ucol_res.cpp   [plain text]


/*
*******************************************************************************
*   Copyright (C) 1996-2012, International Business Machines
*   Corporation and others.  All Rights Reserved.
*******************************************************************************
*   file name:  ucol_res.cpp
*   encoding:   US-ASCII
*   tab size:   8 (not used)
*   indentation:4
*
* Description:
* This file contains dependencies that the collation run-time doesn't normally
* need. This mainly contains resource bundle usage and collation meta information
*
* Modification history
* Date        Name      Comments
* 1996-1999   various members of ICU team maintained C API for collation framework
* 02/16/2001  synwee    Added internal method getPrevSpecialCE
* 03/01/2001  synwee    Added maxexpansion functionality.
* 03/16/2001  weiv      Collation framework is rewritten in C and made UCA compliant
* 12/08/2004  grhoten   Split part of ucol.cpp into ucol_res.cpp
*/

#include "unicode/utypes.h"

#if !UCONFIG_NO_COLLATION
#include "unicode/uloc.h"
#include "unicode/coll.h"
#include "unicode/tblcoll.h"
#include "unicode/caniter.h"
#include "unicode/uscript.h"
#include "unicode/ustring.h"

#include "ucol_bld.h"
#include "ucol_imp.h"
#include "ucol_tok.h"
#include "ucol_elm.h"
#include "uresimp.h"
#include "ustr_imp.h"
#include "cstring.h"
#include "umutex.h"
#include "ucln_in.h"
#include "ustrenum.h"
#include "putilimp.h"
#include "utracimp.h"
#include "cmemory.h"
#include "uenumimp.h"
#include "ulist.h"

U_NAMESPACE_USE

static void ucol_setReorderCodesFromParser(UCollator *coll, UColTokenParser *parser, UErrorCode *status);

// static UCA. There is only one. Collators don't use it.
// It is referenced only in ucol_initUCA and ucol_cleanup
static UCollator* _staticUCA = NULL;
// static pointer to udata memory. Inited in ucol_initUCA
// used for cleanup in ucol_cleanup
static UDataMemory* UCA_DATA_MEM = NULL;

U_CDECL_BEGIN
static UBool U_CALLCONV
ucol_res_cleanup(void)
{
    if (UCA_DATA_MEM) {
        udata_close(UCA_DATA_MEM);
        UCA_DATA_MEM = NULL;
    }
    if (_staticUCA) {
        ucol_close(_staticUCA);
        _staticUCA = NULL;
    }
    return TRUE;
}

static UBool U_CALLCONV
isAcceptableUCA(void * /*context*/,
             const char * /*type*/, const char * /*name*/,
             const UDataInfo *pInfo){
  /* context, type & name are intentionally not used */
    if( pInfo->size>=20 &&
        pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
        pInfo->charsetFamily==U_CHARSET_FAMILY &&
        pInfo->dataFormat[0]==UCA_DATA_FORMAT_0 &&   /* dataFormat="UCol" */
        pInfo->dataFormat[1]==UCA_DATA_FORMAT_1 &&
        pInfo->dataFormat[2]==UCA_DATA_FORMAT_2 &&
        pInfo->dataFormat[3]==UCA_DATA_FORMAT_3 &&
        pInfo->formatVersion[0]==UCA_FORMAT_VERSION_0
#if UCA_FORMAT_VERSION_1!=0
        && pInfo->formatVersion[1]>=UCA_FORMAT_VERSION_1
#endif
        //pInfo->formatVersion[1]==UCA_FORMAT_VERSION_1 &&
        //pInfo->formatVersion[2]==UCA_FORMAT_VERSION_2 && // Too harsh
        //pInfo->formatVersion[3]==UCA_FORMAT_VERSION_3 && // Too harsh
        ) {
        UVersionInfo UCDVersion;
        u_getUnicodeVersion(UCDVersion);
        return (UBool)(pInfo->dataVersion[0]==UCDVersion[0]
            && pInfo->dataVersion[1]==UCDVersion[1]);
            //&& pInfo->dataVersion[2]==ucaDataInfo.dataVersion[2]
            //&& pInfo->dataVersion[3]==ucaDataInfo.dataVersion[3]);
    } else {
        return FALSE;
    }
}
U_CDECL_END

/* do not close UCA returned by ucol_initUCA! */
UCollator *
ucol_initUCA(UErrorCode *status) {
    if(U_FAILURE(*status)) {
        return NULL;
    }
    UBool needsInit;
    UMTX_CHECK(NULL, (_staticUCA == NULL), needsInit);

    if(needsInit) {
        UDataMemory *result = udata_openChoice(U_ICUDATA_COLL, UCA_DATA_TYPE, UCA_DATA_NAME, isAcceptableUCA, NULL, status);

        if(U_SUCCESS(*status)){
            UCollator *newUCA = ucol_initCollator((const UCATableHeader *)udata_getMemory(result), NULL, NULL, status);
            if(U_SUCCESS(*status)){
                // Initalize variables for implicit generation
                uprv_uca_initImplicitConstants(status);

                umtx_lock(NULL);
                if(_staticUCA == NULL) {
                    UCA_DATA_MEM = result;
                    _staticUCA = newUCA;
                    newUCA = NULL;
                    result = NULL;
                }
                umtx_unlock(NULL);

                ucln_i18n_registerCleanup(UCLN_I18N_UCOL_RES, ucol_res_cleanup);
                if(newUCA != NULL) {
                    ucol_close(newUCA);
                    udata_close(result);
                }
            }else{
                ucol_close(newUCA);
                udata_close(result);
            }
        }
        else {
            udata_close(result);
        }
    }
    return _staticUCA;
}

U_CAPI void U_EXPORT2
ucol_forgetUCA(void)
{
    _staticUCA = NULL;
    UCA_DATA_MEM = NULL;
}

/****************************************************************************/
/* Following are the open/close functions                                   */
/*                                                                          */
/****************************************************************************/
static UCollator*
tryOpeningFromRules(UResourceBundle *collElem, UErrorCode *status) {
    int32_t rulesLen = 0;
    const UChar *rules = ures_getStringByKey(collElem, "Sequence", &rulesLen, status);
    return ucol_openRules(rules, rulesLen, UCOL_DEFAULT, UCOL_DEFAULT, NULL, status);
}


// API in ucol_imp.h

U_CFUNC UCollator*
ucol_open_internal(const char *loc,
                   UErrorCode *status)
{
    UErrorCode intStatus = U_ZERO_ERROR;
    const UCollator* UCA = ucol_initUCA(status);

    /* New version */
    if(U_FAILURE(*status)) return 0;



    UCollator *result = NULL;
    UResourceBundle *b = ures_open(U_ICUDATA_COLL, loc, status);

