package DBIx::Class::ResultSet; use strict; use warnings; use overload '0+' => "count", 'bool' => "_bool", fallback => 1; use Carp::Clan qw/^DBIx::Class/; use DBIx::Class::Exception; use Data::Page; use Storable; use DBIx::Class::ResultSetColumn; use DBIx::Class::ResultSourceHandle; use List::Util (); use Scalar::Util (); use base qw/DBIx::Class/; __PACKAGE__->mk_group_accessors('simple' => qw/_result_class _source_handle/); =head1 NAME DBIx::Class::ResultSet - Represents a query used for fetching a set of results. =head1 SYNOPSIS my $users_rs = $schema->resultset('User'); my $registered_users_rs = $schema->resultset('User')->search({ registered => 1 }); my @cds_in_2005 = $schema->resultset('CD')->search({ year => 2005 })->all(); =head1 DESCRIPTION A ResultSet is an object which stores a set of conditions representing a query. It is the backbone of DBIx::Class (i.e. the really important/useful bit). No SQL is executed on the database when a ResultSet is created, it just stores all the conditions needed to create the query. A basic ResultSet representing the data of an entire table is returned by calling C on a L and passing in a L name. my $users_rs = $schema->resultset('User'); A new ResultSet is returned from calling L on an existing ResultSet. The new one will contain all the conditions of the original, plus any new conditions added in the C call. A ResultSet also incorporates an implicit iterator. L and L can be used to walk through all the Ls the ResultSet represents. The query that the ResultSet represents is B executed against the database when these methods are called: L L L L L L =head1 EXAMPLES =head2 Chaining resultsets Let's say you've got a query that needs to be run to return some data to the user. But, you have an authorization system in place that prevents certain users from seeing certain information. So, you want to construct the basic query in one method, but add constraints to it in another. sub get_data { my $self = shift; my $request = $self->get_request; # Get a request object somehow. my $schema = $self->get_schema; # Get the DBIC schema object somehow. my $cd_rs = $schema->resultset('CD')->search({ title => $request->param('title'), year => $request->param('year'), }); $self->apply_security_policy( $cd_rs ); return $cd_rs->all(); } sub apply_security_policy { my $self = shift; my ($rs) = @_; return $rs->search({ subversive => 0, }); } =head3 Resolving conditions and attributes When a resultset is chained from another resultset, conditions and attributes with the same keys need resolving. L, L, L, L attributes are merged into the existing ones from the original resultset. The L, L attribute, and any search conditions are merged with an SQL C to the existing condition from the original resultset. All other attributes are overridden by any new ones supplied in the search attributes. =head2 Multiple queries Since a resultset just defines a query, you can do all sorts of things with it with the same object. # Don't hit the DB yet. my $cd_rs = $schema->resultset('CD')->search({ title => 'something', year => 2009, }); # Each of these hits the DB individually. my $count = $cd_rs->count; my $most_recent = $cd_rs->get_column('date_released')->max(); my @records = $cd_rs->all; And it's not just limited to SELECT statements. $cd_rs->delete(); This is even cooler: $cd_rs->create({ artist => 'Fred' }); Which is the same as: $schema->resultset('CD')->create({ title => 'something', year => 2009, artist => 'Fred' }); See: L, L, L, L, L. =head1 OVERLOADING If a resultset is used in a numeric context it returns the L. However, if it is used in a boolean context it is always true. So if you want to check if a resultset has any results use C. C will always be true. =head1 METHODS =head2 new =over 4 =item Arguments: $source, \%$attrs =item Return Value: $rs =back The resultset constructor. Takes a source object (usually a L) and an attribute hash (see L below). Does not perform any queries -- these are executed as needed by the other methods. Generally you won't need to construct a resultset manually. You'll automatically get one from e.g. a L called in scalar context: my $rs = $schema->resultset('CD')->search({ title => '100th Window' }); IMPORTANT: If called on an object, proxies to new_result instead so my $cd = $schema->resultset('CD')->new({ title => 'Spoon' }); will return a CD object, not a ResultSet. =cut sub new { my $class = shift; return $class->new_result(@_) if ref $class; my ($source, $attrs) = @_; $source = $source->handle unless $source->isa('DBIx::Class::ResultSourceHandle'); $attrs = { %{$attrs||{}} }; if ($attrs->{page}) { $attrs->{rows} ||= 10; } $attrs->{alias} ||= 'me'; # Creation of {} and bless separated to mitigate RH perl bug # see https://bugzilla.redhat.com/show_bug.cgi?id=196836 my $self = { _source_handle => $source, cond => $attrs->{where}, count => undef, pager => undef, attrs => $attrs }; bless $self, $class; $self->result_class( $attrs->{result_class} || $source->resolve->result_class ); return $self; } =head2 search =over 4 =item Arguments: $cond, \%attrs? =item Return Value: $resultset (scalar context), @row_objs (list context) =back my @cds = $cd_rs->search({ year => 2001 }); # "... WHERE year = 2001" my $new_rs = $cd_rs->search({ year => 2005 }); my $new_rs = $cd_rs->search([ { year => 2005 }, { year => 2004 } ]); # year = 2005 OR year = 2004 If you need to pass in additional attributes but no additional condition, call it as C. # "SELECT name, artistid FROM $artist_table" my @all_artists = $schema->resultset('Artist')->search(undef, { columns => [qw/name artistid/], }); For a list of attributes that can be passed to C, see L. For more examples of using this function, see L. For a complete documentation for the first argument, see L. For more help on using joins with search, see L. =cut sub search { my $self = shift; my $rs = $self->search_rs( @_ ); return (wantarray ? $rs->all : $rs); } =head2 search_rs =over 4 =item Arguments: $cond, \%attrs? =item Return Value: $resultset =back This method does the same exact thing as search() except it will always return a resultset, even in list context. =cut sub search_rs { my $self = shift; # Special-case handling for (undef, undef). if ( @_ == 2 && !defined $_[1] && !defined $_[0] ) { pop(@_); pop(@_); } my $attrs = {}; $attrs = pop(@_) if @_ > 1 and ref $_[$#_] eq 'HASH'; my $our_attrs = { %{$self->{attrs}} }; my $having = delete $our_attrs->{having}; my $where = delete $our_attrs->{where}; my $rows; my %safe = (alias => 1, cache => 1); unless ( (@_ && defined($_[0])) # @_ == () or (undef) || (keys %$attrs # empty attrs or only 'safe' attrs && List::Util::first { !