draft-yu-krb-wg-kerberos-extensions-00.txt   [plain text]




INTERNET-DRAFT                                                    Tom Yu
draft-yu-krb-wg-kerberos-extensions-00.txt                           MIT
Expires: 09 August 2004                                 09 February 2004

        The Kerberos Network Authentication Service (Version 5)

Status of This Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC 2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at

      http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at

      http://www.ietf.org/shadow.html


Copyright Notice

   Copyright (C) The Internet Society (2004).  All Rights Reserved.

Abstract

   This document describes version 5 of the Kerberos network
   authentication protocol.  It describes changes to the protocol which
   allow for extensions to be made to the protocol without creating
   interoperability problems.

   [ This document is a VERY rough draft.  Many sections are not yet
   fully filled out.  The main purpose is to illustrate the beginnings
   of a new document structure as a starting point. ]

Key Words for Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", and "MAY" in this document are
   to be interpreted as described in RFC 2119.


Yu                          Expires: Aug 2004                   [Page 1]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

Table of Contents

   Status of This Memo .......................................  1
   Copyright Notice ..........................................  1
   Abstract ..................................................  1
   Key Words for Requirements ................................  1
   Table of Contents .........................................  2
   1.  Introduction ..........................................  4
   1.1.  Kerberos Protocol Overview ..........................  4
   1.2.  Overview of Document ................................  5
   2.  Extensibility .........................................  5
   3.  Criticality ...........................................  6
   4.  Use of ASN.1 ..........................................  6
   4.1.  Module Header .......................................  6
   4.2.  Top-Level Type ......................................  7
   4.3.  Parameterized Types .................................  7
   4.4.  Constraints .........................................  8
   4.5.  New Types ...........................................  8
   5.  Basic Types ...........................................  8
   5.1.  Constrained Integer Types ...........................  8
   5.2.  KerberosTime ........................................  9
   5.3.  KerberosString ......................................  9
   6.  Principals ............................................ 10
   6.1.  Name Types .......................................... 10
   6.2.  Principal Name Reuse ................................ 11
   7.  Types Relating to Encryption .......................... 11
   7.1.  EncryptedData ....................................... 11
   7.2.  EncryptionKey ....................................... 13
   7.3.  Checksums ........................................... 13
   7.3.1.  ChecksumOf ........................................ 14
   7.3.2.  Signed ............................................ 15
   8.  Tickets ............................................... 15
   8.1.  Timestamps .......................................... 16
   8.2.  Ticket Flags ........................................ 16
   8.2.1.  Flags Relating to Initial Ticket Acquisition ...... 17
   8.2.2.  Invalid Tickets ................................... 17
   8.2.3.  OK as Delegate .................................... 18
   8.3.  Renewable Tickets ................................... 18
   8.4.  Postdated Tickets ................................... 19
   8.5.  Proxiable and Proxy Tickets ......................... 20
   8.6.  Forwardable Tickets ................................. 21
   8.7.  Transited Realms .................................... 21
   8.8.  Authorization Data .................................. 21
   8.9.  Encrypted Part of Ticket ............................ 21
   8.10.  Cleartext Part of Ticket ........................... 22
   9.  Credential Acquisition ................................ 23
   9.1.  KDC-REQ ............................................. 24
   9.2.  PA-DATA ............................................. 26
   9.3.  KDC-REQ Processing .................................. 26
   9.3.1.  Handling Replays .................................. 26
   9.3.2.  Request Validation ................................ 26

Yu                          Expires: Aug 2004                   [Page 2]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   9.3.2.1.  AS-REQ Authentication ........................... 27
   9.3.2.2.  TGS-REQ Authentication .......................... 27
   9.3.2.3.  Principal Validation ............................ 27
   9.3.3.  Timestamp Handling ................................ 27
   9.3.3.1.  AS-REQ Timestamp Processing ..................... 28
   9.3.3.2.  TGS-REQ Timestamp Processing .................... 29
   9.3.4.  Key Selection ..................................... 29
   9.3.5.  Checking For Revoked Tickets ...................... 30
   9.4.  Reply Validation .................................... 30
   10.  Application Authentication ........................... 30
   11.  Session Key Use ...................................... 30
   11.1.  KRB-SAFE ........................................... 30
   11.2.  KRB-PRIV ........................................... 30
   11.3.  KRB-CRED ........................................... 30
   12.  Security Considerations .............................. 30
   12.1.  Time Synchronization ............................... 30
   12.2.  Replays ............................................ 30
   12.3.  Principal Name Reuse ............................... 30
   12.4.  Password Guessing .................................. 30
   12.5.  Forward Secrecy .................................... 30
   12.6.  Authorization ...................................... 31
   12.7.  Login Authentication ............................... 31
   Appendices ................................................ 31
   A.  ASN.1 Module (Normative) .............................. 31
   B.  Kerberos and Character Encodings (Informative) ........ 60
   C.  Kerberos History (Informative) ........................ 62
   Normative References ...................................... 62
   Informative References .................................... 63
   Acknowledgments ........................................... 63
   Author's Address .......................................... 63
   Full Copyright Statement .................................. 63





















Yu                          Expires: Aug 2004                   [Page 3]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

1.  Introduction

   The Kerberos network authentication protocol is a trusted third-party
   protocol utilizing symmetric-key cryptography.  It assumes that all
   communications between parties in the protocol may be arbitrarily
   tampered with or monitored, and that the security of the overall
   system depends only on the effectiveness of the cryptographic
   techniques and the secrecy of the keys used.  The protocol
   authenticates an application client's identity to an application
   server, and likewise authenticates the application server's identity
   to the application client.  These assurances are made possible by the
   client and the server sharing secrets with the trusted third party:
   the Kerberos server, also known as the Key Distribution Center (KDC).
   In addition, the protocol establishes an ephemeral shared secret (the
   session key) between the client and the server, allowing the
   protection of further communications between them.

1.1.  Kerberos Protocol Overview

   Kerberos comprises three main sub-protocols: credentials acquisition,
   application authentication, and session key usage.  A client acquires
   credentials by asking the for KDC a credential for a service; the KDC
   issues the credential, consisting of a ticket and a session key.  The
   ticket, containing the client's identity, timestamps, expiration
   time, and a session key, is a encrypted in a key known to the
   application server.  The KDC encrypts the credential using a key
   known to the client, and transmits the credential to the client.

   There are two means of requesting credentials: the Authentication
   Service (AS) exchange, and the Ticket-Granting Service (TGS)
   exchange.  The AS exchange typically involves a client using a
   password-derived key to decrypt the response.  The TGS exchange
   involves the KDC behaving as an application, which the client
   authenticates to using a Ticket-Granting Ticket (TGT).  The client
   usually obtains the TGT by using the AS exchange.

   Application authentication consists of the client establishing the
   session key with the application server by transmitting the ticket to
   the application server, along with an authenticator.  The
   authenticator contains a timestamp and additional data encrypted
   using the ticket's session key.  The application server decrypts the
   ticket, extracting the session key.  The application server then uses
   the session key to decrypt the authenticator.  Upon successful
   decryption of the authenticator, the application server knows that
   the data in the authenticator were sent by the client named in the
   associated ticket.  Additionally, since authenticators expire more
   quickly than tickets, the application server has some assurance that
   the transaction is not a replay.  The application server may send an
   encrypted acknowledgment to the client, verifying its identity to the
   client.


Yu                          Expires: Aug 2004                   [Page 4]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   Once application authentication has occurred, the client and server
   may use the established session key to protect further traffic.  This
   protection may consist of protection of integrity only, or of
   protection of confidentiality and integrity.  Additional measures
   exist for a client to forward credentials to a server.

   The entire scheme depends on loosely synchronized clocks.
   Synchronization of the clock on the KDC with the application server
   clock allows the application server to accurately determine whether a
   credential is expired.  Likewise, synchronization of the clock on the
   client with the application server clock prevents replay attacks
   utilizing the same credential.  Careful design of the application
   protocol may allow replay prevention without requiring client-server
   clock synchronization.

   Following the establishment of a session key between the application
   client and the application server, the Kerberos protocol provides
   messages that use the session key to protect the integrity or
   confidentiality of communications between the client and the server.
   Additionally, the client may forward credentials to the application
   server.

   The credentials acquisition protocol takes place over specific,
   defined transports (UDP and TCP).  Application protocols define which
   transport to use for the session key establishment protocol and for
   messages using the session key; the application may choose to perform
   its own encapsulation of the Kerberos messages, for example.

1.2.  Overview of Document

   The remainder of this document begins by describing the general
   frameworks for protocol extensibility, including whether to interpret
   unknown extensions as critical.  It then defines the protocol
   messages and exchanges.

   The definition of the Kerberos protocol uses Abstract Syntax Notation
   One (ASN.1) [X680], which specifies notation for describing the
   abstract content of protocol messages.  This document defines a
   number of base types using ASN.1; these base types subsequently
   appear in multiple types which define actual protocol messages.
   Definitions of principal names and of tickets, which are central to
   the protocol, also appear preceding the protocol message definitions.

2.  Extensibility

   As originally defined in [RFC1510], the Kerberos protocol does not
   readily allow for backwards-compatible extensions to the protocol.
   Various proposals to extend the Kerberos protocol have appeared since
   RFC 1510, many of them creating problems for backwards compatibility.
   This document adopts the technique of creating new extensible types
   which encode to messages which are very similar to RFC 1510 messages

Yu                          Expires: Aug 2004                   [Page 5]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   on the wire.  This similarity allows implementors to use shared code
   paths for encoding and decoding both new and old messages.

   The protocol defined in RFC 1510 already contains some elements
   allowing for limited backwards-compatible extensions to the protocol.
   Most of these elements consist of "typed holes"; these are octet
   strings whose contents have types defined by an assigned number.
   This document adds a number of typed holes to types which have
   previously lacked typed holes.  This document also describes
   procedures for the IETF to use the extensibility model of ASN.1 make
   further backwards-compatible extensions of the Kerberos protocol, if
   typed holes prove inadequate for some desired extension.

3.  Criticality

   In general, implementations SHOULD treat unknown extension, flags,
   etc. as non-critical; i.e., they should ignore them when they do not
   understand them.  Exceptions are clearly marked.  An implementation
   SHOULD NOT reject a request merely because it does not understand
   some element of the request.  As a related consequence,
   implementations SHOULD handle talking to other implementations which
   do not implement some requested options.  This may require designers
   of extensions or options to provide means detect whether extensions
   or options are rejected, or whether such extensions or options are
   merely not understood, or (perhaps maliciously) deleted in transit.

4.  Use of ASN.1

   Kerberos uses the ASN.1 Distinguished Encoding Rules (DER) [X690].
   Even though ASN.1 theoretically allows the description of protocol
   messages to be independent of the encoding rules used to encode the
   messages, Kerberos messages MUST be encoded with DER.  Subtleties in
   the semantics of the notation, such as whether tags carry any
   semantic content to the application, may cause the use of other ASN.1
   encoding rules to be problematic.

   Implementors not using existing ASN.1 compilers or support libraries
   are cautioned to thoroughly read and understand the actual ASN.1
   specification to ensure correct implementation behavior.  There is
   more complexity in the notation than is immediately obvious, and some
   tutorials and guides to ASN.1 are misleading or erroneous.

4.1.  Module Header

   The type definitions in this section assume an ASN.1 module
   definition of the following form:






Yu                          Expires: Aug 2004                   [Page 6]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      KerberosV5Spec3 {
          iso(1) identified-organization(3) dod(6) internet(1)
          security(5) kerberosV5(2) modules(4) krb5spec3(4)
      } DEFINITIONS EXPLICIT TAGS ::= BEGIN

      -- Rest of definitions here

      END

   This specifies that the tagging context for the module will be
   explicit and that automatic tagging is not done.

   Some other publications [RFC1510] [RFC1964] erroneously specify an
   object identifier (OID) having an incorrect value of "5" for the
   "dod" component of the OID.  In the case of RFC 1964, use of the
   "correct" OID value would result in a change in the wire protocol;
   therefore, the RFC 1964 OID remains unchanged for now.

4.2.  Top-Level Type

   The ASN.1 type "KRB-PDU" is a CHOICE over all the types (Protocol
   Data Units or PDUs) which an application may directly reference.
   Applications SHOULD NOT transmit any types other than those which are
   alternatives of the KRB-PDU CHOICE.

      -- top-level type
      --
      -- Applications should not directly reference any types
      -- other than KRB-PDU and its component types.
      --
      KRB-PDU         ::= CHOICE {
          ticket      Ticket,
          as-req      AS-REQ,
          as-rep      AS-REP,
          tgs-req     TGS-REQ,
          tgs-rep     TGS-REP,
          ap-req      AP-REQ,
          ap-rep      AP-REP,
          krb-safe    KRB-SAFE,
          krb-priv    KRB-PRIV,
          krb-cred    KRB-CRED,
          tgt-req     TGT-REQ,
          krb-error   KRB-ERROR,
          ...
      }


4.3.  Parameterized Types

   This document uses ASN.1 parameterized types [X683] to make
   definitions of types more readable.  For some types, some or all of

Yu                          Expires: Aug 2004                   [Page 7]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   the parameters are advisory, i.e., they are not encoded in any form
   for transmission in a protocol message.  These advisory parameters
   can describe implementation behavior associated with the type.