    /* we try to find stuff from keyword */
    UResourceBundle *collations = ures_getByKey(b, "collations", NULL, status);
    UResourceBundle *collElem = NULL;
    char keyBuffer[256];
    // if there is a keyword, we pick it up and try to get elements
    if(!uloc_getKeywordValue(loc, "collation", keyBuffer, 256, status) ||
        !uprv_strcmp(keyBuffer,"default")) { /* Treat 'zz@collation=default' as 'zz'. */
        // no keyword. we try to find the default setting, which will give us the keyword value
        intStatus = U_ZERO_ERROR;
        // finding default value does not affect collation fallback status
        UResourceBundle *defaultColl = ures_getByKeyWithFallback(collations, "default", NULL, &intStatus);
        if(U_SUCCESS(intStatus)) {
            int32_t defaultKeyLen = 0;
            const UChar *defaultKey = ures_getString(defaultColl, &defaultKeyLen, &intStatus);
            u_UCharsToChars(defaultKey, keyBuffer, defaultKeyLen);
            keyBuffer[defaultKeyLen] = 0;
        } else {
            *status = U_INTERNAL_PROGRAM_ERROR;
            return NULL;
        }
        ures_close(defaultColl);
    }
    collElem = ures_getByKeyWithFallback(collations, keyBuffer, collations, status);
    collations = NULL; // We just reused the collations object as collElem.

    UResourceBundle *binary = NULL;
    UResourceBundle *reorderRes = NULL;
    
    if(*status == U_MISSING_RESOURCE_ERROR) { /* We didn't find the tailoring data, we fallback to the UCA */
        *status = U_USING_DEFAULT_WARNING;
        result = ucol_initCollator(UCA->image, result, UCA, status);
        if (U_FAILURE(*status)) {
            goto clean;
        }
        // if we use UCA, real locale is root
        ures_close(b);
        b = ures_open(U_ICUDATA_COLL, "", status);
        ures_close(collElem);
        collElem = ures_open(U_ICUDATA_COLL, "", status);
        if(U_FAILURE(*status)) {
            goto clean;
        }
        result->hasRealData = FALSE;
    } else if(U_SUCCESS(*status)) {
        intStatus = U_ZERO_ERROR;

        binary = ures_getByKey(collElem, "%%CollationBin", NULL, &intStatus);

        if(intStatus == U_MISSING_RESOURCE_ERROR) { /* we didn't find the binary image, we should use the rules */
            binary = NULL;
            result = tryOpeningFromRules(collElem, status);
            if(U_FAILURE(*status)) {
                goto clean;
            }
        } else if(U_SUCCESS(intStatus)) { /* otherwise, we'll pick a collation data that exists */
            int32_t len = 0;
            const uint8_t *inData = ures_getBinary(binary, &len, status);
            if(U_FAILURE(*status)) {
                goto clean;
            }
            UCATableHeader *colData = (UCATableHeader *)inData;
            if(uprv_memcmp(colData->UCAVersion, UCA->image->UCAVersion, sizeof(UVersionInfo)) != 0 ||
                uprv_memcmp(colData->UCDVersion, UCA->image->UCDVersion, sizeof(UVersionInfo)) != 0 ||
                colData->version[0] != UCOL_BUILDER_VERSION)
            {
                *status = U_DIFFERENT_UCA_VERSION;
                result = tryOpeningFromRules(collElem, status);
            } else {
                if(U_FAILURE(*status)){
                    goto clean;
                }
                if((uint32_t)len > (paddedsize(sizeof(UCATableHeader)) + paddedsize(sizeof(UColOptionSet)))) {
                    result = ucol_initCollator((const UCATableHeader *)inData, result, UCA, status);
                    if(U_FAILURE(*status)){
                        goto clean;
                    }
                    result->hasRealData = TRUE;
                } else {
                    result = ucol_initCollator(UCA->image, result, UCA, status);
                    ucol_setOptionsFromHeader(result, (UColOptionSet *)(inData+((const UCATableHeader *)inData)->options), status);
                    if(U_FAILURE(*status)){
                        goto clean;
                    }
                    result->hasRealData = FALSE;
                }
                result->freeImageOnClose = FALSE;
                
                reorderRes = ures_getByKey(collElem, "%%ReorderCodes", NULL, &intStatus);
                if (U_SUCCESS(intStatus)) {
                    int32_t reorderCodesLen = 0;
                    const int32_t* reorderCodes = ures_getIntVector(reorderRes, &reorderCodesLen, status);
                    if (reorderCodesLen > 0) {
                        ucol_setReorderCodes(result, reorderCodes, reorderCodesLen, status);
                        // copy the reorder codes into the default reorder codes
                        result->defaultReorderCodesLength = result->reorderCodesLength;
                        result->defaultReorderCodes =  (int32_t*) uprv_malloc(result->defaultReorderCodesLength * sizeof(int32_t));
                        uprv_memcpy(result->defaultReorderCodes, result->reorderCodes, result->defaultReorderCodesLength * sizeof(int32_t));
                        result->freeDefaultReorderCodesOnClose = TRUE;
                    }
                    if (U_FAILURE(*status)) {
                        goto clean;
                    }
                }
            }

        } else { // !U_SUCCESS(binaryStatus)
            if(U_SUCCESS(*status)) {
                *status = intStatus; // propagate underlying error
            }
            goto clean;
        }
        intStatus = U_ZERO_ERROR;
        result->rules = ures_getStringByKey(collElem, "Sequence", &result->rulesLength, &intStatus);
        result->freeRulesOnClose = FALSE;
    } else { /* There is another error, and we're just gonna clean up */
        goto clean;
    }

    intStatus = U_ZERO_ERROR;
    result->ucaRules = ures_getStringByKey(b,"UCARules",NULL,&intStatus);

    if(loc == NULL) {
        loc = ures_getLocaleByType(b, ULOC_ACTUAL_LOCALE, status);
    }
    result->requestedLocale = uprv_strdup(loc);
    /* test for NULL */
    if (result->requestedLocale == NULL) {
        *status = U_MEMORY_ALLOCATION_ERROR;
        goto clean;
    }
    loc = ures_getLocaleByType(collElem, ULOC_ACTUAL_LOCALE, status);
    result->actualLocale = uprv_strdup(loc);
    /* test for NULL */
    if (result->actualLocale == NULL) {
        *status = U_MEMORY_ALLOCATION_ERROR;
        goto clean;
    }
    loc = ures_getLocaleByType(b, ULOC_ACTUAL_LOCALE, status);
    result->validLocale = uprv_strdup(loc);
    /* test for NULL */
    if (result->validLocale == NULL) {
        *status = U_MEMORY_ALLOCATION_ERROR;
        goto clean;
    }

    ures_close(b);
    ures_close(collElem);
    ures_close(binary);
    ures_close(reorderRes);
    return result;

clean:
    ures_close(b);
    ures_close(collElem);
    ures_close(binary);
    ures_close(reorderRes);
    ucol_close(result);
    return NULL;
}