$safe{$_} } keys %$attrs) ) { # no search, effectively just a clone $rows = $self->get_cache; } # reset the selector list if (List::Util::first { exists $attrs->{$_} } qw{columns select as}) { delete @{$our_attrs}{qw{select as columns +select +as +columns include_columns}}; } my $new_attrs = { %{$our_attrs}, %{$attrs} }; # merge new attrs into inherited foreach my $key (qw/join prefetch +select +as +columns include_columns bind/) { next unless exists $attrs->{$key}; $new_attrs->{$key} = $self->_merge_attr($our_attrs->{$key}, $attrs->{$key}); } my $cond = (@_ ? ( (@_ == 1 || ref $_[0] eq "HASH") ? ( (ref $_[0] eq 'HASH') ? ( (keys %{ $_[0] } > 0) ? shift : undef ) : shift ) : ( (@_ % 2) ? $self->throw_exception("Odd number of arguments to search") : {@_} ) ) : undef ); if (defined $where) { $new_attrs->{where} = ( defined $new_attrs->{where} ? { '-and' => [ map { ref $_ eq 'ARRAY' ? [ -or => $_ ] : $_ } $where, $new_attrs->{where} ] } : $where); } if (defined $cond) { $new_attrs->{where} = ( defined $new_attrs->{where} ? { '-and' => [ map { ref $_ eq 'ARRAY' ? [ -or => $_ ] : $_ } $cond, $new_attrs->{where} ] } : $cond); } if (defined $having) { $new_attrs->{having} = ( defined $new_attrs->{having} ? { '-and' => [ map { ref $_ eq 'ARRAY' ? [ -or => $_ ] : $_ } $having, $new_attrs->{having} ] } : $having); } my $rs = (ref $self)->new($self->result_source, $new_attrs); $rs->set_cache($rows) if ($rows); return $rs; } =head2 search_literal =over 4 =item Arguments: $sql_fragment, @bind_values =item Return Value: $resultset (scalar context), @row_objs (list context) =back my @cds = $cd_rs->search_literal('year = ? AND title = ?', qw/2001 Reload/); my $newrs = $artist_rs->search_literal('name = ?', 'Metallica'); Pass a literal chunk of SQL to be added to the conditional part of the resultset query. CAVEAT: C is provided for Class::DBI compatibility and should only be used in that context. C is a convenience method. It is equivalent to calling $schema->search(\[]), but if you want to ensure columns are bound correctly, use C. Example of how to use C instead of C my @cds = $cd_rs->search_literal('cdid = ? AND (artist = ? OR artist = ?)', (2, 1, 2)); my @cds = $cd_rs->search(\[ 'cdid = ? AND (artist = ? OR artist = ?)', [ 'cdid', 2 ], [ 'artist', 1 ], [ 'artist', 2 ] ]); See L and L for searching techniques that do not require C. =cut sub search_literal { my ($self, $sql, @bind) = @_; my $attr; if ( @bind && ref($bind[-1]) eq 'HASH' ) { $attr = pop @bind; } return $self->search(\[ $sql, map [ __DUMMY__ => $_ ], @bind ], ($attr || () )); } =head2 find =over 4 =item Arguments: @values | \%cols, \%attrs? =item Return Value: $row_object | undef =back Finds a row based on its primary key or unique constraint. For example, to find a row by its primary key: my $cd = $schema->resultset('CD')->find(5); You can also find a row by a specific unique constraint using the C attribute. For example: my $cd = $schema->resultset('CD')->find('Massive Attack', 'Mezzanine', { key => 'cd_artist_title' }); Additionally, you can specify the columns explicitly by name: my $cd = $schema->resultset('CD')->find( { artist => 'Massive Attack', title => 'Mezzanine', }, { key => 'cd_artist_title' } ); If the C is specified as C, it searches only on the primary key. If no C is specified, it searches on all unique constraints defined on the source for which column data is provided, including the primary key. If your table does not have a primary key, you B provide a value for the C attribute matching one of the unique constraints on the source. In addition to C, L recognizes and applies standard L in the same way as L does. Note: If your query does not return only one row, a warning is generated: Query returned more than one row See also L and L. For information on how to declare unique constraints, see L. =cut sub find { my $self = shift; my $attrs = (@_ > 1 && ref $_[$#_] eq 'HASH' ? pop(@_) : {}); # Default to the primary key, but allow a specific key my @cols = exists $attrs->{key} ? $self->result_source->unique_constraint_columns($attrs->{key}) : $self->result_source->primary_columns; $self->throw_exception( "Can't find unless a primary key is defined or unique constraint is specified" ) unless @cols; # Parse out a hashref from input my $input_query; if (ref $_[0] eq 'HASH') { $input_query = { %{$_[0]} }; } elsif (@_ == @cols) { $input_query = {}; @{$input_query}{@cols} = @_; } else { # Compatibility: Allow e.g. find(id => $value) carp "Find by key => value deprecated; please use a hashref instead"; $input_query = {@_}; } my (%related, $info); KEY: foreach my $key (keys %$input_query) { if (ref($input_query->{$key}) && ($info = $self->result_source->relationship_info($key))) { my $val = delete $input_query->{$key}; next KEY if (ref($val) eq 'ARRAY'); # has_many for multi_create my $rel_q = $self->result_source->_resolve_condition( $info->{cond}, $val, $key ); die "Can't handle OR join condition in find" if ref($rel_q) eq 'ARRAY'; @related{keys %$rel_q} = values %$rel_q; } } if (my @keys = keys %related) { @{$input_query}{@keys} = values %related; } # Build the final query: Default to the disjunction of the unique queries, # but allow the input query in case the ResultSet defines the query or the # user is abusing find my $alias = exists $attrs->{alias} ? $attrs->{alias} : $self->{attrs}{alias}; my $query; if (exists $attrs->{key}) { my @unique_cols = $self->result_source->unique_constraint_columns($attrs->{key}); my $unique_query = $self->_build_unique_query($input_query, \@unique_cols); $query = $self->_add_alias($unique_query, $alias); } elsif ($self->{attrs}{accessor} and $self->{attrs}{accessor} eq 'single') { # This means that we got here after a merger of relationship conditions # in ::Relationship::Base::search_related (the row method), and furthermore # the relationship is of the 'single' type. This means that the condition # provided by the relationship (already attached to $self) is sufficient, # as there can be only one row in the database that would satisfy the # relationship } else { my @unique_queries = $self->_unique_queries($input_query, $attrs); $query = @unique_queries ? [ map { $self->_add_alias($_, $alias) } @unique_queries ] : $self->_add_alias($input_query, $alias); } # Run the query my $rs = $self->search ($query, $attrs); if (keys %{$rs->_resolved_attrs->{collapse}}) { my $row = $rs->next; carp "Query returned more than one row" if $rs->next; return $row; } else { return $rs->single; } } # _add_alias # # Add the specified alias to the specified query hash. A copy is made so the # original query is not modified. sub _add_alias { my ($self, $query, $alias) = @_; my %aliased = %$query; foreach my $col (grep { ! m/\./ } keys %aliased) { $aliased{"$alias.$col"} = delete $aliased{$col}; } return \%aliased; } # _unique_queries # # Build a list of queries which satisfy unique constraints. sub _unique_queries { my ($self, $query, $attrs) = @_; my @constraint_names = exists $attrs->{key} ? ($attrs->{key}) : $self->result_source->unique_constraint_names; my $where = $self->_collapse_cond($self->{attrs}{where} || {}); my $num_where = scalar keys %$where; my (@unique_queries, %seen_column_combinations); foreach my $name (@constraint_names) { my @constraint_cols = $self->result_source->unique_constraint_columns($name); my $constraint_sig = join "\x00", sort @constraint_cols; next if $seen_column_combinations{$constraint_sig}++; my $unique_query = $self->_build_unique_query($query, \@constraint_cols); my $num_cols = scalar @constraint_cols; my $num_query = scalar keys %$unique_query; my $total = $num_query + $num_where; if ($num_query && ($num_query == $num_cols || $total == $num_cols)) { # The query is either unique on its own or is unique in combination with # the existing where clause push @unique_queries, $unique_query; } } return @unique_queries; } # _build_unique_query # # Constrain the specified query hash based on the specified column names. sub _build_unique_query { my ($self, $query, $unique_cols) = @_; return { map { $_ => $query->{$_} } grep { exists $query->{$_} } @$unique_cols }; } =head2 search_related =over 4 =item Arguments: $rel, $cond, \%attrs? =item Return Value: $new_resultset =back $new_rs = $cd_rs->search_related('artist', { name => 'Emo-R-Us', }); Searches the specified relationship, optionally specifying a condition and attributes for matching records. See L for more information. =cut sub search_related { return shift->related_resultset(shift)->search(@_); } =head2 search_related_rs This method works exactly the same as search_related, except that it guarantees a resultset, even in list context. =cut sub search_related_rs { return shift->related_resultset(shift)->search_rs(@_); } =head2 cursor =over 4 =item Arguments: none =item Return Value: $cursor =back Returns a storage-driven cursor to the given resultset. See L for more information. =cut sub cursor { my ($self) = @_; my $attrs = $self->_resolved_attrs_copy; return $self->{cursor} ||= $self->result_source->storage->select($attrs->{from}, $attrs->{select}, $attrs->{where},$attrs); } =head2 single =over 4 =item Arguments: $cond? =item Return Value: $row_object? =back my $cd = $schema->resultset('CD')->single({ year => 2001 }); Inflates the first result without creating a cursor if the resultset has any records in it; if not returns nothing. Used by L as a lean version of L. While this method can take an optional search condition (just like L) being a fast-code-path it does not recognize search attributes. If you need to add extra joins or similar, call L and then chain-call L on the L returned. =over =item B As of 0.08100, this method enforces the assumption that the preceding query returns only one row. If more than one row is returned, you will receive a warning: Query returned more than one row In this case, you should be using L or L instead, or if you really know what you are doing, use the L attribute to explicitly limit the size of the resultset. This method will also throw an exception if it is called on a resultset prefetching has_many, as such a prefetch implies fetching multiple rows from the database in order to assemble the resulting object. =back =cut sub single { my ($self, $where) = @_; if(@_ > 2) { $self->throw_exception('single() only takes search conditions, no attributes. You want ->search( $cond, $attrs )->single()'); } my $attrs = $self->_resolved_attrs_copy; if (keys %{$attrs->{collapse}}) { $self->throw_exception( 'single() can not be used on resultsets prefetching has_many. Use find( \%cond ) or next() instead' ); } if ($where) { if (defined $attrs->{where}) { $attrs->{where} = { '-and' => [ map { ref $_ eq 'ARRAY' ? [ -or => $_ ] : $_ } $where, delete $attrs->{where} ] }; } else { $attrs->{where} = $where; } } # XXX: Disabled since it doesn't infer uniqueness in all cases # unless ($self->_is_unique_query($attrs->{where})) { # carp "Query not guaranteed to return a single row" # . "; please declare your unique constraints or use search instead"; # } my @data = $self->result_source->storage->select_single( $attrs->{from}, $attrs->{select}, $attrs->{where}, $attrs ); return (@data ? ($self->_construct_object(@data))[0] : undef); } # _is_unique_query # # Try to determine if the specified query is guaranteed to be unique, based on # the declared unique constraints. sub _is_unique_query { my ($self, $query) = @_; my $collapsed = $self->_collapse_query($query); my $alias = $self->{attrs}{alias}; foreach my $name ($self->result_source->unique_constraint_names) { my @unique_cols = map { "$alias.$_" } $self->result_source->unique_constraint_columns($name); # Count the values for each unique column my %seen = map { $_ => 0 } @unique_cols; foreach my $key (keys %$collapsed) { my $aliased = $key =~ /\./ ? $key : "$alias.