run-command.c   [plain text]


#include "cache.h"
#include "run-command.h"
#include "exec_cmd.h"
#include "sigchain.h"
#include "argv-array.h"

#ifndef SHELL_PATH
# define SHELL_PATH "/bin/sh"
#endif

struct child_to_clean {
	pid_t pid;
	struct child_to_clean *next;
};
static struct child_to_clean *children_to_clean;
static int installed_child_cleanup_handler;

static void cleanup_children(int sig)
{
	while (children_to_clean) {
		struct child_to_clean *p = children_to_clean;
		children_to_clean = p->next;
		kill(p->pid, sig);
		free(p);
	}
}

static void cleanup_children_on_signal(int sig)
{
	cleanup_children(sig);
	sigchain_pop(sig);
	raise(sig);
}

static void cleanup_children_on_exit(void)
{
	cleanup_children(SIGTERM);
}

static void mark_child_for_cleanup(pid_t pid)
{
	struct child_to_clean *p = xmalloc(sizeof(*p));
	p->pid = pid;
	p->next = children_to_clean;
	children_to_clean = p;

	if (!installed_child_cleanup_handler) {
		atexit(cleanup_children_on_exit);
		sigchain_push_common(cleanup_children_on_signal);
		installed_child_cleanup_handler = 1;
	}
}

static void clear_child_for_cleanup(pid_t pid)
{
	struct child_to_clean **pp;

	for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
		struct child_to_clean *clean_me = *pp;

		if (clean_me->pid == pid) {
			*pp = clean_me->next;
			free(clean_me);
			return;
		}
	}
}

static inline void close_pair(int fd[2])
{
	close(fd[0]);
	close(fd[1]);
}

#ifndef WIN32
static inline void dup_devnull(int to)
{
	int fd = open("/dev/null", O_RDWR);
	dup2(fd, to);
	close(fd);
}
#endif

static char *locate_in_PATH(const char *file)
{
	const char *p = getenv("PATH");
	struct strbuf buf = STRBUF_INIT;

	if (!p || !*p)
		return NULL;

	while (1) {
		const char *end = strchrnul(p, ':');

		strbuf_reset(&buf);

		/* POSIX specifies an empty entry as the current directory. */
		if (end != p) {
			strbuf_add(&buf, p, end - p);
			strbuf_addch(&buf, '/');
		}
		strbuf_addstr(&buf, file);

		if (!access(buf.buf, F_OK))
			return strbuf_detach(&buf, NULL);

		if (!*end)
			break;
		p = end + 1;
	}

	strbuf_release(&buf);
	return NULL;
}

static int exists_in_PATH(const char *file)
{
	char *r = locate_in_PATH(file);
	free(r);
	return r != NULL;
}

int sane_execvp(const char *file, char * const argv[])
{
	if (!execvp(file, argv))
		return 0; /* cannot happen ;-) */

	/*
	 * When a command can't be found because one of the directories
	 * listed in $PATH is unsearchable, execvp reports EACCES, but
	 * careful usability testing (read: analysis of occasional bug
	 * reports) reveals that "No such file or directory" is more
	 * intuitive.
	 *
	 * We avoid commands with "/", because execvp will not do $PATH
	 * lookups in that case.
	 *
	 * The reassignment of EACCES to errno looks like a no-op below,
	 * but we need to protect against exists_in_PATH overwriting errno.
	 */
	if (errno == EACCES && !strchr(file, '/'))
		errno = exists_in_PATH(file) ? EACCES : ENOENT;
	else if (errno == ENOTDIR && !strchr(file, '/'))
		errno = ENOENT;
	return -1;
}

static const char **prepare_shell_cmd(const char **argv)
{
	int argc, nargc = 0;
	const char **nargv;

	for (argc = 0; argv[argc]; argc++)
		; /* just counting */
	/* +1 for NULL, +3 for "sh -c" plus extra $0 */
	nargv = xmalloc(sizeof(*nargv) * (argc + 1 + 3));

	if (argc < 1)
		die("BUG: shell command is empty");