4.4.  Constraints

   This document uses ASN.1 constraints, including the
   "UserDefinedConstraint" syntax [X682].  Some constraints can be
   handled automatically by tools that can parse them.  Uses of the
   "UserDefinedConstraint" syntax (the "CONSTRAINED BY" syntax) will
   typically need to have behavior manually coded; these uses provide a
   formalized way of conveying intended implementation behavior.

4.5.  New Types

   This document defines a number of new ASN.1 types.  The names of
   these types will typically have a suffix like "Ext", indicating that
   the types are intended to support extensibility.  Types original to
   RFC 1510 have been renamed to have a suffix like "1510".  The "Ext"
   and "1510" types often contain a number of common elements; these
   common elements have a suffix like "Common".  The "1510" types have
   various ASN.1 constraints applied to them; the constraints limit the
   possible values of the "1510" types to those permitted by RFC 1510 or
   by [KCLAR].  The "Ext" types may have different constraints,
   typically to force string values to be sent as UTF-8.

5.  Basic Types

   Certain ASN.1 types in Kerberos appear in numerous other types.

5.1.  Constrained Integer Types

   In [RFC1510], many types contained references to the unconstrained
   INTEGER type.  Since an unconstrained INTEGER may contain any
   possible abstract integer value, most of the unconstrained references
   to INTEGER in [RFC1510] have been constrained to 32 bits or smaller.

      -- signed values representable in 32 bits
      --
      -- These are often used as assigned numbers for various things.
      Int32           ::= INTEGER (-2147483648..2147483647)

      -- unsigned 32 bit values
      UInt32          ::= INTEGER (0..4294967295)

   The "Int32" type often contains an assigned number identifying the
   type of a protocol element.  Unless otherwise stated, non-negative
   values are registered, and negative values are available for local
   use.



Yu                          Expires: Aug 2004                   [Page 8]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      -- microseconds
      Microseconds    ::= INTEGER (0..999999)


      -- sequence numbers
      --
      -- We may want to increase this to 2**64 and define a UInt64
      -- type.
      SeqNum          ::= UInt32


      -- nonces
      --
      -- Likewise, we may want to make this UInt64.
      Nonce           ::= UInt32

   While these types have different abstract types from their
   equivalents in [RFC1510], their DER encodings remain identical.

5.2.  KerberosTime

      -- must not have fractional seconds
      KerberosTime    ::= GeneralizedTime

   The timestamps used in Kerberos are encoded as GeneralizedTimes. A
   KerberosTime value MUST NOT include any fractional portions of the
   seconds.  As required by the DER, it further MUST NOT include any
   separators, and it specifies the UTC time zone (Z). Example: The only
   valid format for UTC time 6 minutes, 27 seconds after 9 pm on 6
   November 1985 is "19851106210627Z".

5.3.  KerberosString

      -- used for names and for error messages
      KerberosString  ::= CHOICE {
          ia5         GeneralString (IA5String),
          utf8        UTF8String,
          ...         -- no extension may be sent
                      -- to an rfc1510 implementation --
      }

   The KerberosString type is used for strings in various places in the
   Kerberos protocol.  For compatibility with RFC 1510, GeneralString
   values constrained to IA5String (US-ASCII) are permitted in messages
   exchanged with RFC 1510 implementations.  The new protocol messages
   contain strings encoded as UTF-8.  KerberosString values are present
   in principal names and in error messages.  Control characters SHOULD
   NOT be used in principal names, and used with caution in error
   messages.



Yu                          Expires: Aug 2004                   [Page 9]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   For detailed background regarding the history of character string use
   in Kerberos, as well as discussion of some compatibility issues, see
   Appendix B.

6.  Principals

   Principals are participants in the Kerberos protocol.  A "realm"
   consists of principals in one administrative domain, served by one
   KDC (or one replicated set of KDCs).  Each principal name has an
   arbitrary number of components, though typical principal names will
   only have one or two components.  A principal name is meant to be
   readable by and meaningful to humans, especially in a realm lacking a
   centrally adminstered authorization infrastructure.

      Realm           ::= KerberosString

      PrincipalName   ::= SEQUENCE {
          name-type   [0] NameType,
          -- May have zero elements, or individual elements may be
          -- zero-length, but this is not recommended.
          name-string [1] SEQUENCE OF KerberosString
      }

      -- assigned numbers for name types (used in principal names)
      NameType        ::= Int32


   Kerberos realm names are KerberosStrings.  Realms MUST NOT contain a
   character with the code 0 (the US-ASCII NUL).  Most realms will
   usually consist of several components separated by periods (.), in
   the style of Internet Domain Names, or separated by slashes (/) in
   the style of X.500 names.

   name-type
        Specifies the type of name that follows.  The name-type SHOULD
        be treated as a hint. Ignoring the name type, no two names can
        be the same (i.e., at least one of the components, or the realm,
        must be different).

   name-string
        Encodes a sequence of components that form a name, each
        component encoded as a KerberosString.  Taken together, a
        PrincipalName and a Realm form a principal identifier.  Most
        PrincipalNames will have only a few components (typically one or
        two).

6.1.  Name Types





Yu                          Expires: Aug 2004                  [Page 10]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      -- Name type not known
      nt-unknown              NameType ::= 0
      -- Just the name of the principal as in DCE, or for users
      nt-principal            NameType ::= 1
      -- Service and other unique instance (krbtgt)
      nt-srv-inst             NameType ::= 2
      -- Service with host name as instance (telnet, rcommands)
      nt-srv-hst              NameType ::= 3
      -- Service with host as remaining components
      nt-srv-xhst             NameType ::= 4
      -- Unique ID
      nt-uid                  NameType ::= 5
      -- Encoded X.509 Distingished name [RFC 2253]
      nt-x500-principal       NameType ::= 6
      -- Name in form of SMTP email name (e.g. user@foo.com)
      nt-smtp-name            NameType ::= 7
      -- Enterprise name - may be mapped to principal name
      nt-enterprise           NameType ::= 10


6.2.  Principal Name Reuse

   Realm administrators SHOULD use extreme caution when considering
   reusing a principal name.  A service administrator might explicitly
   enter principal names into a local access control list (ACL) for the
   service.  If such local ACLs exist independently of a centrally
   administered authorization infrastructure, realm administrators
   SHOULD NOT reuse principal names until confirming that all extant ACL
   entries referencing that principal name have been updated.  Failure
   to perform this check can result in a security vulnerability, as a
   new principal can inadvertently inherit unauthorized privileges upon
   receiving a reused principal name.  An organization whose Kerberos-
   authenticated services all use a centrally-adminstered authorization
   infrastructure may not need to take these precautions regarding
   principal name reuse.

7.  Types Relating to Encryption

   Many Kerberos protocol messages contain encryptions of various data
   types.  Kerberos protocol messages also contain checksums
   (signatures) of various types.

7.1.  EncryptedData

   The "EncryptedData" type contains the encryption of another data
   type.  The recipient uses fields within EncryptedData to determine
   which key to use for decryption.





Yu                          Expires: Aug 2004                  [Page 11]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      -- "Type" specifies which ASN.1 type is encrypted to the
      -- ciphertext in the EncryptedData.  "Keys" specifies a set of
      -- keys of which one key may be used to encrypt the data.
      -- "KeyUsages" specifies a set of key usages, one of which may
      -- be used to encrypt.
      --
      -- None of the parameters is transmitted over the wire.
      EncryptedData { Type, KeyToUse:Keys, KeyUsage:KeyUsages } ::=
      SEQUENCE {
          etype       [0] EType,
          kvno        [1] UInt32 OPTIONAL,
          cipher      [2] OCTET STRING (CONSTRAINED BY {
              -- must be encryption of --
              OCTET STRING (CONTAINING Type),
              -- with one of the keys -- KeyToUse:Keys,
              -- with key usage being one of --
              KeyUsage:KeyUsages
          }),
          ...
      }

      -- Assigned numbers denoting encryption mechanisms.
      EType ::= Int32

      -- Assigned numbers denoting key usages.
      KeyUsage ::= UInt32


   EType
        Integer type for assigned numbers for encryption algorithms.
        Defined in [KCRYPTO]

   KeyUsage
        Integer type for assigned numbers for key usages.  Key usage
        values are inputs to the encryption and decryption functions
        described in [KCRYPTO].

   Type
        Advisory parameter indicating the ASN.1 type whose DER encoding
        is the plaintext encrypted into the EncryptedData.

   Keys
        Advisory parameter indicating which key to use to perform the
        encryption.  If "Keys" indicate multiple "KeyToUse" values, the
        detailed description of the containing message will indicate
        which key to use under which conditions.






Yu                          Expires: Aug 2004                  [Page 12]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

           -- KeyToUse identifies which key is to be used to encrypt or
           -- sign a given value.
           --
           -- Values of KeyToUse are never actually transmitted over the
           -- wire, or even used directly by the implementation in any
           -- way, as key usages are; it exists primarily to identify
           -- which key gets used for what purpose.  Thus, the specific
           -- numeric values associated with this type are irrelevant.
           KeyToUse        ::= ENUMERATED {
               -- unspecified
               key-unspecified,
               -- server long term key
               key-server,
               -- client long term key
               key-client,
               -- key selected by KDC for encryption of a KDC-REP
               key-kdc-rep,
               -- session key from ticket
               key-session,
               -- subsession key negotiated via AP-REQ/AP-REP
               key-subsession,
               ...
           }


   KeyUsages
        Advisory parameter indicating which "KeyUsage" value is used to
        encrypt.  If "KeyUsages" indicates multiple "KeyUsage" values,
        the detailed description of the containing message will indicate
        which key usage to use under which conditions.

7.2.  EncryptionKey

   The "EncryptionKey" type holds an encryption key.

      EncryptionKey   ::= SEQUENCE {
          keytype     [0] EType,
          keyvalue    [1] OCTET STRING
      }


   keytype
        This "EType" identifies the encryption algorithm, described in
        [KCRYPTO].

   keyvalue
        Contains the actual key.

7.3.  Checksums



Yu                          Expires: Aug 2004                  [Page 13]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   Several types contain checksums (actually signatures) of data.

      CksumType       ::= Int32

      -- The parameters specify which key to use to produce the
      -- signature, as well as which key usage to use.  The
      -- parameters are not actually sent over the wire.
      Checksum { KeyToUse:Keys, KeyUsage:KeyUsages } ::= SEQUENCE {
          cksumtype   [0] CksumType,
          checksum    [1] OCTET STRING (CONSTRAINED BY {
              -- signed using one of the keys --
              KeyToUse:Keys,
              -- with key usage being one of --
              KeyUsage:KeyUsages
          })
      }


   CksumType
        Integer type for assigned numbers for signature algorithms.
        Defined in [KCRYPTO]

   Keys
        As in EncryptedData

   KeyUsages
        As in EncryptedData

   cksumtype
        Signature algorithm used to produce the signature.

   checksum
        The actual checksum.

7.3.1.  ChecksumOf

   ChecksumOf is like "Checksum", but specifies which type is signed.

      -- a Checksum that must contain the checksum of a particular type
      ChecksumOf { Type, KeyToUse:Keys, KeyUsage:KeyUsages } ::=
      Checksum { Keys, KeyUsages }
      (WITH COMPONENTS {
          ...,
          checksum (CONSTRAINED BY {
              -- must be checksum of --
              OCTET STRING (CONTAINING Type)
          })
      })




Yu                          Expires: Aug 2004                  [Page 14]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   Type
        Indicates the ASN.1 type whose DER encoding is signed.

7.3.2.  Signed

   Signed is like "ChecksumOf", but contains an actual instance of the
   type being signed in addition to the signature.

      -- parameterized type for wrapping authenticated plaintext
      Signed { InnerType, KeyToUse:Keys, KeyUsage:KeyUsages } ::=
      SEQUENCE {
          cksum       [0] ChecksumOf
                              { InnerType, Keys, KeyUsages } OPTIONAL,
          inner       [1] InnerType,
          ...
      }


8.  Tickets

   The important fields of a ticket are in the encrypted part.  The
   components in common between the RFC 1510 and the extensible versions
   are

      EncTicketPartCommon ::= SEQUENCE {
          flags               [0] TicketFlags,
          key                 [1] EncryptionKey,
          crealm              [2] Realm,
          cname               [3] PrincipalName,
          transited           [4] TransitedEncoding,
          authtime            [5] KerberosTime,
          starttime           [6] KerberosTime OPTIONAL,
          endtime             [7] KerberosTime,
          renew-till          [8] KerberosTime OPTIONAL,
          caddr               [9] HostAddresses OPTIONAL,
          authorization-data  [10] AuthorizationData OPTIONAL,
          ...
      }


   crealm
        This field contains the client's realm.

   cname
        This field contains the client's name.

   caddr
        This field lists the network addresses (if absent, all addresses
        are permitted) from which the ticket is valid.



Yu                          Expires: Aug 2004                  [Page 15]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   Descriptions of the other fields appear in the following sections.