$key"; next unless exists $seen{$aliased}; # Additional constraints are okay $seen{$aliased} = scalar keys %{ $collapsed->{$key} }; } # If we get 0 or more than 1 value for a column, it's not necessarily unique return 1 unless grep { $_ != 1 } values %seen; } return 0; } # _collapse_query # # Recursively collapse the query, accumulating values for each column. sub _collapse_query { my ($self, $query, $collapsed) = @_; $collapsed ||= {}; if (ref $query eq 'ARRAY') { foreach my $subquery (@$query) { next unless ref $subquery; # -or $collapsed = $self->_collapse_query($subquery, $collapsed); } } elsif (ref $query eq 'HASH') { if (keys %$query and (keys %$query)[0] eq '-and') { foreach my $subquery (@{$query->{-and}}) { $collapsed = $self->_collapse_query($subquery, $collapsed); } } else { foreach my $col (keys %$query) { my $value = $query->{$col}; $collapsed->{$col}{$value}++; } } } return $collapsed; } =head2 get_column =over 4 =item Arguments: $cond? =item Return Value: $resultsetcolumn =back my $max_length = $rs->get_column('length')->max; Returns a L instance for a column of the ResultSet. =cut sub get_column { my ($self, $column) = @_; my $new = DBIx::Class::ResultSetColumn->new($self, $column); return $new; } =head2 search_like =over 4 =item Arguments: $cond, \%attrs? =item Return Value: $resultset (scalar context), @row_objs (list context) =back # WHERE title LIKE '%blue%' $cd_rs = $rs->search_like({ title => '%blue%'}); Performs a search, but uses C instead of C<=> as the condition. Note that this is simply a convenience method retained for ex Class::DBI users. You most likely want to use L with specific operators. For more information, see L. This method is deprecated and will be removed in 0.09. Use L instead. An example conversion is: ->search_like({ foo => 'bar' }); # Becomes ->search({ foo => { like => 'bar' } }); =cut sub search_like { my $class = shift; carp ( 'search_like() is deprecated and will be removed in DBIC version 0.09.' .' Instead use ->search({ x => { -like => "y%" } })' .' (note the outer pair of {}s - they are important!)' ); my $attrs = (@_ > 1 && ref $_[$#_] eq 'HASH' ? pop(@_) : {}); my $query = ref $_[0] eq 'HASH' ? { %{shift()} }: {@_}; $query->{$_} = { 'like' => $query->{$_} } for keys %$query; return $class->search($query, { %$attrs }); } =head2 slice =over 4 =item Arguments: $first, $last =item Return Value: $resultset (scalar context), @row_objs (list context) =back Returns a resultset or object list representing a subset of elements from the resultset slice is called on. Indexes are from 0, i.e., to get the first three records, call: my ($one, $two, $three) = $rs->slice(0, 2); =cut sub slice { my ($self, $min, $max) = @_; my $attrs = {}; # = { %{ $self->{attrs} || {} } }; $attrs->{offset} = $self->{attrs}{offset} || 0; $attrs->{offset} += $min; $attrs->{rows} = ($max ? ($max - $min + 1) : 1); return $self->search(undef(), $attrs); #my $slice = (ref $self)->new($self->result_source, $attrs); #return (wantarray ? $slice->all : $slice); } =head2 next =over 4 =item Arguments: none =item Return Value: $result? =back Returns the next element in the resultset (C is there is none). Can be used to efficiently iterate over records in the resultset: my $rs = $schema->resultset('CD')->search; while (my $cd = $rs->next) { print $cd->title; } Note that you need to store the resultset object, and call C on it. Calling C<< resultset('Table')->next >> repeatedly will always return the first record from the resultset. =cut sub next { my ($self) = @_; if (my $cache = $self->get_cache) { $self->{all_cache_position} ||= 0; return $cache->[$self->{all_cache_position}++]; } if ($self->{attrs}{cache}) { $self->{all_cache_position} = 1; return ($self->all)[0]; } if ($self->{stashed_objects}) { my $obj = shift(@{$self->{stashed_objects}}); delete $self->{stashed_objects} unless @{$self->{stashed_objects}}; return $obj; } my @row = ( exists $self->{stashed_row} ? @{delete $self->{stashed_row}} : $self->cursor->next ); return undef unless (@row); my ($row, @more) = $self->_construct_object(@row); $self->{stashed_objects} = \@more if @more; return $row; } sub _construct_object { my ($self, @row) = @_; my $info = $self->_collapse_result($self->{_attrs}{as}, \@row) or return (); my @new = $self->result_class->inflate_result($self->result_source, @$info); @new = $self->{_attrs}{record_filter}->(@new) if exists $self->{_attrs}{record_filter}; return @new; } sub _collapse_result { my ($self, $as_proto, $row) = @_; my @copy = @$row; # 'foo' => [ undef, 'foo' ] # 'foo.bar' => [ 'foo', 'bar' ] # 'foo.bar.baz' => [ 'foo.bar', 'baz' ] my @construct_as = map { [ (/^(?:(.*)\.)?([^.]+)$/) ] } @$as_proto; my %collapse = %{$self->{_attrs}{collapse}||{}}; my @pri_index; # if we're doing collapsing (has_many prefetch) we need to grab records # until the PK changes, so fill @pri_index. if not, we leave it empty so # we know we don't have to bother. # the reason for not using the collapse stuff directly is because if you # had for e.g. two artists in a row with no cds, the collapse info for # both would be NULL (undef) so you'd lose the second artist # store just the index so we can check the array positions from the row # without having to contruct the full hash if (keys %collapse) { my %pri = map { ($_ => 1) } $self->result_source->primary_columns; foreach my $i (0 .. $#construct_as) { next if defined($construct_as[$i][0]); # only self table if (delete $pri{$construct_as[$i][1]}) { push(@pri_index, $i); } last unless keys %pri; # short circuit (Johnny Five Is Alive!) } } # no need to do an if, it'll be empty if @pri_index is empty anyway my %pri_vals = map { ($_ => $copy[$_]) } @pri_index; my @const_rows; do { # no need to check anything at the front, we always want the first row my %const; foreach my $this_as (@construct_as) { $const{$this_as->[0]||''}{$this_as->[1]} = shift(@copy); } push(@const_rows, \%const); } until ( # no pri_index => no collapse => drop straight out !