	if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
#ifndef WIN32
		nargv[nargc++] = SHELL_PATH;
#else
		nargv[nargc++] = "sh";
#endif
		nargv[nargc++] = "-c";

		if (argc < 2)
			nargv[nargc++] = argv[0];
		else {
			struct strbuf arg0 = STRBUF_INIT;
			strbuf_addf(&arg0, "%s \"$@\"", argv[0]);
			nargv[nargc++] = strbuf_detach(&arg0, NULL);
		}
	}

	for (argc = 0; argv[argc]; argc++)
		nargv[nargc++] = argv[argc];
	nargv[nargc] = NULL;

	return nargv;
}

#ifndef WIN32
static int execv_shell_cmd(const char **argv)
{
	const char **nargv = prepare_shell_cmd(argv);
	trace_argv_printf(nargv, "trace: exec:");
	sane_execvp(nargv[0], (char **)nargv);
	free(nargv);
	return -1;
}
#endif

#ifndef WIN32
static int child_err = 2;
static int child_notifier = -1;

static void notify_parent(void)
{
	/*
	 * execvp failed.  If possible, we'd like to let start_command
	 * know, so failures like ENOENT can be handled right away; but
	 * otherwise, finish_command will still report the error.
	 */
	xwrite(child_notifier, "", 1);
}

static NORETURN void die_child(const char *err, va_list params)
{
	vwritef(child_err, "fatal: ", err, params);
	exit(128);
}

static void error_child(const char *err, va_list params)
{
	vwritef(child_err, "error: ", err, params);
}
#endif

static inline void set_cloexec(int fd)
{
	int flags = fcntl(fd, F_GETFD);
	if (flags >= 0)
		fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
}

static int wait_or_whine(pid_t pid, const char *argv0, int silent_exec_failure)
{
	int status, code = -1;
	pid_t waiting;
	int failed_errno = 0;

	while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
		;	/* nothing */

	if (waiting < 0) {
		failed_errno = errno;
		error("waitpid for %s failed: %s", argv0, strerror(errno));
	} else if (waiting != pid) {
		error("waitpid is confused (%s)", argv0);
	} else if (WIFSIGNALED(status)) {
		code = WTERMSIG(status);
		error("%s died of signal %d", argv0, code);
		/*
		 * This return value is chosen so that code & 0xff
		 * mimics the exit code that a POSIX shell would report for
		 * a program that died from this signal.
		 */
		code -= 128;
	} else if (WIFEXITED(status)) {
		code = WEXITSTATUS(status);
		/*
		 * Convert special exit code when execvp failed.
		 */
		if (code == 127) {
			code = -1;
			failed_errno = ENOENT;
		}
	} else {
		error("waitpid is confused (%s)", argv0);
	}

	clear_child_for_cleanup(pid);

	errno = failed_errno;
	return code;
}

int start_command(struct child_process *cmd)
{
	int need_in, need_out, need_err;
	int fdin[2], fdout[2], fderr[2];
	int failed_errno = failed_errno;

	/*
	 * In case of errors we must keep the promise to close FDs
	 * that have been passed in via ->in and ->out.
	 */

	need_in = !cmd->no_stdin && cmd->in < 0;
	if (need_in) {
		if (pipe(fdin) < 0) {
			failed_errno = errno;
			if (cmd->out > 0)
				close(cmd->out);
			goto fail_pipe;
		}
		cmd->in = fdin[1];
	}

	need_out = !cmd->no_stdout
		&& !cmd->stdout_to_stderr
		&& cmd->out < 0;
	if (need_out) {
		if (pipe(fdout) < 0) {
			failed_errno = errno;
			if (need_in)
				close_pair(fdin);
			else if (cmd->in)
				close(cmd->in);
			goto fail_pipe;
		}
		cmd->out = fdout[0];
	}

	need_err = !cmd->no_stderr && cmd->err < 0;
	if (need_err) {
		if (pipe(fderr) < 0) {
			failed_errno = errno;
			if (need_in)
				close_pair(fdin);
			else if (cmd->in)
				close(cmd->in);
			if (need_out)
				close_pair(fdout);
			else if (cmd->out)
				close(cmd->out);
fail_pipe:
			error("cannot create pipe for %s: %s",
				cmd->argv[0], strerror(failed_errno));
			errno = failed_errno;
			return -1;
		}
		cmd->err = fderr[0];
	}

	trace_argv_printf(cmd->argv, "trace: run_command:");
	fflush(NULL);