8.1.  Timestamps

   Three of the ticket timestamps may be requested from the KDC.  The
   timestamps may differ from those requested, depending on site policy.

   authtime
        The time at which the client authenticated, as recorded by the
        KDC.

   starttime
        The earliest time when the ticket is valid.  If not present, the
        ticket is valid starting at the authtime.  This is requested as
        the "from" field of KDC-REQ-BODY-COMMON.

   endtime
        This time is requested in the "till" field of KDC-REQ-BODY-
        COMMON.  Contains the time after which the ticket will not be
        honored (its expiration time).  Note that individual services
        MAY place their own limits on the life of a ticket and MAY
        reject tickets which have not yet expired.  As such, this is
        really an upper bound on the expiration time for the ticket.

   renew-till
        This time is requested in the "rtime" field of KDC-REQ-BODY-
        COMMON.  It is only present in tickets that have the "renewable"
        flag set in the flags field.  It indicates the maximum endtime
        that may be included in a renewal.  It can be thought of as the
        absolute expiration time for the ticket, including all renewals.

8.2.  Ticket Flags

   A number of flags may be set in the ticket, further defining some of
   its capabilities.  Some of these flags map to flags in a KDC request.

















Yu                          Expires: Aug 2004                  [Page 16]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      TicketFlags     ::= KerberosFlags { TicketFlagsBits }

      TicketFlagsBits ::= BIT STRING {
          reserved            (0),
          forwardable         (1),
          forwarded           (2),
          proxiable           (3),
          proxy               (4),
          may-postdate        (5),
          postdated           (6),
          invalid             (7),
          renewable           (8),
          initial             (9),
          pre-authent         (10),
          hw-authent          (11),
          transited-policy-checked (12),
          ok-as-delegate      (13),
          anonymous           (14),
          cksummed-ticket     (15)
      }


8.2.1.  Flags Relating to Initial Ticket Acquisition

   [ adapted KCLAR 2.1. ]

   Several flags indicate the details of how the initial ticket was
   acquired.

   initial
        The "initial" flag indicates that a ticket was issued using the
        AS protocol, rather than issued based on a ticket-granting
        ticket.  Application servers (e.g., a password-changing program)
        requiring a client's definite knowledge of its secret keycan
        insist that this flag be set in any tickets they accept, and
        thus be assured that the client's key was recently presented to
        the application client.

   pre-authent
        The "pre-authent" flag indicates that some sort of pre-
        authentication was used during the AS exchange.

   hw-authent
        The "hw-authent" flag indicates that some sort of hardware-based
        pre-authentication occurred during the AS exchange.

   Both the "pre-authent" and the "hw-authent" flags may be present with
   or without the "initial" flag; such tickets with the "initial" flag
   clear are ones which are derived from initial tickets with the "pre-
   authent" or "hw-authent" flags set.


Yu                          Expires: Aug 2004                  [Page 17]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

8.2.2.  Invalid Tickets

   [ KCLAR 2.2. ]

   The "invalid" flag indicates that a ticket is invalid.  Application
   servers MUST reject tickets which have this flag set.  A postdated
   ticket will be issued in this form.  Invalid tickets MUST be
   validated by the KDC before use, by presenting them to the KDC in a
   TGS request with the "validate" option specified.  The KDC will only
   validate tickets after their starttime has passed.  The validation is
   required so that postdated tickets which have been stolen before
   their starttime can be rendered permanently invalid (through a hot-
   list mechanism -- see Section 9.3.5).

8.2.3.  OK as Delegate

   [ KCLAR 2.8. ]

   For some applications a client may need to delegate authority to a
   server to act on its behalf in contacting other services.  This
   requires that the client forward credentials to an intermediate
   server.  The ability for a client to obtain a service ticket to a
   server conveys no information to the client about whether the server
   should be trusted to accept delegated credentials.  The "ok-as-
   delegate" flag provides a way for a KDC to communicate local realm
   policy to a client regarding whether an intermediate server is
   trusted to accept such credentials.

   The copy of the ticket flags visible to the client may have the "ok-
   as-delegate" flag set to indicate to the client that the server
   specified in the ticket has been determined by policy of the realm to
   be a suitable recipient of delegation.  A client can use the presence
   of this flag to help it make a decision whether to delegate
   credentials (either grant a proxy or a forwarded ticket-granting
   ticket) to this server.  It is acceptable to ignore the value of this
   flag.  When setting this flag, an administrator should consider the
   security and placement of the server on which the service will run,
   as well as whether the service requires the use of delegated
   credentials.

8.3.  Renewable Tickets

   [ adapted KCLAR 2.3. ]

   Renewable tickets can be used to mitigate the consequences of ticket
   theft.  Applications may desire to hold tickets which can be valid
   for long periods of time.  However, this can expose their credentials
   to potential theft for equally long periods, and those stolen
   credentials would be valid until the expiration time of the
   ticket(s).  Simply using short-lived tickets and obtaining new ones
   periodically would require the client to have long-term access to its

Yu                          Expires: Aug 2004                  [Page 18]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   secret key, an even greater risk.

   Renewable tickets have two "expiration times": the first is when the
   current instance of the ticket expires, and the second is the latest
   permissible value for an individual expiration time.  An application
   client must periodically (i.e., before it expires) present a
   renewable ticket to the KDC, with the "renew" option set in the KDC
   request.  The KDC will issue a new ticket with a new session key and
   a later expiration time.  All other fields of the ticket are left
   unmodified by the renewal process.  When the latest permissible
   expiration time arrives, the ticket expires permanently.  At each
   renewal, the KDC MAY consult a hot-list to determine if the ticket
   had been reported stolen since its last renewal; it will refuse to
   renew such stolen tickets, and thus the usable lifetime of stolen
   tickets is reduced.

   The "renewable" flag in a ticket is normally only interpreted by the
   ticket-granting service.  It can usually be ignored by application
   servers.  However, some particularly careful application servers MAY
   disallow renewable tickets.

   If a renewable ticket is not renewed by its expiration time, the KDC
   will not renew the ticket.  The "renewable" flag is clear by default,
   but a client can request it be set by setting the "renewable" option
   in the AS-REQ message. If it is set, then the "renew-till" field in
   the ticket contains the time after which the ticket may not be
   renewed.

8.4.  Postdated Tickets

   [ KCLAR 2.4. ]

   Applications may occasionally need to obtain tickets for use much
   later, e.g., a batch submission system would need tickets to be valid
   at the time the batch job is serviced.  However, it is dangerous to
   hold valid tickets in a batch queue, since they will be on-line
   longer and more prone to theft.  Postdated tickets provide a way to
   obtain these tickets from the KDC at job submission time, but to
   leave them "dormant" until they are activated and validated by a
   further request of the KDC. If a ticket theft were reported in the
   interim, the KDC would refuse to validate the ticket, and the thief
   would be foiled.

   The "may-postdate" flag in a ticket is normally only interpreted by
   the TGS. It can be ignored by application servers.  This flag MUST be
   set in a ticket-granting ticket in order for the KDC to issue a
   postdated ticket based on the presented ticket.  It is reset by
   default; it MAY be requested by a client by setting the "allow-
   postdate" option in the AS-REQ [?also TGS-REQ?] message.  This flag
   does not allow a client to obtain a postdated ticket-granting ticket;
   postdated ticket-granting tickets can only by obtained by requesting

Yu                          Expires: Aug 2004                  [Page 19]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   the postdating in the AS-REQ message.  The life (endtime-starttime)
   of a postdated ticket will be the remaining life of the ticket-
   granting ticket at the time of the request, unless the "renewable"
   option is also set, in which case it can be the full life (endtime-
   starttime) of the ticket-granting ticket. The KDC MAY limit how far
   in the future a ticket may be postdated.

   The "postdated" flag indicates that a ticket has been postdated. The
   application server can check the authtime field in the ticket to see
   when the original authentication occurred.  Some services MAY choose
   to reject postdated tickets, or they may only accept them within a
   certain period after the original authentication. When the KDC issues
   a "postdated" ticket, it will also be marked as "invalid", so that
   the application client MUST present the ticket to the KDC for
   validation before use.

8.5.  Proxiable and Proxy Tickets

   [ KCLAR 2.5. ]

   At times it may be necessary for a principal to allow a service to
   perform an operation on its behalf.  The service must be able to take
   on the identity of the client, but only for a particular purpose. A
   principal can allow a service to take on the principal's identity for
   a particular purpose by granting it a proxy.

   The process of granting a proxy using the "proxy" and "proxiable"
   flags is used to provide credentials for use with specific services.
   Though conceptually also a proxy, users wishing to delegate their
   identity in a form usable for all purposes MUST use the ticket
   forwarding mechanism described in the next section to forward a
   ticket-granting ticket.

   The "proxiable" flag in a ticket is normally only interpreted by the
   ticket-granting service.  It can be ignored by application servers.
   When set, this flag tells the ticket-granting server that it is OK to
   issue a new ticket (but not a ticket-granting ticket) with a
   different network address based on this ticket.  This flag is set if
   requested by the client on initial authentication.  By default, the
   client will request that it be set when requesting a ticket-granting
   ticket, and reset when requesting any other ticket.

   This flag allows a client to pass a proxy to a server to perform a
   remote request on its behalf (e.g. a print service client can give
   the print server a proxy to access the client's files on a particular
   file server in order to satisfy a print request).

   In order to complicate the use of stolen credentials, Kerberos
   tickets may contain a set of network addresses from which they are
   valid. When granting a proxy, the client MUST specify the new network
   address from which the proxy is to be used, or indicate that the

Yu                          Expires: Aug 2004                  [Page 20]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   proxy is to be issued for use from any address.

   The "proxy" flag is set in a ticket by the TGS when it issues a proxy
   ticket.  Application servers MAY check this flag and at their option
   they MAY require additional authentication from the agent presenting
   the proxy in order to provide an audit trail.

8.6.  Forwardable Tickets

   [ KCLAR 2.6. ]

8.7.  Transited Realms

   [ KCLAR 2.7., plus new stuff ]

8.8.  Authorization Data

8.9.  Encrypted Part of Ticket

   The complete definition of the encrypted part is

      -- Encrypted part of ticket
      EncTicketPart ::= CHOICE {
          rfc1510     [APPLICATION 3] EncTicketPart1510,
          ext         [APPLICATION 5] EncTicketPartExt
      }


      EncTicketPart1510 ::= SEQUENCE {
          -- effectively drops the extension marker
          COMPONENTS OF EncTicketPartCommon
      } (WITH COMPONENTS {
          ...,
          -- explicitly force IA5 in strings
          crealm (WITH COMPONENTS { ia5 PRESENT }),
          cname (WITH COMPONENTS {
              ...,
              name-string (WITH COMPONENT
                           (WITH COMPONENTS { ia5 PRESENT }))
          })
      })











Yu                          Expires: Aug 2004                  [Page 21]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      EncTicketPartExt ::= EncTicketPartCommon
      (WITH COMPONENTS {
          ...,
          -- explicitly force UTF-8 in strings
          crealm (WITH COMPONENTS { ia5 ABSENT }),
          cname (WITH COMPONENTS {
              ...,
              name-string (WITH COMPONENT
                           (WITH COMPONENTS { ia5 ABSENT }))
          }),
          -- explicitly constrain caddr to be non-empty if present
          caddr (SIZE (1..MAX)),
          -- explicitly constrain authorization-data to be non-empty
          -- if present
          authorization-data (SIZE (1..MAX))
      })


8.10.  Cleartext Part of Ticket

      Ticket          ::= CHOICE {
          rfc1510     [APPLICATION 1] Ticket1510,
          ext         [APPLICATION 4] Signed {
              TicketExt, { key-server }, { ku-Ticket-cksum }
          }
      }


      -- takes a parameter specifying which type gets encrypted
      TicketCommon { EncPart } ::= SEQUENCE {
          tkt-vno     [0] INTEGER (5),
          realm       [1] Realm,
          sname       [2] PrincipalName,
          enc-part    [3] EncryptedData {
              EncPart, { key-server }, { ku-Ticket }
          },
          extensions          [4] TicketExtensions OPTIONAL,
          ...
      }













Yu                          Expires: Aug 2004                  [Page 22]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      Ticket1510 ::= SEQUENCE {
          -- "COMPONENTS OF" drops the extension marker from
          -- TicketCommon
          COMPONENTS OF TicketCommon { EncTicketPart1510 }
      } (WITH COMPONENTS {
          ...,
          -- explicitly force IA5 in strings
          realm (WITH COMPONENTS { ia5 PRESENT }),
          sname (WITH COMPONENTS {
              ...,
              name-string (WITH COMPONENT
                           (WITH COMPONENTS { ia5 PRESENT }))
          }),
          extensions ABSENT
      })


      -- APPLICATION tag goes inside Signed{} as well as outside,
      -- to prevent possible substitution attacks.
      TicketExt ::= [APPLICATION 4] TicketCommon
      (WITH COMPONENTS {
          ...,
          -- explicitly force UTF-8 in strings
          realm (WITH COMPONENTS { ia5 ABSENT }),
          sname (WITH COMPONENTS {
              ...,
              name-string (WITH COMPONENT
                           (WITH COMPONENTS { ia5 ABSENT }))
          })
      })


      TEType                  ::= Int32

      TICKETEXTENSION         ::= TYPEDHOLE { TEType }

      -- ticket extensions: for TicketExt only
      TicketExtensions        ::= SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {
          te-type             [0] TICKETEXTENSION.&id
                                      ({TicketExtension-Set}),
          te-data             [1] OCTET STRING (TICKETEXTENSION.&Type)
                                      ({TicketExtension-Set}{@te-type})
      }

      -- no mandatory ticket extensions currently
      TicketExtensionSet TICKETEXTENSION ::= { ... }


9.  Credential Acquisition



Yu                          Expires: Aug 2004                  [Page 23]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   There are two exchanges that can be used for acquiring credentials:
   the AS exchange and the TGS exchange.  These exchanges have many
   similarities, and this document describes them in parallel, noting
   which behaviors are specific to one type of exchange.  The AS request
   (AS-REQ) and TGS request (TGS-REQ) are both forms of KDC requests
   (KDC-REQ).  Likewise, the AS reply (AS-REP) and TGS reply (TGS-REP)
   are forms of KDC replies (KDC-REP).