@pri_index or do { # get another row, stash it, drop out if different PK @copy = $self->cursor->next; $self->{stashed_row} = \@copy; # last thing in do block, counts as true if anything doesn't match # check xor defined first for NULL vs. NOT NULL then if one is # defined the other must be so check string equality grep { (defined $pri_vals{$_} ^ defined $copy[$_]) || (defined $pri_vals{$_} && ($pri_vals{$_} ne $copy[$_])) } @pri_index; } ); my $alias = $self->{attrs}{alias}; my $info = []; my %collapse_pos; my @const_keys; foreach my $const (@const_rows) { scalar @const_keys or do { @const_keys = sort { length($a) <=> length($b) } keys %$const; }; foreach my $key (@const_keys) { if (length $key) { my $target = $info; my @parts = split(/\./, $key); my $cur = ''; my $data = $const->{$key}; foreach my $p (@parts) { $target = $target->[1]->{$p} ||= []; $cur .= ".${p}"; if ($cur eq ".${key}" && (my @ckey = @{$collapse{$cur}||[]})) { # collapsing at this point and on final part my $pos = $collapse_pos{$cur}; CK: foreach my $ck (@ckey) { if (!defined $pos->{$ck} || $pos->{$ck} ne $data->{$ck}) { $collapse_pos{$cur} = $data; delete @collapse_pos{ # clear all positioning for sub-entries grep { m/^\Q${cur}.\E/ } keys %collapse_pos }; push(@$target, []); last CK; } } } if (exists $collapse{$cur}) { $target = $target->[-1]; } } $target->[0] = $data; } else { $info->[0] = $const->{$key}; } } } return $info; } =head2 result_source =over 4 =item Arguments: $result_source? =item Return Value: $result_source =back An accessor for the primary ResultSource object from which this ResultSet is derived. =head2 result_class =over 4 =item Arguments: $result_class? =item Return Value: $result_class =back An accessor for the class to use when creating row objects. Defaults to C<< result_source->result_class >> - which in most cases is the name of the L<"table"|DBIx::Class::Manual::Glossary/"ResultSource"> class. Note that changing the result_class will also remove any components that were originally loaded in the source class via L. Any overloaded methods in the original source class will not run. =cut sub result_class { my ($self, $result_class) = @_; if ($result_class) { $self->ensure_class_loaded($result_class); $self->_result_class($result_class); $self->{attrs}{result_class} = $result_class if ref $self; } $self->_result_class; } =head2 count =over 4 =item Arguments: $cond, \%attrs?? =item Return Value: $count =back Performs an SQL C with the same query as the resultset was built with to find the number of elements. Passing arguments is equivalent to C<< $rs->search ($cond, \%attrs)->count >> =cut sub count { my $self = shift; return $self->search(@_)->count if @_ and defined $_[0]; return scalar @{ $self->get_cache } if $self->get_cache; my $attrs = $self->_resolved_attrs_copy; # this is a little optimization - it is faster to do the limit # adjustments in software, instead of a subquery my $rows = delete $attrs->{rows}; my $offset = delete $attrs->{offset}; my $crs; if ($self->_has_resolved_attr (qw/collapse group_by/)) { $crs = $self->_count_subq_rs ($attrs); } else { $crs = $self->_count_rs ($attrs); } my $count = $crs->next; $count -= $offset if $offset; $count = $rows if $rows and $rows < $count; $count = 0 if ($count < 0); return $count; } =head2 count_rs =over 4 =item Arguments: $cond, \%attrs?? =item Return Value: $count_rs =back Same as L but returns a L object. This can be very handy for subqueries: ->search( { amount => $some_rs->count_rs->as_query } ) As with regular resultsets the SQL query will be executed only after the resultset is accessed via L or L. That would return the same single value obtainable via L. =cut sub count_rs { my $self = shift; return $self->search(@_)->count_rs if @_; # this may look like a lack of abstraction (count() does about the same) # but in fact an _rs *must* use a subquery for the limits, as the # software based limiting can not be ported if this $rs is to be used # in a subquery itself (i.e. ->as_query) if ($self->_has_resolved_attr (qw/collapse group_by offset rows/)) { return $self->_count_subq_rs; } else { return $self->_count_rs; } } # # returns a ResultSetColumn object tied to the count query # sub _count_rs { my ($self, $attrs) = @_; my $rsrc = $self->result_source; $attrs ||= $self->_resolved_attrs; my $tmp_attrs = { %$attrs }; # take off any limits, record_filter is cdbi, and no point of ordering a count delete $tmp_attrs->{$_} for (qw/select as rows offset order_by record_filter/); # overwrite the selector (supplied by the storage) $tmp_attrs->{select} = $rsrc->storage->_count_select ($rsrc, $tmp_attrs); $tmp_attrs->{as} = 'count'; my $tmp_rs = $rsrc->resultset_class->new($rsrc, $tmp_attrs)->get_column ('count'); return $tmp_rs; } # # same as above but uses a subquery # sub _count_subq_rs { my ($self, $attrs) = @_; my $rsrc = $self->result_source; $attrs ||= $self->_resolved_attrs_copy; my $sub_attrs = { %$attrs }; # extra selectors do not go in the subquery and there is no point of ordering it delete $sub_attrs->{$_} for qw/collapse select _prefetch_select as order_by/; # if we multi-prefetch we group_by primary keys only as this is what we would # get out of the rs via ->next/->all. We *DO WANT* to clobber old group_by regardless if ( keys %{$attrs->{collapse}} ) { $sub_attrs->{group_by} = [ map { "$attrs->{alias}.$_" } ($rsrc->_pri_cols) ] } $sub_attrs->{select} = $rsrc->storage->_subq_count_select ($rsrc, $attrs); # this is so that the query can be simplified e.g. # * ordering can be thrown away in things like Top limit $sub_attrs->{-for_count_only} = 1; my $sub_rs = $rsrc->resultset_class->new ($rsrc, $sub_attrs); $attrs->{from} = [{ -alias => 'count_subq', -source_handle => $rsrc->handle, count_subq => $sub_rs->as_query, }]; # the subquery replaces this delete $attrs->{$_} for qw/where bind collapse group_by having having_bind rows offset/; return $self->_count_rs ($attrs); } sub _bool { return 1; } =head2 count_literal =over 4 =item Arguments: $sql_fragment, @bind_values =item Return Value: $count =back Counts the results in a literal query. Equivalent to calling L with the passed arguments, then L. =cut sub count_literal { shift->search_literal(@_)->count; } =head2 all =over 4 =item Arguments: none =item Return Value: @objects =back Returns all elements in the resultset. Called implicitly if the resultset is returned in list context. =cut sub all { my $self = shift; if(@_) { $self->throw_exception("all() doesn't take any arguments, you probably wanted ->search(...)