U_CAPI UCollator*
ucol_open(const char *loc,
          UErrorCode *status)
{
    U_NAMESPACE_USE

    UTRACE_ENTRY_OC(UTRACE_UCOL_OPEN);
    UTRACE_DATA1(UTRACE_INFO, "locale = \"%s\"", loc);
    UCollator *result = NULL;

#if !UCONFIG_NO_SERVICE
    result = Collator::createUCollator(loc, status);
    if (result == NULL)
#endif
    {
        result = ucol_open_internal(loc, status);
    }
    UTRACE_EXIT_PTR_STATUS(result, *status);
    return result;
}


UCollator*
ucol_openRulesForImport( const UChar        *rules,
                         int32_t            rulesLength,
                         UColAttributeValue normalizationMode,
                         UCollationStrength strength,
                         UParseError        *parseError,
                         GetCollationRulesFunction  importFunc,
                         void* context,
                         UErrorCode         *status)
{
    UColTokenParser src;
    UColAttributeValue norm;
    UParseError tErr;

    if(status == NULL || U_FAILURE(*status)){
        return 0;
    }

    if(rules == NULL || rulesLength < -1) {
        *status = U_ILLEGAL_ARGUMENT_ERROR;
        return 0;
    }

    if(rulesLength == -1) {
        rulesLength = u_strlen(rules);
    }

    if(parseError == NULL){
        parseError = &tErr;
    }

    switch(normalizationMode) {
    case UCOL_OFF:
    case UCOL_ON:
    case UCOL_DEFAULT:
        norm = normalizationMode;
        break;
    default:
        *status = U_ILLEGAL_ARGUMENT_ERROR;
        return 0;
    }

    UCollator *result = NULL;
    UCATableHeader *table = NULL;
    UCollator *UCA = ucol_initUCA(status);

    if(U_FAILURE(*status)){
        return NULL;
    }

    ucol_tok_initTokenList(&src, rules, rulesLength, UCA, importFunc, context, status);
    ucol_tok_assembleTokenList(&src,parseError, status);

    if(U_FAILURE(*status)) {
        /* if status is U_ILLEGAL_ARGUMENT_ERROR, src->current points at the offending option */
        /* if status is U_INVALID_FORMAT_ERROR, src->current points after the problematic part of the rules */
        /* so something might be done here... or on lower level */
#ifdef UCOL_DEBUG
        if(*status == U_ILLEGAL_ARGUMENT_ERROR) {
            fprintf(stderr, "bad option starting at offset %i\n", (int)(src.current-src.source));
        } else {
            fprintf(stderr, "invalid rule just before offset %i\n", (int)(src.current-src.source));
        }
#endif
        goto cleanup;
    }

     /* if we have a set of rules, let's make something of it */
    if(src.resultLen > 0 || src.removeSet != NULL) {
        /* also, if we wanted to remove some contractions, we should make a tailoring */
        table = ucol_assembleTailoringTable(&src, status);
        if(U_SUCCESS(*status)) {
            // builder version
            table->version[0] = UCOL_BUILDER_VERSION;
            // no tailoring information on this level
            table->version[1] = table->version[2] = table->version[3] = 0;
            // set UCD version
            u_getUnicodeVersion(table->UCDVersion);
            // set UCA version
            uprv_memcpy(table->UCAVersion, UCA->image->UCAVersion, sizeof(UVersionInfo));
            result = ucol_initCollator(table, 0, UCA, status);
            if (U_FAILURE(*status)) {
                goto cleanup;
            }
            result->hasRealData = TRUE;
            result->freeImageOnClose = TRUE;
        }
    } else { /* no rules, but no error either */
        // must be only options
        // We will init the collator from UCA
        result = ucol_initCollator(UCA->image, 0, UCA, status);
        // Check for null result
        if (U_FAILURE(*status)) {
            goto cleanup;
        }
        // And set only the options
        UColOptionSet *opts = (UColOptionSet *)uprv_malloc(sizeof(UColOptionSet));
        /* test for NULL */
        if (opts == NULL) {
            *status = U_MEMORY_ALLOCATION_ERROR;
            goto cleanup;
        }
        uprv_memcpy(opts, src.opts, sizeof(UColOptionSet));
        ucol_setOptionsFromHeader(result, opts, status);
        result->freeOptionsOnClose = TRUE;
        result->hasRealData = FALSE;
        result->freeImageOnClose = FALSE;
    }

    ucol_setReorderCodesFromParser(result, &src, status);

    if(U_SUCCESS(*status)) {
        UChar *newRules;
        result->dataVersion[0] = UCOL_BUILDER_VERSION;
        if(rulesLength > 0) {
            newRules = (UChar *)uprv_malloc((rulesLength+1)*U_SIZEOF_UCHAR);
            /* test for NULL */
            if (newRules == NULL) {
                *status = U_MEMORY_ALLOCATION_ERROR;
                goto cleanup;
            }
            uprv_memcpy(newRules, rules, rulesLength*U_SIZEOF_UCHAR);
            newRules[rulesLength]=0;
            result->rules = newRules;
            result->rulesLength = rulesLength;
            result->freeRulesOnClose = TRUE;
        }
        result->ucaRules = NULL;
        result->actualLocale = NULL;
        result->validLocale = NULL;
        result->requestedLocale = NULL;
        ucol_buildPermutationTable(result, status);
        ucol_setAttribute(result, UCOL_STRENGTH, strength, status);
        ucol_setAttribute(result, UCOL_NORMALIZATION_MODE, norm, status);
    } else {
cleanup:
        if(result != NULL) {
            ucol_close(result);
        } else {
            if(table != NULL) {
                uprv_free(table);
            }
        }
        result = NULL;
    }

    ucol_tok_closeTokenList(&src);

    return result;
}

U_CAPI UCollator* U_EXPORT2
ucol_openRules( const UChar        *rules,
               int32_t            rulesLength,
               UColAttributeValue normalizationMode,
               UCollationStrength strength,
               UParseError        *parseError,
               UErrorCode         *status)
{
    return ucol_openRulesForImport(rules,
                                   rulesLength,
                                   normalizationMode,
                                   strength,
                                   parseError,
                                   ucol_tok_getRulesFromBundle,
                                   NULL,
                                   status);
}