9.1.  KDC-REQ

   The KDC-REQ has a large number of fields in common between the RFC
   1510 and the extensible versions.

      KDC-REQ-COMMON  ::= SEQUENCE {
      -- NOTE: first tag is [1], not [0]
          pvno        [1] INTEGER (5),
          msg-type    [2] INTEGER (10 -- AS-REQ.rfc1510 --
                                   | 12 -- TGS-REQ.rfc1510 --
                                   | 6 -- AS-REQ.ext --
                                   | 8 -- TGS-REQ.ext -- ),
          padata      [3] SEQUENCE OF PA-DATA OPTIONAL
          -- NOTE: not empty
      }





























Yu                          Expires: Aug 2004                  [Page 24]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      KDC-REQ-BODY-COMMON     ::= SEQUENCE {
          kdc-options         [0] KDCOptions,
          cname               [1] PrincipalName OPTIONAL
          -- Used only in AS-REQ --,

          realm               [2] Realm
          -- Server's realm; also client's in AS-REQ --,

          sname               [3] PrincipalName OPTIONAL,
          from                [4] KerberosTime OPTIONAL,
          till                [5] KerberosTime OPTIONAL
          -- was required in rfc1510;
          -- still required for compat versions
          -- of messages --,

          rtime               [6] KerberosTime OPTIONAL,
          nonce               [7] Nonce,
          etype               [8] SEQUENCE OF EType
          -- in preference order --,

          addresses           [9] HostAddresses OPTIONAL,
          enc-authorization-data      [10] EncryptedData {
              AuthorizationData, { key-session | key-subsession },
              { ku-TGSReqAuthData-subkey |
                ku-TGSReqAuthData-sesskey }
          } OPTIONAL,

          additional-tickets  [11] SEQUENCE OF Ticket OPTIONAL
          -- NOTE: not empty --,
          ...
      }


   Many fields of KDC-REQ-BODY-COMMON correspond directly to fields of
   an EncTicketPartCommon.  The KDC copies most of them unchanged,
   provided that their values meet site policy.

   kdc-options
        These flags do not correspond directly to "flags" in
        EncTicketPartCommon.  [ insert mapping table here ]

   cname
        This field is copied to the "cname" field in
        EncTicketPartCommon.  The "cname" field is required in an AS-
        REQ; the client places its own name here.  In a TGS-REQ, the
        "cname" in the ticket in the AP-REQ takes precedence.

   realm
        This field is the server's realm, and also holds the client's
        realm in an AS-REQ.


Yu                          Expires: Aug 2004                  [Page 25]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   The "from", "till", and "rtime" fields correspond to the "starttime",
   "endtime", and "renew-till" fields of EncTicketPartCommon.

   addresses
        This field corresponds to the "caddr" field of
        EncTicketPartCommon.

   enc-authorization-data
        For TGS-REQ, this field contains authorization data encrypted
        using either the TGT session key or the AP-REQ subsession key;
        these may be copied into the "authorization-data" field of
        EncTicketPartCommon if policy permits.

9.2.  PA-DATA

   PA-DATA have multiple uses in the Kerberos protocol.  They may pre-
   authenticate an AS-REQ; they may also modify several of the
   encryption keys used in a KDC-REP.  PA-DATA may also provide "hints"
   to the client about which long-term key (usually password-derived) to
   use.  PA-DATA may also include "hints" about which pre-authentication
   mechanisms to use, or include data for input into a pre-
   authentication mechanism.

9.3.  KDC-REQ Processing

   Processing of a KDC-REQ proceeds through several steps.  An
   implementation need not perform these steps exactly as described, as
   long as the resulting behavior is as if the steps were performed as
   described.  The KDC performs replay handling on receipt of the
   request; it then validates the request, adjusts timestamps, and
   selects the keys used in the reply.  It copies data from the request
   into the issued ticket, adjusting for policy.  The KDC then transmits
   the reply to the client.

9.3.1.  Handling Replays

   Because Kerberos can run over unreliable transports such as UDP, the
   KDC MUST be prepared to retransmit responses in case they are lost.
   If a KDC receives a request identical to one it has recently
   successfully processed, the KDC MUST respond with an KDC-REP message
   rather than a replay error.  In order to reduce the amount of
   ciphertext given to a potential attacker, KDCs MAY send the same
   response generated when the request was first handled.  KDCs MUST
   obey this replay behavior even if the actual transport in use is
   reliable.  If the AP-REQ which authenticates a TGS-REQ is a replay,
   and the entire request is not identical to a recently successfully
   processed request, the KDC SHOULD return "krb-ap-err-repeat", as is
   appropriate for AP-REQ processing.




Yu                          Expires: Aug 2004                  [Page 26]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

9.3.2.  Request Validation

9.3.2.1.  AS-REQ Authentication

   Site policy determines whether a given client principal is required
   to provide some pre-authentication prior to receiving an AS-REP.
   Since the default reply key is typically the client's long-term
   password-based key, an attacker may easily request known plaintext
   (in the form of an AS-REP) upon which to mount a dictionary attack.
   Pre-authentication can limit the possibility of such an attack.

   If site policy requires pre-authentication for a client principal,
   and no pre-authentication is provided, the KDC returns the error
   "kdc-err-preauth-required".  Accompanying this error are "e-data"
   which include hints telling the client which pre-authentication
   mechanisms to use, or data for input to pre-authentication mechanisms
   (e.g., input to challenge-response systems).  If pre-authentication
   fails, the KDC returns the error "kdc-err-preauth-failed".

   [ may need additional changes based on Sam's preauth draft ]

9.3.2.2.  TGS-REQ Authentication

   A TGS-REQ has an accompanying AP-REQ, which is included in the "pa-
   tgs-req".  The KDC MUST validate the checksum in the Authenticator of
   the AP-REQ, which is computed over the KDC-REQ-BODY-1510 or KDC-REQ-
   BODY-EXT (for TGS-REQ-1510 or TGS-REQ-EXT, respectively) of the
   request.  [ padata not signed by authenticator! ] Any error from the
   AP-REQ validation process SHOULD be returned in a KRB-ERROR message.
   The service principal in the ticket of the AP-REQ may be a ticket-
   granting service principal, or a normal application service
   principal.  An AP-REQ ticket which is not a ticket-granting ticket
   MUST NOT be used to issue a ticket for any service other than the one
   named in the ticket.  In this case, the "renew", "validate", or
   "proxy" [?also forwarded?]  option must be set in the request.

9.3.2.3.  Principal Validation

   If the client principal in an AS-REQ is unknown, the KDC returns the
   error "kdc-err-c-principal-unknown".  If the server principal is
   unknown, the KDC returns the error "kdc-err-c-principal-unknown".

9.3.3.  Timestamp Handling

   [ some aspects of timestamp handling, especially regarding postdating
   and renewal, are difficult to read in KCLAR... needs closer
   examination here ]

   For the AS exchange, the "authtime" of a ticket is set to the local
   time at the KDC.  For the TGS exchange, the KDC sets the "authtime"
   to that of the ticket in the AP-REQ authenticating the TGS-REQ.

Yu                          Expires: Aug 2004                  [Page 27]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   [?application server can spoof the authtime.  security issues for
   hot-list?] [ MIT implementation may change authtime of renewed
   tickets; needs check... ]

   Processing of "starttime" (requested in the "from" field) differs
   depending on whether the "postdated" option is set in the request.
   If the "postdated" option is not set, and the requested "starttime"
   is in the future beyond the window of acceptable clock skew, the KDC
   returns the error "kdc-err-cannot-postdate".  If the "postdated"
   option is not set, and the requested "starttime" is absent or does
   not indicate a time in the future beyond the acceptable clock skew,
   the KDC sets the "starttime" to the KDC's current time.  The
   "postdated" option MUST NOT be honored if the ticket is being
   requested by TGS-REQ and the "may-postdate" is not set in the TGT.
   Otherwise, if the "postdated" option is set, and site policy permits,
   the KDC sets the "starttime" as requested, and sets the "invalid"
   flag in the new ticket.

9.3.3.1.  AS-REQ Timestamp Processing

   The "endtime" of the ticket will be set to the earlier of the
   requested "till" time and a time determined by local policy, possibly
   determined using factors specific to the realm or principal. For
   example, the expiration time MAY be set to the earliest of the
   following:

   *    The expiration time (till) requested.

   *    The ticket's start time plus the maximum allowable lifetime
        associated with the client principal from the authentication
        server's database.

   *    The ticket's start time plus the maximum allowable lifetime
        associated with the server principal.

   *    The ticket's start time plus the maximum lifetime set by the
        policy of the local realm.

   If the requested expiration time minus the start time (as determined
   above) is less than a site-determined minimum lifetime, an error
   message with code "kdc-err-never-valid" is returned. If the requested
   expiration time for the ticket exceeds what was determined as above,
   and if the "renewable-ok" option was requested, then the "renewable"
   flag is set in the new ticket, and the "renew-till" value is set as
   if the "renewable" option were requested.

   If the "renewable" option has been requested or if the "renewable-ok"
   option has been set and a renewable ticket is to be issued, then the
   renew-till field MAY be set to the earliest of:



Yu                          Expires: Aug 2004                  [Page 28]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   *    Its requested value.

   *    The start time of the ticket plus the minimum of the two maximum
        renewable lifetimes associated with the principals' database
        entries.

   *    The start time of the ticket plus the maximum renewable lifetime
        set by the policy of the local realm.

9.3.3.2.  TGS-REQ Timestamp Processing

   If the TGS-REQ has the TGT in its AP-REQ, and the TGS-REQ requests an
   "endtime" (in the "till" field), then the "endtime" of the new ticket
   is set to the minimum of (a) the requested "endtime" value, (b) the
   "endtime" in the TGT, and (c) an "endtime" determined by site policy
   on ticket lifetimes.  If the new ticket is a renewal, the "endtime"
   of the new ticket is bounded by (a) the requested "endtime" value,
   (b) the value of the "renew-till" value of the old, and (c) the
   "starttime" of the new ticket plus the life (endtime - starttime) of
   the old ticket.  [ the previous sentence is a bit confusing; adapted
   from KCLAR 3.3.3. ]

   When handling a TGS-REQ, a KDC MUST NOT issue a postdated ticket with
   a "starttime", "endtime", or "renew-till" time later than the "renew-
   till" time of the TGT.

9.3.4.  Key Selection

   Three keys are involved in creating a KDC-REP.  The reply key is used
   to encrypt the encrypted part of the KDC-REP.  The session key is
   stored in the encrypted part of the ticket, and is also present in
   the part of the reply which is visible to the client.  The ticket key
   is used to encrypt the ticket.  These keys all have initial values
   for a given exchange; pre-authentication and other extension
   mechanisms may change the value used for any of these keys.

   [ again, may need changes based on Sam's preauth draft ]

   The set of encryption types the client will understand appears in the
   "etype" field of KDC-REQ-BODY-COMMON.  The KDC limits the set of
   possible reply keys and the set of session key encryption types based
   on the "etype" field.

   For the AS exchange, the reply key is initially a long-term key of
   the client, limited to those encryption types specified by the
   "etype" field.  The KDC SHOULD use the first valid strong "etype" for
   which an encryption key is available.  For the TGS exchange, the
   reply key is initially the subsession key of the Authenticator, or,
   if that is not present, the session key of the ticket used to
   authenticate the TGS-REQ.


Yu                          Expires: Aug 2004                  [Page 29]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   The ticket key is initially the long-term key of the service.  User-
   to-user authentication sets the ticket key to be the session key of
   the additional ticket in the request.

   The session key is initially randomly generated, and has an
   encryption type which both the client and the server will understand.
   Typically, the KDC has prior knowledge of which encryption types the
   server will understand.  It selects the first valid strong "etype"
   listed the request which the server also will understand.

9.3.5.  Checking For Revoked Tickets

9.4.  Reply Validation

10.  Application Authentication

11.  Session Key Use

11.1.  KRB-SAFE

11.2.  KRB-PRIV

11.3.  KRB-CRED

12.  Security Considerations

12.1.  Time Synchronization

   Time synchronization between the KDC and application servers is
   necessary to prevent acceptance of expired tickets.

   Time synchronization is needed between application servers and
   clients to prevent replay attacks if a replay cache is being used.
   If negotiated subsession keys are used to encrypt application data,
   replay caches may not be necessary.

12.2.  Replays

12.3.  Principal Name Reuse

   See Section 6.2.

12.4.  Password Guessing

12.5.  Forward Secrecy

   [from KCLAR 10.; needs some rewriting]

   The Kerberos protocol in its basic form does not provide perfect
   forward secrecy for communications.  If traffic has been recorded by
   an eavesdropper, then messages encrypted using the KRB-PRIV message,

Yu                          Expires: Aug 2004                  [Page 30]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   or messages encrypted using application-specific encryption under
   keys exchanged using Kerberos can be decrypted if any of the user's,
   application server's, or KDC's key is subsequently discovered.  This
   is because the session key used to encrypt such messages is
   transmitted over the network encrypted in the key of the application
   server, and also encrypted under the session key from the user's
   ticket-granting ticket when returned to the user in the TGS-REP
   message.  The session key from the ticket-granting ticket was sent to
   the user in the AS-REP message encrypted in the user's secret key,
   and embedded in the ticket-granting ticket, which was encrypted in
   the key of the KDC.  Application requiring perfect forward secrecy
   must exchange keys through mechanisms that provide such assurance,
   but may use Kerberos for authentication of the encrypted channel
   established through such other means.

