11.5.3.js   [plain text]


/* The contents of this file are subject to the Netscape Public
 * License Version 1.1 (the "License"); you may not use this file
 * except in compliance with the License. You may obtain a copy of
 * the License at http://www.mozilla.org/NPL/
 *
 * Software distributed under the License is distributed on an "AS
 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
 * implied. See the License for the specific language governing
 * rights and limitations under the License.
 *
 * The Original Code is Mozilla Communicator client code, released March
 * 31, 1998.
 *
 * The Initial Developer of the Original Code is Netscape Communications
 * Corporation. Portions created by Netscape are
 * Copyright (C) 1998 Netscape Communications Corporation. All
 * Rights Reserved.
 *
 * Contributor(s): 
 * 
 */
/**
    File Name:          11.5.3.js
    ECMA Section:       11.5.3 Applying the % operator
    Description:

    The binary % operator is said to yield the remainder of its operands from
    an implied division; the left operand is the dividend and the right operand
    is the divisor. In C and C++, the remainder operator accepts only integral
    operands, but in ECMAScript, it also accepts floating-point operands.

    The result of a floating-point remainder operation as computed by the %
    operator is not the same as the "remainder" operation defined by IEEE 754.
    The IEEE 754 "remainder" operation computes the remainder from a rounding
    division, not a truncating division, and so its behavior is not analogous
    to that of the usual integer remainder operator. Instead the ECMAScript
    language defines % on floating-point operations to behave in a manner
    analogous to that of the Java integer remainder operator; this may be
    compared with the C library function fmod.

    The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:

      If either operand is NaN, the result is NaN.
      The sign of the result equals the sign of the dividend.
      If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
      If the dividend is finite and the divisor is an infinity, the result equals the dividend.
      If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
      In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
      from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
      is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
      possible without exceeding the magnitude of the true mathematical quotient of n and d.

    Author:             christine@netscape.com
    Date:               12 november 1997
*/
    var SECTION = "11.5.3";
    var VERSION = "ECMA_1";
    startTest();
    var testcases = getTestCases();
    var BUGNUMBER="111202";

    writeHeaderToLog( SECTION + " Applying the % operator");
    test();

function test() {
    for ( tc=0; tc < testcases.length; tc++ ) {
        testcases[tc].passed = writeTestCaseResult(
                            testcases[tc].expect,
                            testcases[tc].actual,
                            testcases[tc].description +" = "+
                            testcases[tc].actual );

        testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value ";
    }
    stopTest();
    return ( testcases );
}
function getTestCases() {
    var array = new Array();
    var item = 0;

   // if either operand is NaN, the result is NaN.

    array[item++] = new TestCase( SECTION,    "Number.NaN % Number.NaN",    Number.NaN,     Number.NaN % Number.NaN );
    array[item++] = new TestCase( SECTION,    "Number.NaN % 1",             Number.NaN,     Number.NaN % 1 );
    array[item++] = new TestCase( SECTION,    "1 % Number.NaN",             Number.NaN,     1 % Number.NaN );

    array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.NaN",    Number.NaN,     Number.POSITIVE_INFINITY % Number.NaN );
    array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.NaN",    Number.NaN,     Number.NEGATIVE_INFINITY % Number.NaN );

    //  If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
    //  dividend is an infinity

    array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY",    Number.NaN,   Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
    array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY",    Number.NaN,   Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
    array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY",    Number.NaN,   Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
    array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY",    Number.NaN,   Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );

    array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % 0",   Number.NaN,     Number.POSITIVE_INFINITY % 0 );
    array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % 0",   Number.NaN,     Number.NEGATIVE_INFINITY % 0 );
    array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -0",  Number.NaN,     Number.POSITIVE_INFINITY % -0 );
    array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -0",  Number.NaN,     Number.NEGATIVE_INFINITY % -0 );

    array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % 1 ",  Number.NaN,     Number.NEGATIVE_INFINITY % 1 );
    array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -1 ", Number.NaN,     Number.NEGATIVE_INFINITY % -1 );
    array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % 1 ",  Number.NaN,     Number.POSITIVE_INFINITY % 1 );
    array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -1 ", Number.NaN,     Number.POSITIVE_INFINITY % -1 );

    array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ",   Number.NaN,   Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
    array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ",  Number.NaN,   Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
    array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.MAX_VALUE ",   Number.NaN,   Number.POSITIVE_INFINITY % Number.MAX_VALUE );
    array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ",  Number.NaN,   Number.POSITIVE_INFINITY % -Number.MAX_VALUE );