U_CAPI int32_t U_EXPORT2
ucol_getRulesEx(const UCollator *coll, UColRuleOption delta, UChar *buffer, int32_t bufferLen) {
    UErrorCode status = U_ZERO_ERROR;
    int32_t len = 0;
    int32_t UCAlen = 0;
    const UChar* ucaRules = 0;
    const UChar *rules = ucol_getRules(coll, &len);
    if(delta == UCOL_FULL_RULES) {
        /* take the UCA rules and append real rules at the end */
        /* UCA rules will be probably coming from the root RB */
        ucaRules = coll->ucaRules;
        if (ucaRules) {
            UCAlen = u_strlen(ucaRules);
        }
        /*
        ucaRules = ures_getStringByKey(coll->rb,"UCARules",&UCAlen,&status);
        UResourceBundle* cresb = ures_getByKeyWithFallback(coll->rb, "collations", NULL, &status);
        UResourceBundle*  uca = ures_getByKeyWithFallback(cresb, "UCA", NULL, &status);
        ucaRules = ures_getStringByKey(uca,"Sequence",&UCAlen,&status);
        ures_close(uca);
        ures_close(cresb);
        */
    }
    if(U_FAILURE(status)) {
        return 0;
    }
    if(buffer!=0 && bufferLen>0){
        *buffer=0;
        if(UCAlen > 0) {
            u_memcpy(buffer, ucaRules, uprv_min(UCAlen, bufferLen));
        }
        if(len > 0 && bufferLen > UCAlen) {
            u_memcpy(buffer+UCAlen, rules, uprv_min(len, bufferLen-UCAlen));
        }
    }
    return u_terminateUChars(buffer, bufferLen, len+UCAlen, &status);
}

static const UChar _NUL = 0;

U_CAPI const UChar* U_EXPORT2
ucol_getRules(    const    UCollator       *coll,
              int32_t            *length)
{
    if(coll->rules != NULL) {
        *length = coll->rulesLength;
        return coll->rules;
    }
    else {
        *length = 0;
        return &_NUL;
    }
}

U_CAPI UBool U_EXPORT2
ucol_equals(const UCollator *source, const UCollator *target) {
    UErrorCode status = U_ZERO_ERROR;
    // if pointers are equal, collators are equal
    if(source == target) {
        return TRUE;
    }
    int32_t i = 0, j = 0;
    // if any of attributes are different, collators are not equal
    for(i = 0; i < UCOL_ATTRIBUTE_COUNT; i++) {
        if(ucol_getAttribute(source, (UColAttribute)i, &status) != ucol_getAttribute(target, (UColAttribute)i, &status) || U_FAILURE(status)) {
            return FALSE;
        }
    }
    if (source->reorderCodesLength != target->reorderCodesLength){
        return FALSE;
    }
    for (i = 0; i < source->reorderCodesLength; i++) {
        if(source->reorderCodes[i] != target->reorderCodes[i]) {
            return FALSE;
        }
    }

    int32_t sourceRulesLen = 0, targetRulesLen = 0;
    const UChar *sourceRules = ucol_getRules(source, &sourceRulesLen);
    const UChar *targetRules = ucol_getRules(target, &targetRulesLen);

    if(sourceRulesLen == targetRulesLen && u_strncmp(sourceRules, targetRules, sourceRulesLen) == 0) {
        // all the attributes are equal and the rules are equal - collators are equal
        return(TRUE);
    }
    // hard part, need to construct tree from rules and see if they yield the same tailoring
    UBool result = TRUE;
    UParseError parseError;
    UColTokenParser sourceParser, targetParser;
    int32_t sourceListLen = 0, targetListLen = 0;
    ucol_tok_initTokenList(&sourceParser, sourceRules, sourceRulesLen, source->UCA, ucol_tok_getRulesFromBundle, NULL, &status);
    ucol_tok_initTokenList(&targetParser, targetRules, targetRulesLen, target->UCA, ucol_tok_getRulesFromBundle, NULL, &status);
    sourceListLen = ucol_tok_assembleTokenList(&sourceParser, &parseError, &status);
    targetListLen = ucol_tok_assembleTokenList(&targetParser, &parseError, &status);

    if(sourceListLen != targetListLen) {
        // different number of resets
        result = FALSE;
    } else {
        UColToken *sourceReset = NULL, *targetReset = NULL;
        UChar *sourceResetString = NULL, *targetResetString = NULL;
        int32_t sourceStringLen = 0, targetStringLen = 0;
        for(i = 0; i < sourceListLen; i++) {
            sourceReset = sourceParser.lh[i].reset;
            sourceResetString = sourceParser.source+(sourceReset->source & 0xFFFFFF);
            sourceStringLen = sourceReset->source >> 24;
            for(j = 0; j < sourceListLen; j++) {
                targetReset = targetParser.lh[j].reset;
                targetResetString = targetParser.source+(targetReset->source & 0xFFFFFF);
                targetStringLen = targetReset->source >> 24;
                if(sourceStringLen == targetStringLen && (u_strncmp(sourceResetString, targetResetString, sourceStringLen) == 0)) {
                    sourceReset = sourceParser.lh[i].first;
                    targetReset = targetParser.lh[j].first;
                    while(sourceReset != NULL && targetReset != NULL) {
                        sourceResetString = sourceParser.source+(sourceReset->source & 0xFFFFFF);
                        sourceStringLen = sourceReset->source >> 24;
                        targetResetString = targetParser.source+(targetReset->source & 0xFFFFFF);
                        targetStringLen = targetReset->source >> 24;
                        if(sourceStringLen != targetStringLen || (u_strncmp(sourceResetString, targetResetString, sourceStringLen) != 0)) {
                            result = FALSE;
                            goto returnResult;
                        }
                        // probably also need to check the expansions
                        if(sourceReset->expansion) {
                            if(!targetReset->expansion) {
                                result = FALSE;
                                goto returnResult;
                            } else {
                                // compare expansions
                                sourceResetString = sourceParser.source+(sourceReset->expansion& 0xFFFFFF);
                                sourceStringLen = sourceReset->expansion >> 24;
                                targetResetString = targetParser.source+(targetReset->expansion & 0xFFFFFF);
                                targetStringLen = targetReset->expansion >> 24;
                                if(sourceStringLen != targetStringLen || (u_strncmp(sourceResetString, targetResetString, sourceStringLen) != 0)) {
                                    result = FALSE;
                                    goto returnResult;
                                }
                            }
                        } else {
                            if(targetReset->expansion) {
                                result = FALSE;
                                goto returnResult;
                            }
                        }
                        sourceReset = sourceReset->next;
                        targetReset = targetReset->next;
                    }
                    if(sourceReset != targetReset) { // at least one is not NULL
                        // there are more tailored elements in one list
                        result = FALSE;
                        goto returnResult;
                    }


                    break;
                }
            }
            // couldn't find the reset anchor, so the collators are not equal
            if(j == sourceListLen) {
                result = FALSE;
                goto returnResult;
            }
        }
    }

returnResult:
    ucol_tok_closeTokenList(&sourceParser);
    ucol_tok_closeTokenList(&targetParser);
    return result;