->all()"); } return @{ $self->get_cache } if $self->get_cache; my @obj; if (keys %{$self->_resolved_attrs->{collapse}}) { # Using $self->cursor->all is really just an optimisation. # If we're collapsing has_many prefetches it probably makes # very little difference, and this is cleaner than hacking # _construct_object to survive the approach $self->cursor->reset; my @row = $self->cursor->next; while (@row) { push(@obj, $self->_construct_object(@row)); @row = (exists $self->{stashed_row} ? @{delete $self->{stashed_row}} : $self->cursor->next); } } else { @obj = map { $self->_construct_object(@$_) } $self->cursor->all; } $self->set_cache(\@obj) if $self->{attrs}{cache}; return @obj; } =head2 reset =over 4 =item Arguments: none =item Return Value: $self =back Resets the resultset's cursor, so you can iterate through the elements again. Implicitly resets the storage cursor, so a subsequent L will trigger another query. =cut sub reset { my ($self) = @_; delete $self->{_attrs} if exists $self->{_attrs}; $self->{all_cache_position} = 0; $self->cursor->reset; return $self; } =head2 first =over 4 =item Arguments: none =item Return Value: $object? =back Resets the resultset and returns an object for the first result (if the resultset returns anything). =cut sub first { return $_[0]->reset->next; } # _rs_update_delete # # Determines whether and what type of subquery is required for the $rs operation. # If grouping is necessary either supplies its own, or verifies the current one # After all is done delegates to the proper storage method. sub _rs_update_delete { my ($self, $op, $values) = @_; my $rsrc = $self->result_source; # if a condition exists we need to strip all table qualifiers # if this is not possible we'll force a subquery below my $cond = $rsrc->schema->storage->_strip_cond_qualifiers ($self->{cond}); my $needs_group_by_subq = $self->_has_resolved_attr (qw/collapse group_by -join/); my $needs_subq = $needs_group_by_subq || (not defined $cond) || $self->_has_resolved_attr(qw/row offset/); if ($needs_group_by_subq or $needs_subq) { # make a new $rs selecting only the PKs (that's all we really need) my $attrs = $self->_resolved_attrs_copy; delete $attrs->{$_} for qw/collapse select as/; $attrs->{columns} = [ map { "$attrs->{alias}.$_" } ($self->result_source->_pri_cols) ]; if ($needs_group_by_subq) { # make sure no group_by was supplied, or if there is one - make sure it matches # the columns compiled above perfectly. Anything else can not be sanely executed # on most databases so croak right then and there if (my $g = $attrs->{group_by}) { my @current_group_by = map { $_ =~ /\./ ? $_ : "$attrs->{alias}.$_" } @$g ; if ( join ("\x00", sort @current_group_by) ne join ("\x00", sort @{$attrs->{columns}} ) ) { $self->throw_exception ( "You have just attempted a $op operation on a resultset which does group_by" . ' on columns other than the primary keys, while DBIC internally needs to retrieve' . ' the primary keys in a subselect. All sane RDBMS engines do not support this' . ' kind of queries. Please retry the operation with a modified group_by or' . ' without using one at all.' ); } } else { $attrs->{group_by} = $attrs->{columns}; } } my $subrs = (ref $self)->new($rsrc, $attrs); return $self->result_source->storage->_subq_update_delete($subrs, $op, $values); } else { return $rsrc->storage->$op( $rsrc, $op eq 'update' ? $values : (), $cond, ); } } =head2 update =over 4 =item Arguments: \%values =item Return Value: $storage_rv =back Sets the specified columns in the resultset to the supplied values in a single query. Return value will be true if the update succeeded or false if no records were updated; exact type of success value is storage-dependent. =cut sub update { my ($self, $values) = @_; $self->throw_exception('Values for update must be a hash') unless ref $values eq 'HASH'; return $self->_rs_update_delete ('update', $values); } =head2 update_all =over 4 =item Arguments: \%values =item Return Value: 1 =back Fetches all objects and updates them one at a time. Note that C will run DBIC cascade triggers, while L will not. =cut sub update_all { my ($self, $values) = @_; $self->throw_exception('Values for update_all must be a hash') unless ref $values eq 'HASH'; foreach my $obj ($self->all) { $obj->set_columns($values)->update; } return 1; } =head2 delete =over 4 =item Arguments: none =item Return Value: $storage_rv =back Deletes the contents of the resultset from its result source. Note that this will not run DBIC cascade triggers. See L if you need triggers to run. See also L. Return value will be the amount of rows deleted; exact type of return value is storage-dependent. =cut sub delete { my $self = shift; $self->throw_exception('delete does not accept any arguments') if @_; return $self->_rs_update_delete ('delete'); } =head2 delete_all =over 4 =item Arguments: none =item Return Value: 1 =back Fetches all objects and deletes them one at a time. Note that C will run DBIC cascade triggers, while L will not. =cut sub delete_all { my $self = shift; $self->throw_exception('delete_all does not accept any arguments') if @_; $_->delete for $self->all; return 1; } =head2 populate =over 4 =item Arguments: \@data; =back Accepts either an arrayref of hashrefs or alternatively an arrayref of arrayrefs. For the arrayref of hashrefs style each hashref should be a structure suitable forsubmitting to a $resultset->create(...) method. In void context, C in L is used to insert the data, as this is a faster method. Otherwise, each set of data is inserted into the database using L, and the resulting objects are accumulated into an array. The array itself, or an array reference is returned depending on scalar or list context. Example: Assuming an Artist Class that has many CDs Classes relating: my $Artist_rs = $schema->resultset("Artist"); ## Void Context Example $Artist_rs->populate([ { artistid => 4, name => 'Manufactured Crap', cds => [ { title => 'My First CD', year => 2006 }, { title => 'Yet More Tweeny-Pop crap', year => 2007 }, ], }, { artistid => 5, name => 'Angsty-Whiny Girl', cds => [ { title => 'My parents sold me to a record company', year => 2005 }, { title => 'Why Am I So Ugly?', year => 2006 }, { title => 'I Got Surgery and am now Popular', year => 2007 } ], }, ]); ## Array Context Example my ($ArtistOne, $ArtistTwo, $ArtistThree) = $Artist_rs->populate([ { name => "Artist One"}, { name => "Artist Two"}, { name => "Artist Three", cds=> [ { title => "First CD", year => 2007}, { title => "Second CD", year => 2008}, ]} ]); print $ArtistOne->name; ## response is 'Artist One' print $ArtistThree->cds->count ## reponse is '2' For the arrayref of arrayrefs style, the first element should be a list of the fieldsnames to which the remaining elements are rows being inserted. For example: $Arstist_rs->populate([ [qw/artistid name/], [100, 'A Formally Unknown Singer'], [101, 'A singer that jumped the shark two albums ago'], [102, 'An actually cool singer'], ]); Please note an important effect on your data when choosing between void and wantarray context. Since void context goes straight to C in L this will skip any component that is overriding C. So if you are using something like L to create primary keys for you, you will find that your PKs are empty. In this case you will have to use the wantarray context in order to create those values. =cut sub populate { my $self = shift; # cruft placed in standalone method my $data = $self->_normalize_populate_args(@_); if(defined wantarray) { my @created; foreach my $item (@$data) { push(@created, $self->create($item)); } return wantarray ? @created : \@created; } else { my $first = $data->[0]; # if a column is a registered relationship, and is a non-blessed hash/array, consider # it relationship data my (@rels, @columns); for (keys %$first) { my $ref = ref $first->{$_}; $self->result_source->has_relationship($_) && ($ref eq 'ARRAY' or $ref eq 'HASH') ? push @rels, $_ : push @columns, $_ ; } my @pks = $self->result_source->primary_columns; ## do the belongs_to relationships foreach my $index (0..$#$data) { # delegate to create() for any dataset without primary keys with specified relationships if (grep { !defined $data->[$index]->{$_} } @pks ) { for my $r (@rels) { if (grep { ref $data->[$index]{$r} eq $_ } qw/HASH ARRAY/) { # a related set must be a HASH or AoH my @ret = $self->populate($data); return; } } } foreach my $rel (@rels) { next unless ref $data->[$index]->{$rel} eq "HASH"; my $result = $self->related_resultset($rel)->create($data->[$index]->{$rel}); my ($reverse) = keys %{$self->result_source->reverse_relationship_info($rel)}; my $related = $result->result_source->_resolve_condition( $result->result_source->relationship_info($reverse)->{cond}, $self, $result, ); delete $data->[$index]->{$rel}; $data->[$index] = {%{$data->[$index]}, %$related}; push @columns, keys %$related if $index == 0; } } ## inherit the data locked in the conditions of the resultset my ($rs_data) = $self->_merge_cond_with_data({}); delete @{$rs_data}{@columns}; my @inherit_cols = keys %$rs_data; my @inherit_data = values %$rs_data; ## do bulk insert on current row $self->result_source->storage->insert_bulk( $self->result_source, [@columns, @inherit_cols], [ map { [ @$_{@columns}, @inherit_data ] } @$data ], ); ## do the has_many relationships foreach my $item (@$data) { foreach my $rel (@rels) { next unless $item->{$rel} && ref $item->{$rel} eq "ARRAY"; my $parent = $self->find({map { $_ => $item->{$_} } @pks}) || $self->throw_exception('Cannot find the relating object.'); my $child = $parent->$rel; my $related = $child->result_source->_resolve_condition( $parent->result_source->relationship_info($rel)->{cond}, $child, $parent, ); my @rows_to_add = ref $item->{$rel} eq 'ARRAY' ? @{$item->{$rel}} : ($item->{$rel}); my @populate = map { {%$_, %$related} } @rows_to_add; $child->populate( \@populate ); } } } } # populate() argumnets went over several incarnations # What we ultimately support is AoH sub _normalize_populate_args { my ($self, $arg) = @_; if (ref $arg eq 'ARRAY') { if (ref $arg->[0] eq 'HASH') { return $arg; } elsif (ref $arg->[0] eq 'ARRAY') { my @ret; my @colnames = @{$arg->[0]}; foreach my $values (@{$arg}[1 .. $#$arg]) { push @ret, { map { $colnames[$_] => $values->[$_] } (0 .. $#colnames) }; } return \@ret; } } $self->throw_exception('Populate expects an arrayref of hashrefs or arrayref of arrayrefs'); } =head2 pager =over 4 =item Arguments: none =item Return Value: $pager =back Return Value a L object for the current resultset. Only makes sense for queries with a C attribute. To get the full count of entries for a paged resultset, call C on the L object. =cut sub pager { my ($self) = @_; return $self->{pager} if $self->{pager}; my $attrs = $self->{attrs}; $self->throw_exception("Can't create pager for non-paged rs") unless $self->{attrs}{page}; $attrs->{rows} ||= 10; # throw away the paging flags and re-run the count (possibly # with a subselect) to get the real total count my $count_attrs = { %$attrs }; delete $count_attrs->{$_} for qw/rows offset page pager/; my $total_count = (ref $self)->new($self->result_source, $count_attrs)->count; return $self->{pager} = Data::Page->new( $total_count, $attrs->{rows}, $self->{attrs}{page} ); } =head2 page =over 4 =item Arguments: $page_number =item Return Value: $rs =back Returns a resultset for the $page_number page of the resultset on which page is called, where each page contains a number of rows equal to the 'rows' attribute set on the resultset (10 by default). =cut sub page { my ($self, $page) = @_; return (ref $self)->new($self->result_source, { %{$self->{attrs}}, page => $page }); } =head2 new_result =over 4 =item Arguments: \%vals =item Return Value: $rowobject =back Creates a new row object in the resultset's result class and returns it. The row is not inserted into the database at this point, call L to do that. Calling L will tell you whether the row object has been inserted or not. Passes the hashref