.abstractor().m_cachedCall = adoptPtr(new CachedCall(exec, asFunction(compareFunction), 2));

    if (!tree.abstractor().m_nodes.begin()) {
        throwOutOfMemoryError(exec);
        return;
    }

    // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified
    // right out from under us while we're building the tree here.

    unsigned numDefined = 0;
    unsigned numUndefined = 0;

    // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
    for (; numDefined < usedVectorLength; ++numDefined) {
        JSValue v = storage->m_vector[numDefined].get();
        if (!v || v.isUndefined())
            break;
        tree.abstractor().m_nodes[numDefined].value = v;
        tree.insert(numDefined);
    }
    for (unsigned i = numDefined; i < usedVectorLength; ++i) {
        JSValue v = storage->m_vector[i].get();
        if (v) {
            if (v.isUndefined())
                ++numUndefined;
            else {
                tree.abstractor().m_nodes[numDefined].value = v;
                tree.insert(numDefined);
                ++numDefined;
            }
        }
    }

    unsigned newUsedVectorLength = numDefined + numUndefined;

    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        newUsedVectorLength += map->size();
        if (newUsedVectorLength > m_vectorLength) {
            // Check that it is possible to allocate an array large enough to hold all the entries.
            if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) {
                throwOutOfMemoryError(exec);
                return;
            }
        }
        
        storage = m_storage;

        SparseArrayValueMap::iterator end = map->end();
        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
            tree.abstractor().m_nodes[numDefined].value = it->second.get();
            tree.insert(numDefined);
            ++numDefined;
        }

        delete map;
        storage->m_sparseValueMap = 0;
    }

    ASSERT(tree.abstractor().m_nodes.size() >= numDefined);

    // FIXME: If the compare function changed the length of the array, the following might be
    // modifying the vector incorrectly.

    // Copy the values back into m_storage.
    AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
    iter.start_iter_least(tree);
    JSGlobalData& globalData = exec->globalData();
    for (unsigned i = 0; i < numDefined; ++i) {
        storage->m_vector[i].set(globalData, this, tree.abstractor().m_nodes[*iter].value);
        ++iter;
    }

    // Put undefined values back in.
    for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
        storage->m_vector[i].setUndefined();

    // Ensure that unused values in the vector are zeroed out.
    for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
        storage->m_vector[i].clear();

    storage->m_numValuesInVector = newUsedVectorLength;

    checkConsistency(SortConsistencyCheck);
}

void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args)
{
    ArrayStorage* storage = m_storage;

    WriteBarrier<Unknown>* vector = storage->m_vector;
    unsigned vectorEnd = min(storage->m_length, m_vectorLength);
    unsigned i = 0;
    for (; i < vectorEnd; ++i) {
        WriteBarrier<Unknown>& v = vector[i];
        if (!v)
            break;
        args.append(v.get());
    }

    for (; i < storage->m_length; ++i)
        args.append(get(exec, i));
}

void JSArray::copyToRegisters(ExecState* exec, Register* buffer, uint32_t maxSize)
{
    ASSERT(m_storage->m_length >= maxSize);
    UNUSED_PARAM(maxSize);
    WriteBarrier<Unknown>* vector = m_storage->m_vector;
    unsigned vectorEnd = min(maxSize, m_vectorLength);
    unsigned i = 0;
    for (; i < vectorEnd; ++i) {
        WriteBarrier<Unknown>& v = vector[i];
        if (!v)
            break;
        buffer[i] = v.get();
    }

    for (; i < maxSize; ++i)
        buffer[i] = get(exec, i);
}

unsigned JSArray::compactForSorting()
{
    checkConsistency();

    ArrayStorage* storage = m_storage;

    unsigned usedVectorLength = min(storage->m_length, m_vectorLength);

    unsigned numDefined = 0;
    unsigned numUndefined = 0;

    for (; numDefined < usedVectorLength; ++numDefined) {
        JSValue v = storage->m_vector[numDefined].get();
        if (!v || v.isUndefined())
            break;
    }

    for (unsigned i = numDefined; i < usedVectorLength; ++i) {
        JSValue v = storage->m_vector[i].get();
        if (v) {
            if (v.isUndefined())
                ++numUndefined;
            else
                storage->m_vector[numDefined++].setWithoutWriteBarrier(v);
        }
    }

    unsigned newUsedVectorLength = numDefined + numUndefined;

    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        newUsedVectorLength += map->size();
        if (newUsedVectorLength > m_vectorLength) {
            // Check that it is possible to allocate an array large enough to hold all the entries - if not,
            // exception is thrown by caller.
            if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength))
                return 0;

            storage = m_storage;
        }

        SparseArrayValueMap::iterator end = map->end();
        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
            storage->m_vector[numDefined++].setWithoutWriteBarrier(it->second.get());

        delete map;
        storage->m_sparseValueMap = 0;
    }

    for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
        storage->m_vector[i].setUndefined();
    for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
        storage->m_vector[i].clear();

    storage->m_numValuesInVector = newUsedVectorLength;

    checkConsistency(SortConsistencyCheck);

    return numDefined;
}

void* JSArray::subclassData() const
{
    return m_storage->subclassData;
}

void JSArray::setSubclassData(void* d)
{
    m_storage->subclassData = d;
}

#if CHECK_ARRAY_CONSISTENCY

void JSArray::checkConsistency(ConsistencyCheckType type)
{
    ArrayStorage* storage = m_storage;

    ASSERT(storage);
    if (type == SortConsistencyCheck)
        ASSERT(!storage->m_sparseValueMap);

    unsigned numValuesInVector = 0;
    for (unsigned i = 0; i < m_vectorLength; ++i) {
        if (JSValue value = storage->m_vector[i]) {
            ASSERT(i < storage->m_length);
            if (type != DestructorConsistencyCheck)
                value.isUndefined(); // Likely to crash if the object was deallocated.
            ++numValuesInVector;
        } else {
            if (type == SortConsistencyCheck)
                ASSERT(i >= storage->m_numValuesInVector);
        }
    }
    ASSERT(numValuesInVector == storage->m_numValuesInVector);
    ASSERT(numValuesInVector <= storage->m_length);

    if (storage->m_sparseValueMap) {
        SparseArrayValueMap::iterator end = storage->m_sparseValueMap->end();
        for (SparseArrayValueMap::iterator it = storage->m_sparseValueMap->begin(); it != end; ++it) {
            unsigned index = it->first;
            ASSERT(index < storage->m_length);
            ASSERT(index >= storage->m_vectorLength);
            ASSERT(index <= MAX_ARRAY_INDEX);
            ASSERT(it->second);
            if (type != DestructorConsistencyCheck)
                it->second.isUndefined(); // Likely to crash if the object was deallocated.
        }
    }
}

#endif

} // namespace JSC