12.6.  Authorization

   As an authentication service, Kerberos provides a means of verifying
   the identity of principals on a network.  Kerberos does not, by
   itself, provide authorization.  Applications SHOULD NOT accept the
   mere issuance of a service ticket by the Kerberos server as granting
   authority to use the service.

12.7.  Login Authentication

   Some applications, particularly those which provide login access when
   provided with a password, SHOULD NOT treat successful acquisition of
   credentials as sufficient proof of the user's identity.  An attacker
   posing as a user could generate an illegitimate KDC-REP message which
   decrypts properly.  To authenticate a user logging on to a local
   system, the credentials obtained SHOULD be used in a TGS exchange to
   obtain credentials for a local service.  Successful use of those
   credentials to authenticate to the local service assures that the
   initially obtained credentials are from a valid KDC.

Appendices

A.  ASN.1 Module (Normative)

      KerberosV5Spec3 {
          iso(1) identified-organization(3) dod(6) internet(1)
          security(5) kerberosV5(2) modules(4) krb5spec3(4)
      } DEFINITIONS EXPLICIT TAGS ::= BEGIN









Yu                          Expires: Aug 2004                  [Page 31]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      -- OID arc for KerberosV5
      --
      -- This OID may be used to identify Kerberos protocol messages
      -- encapsulated in other protocols.
      --
      -- This OID also designates the OID arc for KerberosV5-related
      -- OIDs.
      --
      -- NOTE: RFC 1510 had an incorrect value (5) for "dod" in its
      -- OID.
      id-krb5         OBJECT IDENTIFIER ::= {
          iso(1) identified-organization(3) dod(6) internet(1)
          security(5) kerberosV5(2)
      }


      -- top-level type
      --
      -- Applications should not directly reference any types
      -- other than KRB-PDU and its component types.
      --
      KRB-PDU         ::= CHOICE {
          ticket      Ticket,
          as-req      AS-REQ,
          as-rep      AS-REP,
          tgs-req     TGS-REQ,
          tgs-rep     TGS-REP,
          ap-req      AP-REQ,
          ap-rep      AP-REP,
          krb-safe    KRB-SAFE,
          krb-priv    KRB-PRIV,
          krb-cred    KRB-CRED,
          tgt-req     TGT-REQ,
          krb-error   KRB-ERROR,
          ...
      }


      --
      -- *** basic types
      --


      -- signed values representable in 32 bits
      --
      -- These are often used as assigned numbers for various things.
      Int32           ::= INTEGER (-2147483648..2147483647)

      -- unsigned 32 bit values
      UInt32          ::= INTEGER (0..4294967295)


Yu                          Expires: Aug 2004                  [Page 32]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      -- microseconds
      Microseconds    ::= INTEGER (0..999999)


      -- sequence numbers
      --
      -- We may want to increase this to 2**64 and define a UInt64
      -- type.
      SeqNum          ::= UInt32


      -- nonces
      --
      -- Likewise, we may want to make this UInt64.
      Nonce           ::= UInt32


      -- must not have fractional seconds
      KerberosTime    ::= GeneralizedTime


      -- used for names and for error messages
      KerberosString  ::= CHOICE {
          ia5         GeneralString (IA5String),
          utf8        UTF8String,
          ...         -- no extension may be sent
                      -- to an rfc1510 implementation --
      }


      -- used for language tags
      LangTag ::= PrintableString (FROM ("A".."Z" | "a".."z" | "0".."9" | "-"))


      Realm           ::= KerberosString

      PrincipalName   ::= SEQUENCE {
          name-type   [0] NameType,
          -- May have zero elements, or individual elements may be
          -- zero-length, but this is not recommended.
          name-string [1] SEQUENCE OF KerberosString
      }

      -- assigned numbers for name types (used in principal names)
      NameType        ::= Int32







Yu                          Expires: Aug 2004                  [Page 33]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      -- Name type not known
      nt-unknown              NameType ::= 0
      -- Just the name of the principal as in DCE, or for users
      nt-principal            NameType ::= 1
      -- Service and other unique instance (krbtgt)
      nt-srv-inst             NameType ::= 2
      -- Service with host name as instance (telnet, rcommands)
      nt-srv-hst              NameType ::= 3
      -- Service with host as remaining components
      nt-srv-xhst             NameType ::= 4
      -- Unique ID
      nt-uid                  NameType ::= 5
      -- Encoded X.509 Distingished name [RFC 2253]
      nt-x500-principal       NameType ::= 6
      -- Name in form of SMTP email name (e.g. user@foo.com)
      nt-smtp-name            NameType ::= 7
      -- Enterprise name - may be mapped to principal name
      nt-enterprise           NameType ::= 10


      -- Yet another refinement to kludge around historical
      -- implementation bugs... we still send at least 32 bits, but
      -- this parameterized type allows us to actually use named bit
      -- string syntax to define flags, sort of.
      KerberosFlags { NamedBits }
          ::= BIT STRING (SIZE (32..MAX))
          (CONSTRAINED BY {
          -- must be a valid value of -- NamedBits
          -- but if the value to be sent would otherwise be shorter
          -- than 32 bits, it must be padded with trailing zero bits
          -- to 32 bits.  Otherwise, no trailing zero bits may be
          -- present.
      })


      AddrType        ::= Int32

      HostAddress     ::= SEQUENCE  {
          addr-type   [0] AddrType,
          address     [1] OCTET STRING
      }

      -- NOTE: HostAddresses is always used as an OPTIONAL field and
      -- should not be a zero-length SEQUENCE OF.
      --
      -- The extensible messages explicitly constrain this to be
      -- non-empty.
      HostAddresses   ::= SEQUENCE OF HostAddress




Yu                          Expires: Aug 2004                  [Page 34]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      --
      -- *** typed hole support
      --


      -- Object class for generic typed holes, e.g., padata,
      -- authorizationdata.
      --
      -- Its parameter specifies the name of integer type used as a
      -- unique identifier; usually this type is an aliased Int32.
      --
      -- Usually, the &Type field will be an OctetstringHole, but if
      -- there is a need to use a non-ASN.1 encoded type, it may be
      -- simply an OCTET STRING, possibly with some comments
      -- describing its contents.
      TYPEDHOLE { IntType } ::= CLASS {
          &id-int     IntType UNIQUE,
          &id-oid     RELATIVE-OID UNIQUE OPTIONAL,
          &Type,
          &desc       ObjectDescriptor OPTIONAL
      } WITH SYNTAX {
          SYNTAX              &Type
          IDENTIFIED BY       &id-int
          [ OID               &id-oid ]
          [ DESCRIPTION       &desc ]
      }


      -- An octet string wrapping another ASN.1 type.
      OctetstringHole { Type } ::= OCTET STRING (CONTAINING Type)


      --
      -- *** crypto-related types and assignments
      --

















Yu                          Expires: Aug 2004                  [Page 35]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      --
      -- Actual identifier names are provisional and subject to
      -- change.
      --
      ku-pa-enc-ts                    KeyUsage ::= 1
      ku-Ticket                       KeyUsage ::= 2
      ku-EncASRepPart                 KeyUsage ::= 3
      ku-TGSReqAuthData-sesskey       KeyUsage ::= 4
      ku-TGSReqAuthData-subkey        KeyUsage ::= 5
      ku-pa-TGSReq-cksum              KeyUsage ::= 6
      ku-pa-TGSReq-authenticator      KeyUsage ::= 7
      ku-EncTGSRepPart-sesskey        KeyUsage ::= 8
      ku-EncTGSRepPart-subkey         KeyUsage ::= 9
      ku-Authenticator-cksum          KeyUsage ::= 10
      ku-APReq-authenticator          KeyUsage ::= 11
      ku-EncAPRepPart                 KeyUsage ::= 12
      ku-EncKrbPrivPart               KeyUsage ::= 13
      ku-EncKrbCredPart               KeyUsage ::= 14
      ku-KrbSafe-cksum                KeyUsage ::= 15
      ku-ad-KDCIssued-cksum           KeyUsage ::= 19


      -- The following numbers are provisional... conflicts may exist elsewhere.
      ku-Ticket-cksum                 KeyUsage ::= 25
      ku-ASReq-cksum                  KeyUsage ::= 26
      ku-TGSReq-cksum                 KeyUsage ::= 27
      ku-ASRep-cksum                  KeyUsage ::= 28
      ku-TGSRep-cksum                 KeyUsage ::= 29
      ku-APReq-cksum                  KeyUsage ::= 30
      ku-APRep-cksum                  KeyUsage ::= 31
      ku-KrbCred-cksum                KeyUsage ::= 32
      ku-KrbError-cksum               KeyUsage ::= 33
      ku-KDCRep-cksum                 KeyUsage ::= 34



















Yu                          Expires: Aug 2004                  [Page 36]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      -- assigned numbers for encryption schemes
      et-des-cbc-crc                  EType ::= 1
      et-des-cbc-md4                  EType ::= 2
      et-des-cbc-md5                  EType ::= 3
      --     [reserved]                         4
      et-des3-cbc-md5                 EType ::= 5
      --     [reserved]                         6
      et-des3-cbc-sha1                EType ::= 7
      et-dsaWithSHA1-CmsOID           EType ::= 9
      et-md5WithRSAEncryption-CmsOID  EType ::= 10
      et-sha1WithRSAEncryption-CmsOID EType ::= 11
      et-rc2CBC-EnvOID                EType ::= 12
      et-rsaEncryption-EnvOID         EType ::= 13
      et-rsaES-OAEP-ENV-OID           EType ::= 14
      et-des-ede3-cbc-Env-OID         EType ::= 15
      et-des3-cbc-sha1-kd             EType ::= 16
      et-aes128-cts-hmac-sha1-96      EType ::= 17 -- AES
      et-aes256-cts-hmac-sha1-96      EType ::= 18 -- AES
      et-rc4-hmac                     EType ::= 23 -- Microsoft
      et-rc4-hmac-exp                 EType ::= 24 -- Microsoft
      et-subkey-keymaterial           EType ::= 65 -- opaque; PacketCable


      -- "Type" specifies which ASN.1 type is encrypted to the
      -- ciphertext in the EncryptedData.  "Keys" specifies a set of
      -- keys of which one key may be used to encrypt the data.
      -- "KeyUsages" specifies a set of key usages, one of which may
      -- be used to encrypt.
      --
      -- None of the parameters is transmitted over the wire.
      EncryptedData { Type, KeyToUse:Keys, KeyUsage:KeyUsages } ::=
      SEQUENCE {
          etype       [0] EType,
          kvno        [1] UInt32 OPTIONAL,
          cipher      [2] OCTET STRING (CONSTRAINED BY {
              -- must be encryption of --
              OCTET STRING (CONTAINING Type),
              -- with one of the keys -- KeyToUse:Keys,
              -- with key usage being one of --
              KeyUsage:KeyUsages
          }),
          ...
      }

      -- Assigned numbers denoting encryption mechanisms.
      EType ::= Int32

      -- Assigned numbers denoting key usages.
      KeyUsage ::= UInt32



Yu                          Expires: Aug 2004                  [Page 37]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      -- KeyToUse identifies which key is to be used to encrypt or
      -- sign a given value.
      --
      -- Values of KeyToUse are never actually transmitted over the
      -- wire, or even used directly by the implementation in any
      -- way, as key usages are; it exists primarily to identify
      -- which key gets used for what purpose.  Thus, the specific
      -- numeric values associated with this type are irrelevant.
      KeyToUse        ::= ENUMERATED {
          -- unspecified
          key-unspecified,
          -- server long term key
          key-server,
          -- client long term key
          key-client,
          -- key selected by KDC for encryption of a KDC-REP
          key-kdc-rep,
          -- session key from ticket
          key-session,
          -- subsession key negotiated via AP-REQ/AP-REP
          key-subsession,
          ...
      }


      EncryptionKey   ::= SEQUENCE {
          keytype     [0] EType,
          keyvalue    [1] OCTET STRING
      }


      CksumType       ::= Int32

      -- The parameters specify which key to use to produce the
      -- signature, as well as which key usage to use.  The
      -- parameters are not actually sent over the wire.
      Checksum { KeyToUse:Keys, KeyUsage:KeyUsages } ::= SEQUENCE {
          cksumtype   [0] CksumType,
          checksum    [1] OCTET STRING (CONSTRAINED BY {
              -- signed using one of the keys --
              KeyToUse:Keys,
              -- with key usage being one of --
              KeyUsage:KeyUsages
          })
      }







Yu                          Expires: Aug 2004                  [Page 38]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      -- a Checksum that must contain the checksum of a particular type
      ChecksumOf { Type, KeyToUse:Keys, KeyUsage:KeyUsages } ::=
      Checksum { Keys, KeyUsages }
      (WITH COMPONENTS {
          ...,
          checksum (CONSTRAINED BY {
              -- must be checksum of --
              OCTET STRING (CONTAINING Type)
          })
      })