#ifndef WIN32
{
	int notify_pipe[2];
	if (pipe(notify_pipe))
		notify_pipe[0] = notify_pipe[1] = -1;

	cmd->pid = fork();
	if (!cmd->pid) {
		/*
		 * Redirect the channel to write syscall error messages to
		 * before redirecting the process's stderr so that all die()
		 * in subsequent call paths use the parent's stderr.
		 */
		if (cmd->no_stderr || need_err) {
			child_err = dup(2);
			set_cloexec(child_err);
		}
		set_die_routine(die_child);
		set_error_routine(error_child);

		close(notify_pipe[0]);
		set_cloexec(notify_pipe[1]);
		child_notifier = notify_pipe[1];
		atexit(notify_parent);

		if (cmd->no_stdin)
			dup_devnull(0);
		else if (need_in) {
			dup2(fdin[0], 0);
			close_pair(fdin);
		} else if (cmd->in) {
			dup2(cmd->in, 0);
			close(cmd->in);
		}

		if (cmd->no_stderr)
			dup_devnull(2);
		else if (need_err) {
			dup2(fderr[1], 2);
			close_pair(fderr);
		} else if (cmd->err > 1) {
			dup2(cmd->err, 2);
			close(cmd->err);
		}

		if (cmd->no_stdout)
			dup_devnull(1);
		else if (cmd->stdout_to_stderr)
			dup2(2, 1);
		else if (need_out) {
			dup2(fdout[1], 1);
			close_pair(fdout);
		} else if (cmd->out > 1) {
			dup2(cmd->out, 1);
			close(cmd->out);
		}

		if (cmd->dir && chdir(cmd->dir))
			die_errno("exec '%s': cd to '%s' failed", cmd->argv[0],
			    cmd->dir);
		if (cmd->env) {
			for (; *cmd->env; cmd->env++) {
				if (strchr(*cmd->env, '='))
					putenv((char *)*cmd->env);
				else
					unsetenv(*cmd->env);
			}
		}
		if (cmd->preexec_cb) {
			/*
			 * We cannot predict what the pre-exec callback does.
			 * Forgo parent notification.
			 */
			close(child_notifier);
			child_notifier = -1;

			cmd->preexec_cb();
		}
		if (cmd->git_cmd) {
			execv_git_cmd(cmd->argv);
		} else if (cmd->use_shell) {
			execv_shell_cmd(cmd->argv);
		} else {
			sane_execvp(cmd->argv[0], (char *const*) cmd->argv);
		}
		if (errno == ENOENT) {
			if (!cmd->silent_exec_failure)
				error("cannot run %s: %s", cmd->argv[0],
					strerror(ENOENT));
			exit(127);
		} else {
			die_errno("cannot exec '%s'", cmd->argv[0]);
		}
	}
	if (cmd->pid < 0)
		error("cannot fork() for %s: %s", cmd->argv[0],
			strerror(failed_errno = errno));
	else if (cmd->clean_on_exit)
		mark_child_for_cleanup(cmd->pid);

	/*
	 * Wait for child's execvp. If the execvp succeeds (or if fork()
	 * failed), EOF is seen immediately by the parent. Otherwise, the
	 * child process sends a single byte.
	 * Note that use of this infrastructure is completely advisory,
	 * therefore, we keep error checks minimal.
	 */
	close(notify_pipe[1]);
	if (read(notify_pipe[0], &notify_pipe[1], 1) == 1) {
		/*
		 * At this point we know that fork() succeeded, but execvp()
		 * failed. Errors have been reported to our stderr.
		 */
		wait_or_whine(cmd->pid, cmd->argv[0],
			      cmd->silent_exec_failure);
		failed_errno = errno;
		cmd->pid = -1;
	}
	close(notify_pipe[0]);