    // divisor is 0
    array[item++] = new TestCase( SECTION,    "0 % -0",                         Number.NaN,     0 % -0 );
    array[item++] = new TestCase( SECTION,    "-0 % 0",                         Number.NaN,     -0 % 0 );
    array[item++] = new TestCase( SECTION,    "-0 % -0",                        Number.NaN,     -0 % -0 );
    array[item++] = new TestCase( SECTION,    "0 % 0",                          Number.NaN,     0 % 0 );

    array[item++] = new TestCase( SECTION,    "1 % 0",                          Number.NaN,   1%0 );
    array[item++] = new TestCase( SECTION,    "1 % -0",                         Number.NaN,   1%-0 );
    array[item++] = new TestCase( SECTION,    "-1 % 0",                         Number.NaN,   -1%0 );
    array[item++] = new TestCase( SECTION,    "-1 % -0",                        Number.NaN,   -1%-0 );

    array[item++] = new TestCase( SECTION,    "Number.MAX_VALUE % 0",           Number.NaN,   Number.MAX_VALUE%0 );
    array[item++] = new TestCase( SECTION,    "Number.MAX_VALUE % -0",          Number.NaN,   Number.MAX_VALUE%-0 );
    array[item++] = new TestCase( SECTION,    "-Number.MAX_VALUE % 0",          Number.NaN,   -Number.MAX_VALUE%0 );
    array[item++] = new TestCase( SECTION,    "-Number.MAX_VALUE % -0",         Number.NaN,   -Number.MAX_VALUE%-0 );

    // If the dividend is finite and the divisor is an infinity, the result equals the dividend.

    array[item++] = new TestCase( SECTION,    "1 % Number.NEGATIVE_INFINITY",   1,              1 % Number.NEGATIVE_INFINITY );
    array[item++] = new TestCase( SECTION,    "1 % Number.POSITIVE_INFINITY",   1,              1 % Number.POSITIVE_INFINITY );
    array[item++] = new TestCase( SECTION,    "-1 % Number.POSITIVE_INFINITY",  -1,             -1 % Number.POSITIVE_INFINITY );
    array[item++] = new TestCase( SECTION,    "-1 % Number.NEGATIVE_INFINITY",  -1,             -1 % Number.NEGATIVE_INFINITY );

    array[item++] = new TestCase( SECTION,    "Number.MAX_VALUE % Number.NEGATIVE_INFINITY",   Number.MAX_VALUE,    Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
    array[item++] = new TestCase( SECTION,    "Number.MAX_VALUE % Number.POSITIVE_INFINITY",   Number.MAX_VALUE,    Number.MAX_VALUE % Number.POSITIVE_INFINITY );
    array[item++] = new TestCase( SECTION,    "-Number.MAX_VALUE % Number.POSITIVE_INFINITY",  -Number.MAX_VALUE,   -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
    array[item++] = new TestCase( SECTION,    "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY",  -Number.MAX_VALUE,   -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );

    array[item++] = new TestCase( SECTION,    "0 % Number.POSITIVE_INFINITY",   0, 0 % Number.POSITIVE_INFINITY );
    array[item++] = new TestCase( SECTION,    "0 % Number.NEGATIVE_INFINITY",   0, 0 % Number.NEGATIVE_INFINITY );
    array[item++] = new TestCase( SECTION,    "-0 % Number.POSITIVE_INFINITY",  -0,   -0 % Number.POSITIVE_INFINITY );
    array[item++] = new TestCase( SECTION,    "-0 % Number.NEGATIVE_INFINITY",  -0,   -0 % Number.NEGATIVE_INFINITY );

    // If the dividend is a zero and the divisor is finite, the result is the same as the dividend.

    array[item++] = new TestCase( SECTION,    "0 % 1",                          0,              0 % 1 );
    array[item++] = new TestCase( SECTION,    "0 % -1",                        -0,              0 % -1 );
    array[item++] = new TestCase( SECTION,    "-0 % 1",                        -0,              -0 % 1 );
    array[item++] = new TestCase( SECTION,    "-0 % -1",                       0,               -0 % -1 );

//        In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
//      from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
//      is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
//      possible without exceeding the magnitude of the true mathematical quotient of n and d.

    return ( array );
}