}

U_CAPI int32_t U_EXPORT2
ucol_getDisplayName(    const    char        *objLoc,
                    const    char        *dispLoc,
                    UChar             *result,
                    int32_t         resultLength,
                    UErrorCode        *status)
{
    U_NAMESPACE_USE

    if(U_FAILURE(*status)) return -1;
    UnicodeString dst;
    if(!(result==NULL && resultLength==0)) {
        // NULL destination for pure preflighting: empty dummy string
        // otherwise, alias the destination buffer
        dst.setTo(result, 0, resultLength);
    }
    Collator::getDisplayName(Locale(objLoc), Locale(dispLoc), dst);
    return dst.extract(result, resultLength, *status);
}

U_CAPI const char* U_EXPORT2
ucol_getAvailable(int32_t index)
{
    int32_t count = 0;
    const Locale *loc = Collator::getAvailableLocales(count);
    if (loc != NULL && index < count) {
        return loc[index].getName();
    }
    return NULL;
}

U_CAPI int32_t U_EXPORT2
ucol_countAvailable()
{
    int32_t count = 0;
    Collator::getAvailableLocales(count);
    return count;
}

#if !UCONFIG_NO_SERVICE
U_CAPI UEnumeration* U_EXPORT2
ucol_openAvailableLocales(UErrorCode *status) {
    U_NAMESPACE_USE

    // This is a wrapper over Collator::getAvailableLocales()
    if (U_FAILURE(*status)) {
        return NULL;
    }
    StringEnumeration *s = icu::Collator::getAvailableLocales();
    if (s == NULL) {
        *status = U_MEMORY_ALLOCATION_ERROR;
        return NULL;
    }
    return uenum_openFromStringEnumeration(s, status);
}
#endif

// Note: KEYWORDS[0] != RESOURCE_NAME - alan

static const char RESOURCE_NAME[] = "collations";

static const char* const KEYWORDS[] = { "collation" };

#define KEYWORD_COUNT (sizeof(KEYWORDS)/sizeof(KEYWORDS[0]))

U_CAPI UEnumeration* U_EXPORT2
ucol_getKeywords(UErrorCode *status) {
    UEnumeration *result = NULL;
    if (U_SUCCESS(*status)) {
        return uenum_openCharStringsEnumeration(KEYWORDS, KEYWORD_COUNT, status);
    }
    return result;
}

U_CAPI UEnumeration* U_EXPORT2
ucol_getKeywordValues(const char *keyword, UErrorCode *status) {
    if (U_FAILURE(*status)) {
        return NULL;
    }
    // hard-coded to accept exactly one collation keyword
    // modify if additional collation keyword is added later
    if (keyword==NULL || uprv_strcmp(keyword, KEYWORDS[0])!=0)
    {
        *status = U_ILLEGAL_ARGUMENT_ERROR;
        return NULL;
    }
    return ures_getKeywordValues(U_ICUDATA_COLL, RESOURCE_NAME, status);
}

static const UEnumeration defaultKeywordValues = {
    NULL,
    NULL,
    ulist_close_keyword_values_iterator,
    ulist_count_keyword_values,
    uenum_unextDefault,
    ulist_next_keyword_value,
    ulist_reset_keyword_values_iterator
};

#include <stdio.h>

U_CAPI UEnumeration* U_EXPORT2
ucol_getKeywordValuesForLocale(const char* /*key*/, const char* locale,
                               UBool /*commonlyUsed*/, UErrorCode* status) {
    /* Get the locale base name. */
    char localeBuffer[ULOC_FULLNAME_CAPACITY] = "";
    uloc_getBaseName(locale, localeBuffer, sizeof(localeBuffer), status);

    /* Create the 2 lists
     * -values is the temp location for the keyword values
     * -results hold the actual list used by the UEnumeration object
     */
    UList *values = ulist_createEmptyList(status);
    UList *results = ulist_createEmptyList(status);
    UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration));
    if (U_FAILURE(*status) || en == NULL) {
        if (en == NULL) {
            *status = U_MEMORY_ALLOCATION_ERROR;
        } else {
            uprv_free(en);
        }
        ulist_deleteList(values);
        ulist_deleteList(results);
        return NULL;
    }

    memcpy(en, &defaultKeywordValues, sizeof(UEnumeration));
    en->context = results;

    /* Open the resource bundle for collation with the given locale. */
    UResourceBundle bundle, collations, collres, defres;
    ures_initStackObject(&bundle);
    ures_initStackObject(&collations);
    ures_initStackObject(&collres);
    ures_initStackObject(&defres);

    ures_openFillIn(&bundle, U_ICUDATA_COLL, localeBuffer, status);

    while (U_SUCCESS(*status)) {
        ures_getByKey(&bundle, RESOURCE_NAME, &collations, status);
        ures_resetIterator(&collations);
        while (U_SUCCESS(*status) && ures_hasNext(&collations)) {
            ures_getNextResource(&collations, &collres, status);
            const char *key = ures_getKey(&collres);
            /* If the key is default, get the string and store it in results list only
             * if results list is empty.
             */
            if (uprv_strcmp(key, "default") == 0) {
                if (ulist_getListSize(results) == 0) {
                    char *defcoll = (char *)uprv_malloc(sizeof(char) * ULOC_KEYWORDS_CAPACITY);
                    int32_t defcollLength = ULOC_KEYWORDS_CAPACITY;

                    ures_getNextResource(&collres, &defres, status);
#if U_CHARSET_FAMILY==U_ASCII_FAMILY
			/* optimize - use the utf-8 string */
                    ures_getUTF8String(&defres, defcoll, &defcollLength, TRUE, status);
#else
                    {
                       const UChar* defString = ures_getString(&defres, &defcollLength, status);
                       if(U_SUCCESS(*status)) {
			   if(defcollLength+1 > ULOC_KEYWORDS_CAPACITY) {
				*status = U_BUFFER_OVERFLOW_ERROR;
			   } else {
                           	u_UCharsToChars(defString, defcoll, defcollLength+1);
			   }
                       }
                    }
#endif	

                    ulist_addItemBeginList(results, defcoll, TRUE, status);
                }
            } else {
                ulist_addItemEndList(values, key, FALSE, status);
            }
        }

        /* If the locale is "" this is root so exit. */
        if (uprv_strlen(localeBuffer) == 0) {
            break;
        }
        /* Get the parent locale and open a new resource bundle. */
        uloc_getParent(localeBuffer, localeBuffer, sizeof(localeBuffer), status);
        ures_openFillIn(&bundle, U_ICUDATA_COLL, localeBuffer, status);
    }

    ures_close(&defres);
    ures_close(&collres);
    ures_close(&collations);
    ures_close(&bundle);

    if (U_SUCCESS(*status)) {
        char *value = NULL;
        ulist_resetList(values);
        while ((value = (char *)ulist_getNext(values)) != NULL) {
            if (!ulist_containsString(results, value, (int32_t)uprv_strlen(value))) {
                ulist_addItemEndList(results, value, FALSE, status);
                if (U_FAILURE(*status)) {
                    break;
                }
            }
        }
    }

    ulist_deleteList(values);

    if (U_FAILURE(*status)){
        uenum_close(en);
        en = NULL;
    } else {
        ulist_resetList(results);
    }

    return en;
}

U_CAPI int32_t U_EXPORT2
ucol_getFunctionalEquivalent(char* result, int32_t resultCapacity,
                             const char* keyword, const char* locale,
                             UBool* isAvailable, UErrorCode* status)
{
    // N.B.: Resource name is "collations" but keyword is "collation"
    return ures_getFunctionalEquivalent(result, resultCapacity, U_ICUDATA_COLL,
        "collations", keyword, locale,
        isAvailable, TRUE, status);
}