}
#else
{
	int fhin = 0, fhout = 1, fherr = 2;
	const char **sargv = cmd->argv;
	char **env = environ;

	if (cmd->no_stdin)
		fhin = open("/dev/null", O_RDWR);
	else if (need_in)
		fhin = dup(fdin[0]);
	else if (cmd->in)
		fhin = dup(cmd->in);

	if (cmd->no_stderr)
		fherr = open("/dev/null", O_RDWR);
	else if (need_err)
		fherr = dup(fderr[1]);
	else if (cmd->err > 2)
		fherr = dup(cmd->err);

	if (cmd->no_stdout)
		fhout = open("/dev/null", O_RDWR);
	else if (cmd->stdout_to_stderr)
		fhout = dup(fherr);
	else if (need_out)
		fhout = dup(fdout[1]);
	else if (cmd->out > 1)
		fhout = dup(cmd->out);

	if (cmd->env)
		env = make_augmented_environ(cmd->env);

	if (cmd->git_cmd) {
		cmd->argv = prepare_git_cmd(cmd->argv);
	} else if (cmd->use_shell) {
		cmd->argv = prepare_shell_cmd(cmd->argv);
	}

	cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, env, cmd->dir,
				  fhin, fhout, fherr);
	failed_errno = errno;
	if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
		error("cannot spawn %s: %s", cmd->argv[0], strerror(errno));
	if (cmd->clean_on_exit && cmd->pid >= 0)
		mark_child_for_cleanup(cmd->pid);

	if (cmd->env)
		free_environ(env);
	if (cmd->git_cmd)
		free(cmd->argv);

	cmd->argv = sargv;
	if (fhin != 0)
		close(fhin);
	if (fhout != 1)
		close(fhout);
	if (fherr != 2)
		close(fherr);
}
#endif

	if (cmd->pid < 0) {
		if (need_in)
			close_pair(fdin);
		else if (cmd->in)
			close(cmd->in);
		if (need_out)
			close_pair(fdout);
		else if (cmd->out)
			close(cmd->out);
		if (need_err)
			close_pair(fderr);
		else if (cmd->err)
			close(cmd->err);
		errno = failed_errno;
		return -1;
	}

	if (need_in)
		close(fdin[0]);
	else if (cmd->in)
		close(cmd->in);

	if (need_out)
		close(fdout[1]);
	else if (cmd->out)
		close(cmd->out);

	if (need_err)
		close(fderr[1]);
	else if (cmd->err)
		close(cmd->err);

	return 0;
}

int finish_command(struct child_process *cmd)
{
	return wait_or_whine(cmd->pid, cmd->argv[0], cmd->silent_exec_failure);
}

int run_command(struct child_process *cmd)
{
	int code = start_command(cmd);
	if (code)
		return code;
	return finish_command(cmd);
}

static void prepare_run_command_v_opt(struct child_process *cmd,
				      const char **argv,
				      int opt)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->argv = argv;
	cmd->no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
	cmd->git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
	cmd->stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
	cmd->silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
	cmd->use_shell = opt & RUN_USING_SHELL ? 1 : 0;
	cmd->clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
}

int run_command_v_opt(const char **argv, int opt)
{
	struct child_process cmd;
	prepare_run_command_v_opt(&cmd, argv, opt);
	return run_command(&cmd);
}

int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
{
	struct child_process cmd;
	prepare_run_command_v_opt(&cmd, argv, opt);
	cmd.dir = dir;
	cmd.env = env;
	return run_command(&cmd);
}