      -- parameterized type for wrapping authenticated plaintext
      Signed { InnerType, KeyToUse:Keys, KeyUsage:KeyUsages } ::=
      SEQUENCE {
          cksum       [0] ChecksumOf
                              { InnerType, Keys, KeyUsages } OPTIONAL,
          inner       [1] InnerType,
          ...
      }


      --
      -- *** Tickets
      --


      Ticket          ::= CHOICE {
          rfc1510     [APPLICATION 1] Ticket1510,
          ext         [APPLICATION 4] Signed {
              TicketExt, { key-server }, { ku-Ticket-cksum }
          }
      }


      -- takes a parameter specifying which type gets encrypted
      TicketCommon { EncPart } ::= SEQUENCE {
          tkt-vno     [0] INTEGER (5),
          realm       [1] Realm,
          sname       [2] PrincipalName,
          enc-part    [3] EncryptedData {
              EncPart, { key-server }, { ku-Ticket }
          },
          extensions          [4] TicketExtensions OPTIONAL,
          ...
      }






Yu                          Expires: Aug 2004                  [Page 39]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      Ticket1510 ::= SEQUENCE {
          -- "COMPONENTS OF" drops the extension marker from
          -- TicketCommon
          COMPONENTS OF TicketCommon { EncTicketPart1510 }
      } (WITH COMPONENTS {
          ...,
          -- explicitly force IA5 in strings
          realm (WITH COMPONENTS { ia5 PRESENT }),
          sname (WITH COMPONENTS {
              ...,
              name-string (WITH COMPONENT
                           (WITH COMPONENTS { ia5 PRESENT }))
          }),
          extensions ABSENT
      })


      -- APPLICATION tag goes inside Signed{} as well as outside,
      -- to prevent possible substitution attacks.
      TicketExt ::= [APPLICATION 4] TicketCommon
      (WITH COMPONENTS {
          ...,
          -- explicitly force UTF-8 in strings
          realm (WITH COMPONENTS { ia5 ABSENT }),
          sname (WITH COMPONENTS {
              ...,
              name-string (WITH COMPONENT
                           (WITH COMPONENTS { ia5 ABSENT }))
          })
      })


      -- Encrypted part of ticket
      EncTicketPart ::= CHOICE {
          rfc1510     [APPLICATION 3] EncTicketPart1510,
          ext         [APPLICATION 5] EncTicketPartExt
      }















Yu                          Expires: Aug 2004                  [Page 40]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      EncTicketPartCommon ::= SEQUENCE {
          flags               [0] TicketFlags,
          key                 [1] EncryptionKey,
          crealm              [2] Realm,
          cname               [3] PrincipalName,
          transited           [4] TransitedEncoding,
          authtime            [5] KerberosTime,
          starttime           [6] KerberosTime OPTIONAL,
          endtime             [7] KerberosTime,
          renew-till          [8] KerberosTime OPTIONAL,
          caddr               [9] HostAddresses OPTIONAL,
          authorization-data  [10] AuthorizationData OPTIONAL,
          ...
      }


      EncTicketPart1510 ::= SEQUENCE {
          -- effectively drops the extension marker
          COMPONENTS OF EncTicketPartCommon
      } (WITH COMPONENTS {
          ...,
          -- explicitly force IA5 in strings
          crealm (WITH COMPONENTS { ia5 PRESENT }),
          cname (WITH COMPONENTS {
              ...,
              name-string (WITH COMPONENT
                           (WITH COMPONENTS { ia5 PRESENT }))
          })
      })


      EncTicketPartExt ::= EncTicketPartCommon
      (WITH COMPONENTS {
          ...,
          -- explicitly force UTF-8 in strings
          crealm (WITH COMPONENTS { ia5 ABSENT }),
          cname (WITH COMPONENTS {
              ...,
              name-string (WITH COMPONENT
                           (WITH COMPONENTS { ia5 ABSENT }))
          }),
          -- explicitly constrain caddr to be non-empty if present
          caddr (SIZE (1..MAX)),
          -- explicitly constrain authorization-data to be non-empty
          -- if present
          authorization-data (SIZE (1..MAX))
      })





Yu                          Expires: Aug 2004                  [Page 41]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      --
      -- *** Authorization Data
      --


      ADType          ::= Int32

      AUTHDATA        ::= TYPEDHOLE { ADType }

      -- NOTE: AuthorizationData is always used as an OPTIONAL field and
      -- should not be a zero-length SEQUENCE OF.
      --
      -- The extensible messages explicitly constrain this to be non-empty.
      AuthorizationData       ::= SEQUENCE OF SEQUENCE {
          ad-type             [0] AUTHDATA.&id-int ({Authdata-Set}),
          ad-data             [1] OCTET STRING (AUTHDATA.&Type)
                                      ({Authdata-Set}{@ad-type})
      }


      -- Mandatory AuthorizationData
      Authdata-Set AUTHDATA ::= {
          ad-if-relevant |
          ad-kdcissued |
          ad-and-or |
          ad-mandatory-for-kdc ,
          ...
      }


      ad-if-relevant AUTHDATA ::= {
          SYNTAX              OctetstringHole { AuthorizationData }
          IDENTIFIED BY       1
          DESCRIPTION
          "Encapsulates another AuthorizationData.
      Intended for application servers; receiving application servers
      MAY ignore."
      }


      ad-kdcissued AUTHDATA ::= {
          SYNTAX              OctetstringHole { AD-KDCIssued }
          IDENTIFIED BY       4
          DESCRIPTION "KDC-issued privilege attributes"
      }







Yu                          Expires: Aug 2004                  [Page 42]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      AD-KDCIssued            ::= SEQUENCE {
          ad-checksum [0] ChecksumOf {
              AuthorizationData, { key-session },
              { ku-ad-KDCIssued-cksum }},
          i-realm     [1] Realm OPTIONAL,
          i-sname     [2] PrincipalName OPTIONAL,
          elements    [3] AuthorizationData
      }


      AD-AND-OR               ::= SEQUENCE {
          condition-count     [0] INTEGER,
          elements            [1] AuthorizationData
      }


      AD-MANDATORY-FOR-KDC    ::= AuthorizationData


      ad-and-or AUTHDATA ::= {
          SYNTAX              OctetstringHole { AD-AND-OR }
          IDENTIFIED BY       5
          DESCRIPTION "And/Or"
      }

      AD-AND-OR               ::= SEQUENCE {
              condition-count [0] INTEGER,
              elements        [1] AuthorizationData
      }


      ad-mandatory-for-kdc AUTHDATA ::= {
          SYNTAX              OctetstringHole { AuthorizationData }
          IDENTIFIED BY       8
          DESCRIPTION "KDCs MUST interpret any AuthorizationData
      wrapped in this."
      }


      TrType                  ::= Int32 -- must be registered

      -- encoded Transited field
      TransitedEncoding       ::= SEQUENCE {
          tr-type     [0] TrType,
          contents    [1] OCTET STRING
      }






Yu                          Expires: Aug 2004                  [Page 43]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      TEType                  ::= Int32

      TICKETEXTENSION         ::= TYPEDHOLE { TEType }

      -- ticket extensions: for TicketExt only
      TicketExtensions        ::= SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {
          te-type             [0] TICKETEXTENSION.&id
                                      ({TicketExtension-Set}),
          te-data             [1] OCTET STRING (TICKETEXTENSION.&Type)
                                      ({TicketExtension-Set}{@te-type})
      }

      -- no mandatory ticket extensions currently
      TicketExtensionSet TICKETEXTENSION ::= { ... }


      TicketFlags     ::= KerberosFlags { TicketFlagsBits }

      TicketFlagsBits ::= BIT STRING {
          reserved            (0),
          forwardable         (1),
          forwarded           (2),
          proxiable           (3),
          proxy               (4),
          may-postdate        (5),
          postdated           (6),
          invalid             (7),
          renewable           (8),
          initial             (9),
          pre-authent         (10),
          hw-authent          (11),
          transited-policy-checked (12),
          ok-as-delegate      (13),
          anonymous           (14),
          cksummed-ticket     (15)
      }


      --
      -- *** KDC protocol
      --











Yu                          Expires: Aug 2004                  [Page 44]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      AS-REQ  ::= CHOICE {
          rfc1510     [APPLICATION 10] KDC-REQ-1510
          (WITH COMPONENTS {
              ...,
              msg-type (10),
              -- AS-REQ must include client name
              req-body (WITH COMPONENTS { ..., cname PRESENT })
          }),
          ext         [APPLICATION 6]  Signed {
              -- APPLICATION tag goes inside Signed{} as well as outside,
              -- to prevent possible substitution attacks.
              [APPLICATION 6] KDC-REQ-EXT,
              -- not sure this is correct key to use; do we even want
              -- to sign AS-REQ?
              { key-client },
              { ku-ASReq-cksum }
          }
          (WITH COMPONENTS {
              ...,
              msg-type  (6),
              -- AS-REQ must include client name
              req-body (WITH COMPONENTS { ..., cname PRESENT })
          })
      }


      TGS-REQ ::= CHOICE {
          rfc1510     [APPLICATION 12] KDC-REQ-1510
          (WITH COMPONENTS {
              ...,
              msg-type (12),
              -- client name optional in TGS-REQ
              req-body (WITH COMPONENTS { ..., cname ABSENT })
          }),
          ext         [APPLICATION 8]  Signed {
              -- APPLICATION tag goes inside Signed{} as well as outside,
              -- to prevent possible substitution attacks.
              [APPLICATION 8] KDC-REQ-EXT,
              { key-session }, { ku-TGSReq-cksum }
          }
          (WITH COMPONENTS {
              ...,
              msg-type  (8),
              -- client name optional in TGS-REQ
              req-body (WITH COMPONENTS { ..., cname ABSENT })
          })
      }





Yu                          Expires: Aug 2004                  [Page 45]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      KDC-REQ-COMMON  ::= SEQUENCE {
      -- NOTE: first tag is [1], not [0]
          pvno        [1] INTEGER (5),
          msg-type    [2] INTEGER (10 -- AS-REQ.rfc1510 --
                                   | 12 -- TGS-REQ.rfc1510 --
                                   | 6 -- AS-REQ.ext --
                                   | 8 -- TGS-REQ.ext -- ),
          padata      [3] SEQUENCE OF PA-DATA OPTIONAL
          -- NOTE: not empty
      }


      KDC-REQ-1510    ::= SEQUENCE {
          COMPONENTS OF KDC-REQ-COMMON,
          req-body    [4] KDC-REQ-BODY-1510
      } (WITH COMPONENTS { ..., msg-type (10 | 12) })


      -- APPLICATION tag goes inside Signed{} as well as outside,
      -- to prevent possible substitution attacks.
      KDC-REQ-EXT     ::= SEQUENCE {
          COMPONENTS OF KDC-REQ-COMMON,
          req-body    [4] KDC-REQ-BODY-EXT,
          lang-tags   [5] SEQUENCE (SIZE (1..MAX)) OF LangTag OPTIONAL,
          ...
      } (WITH COMPONENTS {
          ...,
          msg-type (6 | 8),
          padata (SIZE (1..MAX))
      })






















Yu                          Expires: Aug 2004                  [Page 46]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      KDC-REQ-BODY-COMMON     ::= SEQUENCE {
          kdc-options         [0] KDCOptions,
          cname               [1] PrincipalName OPTIONAL
          -- Used only in AS-REQ --,

          realm               [2] Realm
          -- Server's realm; also client's in AS-REQ --,

          sname               [3] PrincipalName OPTIONAL,
          from                [4] KerberosTime OPTIONAL,
          till                [5] KerberosTime OPTIONAL
          -- was required in rfc1510;
          -- still required for compat versions
          -- of messages --,

          rtime               [6] KerberosTime OPTIONAL,
          nonce               [7] Nonce,
          etype               [8] SEQUENCE OF EType
          -- in preference order --,

          addresses           [9] HostAddresses OPTIONAL,
          enc-authorization-data      [10] EncryptedData {
              AuthorizationData, { key-session | key-subsession },
              { ku-TGSReqAuthData-subkey |
                ku-TGSReqAuthData-sesskey }
          } OPTIONAL,

          additional-tickets  [11] SEQUENCE OF Ticket OPTIONAL
          -- NOTE: not empty --,
          ...
      }


      KDC-REQ-BODY-1510 ::= SEQUENCE {
          -- effectively drops the extension marker
          COMPONENTS OF KDC-REQ-BODY-COMMON
      } (WITH COMPONENTS {
          ...,
          cname (WITH COMPONENTS {
              ...,
              name-string (WITH COMPONENT
                           (WITH COMPONENTS { ia5 PRESENT }))
          }),
          realm (WITH COMPONENTS { ia5 PRESENT }),
          sname (WITH COMPONENTS {
              ...,
              name-string (WITH COMPONENT
                           (WITH COMPONENTS { ia5 PRESENT }))
          }),
          till PRESENT
      })

Yu                          Expires: Aug 2004                  [Page 47]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      KDC-REQ-BODY-EXT        ::= KDC-REQ-BODY-COMMON
      (WITH COMPONENTS {
          ...,
          cname (WITH COMPONENTS {
              ...,
              name-string (WITH COMPONENT
                           (WITH COMPONENTS { ia5 ABSENT }))
          }),
          realm (WITH COMPONENTS { ia5 ABSENT }),
          sname (WITH COMPONENTS {
              ...,
              name-string (WITH COMPONENT
                           (WITH COMPONENTS { ia5 ABSENT }))
          }),
          addresses (SIZE (1..MAX)),
          enc-authorization-data (EncryptedData {
              AuthorizationData (SIZE (1..MAX)),
              { key-session | key-subsession },
              { ku-TGSReqAuthData-subkey |
                ku-TGSReqAuthData-sesskey }
          }),
          additional-tickets (SIZE (1..MAX))
      })