/* returns the locale name the collation data comes from */
U_CAPI const char * U_EXPORT2
ucol_getLocale(const UCollator *coll, ULocDataLocaleType type, UErrorCode *status) {
    return ucol_getLocaleByType(coll, type, status);
}

U_CAPI const char * U_EXPORT2
ucol_getLocaleByType(const UCollator *coll, ULocDataLocaleType type, UErrorCode *status) {
    const char *result = NULL;
    if(status == NULL || U_FAILURE(*status)) {
        return NULL;
    }
    UTRACE_ENTRY(UTRACE_UCOL_GETLOCALE);
    UTRACE_DATA1(UTRACE_INFO, "coll=%p", coll);

    if(coll->delegate!=NULL) {
      return ((const Collator*)coll->delegate)->getLocale(type, *status).getName();
    }
    switch(type) {
    case ULOC_ACTUAL_LOCALE:
        result = coll->actualLocale;
        break;
    case ULOC_VALID_LOCALE:
        result = coll->validLocale;
        break;
    case ULOC_REQUESTED_LOCALE:
        result = coll->requestedLocale;
        break;
    default:
        *status = U_ILLEGAL_ARGUMENT_ERROR;
    }
    UTRACE_DATA1(UTRACE_INFO, "result = %s", result);
    UTRACE_EXIT_STATUS(*status);
    return result;
}

U_CFUNC void U_EXPORT2
ucol_setReqValidLocales(UCollator *coll, char *requestedLocaleToAdopt, char *validLocaleToAdopt, char *actualLocaleToAdopt)
{
    if (coll) {
        if (coll->validLocale) {
            uprv_free(coll->validLocale);
        }
        coll->validLocale = validLocaleToAdopt;
        if (coll->requestedLocale) { // should always have
            uprv_free(coll->requestedLocale);
        }
        coll->requestedLocale = requestedLocaleToAdopt;
        if (coll->actualLocale) {
            uprv_free(coll->actualLocale);
        }
        coll->actualLocale = actualLocaleToAdopt;
    }
}

U_CAPI USet * U_EXPORT2
ucol_getTailoredSet(const UCollator *coll, UErrorCode *status)
{
    U_NAMESPACE_USE

    if(status == NULL || U_FAILURE(*status)) {
        return NULL;
    }
    if(coll == NULL || coll->UCA == NULL) {
        *status = U_ILLEGAL_ARGUMENT_ERROR;
        return NULL;
    }
    UParseError parseError;
    UColTokenParser src;
    int32_t rulesLen = 0;
    const UChar *rules = ucol_getRules(coll, &rulesLen);
    UBool startOfRules = TRUE;
    // we internally use the C++ class, for the following reasons:
    // 1. we need to utilize canonical iterator, which is a C++ only class
    // 2. canonical iterator returns UnicodeStrings - USet cannot take them
    // 3. USet is internally really UnicodeSet, C is just a wrapper
    UnicodeSet *tailored = new UnicodeSet();
    UnicodeString pattern;
    UnicodeString empty;
    CanonicalIterator it(empty, *status);


    // The idea is to tokenize the rule set. For each non-reset token,
    // we add all the canonicaly equivalent FCD sequences
    ucol_tok_initTokenList(&src, rules, rulesLen, coll->UCA, ucol_tok_getRulesFromBundle, NULL, status);
    while (ucol_tok_parseNextToken(&src, startOfRules, &parseError, status) != NULL) {
        startOfRules = FALSE;
        if(src.parsedToken.strength != UCOL_TOK_RESET) {
            const UChar *stuff = src.source+(src.parsedToken.charsOffset);
            it.setSource(UnicodeString(stuff, src.parsedToken.charsLen), *status);
            pattern = it.next();
            while(!pattern.isBogus()) {
                if(Normalizer::quickCheck(pattern, UNORM_FCD, *status) != UNORM_NO) {
                    tailored->add(pattern);
                }
                pattern = it.next();
            }
        }
    }
    ucol_tok_closeTokenList(&src);
    return (USet *)tailored;
}

/*
 * Collation Reordering
 */
 
void ucol_setReorderCodesFromParser(UCollator *coll, UColTokenParser *parser, UErrorCode *status) {
    if (U_FAILURE(*status)) {
        return;
    }
    
    if (parser->reorderCodesLength == 0 || parser->reorderCodes == NULL) {
        return;
    }
    
    coll->reorderCodesLength = 0;
    if (coll->reorderCodes != NULL && coll->freeReorderCodesOnClose == TRUE) {
        uprv_free(coll->reorderCodes);
    }
    
    if (coll->defaultReorderCodes != NULL && coll->freeDefaultReorderCodesOnClose == TRUE) {
        uprv_free(coll->defaultReorderCodes);
    }
    coll->defaultReorderCodesLength = parser->reorderCodesLength;
    coll->defaultReorderCodes =  (int32_t*) uprv_malloc(coll->defaultReorderCodesLength * sizeof(int32_t));
    if (coll->defaultReorderCodes == NULL) {
        *status = U_MEMORY_ALLOCATION_ERROR;
        return;
    }
    uprv_memcpy(coll->defaultReorderCodes, parser->reorderCodes, coll->defaultReorderCodesLength * sizeof(int32_t));
    coll->freeDefaultReorderCodesOnClose = TRUE;
    
    coll->reorderCodesLength = parser->reorderCodesLength;
    coll->reorderCodes = (int32_t*) uprv_malloc(coll->reorderCodesLength * sizeof(int32_t));
    if (coll->reorderCodes == NULL) {
        *status = U_MEMORY_ALLOCATION_ERROR;
        return;
    }
    uprv_memcpy(coll->reorderCodes, parser->reorderCodes, coll->reorderCodesLength * sizeof(int32_t));
    coll->freeReorderCodesOnClose = TRUE;
}