#ifndef NO_PTHREADS
static pthread_t main_thread;
static int main_thread_set;
static pthread_key_t async_key;

static void *run_thread(void *data)
{
	struct async *async = data;
	intptr_t ret;

	pthread_setspecific(async_key, async);
	ret = async->proc(async->proc_in, async->proc_out, async->data);
	return (void *)ret;
}

static NORETURN void die_async(const char *err, va_list params)
{
	vreportf("fatal: ", err, params);

	if (!pthread_equal(main_thread, pthread_self())) {
		struct async *async = pthread_getspecific(async_key);
		if (async->proc_in >= 0)
			close(async->proc_in);
		if (async->proc_out >= 0)
			close(async->proc_out);
		pthread_exit((void *)128);
	}

	exit(128);
}
#endif

int start_async(struct async *async)
{
	int need_in, need_out;
	int fdin[2], fdout[2];
	int proc_in, proc_out;

	need_in = async->in < 0;
	if (need_in) {
		if (pipe(fdin) < 0) {
			if (async->out > 0)
				close(async->out);
			return error("cannot create pipe: %s", strerror(errno));
		}
		async->in = fdin[1];
	}

	need_out = async->out < 0;
	if (need_out) {
		if (pipe(fdout) < 0) {
			if (need_in)
				close_pair(fdin);
			else if (async->in)
				close(async->in);
			return error("cannot create pipe: %s", strerror(errno));
		}
		async->out = fdout[0];
	}

	if (need_in)
		proc_in = fdin[0];
	else if (async->in)
		proc_in = async->in;
	else
		proc_in = -1;

	if (need_out)
		proc_out = fdout[1];
	else if (async->out)
		proc_out = async->out;
	else
		proc_out = -1;

#ifdef NO_PTHREADS
	/* Flush stdio before fork() to avoid cloning buffers */
	fflush(NULL);

	async->pid = fork();
	if (async->pid < 0) {
		error("fork (async) failed: %s", strerror(errno));
		goto error;
	}
	if (!async->pid) {
		if (need_in)
			close(fdin[1]);
		if (need_out)
			close(fdout[0]);
		exit(!!async->proc(proc_in, proc_out, async->data));
	}

	mark_child_for_cleanup(async->pid);

	if (need_in)
		close(fdin[0]);
	else if (async->in)
		close(async->in);

	if (need_out)
		close(fdout[1]);
	else if (async->out)
		close(async->out);
#else
	if (!main_thread_set) {
		/*
		 * We assume that the first time that start_async is called
		 * it is from the main thread.
		 */
		main_thread_set = 1;
		main_thread = pthread_self();
		pthread_key_create(&async_key, NULL);
		set_die_routine(die_async);
	}

	if (proc_in >= 0)
		set_cloexec(proc_in);
	if (proc_out >= 0)
		set_cloexec(proc_out);
	async->proc_in = proc_in;
	async->proc_out = proc_out;
	{
		int err = pthread_create(&async->tid, NULL, run_thread, async);
		if (err) {
			error("cannot create thread: %s", strerror(err));
			goto error;
		}
	}
#endif
	return 0;

error:
	if (need_in)
		close_pair(fdin);
	else if (async->in)
		close(async->in);

	if (need_out)
		close_pair(fdout);
	else if (async->out)
		close(async->out);
	return -1;
}

int finish_async(struct async *async)
{
#ifdef NO_PTHREADS
	return wait_or_whine(async->pid, "child process", 0);
#else
	void *ret = (void *)(intptr_t)(-1);

	if (pthread_join(async->tid, &ret))
		error("pthread_join failed");
	return (int)(intptr_t)ret;
#endif
}

int run_hook(const char *index_file, const char *name, ...)
{
	struct child_process hook;
	struct argv_array argv = ARGV_ARRAY_INIT;
	const char *p, *env[2];
	char index[PATH_MAX];
	va_list args;
	int ret;

	if (access(git_path("hooks/%s", name), X_OK) < 0)
		return 0;

	va_start(args, name);
	argv_array_push(&argv, git_path("hooks/%s", name));
	while ((p = va_arg(args, const char *)))
		argv_array_push(&argv, p);
	va_end(args);

	memset(&hook, 0, sizeof(hook));
	hook.argv = argv.argv;
	hook.no_stdin = 1;
	hook.stdout_to_stderr = 1;
	if (index_file) {
		snprintf(index, sizeof(index), "GIT_INDEX_FILE=%s", index_file);
		env[0] = index;
		env[1] = NULL;
		hook.env = env;
	}

	ret = run_command(&hook);
	argv_array_clear(&argv);
	return ret;
}