      KDCOptions      ::= KerberosFlags { KDCOptionsBits }
      KDCOptionsBits ::= BIT STRING {
          reserved            (0),
          forwardable         (1),
          forwarded           (2),
          proxiable           (3),
          proxy               (4),
          allow-postdate      (5),
          postdated           (6),
          unused7             (7),
          renewable           (8),
          unused9             (9),
          unused10            (10),
          unused11            (11),
          unused12            (12),
          unused13            (13),
          requestanonymous    (14),
          canonicalize        (15),
          disable-transited-check (26),
          renewable-ok        (27),
          enc-tkt-in-skey     (28),
          renew               (30),
          validate            (31)
          -- XXX need "need ticket1" flag?
      }


Yu                          Expires: Aug 2004                  [Page 48]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      AS-REP          ::= CHOICE {
          rfc1510     [APPLICATION 11] KDC-REP-1510 { EncASRepPart }
          (WITH COMPONENTS { ..., msg-type (11) }),
          ext         [APPLICATION  7]  Signed {
              [APPLICATION 7] KDC-REP-EXT { EncASRepPart },
              { key-reply }, { ku-ASRep-cksum }
          } (WITH COMPONENTS { ..., msg-type (7) })
      }


      TGS-REP         ::= CHOICE {
          rfc1510     [APPLICATION 13] KDC-REP-1510 { EncTGSRepPart }
          (WITH COMPONENTS { ..., msg-type (13) }),
          ext         [APPLICATION  9]  Signed {
              [APPLICATION 9] KDC-REP-EXT { EncTGSRepPart },
              { key-reply }, { ku-TGSRep-cksum }
          } (WITH COMPONENTS { ..., msg-type (9) })
      }


      KDC-REP-COMMON { EncPart } ::= SEQUENCE {
          pvno        [0] INTEGER (5),
          msg-type    [1] INTEGER (11 -- AS-REP.rfc1510 -- |
                                   13 -- TGS.rfc1510 -- |
                                   7 -- AS-REP.ext -- |
                                   9 -- TGS-REP.ext -- ),
          padata      [2] SEQUENCE OF PA-DATA OPTIONAL,
          crealm      [3] Realm,
          cname       [4] PrincipalName,
          ticket      [5] Ticket,
          enc-part    [6] EncryptedData {
              EncPart,
              { key-reply },
              -- maybe reach into EncryptedData in AS-REP/TGS-REP definitions
              -- to apply constraints on key usages?
              { ku-EncASRepPart -- if AS-REP -- |
                ku-EncTGSRepPart-subkey -- if TGS-REP and using --
                                        -- Authenticator session key -- |
                ku-EncTGSRepPart-sesskey -- if TGS-REP and using --
                                         -- subsession key -- }
          },
          -- In extensible version, KDC signs original request
          -- to avoid replay attacks agaginst client.
          req-cksum   [7] ChecksumOf { CHOICE {
              as-req          AS-REQ,
              tgs-req         TGS-REQ
          }, { key-reply }, { ku-KDCRep-cksum }} OPTIONAL,
          lang-tag    [8] LangTag OPTIONAL,
          ...
      }


Yu                          Expires: Aug 2004                  [Page 49]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      KDC-REP-1510 { EncPart } ::= SEQUENCE {
          -- effectively drops the extension marker
          COMPONENTS OF KDC-REP-COMMON { EncPart }
      } (WITH COMPONENTS {
          ...,
          msg-type (11 | 13),
          crealm (WITH COMPONENTS { ia5 PRESENT}),
          cname (WITH COMPONENTS {
              ...,
              name-string (WITH COMPONENT
                           (WITH COMPONENTS { ia5 PRESENT }))
          }),
          req-cksum ABSENT,
          lang-tag ABSENT
      })


      KDC-REP-EXT { EncPart } ::= KDC-REP-COMMON { EncPart }
      (WITH COMPONENTS {
          ...,
          msg-type (7 | 9),
          crealm (WITH COMPONENTS { ia5 ABSENT }),
          cname (WITH COMPONENTS {
              ...,
              name-string (WITH COMPONENT
                           (WITH COMPONENTS { ia5 ABSENT }))
          })
      })


      EncASRepPart    ::= [APPLICATION 25] EncKDCRepPart
      EncTGSRepPart   ::= [APPLICATION 26] EncKDCRepPart

      EncKDCRepPart   ::= SEQUENCE {
          key                 [0] EncryptionKey,
          last-req            [1] LastReq,
          nonce               [2] Nonce,
          key-expiration      [3] KerberosTime OPTIONAL,
          flags               [4] TicketFlags,
          authtime            [5] KerberosTime,
          starttime           [6] KerberosTime OPTIONAL,
          endtime             [7] KerberosTime,
          renew-till          [8] KerberosTime OPTIONAL,
          srealm              [9] Realm,
          sname               [10] PrincipalName,
          caddr               [11] HostAddresses OPTIONAL,
          ...         -- ASN.1 extensions must be excluded
                      -- when sending to rfc1510 implementation
      }



Yu                          Expires: Aug 2004                  [Page 50]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      -- convert to use object class?
      LRType          ::=     Int32
      LastReq         ::=     SEQUENCE OF SEQUENCE {
          lr-type     [0] LRType,
          lr-value    [1] KerberosTime
      }


      --
      -- *** preauth
      --


      PaDataType ::= Int32

      -- TYPEDHOLE class that uses PaDataType as its unique ID type.
      PADATA-OBJ ::= TYPEDHOLE { PaDataType }

      PA-DATA ::= SEQUENCE {
          -- NOTE: first tag is [1], not [0]
          padata-type         [1] CHOICE {
              -- example of possible use of RELATIVE-OIDs
              int     PADATA-OBJ.&id-int ({PaDataSet}),
              oid     PADATA-OBJ.&id-oid ({PaDataSet}{@int})
          },
          padata-value        [2] OCTET STRING (PADATA-OBJ.&Type)
                                      ({PaDataSet}{@padata-type.int})
      }


      PaDataSet PADATA-OBJ ::= {
          pa-tgs-req |
          pa-enc-timestamp |
          pa-etype-info |
          pa-etype-info2 |
          pa-pw-salt |
          pa-as-req ,
          ...
      }


      pa-tgs-req PADATA-OBJ ::= {
          SYNTAX              OctetstringHole { AP-REQ }
          IDENTIFIED BY       1
          DESCRIPTION
          "AP-REQ authenticating a TGS-REQ"
      }





Yu                          Expires: Aug 2004                  [Page 51]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      pa-enc-timestamp PADATA-OBJ ::= {
          SYNTAX              OctetstringHole { PA-ENC-TIMESTAMP }
          IDENTIFIED BY       2
          DESCRIPTION
          "Encrypted timestamp preauth;
      Encryption key used is client's long-term key."
      }

      PA-ENC-TIMESTAMP ::= EncryptedData {
          PA-ENC-TS-ENC, { key-client }, { ku-pa-enc-ts }
      }

      PA-ENC-TS-ENC           ::= SEQUENCE {
              patimestamp     [0] KerberosTime -- client's time --,
              pausec          [1] Microseconds OPTIONAL
      }


      pa-etype-info PADATA-OBJ ::= {
          SYNTAX              OctetstringHole { ETYPE-INFO }
          IDENTIFIED BY       11
          DESCRIPTION
          "Hints returned in AS-REP or KRB-ERROR to help client
      choose a password-derived key, either for preauthentication or
      for decryption of the reply."
      }

      ETYPE-INFO              ::= SEQUENCE OF ETYPE-INFO-ENTRY

      ETYPE-INFO-ENTRY        ::= SEQUENCE {
              etype           [0] EType,
              salt            [1] OCTET STRING OPTIONAL
      }


      pa-etype-info2 PADATA-OBJ ::= {
          SYNTAX              OctetstringHole { ETYPE-INFO2 }
          IDENTIFIED BY       19
          DESCRIPTION
          "Similar to etype-info, but with parameters provided for
      the string-to-key function."
      }

      ETYPE-INFO2             ::= SEQUENCE (SIZE (1..MAX))
                                      OF ETYPE-INFO-ENTRY

      ETYPE-INFO2-ENTRY       ::= SEQUENCE {
              etype           [0] EType,
              salt            [1] KerberosString OPTIONAL,
              s2kparams       [2] OCTET STRING OPTIONAL
      }

Yu                          Expires: Aug 2004                  [Page 52]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      pa-pw-salt PADATA-OBJ ::= {
          SYNTAX              OCTET STRING (CONSTRAINED BY {
            -- Must consist of the salt string to be used by the
            -- client, in an unspecified character encoding. -- })
          IDENTIFIED BY       3
          DESCRIPTION
          "Obsolescent.  Salt for client's long-term key.
      Its character encoding is unspecified."
      }


      pa-as-req PADATA-OBJ ::= {
          SYNTAX              OctetstringHole { AS-REQ
                                                (WITH COMPONENTS {
                                                    ext }) }
          IDENTIFIED BY       42 -- provisional
          DESCRIPTION
          "An extensible AS-REQ may be sent as a padata in a
      non-extensible AS-REQ to allow for backwards compatibility."
      }


      --
      -- *** Application session setup
      --


      AP-REQ          ::= CHOICE {
          rfc1510     [APPLICATION 14] AP-REQ-1510,
          ext         [APPLICATION 18] Signed {
              AP-REQ-EXT, { key-session }, { ku-APReq-cksum }
          }
      }


      AP-REQ-COMMON   ::= SEQUENCE {
          pvno                [0] INTEGER (5),
          msg-type            [1] INTEGER (14 | 18),
          ap-options          [2] APOptions,
          ticket              [3] Ticket,
          authenticator       [4] EncryptedData {
              Authenticator,
              { key-session },
              { ku-APReq-authenticator |
                ku-pa-TGSReq-authenticator }
          },
          extensions          [5] ApReqExtensions OPTIONAL,
          ...
      }



Yu                          Expires: Aug 2004                  [Page 53]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      AP-REQ-1510 ::= SEQUENCE {
          -- effectively drops the extension marker
          COMPONENTS OF AP-REQ-COMMON
      } (WITH COMPONENTS {
          ...,
          msg-type (14),
          extensions ABSENT
      })


      AP-REQ-EXT      ::= AP-REQ-COMMON
      (WITH COMPONENTS {
          ...,
          msg-type (18),
          -- The following constraints on Authenticator assume that
          -- we want to restrict the use of AP-REQ-EXT with TicketExt only,
          -- since that is the only way we can enforce UTF-8.
          authenticator (EncryptedData {
              Authenticator (WITH COMPONENTS {
                  ...,
                  crealm (WITH COMPONENTS { ia5 ABSENT }),
                  cname (WITH COMPONENTS {
                      ...,
                      name-string (WITH COMPONENT
                                   (WITH COMPONENTS { ia5 ABSENT }))
                  }),
                  authorization-data (SIZE (1..MAX))
              }), { key-session }, { ku-APReq-authenticator }})
      })


      ApReqExtType    ::= Int32

      ApReqExtensions ::= SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {
          apReqExt-Type       [0] ApReqExtType,
          apReqExt-Data       [1] OCTET STRING
      }


      APOptions       ::= KerberosFlags { APOptionsBits }

      APOptionsBits ::= BIT STRING {
          reserved            (0),
          use-session-key     (1),
          mutual-required     (2)
      }






Yu                          Expires: Aug 2004                  [Page 54]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      -- plaintext of authenticator
      Authenticator   ::= [APPLICATION 2] SEQUENCE  {
          authenticator-vno   [0] INTEGER (5),
          crealm              [1] Realm,
          cname               [2] PrincipalName,
          cksum               [3] Checksum {{ key-session },
              { ku-Authenticator-cksum |
                ku-pa-TGSReq-cksum }} OPTIONAL,
          cusec               [4] Microseconds,
          ctime               [5] KerberosTime,
          subkey              [6] EncryptionKey OPTIONAL,
          seq-number          [7] SeqNum OPTIONAL,
          authorization-data  [8] AuthorizationData OPTIONAL
      }


      AP-REP          ::= CHOICE {
          rfc1510     [APPLICATION 15] AP-REP-1510,
          ext         [APPLICATION 19] Signed {
              AP-REP-EXT,
              { key-session | key-subsession }, { ku-APRep-cksum }}
      }


      AP-REP-COMMON { EncPart }       ::= SEQUENCE {
          pvno        [0] INTEGER (5),
          msg-type    [1] INTEGER (15 | 19),
          enc-part    [2] EncryptedData {
              EncPart,
              { key-session | key-subsession }, { ku-EncAPRepPart }},
          extensions          [3] ApRepExtensions OPTIONAL,
          ...
      }


      AP-REP-1510     ::= SEQUENCE {
          -- effectively drops the extension marker
          COMPONENTS OF AP-REP-COMMON { EncAPRepPart1510 }
      } (WITH COMPONENTS {
          ...,
          msg-type (15),
          extensions ABSENT
      })