/*
 * Data is stored in the reorder code to lead byte table as:
 *  index count - unsigned short (2 bytes) - number of index entries
 *  data size - unsigned short (2 bytes) - number of unsigned short data elements
 *  index[index count] - array of 2 unsigned shorts (4 bytes each entry)
 *      - reorder code, offset
 *      - index is sorted by reorder code
 *      - if an offset has the high bit set then it is not an offset but a single data entry
 *        once the high bit is stripped off
 *  data[data size] - array of unsigned short (2 bytes each entry)
 *      - the data is an usigned short count followed by count number 
 *        of lead bytes stored in an unsigned short
 */
U_CFUNC int U_EXPORT2
ucol_getLeadBytesForReorderCode(const UCollator *uca, int reorderCode, uint16_t* returnLeadBytes, int returnCapacity) {
    uint16_t reorderCodeIndexLength = *((uint16_t*) ((uint8_t *)uca->image + uca->image->scriptToLeadByte));
    uint16_t* reorderCodeIndex = (uint16_t*) ((uint8_t *)uca->image + uca->image->scriptToLeadByte + 2 *sizeof(uint16_t));
    
    // reorder code index is 2 uint16_t's - reorder code + offset
    for (int i = 0; i < reorderCodeIndexLength; i++) {
        if (reorderCode == reorderCodeIndex[i*2]) {
            uint16_t dataOffset = reorderCodeIndex[(i*2) + 1];
            if ((dataOffset & 0x8000) == 0x8000) {
                // offset isn't offset but instead is a single data element
                if (returnCapacity >= 1) {
                    returnLeadBytes[0] = dataOffset & ~0x8000;
                    return 1;
                }
                return 0;
            }
            uint16_t* dataOffsetBase = (uint16_t*) ((uint8_t *)reorderCodeIndex + reorderCodeIndexLength * (2 * sizeof(uint16_t)));
            uint16_t leadByteCount = *(dataOffsetBase + dataOffset);
            leadByteCount = leadByteCount > returnCapacity ? returnCapacity : leadByteCount;
            uprv_memcpy(returnLeadBytes, dataOffsetBase + dataOffset + 1, leadByteCount * sizeof(uint16_t));
            return leadByteCount;
        }
    }
    return 0;
}

/*
 * Data is stored in the lead byte to reorder code table as:
 *  index count - unsigned short (2 bytes) - number of index entries
 *  data size - unsigned short (2 bytes) - number of unsigned short data elements
 *  index[index count] - array of unsigned short (2 bytes each entry)
 *      - index is sorted by lead byte
 *      - if an index has the high bit set then it is not an index but a single data entry
 *        once the high bit is stripped off
 *  data[data size] - array of unsigned short (2 bytes each entry)
 *      - the data is an usigned short count followed by count number of reorder codes
 */
U_CFUNC int U_EXPORT2
ucol_getReorderCodesForLeadByte(const UCollator *uca, int leadByte, int16_t* returnReorderCodes, int returnCapacity) {
    uint16_t* leadByteTable = ((uint16_t*) ((uint8_t *)uca->image + uca->image->leadByteToScript));
    uint16_t leadByteIndexLength = *leadByteTable;
    if (leadByte >= leadByteIndexLength) {
        return 0;
    }
    uint16_t leadByteIndex = *(leadByteTable + (2 + leadByte));

    if ((leadByteIndex & 0x8000) == 0x8000) {
        // offset isn't offset but instead is a single data element
        if (returnCapacity >= 1) {
            returnReorderCodes[0] = leadByteIndex & ~0x8000;
            return 1;
        }
        return 0;
    }
    //uint16_t* dataOffsetBase = leadByteTable + (2 + leadByteIndexLength);
    uint16_t* reorderCodeData = leadByteTable + (2 + leadByteIndexLength) + leadByteIndex;
    uint16_t reorderCodeCount = *reorderCodeData > returnCapacity ? returnCapacity : *reorderCodeData;
    uprv_memcpy(returnReorderCodes, reorderCodeData + 1, reorderCodeCount * sizeof(uint16_t));
    return reorderCodeCount;
}

// used to mark ignorable reorder code slots
static const int32_t UCOL_REORDER_CODE_IGNORE = UCOL_REORDER_CODE_LIMIT + 1;

U_CFUNC void U_EXPORT2
ucol_buildPermutationTable(UCollator *coll, UErrorCode *status) {
    uint16_t leadBytesSize = 256;
    uint16_t leadBytes[256];
    int32_t internalReorderCodesLength = coll->reorderCodesLength + (UCOL_REORDER_CODE_LIMIT - UCOL_REORDER_CODE_FIRST);
    int32_t* internalReorderCodes;
    
    // The lowest byte that hasn't been assigned a mapping
    int toBottom = 0x03;
    // The highest byte that hasn't been assigned a mapping - don't include the special or trailing
    int toTop = 0xe4;

    // are we filling from the bottom?
    bool fromTheBottom = true;
    int32_t reorderCodesIndex = -1;
    
    // lead bytes that have alread been assigned to the permutation table
    bool newLeadByteUsed[256];
    // permutation table slots that have already been filled
    bool permutationSlotFilled[256];

    // nothing to do
    if(U_FAILURE(*status) || coll == NULL) {
        return;
    }
    
    // clear the reordering
    if (coll->reorderCodes == NULL || coll->reorderCodesLength == 0 
            || (coll->reorderCodesLength == 1 && coll->reorderCodes[0] == UCOL_REORDER_CODE_NONE)) {
        if (coll->leadBytePermutationTable != NULL) {
            if (coll->freeLeadBytePermutationTableOnClose) {
                uprv_free(coll->leadBytePermutationTable);
            }
            coll->leadBytePermutationTable = NULL;
            coll->reorderCodesLength = 0;
        }
        return;
    }

    // set reordering to the default reordering
    if (coll->reorderCodes[0] == UCOL_REORDER_CODE_DEFAULT) {
        if (coll->reorderCodesLength != 1) {
            *status = U_ILLEGAL_ARGUMENT_ERROR;
            return;
        }
        if (coll->freeReorderCodesOnClose == TRUE) {
            uprv_free(coll->reorderCodes);
        }
        coll->reorderCodes = NULL;
        
        if (coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) {
            uprv_free(coll->leadBytePermutationTable);
        }
        coll->leadBytePermutationTable = NULL;

        if (coll->defaultReorderCodesLength == 0) {
            return;
        }
        
        coll->reorderCodes = (int32_t*)uprv_malloc(coll->defaultReorderCodesLength * sizeof(int32_t));
        coll->freeReorderCodesOnClose = TRUE;
        if (coll->reorderCodes == NULL) {
            *status = U_MEMORY_ALLOCATION_ERROR;
            return;
        }
        coll->reorderCodesLength = coll->defaultReorderCodesLength;
        uprv_memcpy(coll->defaultReorderCodes, coll->reorderCodes, coll->reorderCodesLength * sizeof(int32_t));
    }     

    if (coll->leadBytePermutationTable == NULL) {
        coll->leadBytePermutationTable = (uint8_t*)uprv_malloc(256*sizeof(uint8_t));
        coll->freeLeadBytePermutationTableOnClose = TRUE;
        if (coll->leadBytePermutationTable == NULL) {
            *status = U_MEMORY_ALLOCATION_ERROR;
            return;
        }
    }

    // prefill the reordering codes with the leading entries
    internalReorderCodes = (int32_t*)uprv_malloc(internalReorderCodesLength * sizeof(int32_t));
    if (internalReorderCodes == NULL) {
        *status = U_MEMORY_ALLOCATION_ERROR;
        if (coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) {
            uprv_free(coll->leadBytePermutationTable);
        }
        coll->leadBytePermutationTable = NULL;
        return;
    }
    
    for (uint32_t codeIndex = 0; codeIndex < (UCOL_REORDER_CODE_LIMIT - UCOL_REORDER_CODE_FIRST); codeIndex++) {
        internalReorderCodes[codeIndex] = UCOL_REORDER_CODE_FIRST + codeIndex;
    }
    for (int32_t codeIndex = 0; codeIndex < coll->reorderCodesLength; codeIndex++) {
        uint32_t reorderCodesCode = coll->reorderCodes[codeIndex];
        internalReorderCodes[codeIndex + (UCOL_REORDER_CODE_LIMIT - UCOL_REORDER_CODE_FIRST)] = reorderCodesCode;
        if (reorderCodesCode >= UCOL_REORDER_CODE_FIRST && reorderCodesCode < UCOL_REORDER_CODE_LIMIT) {
            internalReorderCodes[reorderCodesCode - UCOL_REORDER_CODE_FIRST] = UCOL_REORDER_CODE_IGNORE;
        }
    }

    for (int i = 0; i < 256; i++) {
        if (i < toBottom || i > toTop) {
            permutationSlotFilled[i] = true;
            newLeadByteUsed[i] = true;
            coll->leadBytePermutationTable[i] = i;
        } else {
            permutationSlotFilled[i] = false;
            newLeadByteUsed[i] = false;
            coll->leadBytePermutationTable[i] = 0;
        }
    }
    
    /* Start from the front of the list and place each script we encounter at the
     * earliest possible locatation in the permutation table. If we encounter
     * UNKNOWN, start processing from the back, and place each script in the last
     * possible location. At each step, we also need to make sure that any scripts
     * that need to not be moved are copied to their same location in the final table.
     */
    for (int reorderCodesCount = 0; reorderCodesCount < internalReorderCodesLength; reorderCodesCount++) {
        reorderCodesIndex += fromTheBottom ? 1 : -1;
        int32_t next = internalReorderCodes[reorderCodesIndex];
        if (next == UCOL_REORDER_CODE_IGNORE) {
            continue;
        }
        if (next == USCRIPT_UNKNOWN) {
            if (fromTheBottom == false) {
                // double turnaround
                *status = U_ILLEGAL_ARGUMENT_ERROR;
                if (coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) {
                    uprv_free(coll->leadBytePermutationTable);
                }
                coll->leadBytePermutationTable = NULL;
                coll->reorderCodesLength = 0;
                if (internalReorderCodes != NULL) {
                    uprv_free(internalReorderCodes);
                }
                return;
            }
            fromTheBottom = false;
            reorderCodesIndex = internalReorderCodesLength;
            continue;
        }
        
        uint16_t leadByteCount = ucol_getLeadBytesForReorderCode(coll->UCA, next, leadBytes, leadBytesSize);
        if (fromTheBottom) {
            for (int leadByteIndex = 0; leadByteIndex < leadByteCount; leadByteIndex++) {
                // don't place a lead byte twice in the permutation table
                if (permutationSlotFilled[leadBytes[leadByteIndex]]) {
                    // lead byte already used
                    *status = U_ILLEGAL_ARGUMENT_ERROR;
                    if (coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) {
                        uprv_free(coll->leadBytePermutationTable);
                    }
                    coll->leadBytePermutationTable = NULL;
                    coll->reorderCodesLength = 0;
                    if (internalReorderCodes != NULL) {
                        uprv_free(internalReorderCodes);
                    }
                    return;
                }
   
                coll->leadBytePermutationTable[leadBytes[leadByteIndex]] = toBottom;
                newLeadByteUsed[toBottom] = true;
                permutationSlotFilled[leadBytes[leadByteIndex]] = true;
                toBottom++;
            }
        } else {
            for (int leadByteIndex = leadByteCount - 1; leadByteIndex >= 0; leadByteIndex--) {
                // don't place a lead byte twice in the permutation table
                if (permutationSlotFilled[leadBytes[leadByteIndex]]) {
                    // lead byte already used
                    *status = U_ILLEGAL_ARGUMENT_ERROR;
                    if (coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) {
                        uprv_free(coll->leadBytePermutationTable);
                    }
                    coll->leadBytePermutationTable = NULL;
                    coll->reorderCodesLength = 0;
                    if (internalReorderCodes != NULL) {
                        uprv_free(internalReorderCodes);
                    }
                    return;
                }

                coll->leadBytePermutationTable[leadBytes[leadByteIndex]] = toTop;
                newLeadByteUsed[toTop] = true;
                permutationSlotFilled[leadBytes[leadByteIndex]] = true;
                toTop--;
            }
        }
    }
    
#ifdef REORDER_DEBUG
    fprintf(stdout, "\n@@@@ Partial Script Reordering Table\n");
    for (int i = 0; i < 256; i++) {
        fprintf(stdout, "\t%02x = %02x\n", i, coll->leadBytePermutationTable[i]);
    }
    fprintf(stdout, "\n@@@@ Lead Byte Used Table\n");
    for (int i = 0; i < 256; i++) {
        fprintf(stdout, "\t%02x = %02x\n", i, newLeadByteUsed[i]);
    }
    fprintf(stdout, "\n@@@@ Permutation Slot Filled Table\n");
    for (int i = 0; i < 256; i++) {
        fprintf(stdout, "\t%02x = %02x\n", i, permutationSlotFilled[i]);
    }
#endif

    /* Copy everything that's left over */
    int reorderCode = 0;
    for (int i = 0; i < 256; i++) {
        if (!permutationSlotFilled[i]) {
            while (reorderCode < 256 && newLeadByteUsed[reorderCode]) {
                reorderCode++;
            }
            coll->leadBytePermutationTable[i] = reorderCode;
            permutationSlotFilled[i] = true;
            newLeadByteUsed[reorderCode] = true;
        }
    } 
    
#ifdef REORDER_DEBUG
    fprintf(stdout, "\n@@@@ Script Reordering Table\n");
    for (int i = 0; i < 256; i++) {
        fprintf(stdout, "\t%02x = %02x\n", i, coll->leadBytePermutationTable[i]);
    } 
#endif

    if (internalReorderCodes != NULL) {
        uprv_free(internalReorderCodes);
    }

    // force a regen of the latin one table since it is affected by the script reordering
    coll->latinOneRegenTable = TRUE;
    ucol_updateInternalState(coll, status);
}

#endif /* #if !UCONFIG_NO_COLLATION */