      AP-REP-EXT      ::= [APPLICATION 19] AP-REP-COMMON {
          EncAPRepPartExt }
      (WITH COMPONENTS { ..., msg-type (19) })




Yu                          Expires: Aug 2004                  [Page 55]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      ApRepExtType    ::= Int32

      -- convert to use object class?
      ApRepExtensions ::= SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {
          apRepExt-Type       [0] ApRepExtType,
          apRepExt-Data       [1] OCTET STRING
      }


      EncAPRepPart    ::= CHOICE {
          rfc1510     [APPLICATION 27] EncAPRepPart1510,
          ext         [APPLICATION 31] EncAPRepPartExt
      }


      EncAPRepPart1510        ::= SEQUENCE {
          COMPONENTS OF ENCAPRepPartCom
      } (WITH COMPONENTS {
          ...,
          authorization-data ABSENT
      })


      EncAPRepPartExt         ::= EncAPRepPartCom


      EncAPRepPartCom          ::= SEQUENCE {
          ctime               [0] KerberosTime,
          cusec               [1] Microseconds,
          subkey              [2] EncryptionKey OPTIONAL,
          seq-number          [3] SeqNum OPTIONAL,
          authorization-data  [4] AuthorizationData OPTIONAL,
          ...
      }


      --
      -- *** Application messages
      --













Yu                          Expires: Aug 2004                  [Page 56]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      -- Do we chew up another tag for KRB-SAFE-EXT?  That would allow us to
      -- make safe-body optional, allowing for a GSS-MIC sort of message.
      KRB-SAFE        ::= [APPLICATION 20] SEQUENCE {
          pvno        [0] INTEGER (5),
          msg-type    [1] INTEGER (20),
          safe-body   [2] KRB-SAFE-BODY,
          cksum       [3] ChecksumOf {
              KRB-SAFE-BODY,
              { key-session | key-subsession }, { ku-KrbSafe-cksum }},
          ...         -- ASN.1 extensions must be excluded
                      -- when sending to rfc1510 implementations
      }


      KRB-SAFE-BODY   ::= SEQUENCE {
          user-data   [0] OCTET STRING,
          timestamp   [1] KerberosTime OPTIONAL,
          usec        [2] Microseconds OPTIONAL,
          seq-number  [3] SeqNum OPTIONAL,
          s-address   [4] HostAddress,
          r-address   [5] HostAddress OPTIONAL,
          ...         -- ASN.1 extensions must be excluded
                      -- when sending to rfc1510 implementations
      }


      KRB-PRIV        ::= [APPLICATION 21] SEQUENCE {
          pvno        [0] INTEGER (5),
          msg-type    [1] INTEGER (21),
          enc-part    [3] EncryptedData {
              EncKrbPrivPart,
              { key-session | key-subsession }, { ku-EncKrbPrivPart }},
          ...
      }


      EncKrbPrivPart  ::= [APPLICATION 28] SEQUENCE {
          user-data   [0] OCTET STRING,
          timestamp   [1] KerberosTime OPTIONAL,
          usec        [2] Microseconds OPTIONAL,
          seq-number  [3] SeqNum OPTIONAL,
          s-address   [4] HostAddress -- sender's addr --,
          r-address   [5] HostAddress OPTIONAL -- recip's addr --,
          ...         -- ASN.1 extensions must be excluded
                      -- when sending to rfc1510 implementations
      }






Yu                          Expires: Aug 2004                  [Page 57]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      KRB-CRED        ::= CHOICE {
          rfc1510     [APPLICATION 22] KRB-CRED-1510,
          ext         [APPLICATION 24] Signed {
              KRB-CRED-EXT,
              { key-session | key-subsession }, { ku-KrbCred-cksum }}
      }


      KRB-CRED-COMMON ::= SEQUENCE {
          pvno        [0] INTEGER (5),
          msg-type    [1] INTEGER (22 | 24),
          tickets     [2] SEQUENCE OF Ticket,
          enc-part    [3] EncryptedData {
              EncKrbCredPart,
              { key-session | key-subsession }, { ku-EncKrbCredPart }},
          ...
      }


      KRB-CRED-1510 ::= SEQUENCE {
          -- effectively drops the extension marker
          COMPONENTS OF KRB-CRED-COMMON
      } (WITH COMPONENTS { ..., msg-type (22) })


      KRB-CRED-EXT    ::= [APPLICATION 24] KRB-CRED-COMMON
      (WITH COMPONENTS { ..., msg-type (24) })


      EncKrbCredPart  ::= [APPLICATION 29] SEQUENCE {
          ticket-info [0] SEQUENCE OF KrbCredInfo,
          nonce       [1] Nonce OPTIONAL,
          timestamp   [2] KerberosTime OPTIONAL,
          usec        [3] Microseconds OPTIONAL,
          s-address   [4] HostAddress OPTIONAL,
          r-address   [5] HostAddress OPTIONAL
      }















Yu                          Expires: Aug 2004                  [Page 58]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      KrbCredInfo     ::= SEQUENCE {
          key         [0] EncryptionKey,
          prealm      [1] Realm OPTIONAL,
          pname       [2] PrincipalName OPTIONAL,
          flags       [3] TicketFlags OPTIONAL,
          authtime    [4] KerberosTime OPTIONAL,
          starttime   [5] KerberosTime OPTIONAL,
          endtime     [6] KerberosTime OPTIONAL,
          renew-till  [7] KerberosTime OPTIONAL,
          srealm      [8] Realm OPTIONAL,
          sname       [9] PrincipalName OPTIONAL,
          caddr       [10] HostAddresses OPTIONAL
      }


      TGT-REQ         ::= [APPLICATION 16] SEQUENCE {
          pvno            [0] INTEGER (5),
          msg-type        [1] INTEGER (16),
          sname           [2] PrincipalName OPTIONAL,
          srealm          [3] Realm OPTIONAL,
          ...
      }


      --
      -- *** Error messages
      --


      ErrCode ::= Int32

      KRB-ERROR       ::= CHOICE {
          rfc1510     [APPLICATION 30] KRB-ERROR-1510,
          ext         [APPLICATION 23] Signed {
              KRB-ERROR-EXT, { ku-KrbError-cksum } }
      }
















Yu                          Expires: Aug 2004                  [Page 59]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

      KRB-ERROR-COMMON ::= SEQUENCE {
          pvno        [0] INTEGER (5),
          msg-type    [1] INTEGER (30 | 23),
          ctime       [2] KerberosTime OPTIONAL,
          cusec       [3] Microseconds OPTIONAL,
          stime       [4] KerberosTime,
          susec       [5] Microseconds,
          error-code  [6] ErrCode,
          crealm      [7] Realm OPTIONAL,
          cname       [8] PrincipalName OPTIONAL,
          realm       [9] Realm -- Correct realm --,
          sname       [10] PrincipalName -- Correct name --,
          e-text      [11] KerberosString OPTIONAL,
          e-data      [12] OCTET STRING OPTIONAL,
          typed-data          [13] TYPED-DATA OPTIONAL,
          nonce               [14] Nonce OPTIONAL,
          lang-tag            [15] LangTag OPTIONAL,
          ...
      }


      KRB-ERROR-1510 ::= SEQUENCE {
          -- effectively drops the extension marker
          COMPONENTS OF KRB-ERROR-COMMON
      } (WITH COMPONENTS {
          ...,
          msg-type (30),
          typed-data ABSENT,
          nonce ABSENT,
          lang-tag ABSENT
      })


      KRB-ERROR-EXT ::= [APPLICATION 23] KRB-ERROR-COMMON
      (WITH COMPONENTS { ..., msg-type (23) })


      TDType ::= Int32

      -- convert to information object class later
      TYPED-DATA      ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
          data-type   [0] TDType,
          data-value  [1] OCTET STRING OPTIONAL
      }


      END





Yu                          Expires: Aug 2004                  [Page 60]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

B.  Kerberos and Character Encodings (Informative)

   [adapted from KCLAR 5.2.1]

   The original specification of the Kerberos protocol in RFC 1510 uses
   GeneralString in numerous places for human-readable string data.
   Historical implementations of Kerberos cannot utilize the full power
   of GeneralString.  This ASN.1 type requires the use of designation
   and invocation escape sequences as specified in ISO-2022/ECMA-35
   [ISO-2022/ECMA-35] to switch character sets, and the default
   character set that is designated as G0 is the ISO-646/ECMA-6
   [ISO-646,ECMA-6] International Reference Version (IRV) (aka U.S.
   ASCII), which mostly works.

   ISO-2022/ECMA-35 defines four character-set code elements (G0..G3)
   and two Control-function code elements (C0..C1).  DER previously
   prohibited the designation of character sets as any but the G0 and C0
   sets.  This had the side effect of prohibiting the use of ISO-8859
   (ISO Latin) [ISO-8859] character-sets or any other character-sets
   that utilize a 96-character set, since it is prohibited by
   ISO-2022/ECMA-35 to designate them as the G0 code element.  Recent
   revisions to the ASN.1 standards resolve this contradiction.

   In practice, many implementations treat RFC 1510 GeneralStrings as if
   they were 8-bit strings of whichever character set the implementation
   defaults to, without regard for correct usage of character-set
   designation escape sequences.  The default character set is often
   determined by the current user's operating system dependent locale.
   At least one major implementation places unescaped UTF-8 encoded
   Unicode characters in the GeneralString.  This failure to conform to
   the GeneralString specifications results in interoperability issues
   when conflicting character encodings are utilized by the Kerberos
   clients, services, and KDC.

   This unfortunate situation is the result of improper documentation of
   the restrictions of the ASN.1 GeneralString type in prior Kerberos
   specifications.

   [the following should probably be rewritten and moved into the
   principal name section]

   For compatibility, implementations MAY choose to accept GeneralString
   values that contain characters other than those permitted by
   IA5String, but they should be aware that character set designation
   codes will likely be absent, and that the encoding should probably be
   treated as locale-specific in almost every way. Implementations MAY
   also choose to emit GeneralString values that are beyond those
   permitted by IA5String, but should be aware that doing so is
   extraordinarily risky from an interoperability perspective.



Yu                          Expires: Aug 2004                  [Page 61]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   Some existing implementations use GeneralString to encode unescaped
   locale-specific characters. This is a violation of the ASN.1
   standard. Most of these implementations encode US-ASCII in the left-
   hand half, so as long the implementation transmits only US-ASCII, the
   ASN.1 standard is not violated in this regard. As soon as such an
   implementation encodes unescaped locale-specific characters with the
   high bit set, it violates the ASN.1 standard.

   Other implementations have been known to use GeneralString to contain
   a UTF-8 encoding.  This also violates the ASN.1 standard, since UTF-8
   is a different encoding, not a 94 or 96 character "G" set as defined
   by ISO 2022.  It is believed that these implementations do not even
   use the ISO 2022 escape sequence to change the character encoding.
   Even if implementations were to announce the change of encoding by
   using that escape sequence, the ASN.1 standard prohibits the use of
   any escape sequences other than those used to designate/invoke "G" or
   "C" sets allowed by GeneralString.

C.  Kerberos History (Informative)

   [Adapted from KCLAR "BACKGROUND"]

   The Kerberos model is based in part on Needham and Schroeder's
   trusted third-party authentication protocol [NS78] and on
   modifications suggested by Denning and Sacco [DS81].  The original
   design and implementation of Kerberos Versions 1 through 4 was the
   work of two former Project Athena staff members, Steve Miller of
   Digital Equipment Corporation and Clifford Neuman (now at the
   Information Sciences Institute of the University of Southern
   California), along with Jerome Saltzer, Technical Director of Project
   Athena, and Jeffrey Schiller, MIT Campus Network Manager.  Many other
   members of Project Athena have also contributed to the work on
   Kerberos.

   Version 5 of the Kerberos protocol (described in this document) has
   evolved from Version 4 based on new requirements and desires for
   features not available in Version 4. The design of Version 5 of the
   Kerberos protocol was led by Clifford Neuman and John Kohl with much
   input from the community.  The development of the MIT reference
   implementation was led at MIT by John Kohl and Theodore Ts'o, with
   help and contributed code from many others. Since RFC1510 was issued,
   extensions and revisions to the protocol have been proposed by many
   individuals.  Some of these proposals are reflected in this document.
   Where such changes involved significant effort, the document cites
   the contribution of the proposer.

   Reference implementations of both version 4 and version 5 of Kerberos
   are publicly available and commercial implementations have been
   developed and are widely used. Details on the differences between
   Kerberos Versions 4 and 5 can be found in [KNT94].


Yu                          Expires: Aug 2004                  [Page 62]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

Normative References

   [KCRYPTO]

   [RFC2119]

   [X680]

   [X681]

   [X682]

   [X683]

   [X690]

Informative References

   [DS81]

   [KCLAR]

   [KNT94]

   [NS78]

   [RFC1510]

   [RFC1964]

   [ISO8859]

Acknowledgments

   Some stuff lifted from draft-ietf-krb-wg-kerberos-clarifications-04.

Author's Address

   Tom Yu
   77 Massachusetts Ave
   Cambridge, MA 02139
   USA
   tlyu@mit.edu

Full Copyright Statement

   Copyright (C) The Internet Society (2004).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published

Yu                          Expires: Aug 2004                  [Page 63]

Internet-Draft            yu-krb-extensions-00               09 Feb 2004

   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
































Yu                          Expires: Aug 2004                  [Page 64]