of input on to L. =cut sub new_result { my ($self, $values) = @_; $self->throw_exception( "new_result needs a hash" ) unless (ref $values eq 'HASH'); my ($merged_cond, $cols_from_relations) = $self->_merge_cond_with_data($values); my %new = ( %$merged_cond, @$cols_from_relations ? (-cols_from_relations => $cols_from_relations) : (), -source_handle => $self->_source_handle, -result_source => $self->result_source, # DO NOT REMOVE THIS, REQUIRED ); return $self->result_class->new(\%new); } # _merge_cond_with_data # # Takes a simple hash of K/V data and returns its copy merged with the # condition already present on the resultset. Additionally returns an # arrayref of value/condition names, which were inferred from related # objects (this is needed for in-memory related objects) sub _merge_cond_with_data { my ($self, $data) = @_; my (%new_data, @cols_from_relations); my $alias = $self->{attrs}{alias}; if (! defined $self->{cond}) { # just massage $data below } elsif ($self->{cond} eq $DBIx::Class::ResultSource::UNRESOLVABLE_CONDITION) { %new_data = %{ $self->{attrs}{related_objects} || {} }; # nothing might have been inserted yet @cols_from_relations = keys %new_data; } elsif (ref $self->{cond} ne 'HASH') { $self->throw_exception( "Can't abstract implicit construct, resultset condition not a hash" ); } else { # precendence must be given to passed values over values inherited from # the cond, so the order here is important. my $collapsed_cond = $self->_collapse_cond($self->{cond}); my %implied = %{$self->_remove_alias($collapsed_cond, $alias)}; while ( my($col, $value) = each %implied ) { if (ref($value) eq 'HASH' && keys(%$value) && (keys %$value)[0] eq '=') { $new_data{$col} = $value->{'='}; next; } $new_data{$col} = $value if $self->_is_deterministic_value($value); } } %new_data = ( %new_data, %{ $self->_remove_alias($data, $alias) }, ); return (\%new_data, \@cols_from_relations); } # _is_deterministic_value # # Make an effor to strip non-deterministic values from the condition, # to make sure new_result chokes less sub _is_deterministic_value { my $self = shift; my $value = shift; my $ref_type = ref $value; return 1 if $ref_type eq '' || $ref_type eq 'SCALAR'; return 1 if Scalar::Util::blessed($value); return 0; } # _has_resolved_attr # # determines if the resultset defines at least one # of the attributes supplied # # used to determine if a subquery is neccessary # # supports some virtual attributes: # -join # This will scan for any joins being present on the resultset. # It is not a mere key-search but a deep inspection of {from} # sub _has_resolved_attr { my ($self, @attr_names) = @_; my $attrs = $self->_resolved_attrs; my %extra_checks; for my $n (@attr_names) { if (grep { $n eq $_ } (qw/-join/) ) { $extra_checks{$n}++; next; } my $attr = $attrs->{$n}; next if not defined $attr; if (ref $attr eq 'HASH') { return 1 if keys %$attr; } elsif (ref $attr eq 'ARRAY') { return 1 if @$attr; } else { return 1 if $attr; } } # a resolved join is expressed as a multi-level from return 1 if ( $extra_checks{-join} and ref $attrs->{from} eq 'ARRAY' and @{$attrs->{from}} > 1 ); return 0; } # _collapse_cond # # Recursively collapse the condition. sub _collapse_cond { my ($self, $cond, $collapsed) = @_; $collapsed ||= {}; if (ref $cond eq 'ARRAY') { foreach my $subcond (@$cond) { next unless ref $subcond; # -or $collapsed = $self->_collapse_cond($subcond, $collapsed); } } elsif (ref $cond eq 'HASH') { if (keys %$cond and (keys %$cond)[0] eq '-and') { foreach my $subcond (@{$cond->{-and}}) { $collapsed = $self->_collapse_cond($subcond, $collapsed); } } else { foreach my $col (keys %$cond) { my $value = $cond->{$col}; $collapsed->{$col} = $value; } } } return $collapsed; } # _remove_alias # # Remove the specified alias from the specified query hash. A copy is made so # the original query is not modified. sub _remove_alias { my ($self, $query, $alias) = @_; my %orig = %{ $query || {} }; my %unaliased; foreach my $key (keys %orig) { if ($key !~ /\./) { $unaliased{$key} = $orig{$key}; next; } $unaliased{$1} = $orig{$key} if $key =~ m/^(?:\Q$alias\E\.)?([^.]+)$/; } return \%unaliased; } =head2 as_query =over 4 =item Arguments: none =item Return Value: \[ $sql, @bind ] =back Returns the SQL query and bind vars associated with the invocant. This is generally used as the RHS for a subquery. =cut sub as_query { my $self = shift; my $attrs = $self->_resolved_attrs_copy; # For future use: # # in list ctx: # my ($sql, \@bind, \%dbi_bind_attrs) = _select_args_to_query (...) # $sql also has no wrapping parenthesis in list ctx # my $sqlbind = $self->result_source->storage ->_select_args_to_query ($attrs->{from}, $attrs->{select}, $attrs->{where}, $attrs); return $sqlbind; } =head2 find_or_new =over 4 =item Arguments: \%vals, \%attrs? =item Return Value: $rowobject =back my $artist = $schema->resultset('Artist')->find_or_new( { artist => 'fred' }, { key => 'artists' }); $cd->cd_to_producer->find_or_new({ producer => $producer }, { key => 'primary }); Find an existing record from this resultset, based on its primary key, or a unique constraint. If none exists, instantiate a new result object and return it. The object will not be saved into your storage until you call L on it. You most likely want this method when looking for existing rows using a unique constraint that is not the primary key, or looking for related rows. If you want objects to be saved immediately, use L instead. B: Take care when using C with a table having columns with default values that you intend to be automatically supplied by the database (e.g. an auto_increment primary key column). In normal usage, the value of such columns should NOT be included at all in the call to C, even when set to C. =cut sub find_or_new { my $self = shift; my $attrs = (@_ > 1 && ref $_[$#_] eq 'HASH' ? pop(@_) : {}); my $hash = ref $_[0] eq 'HASH' ? shift : {@_}; if (keys %$hash and my $row = $self->find($hash, $attrs) ) { return $row; } return $self->new_result($hash); } =head2 create =over 4 =item Arguments: \%vals =item Return Value: a L $object =back Attempt to create a single new row or a row with multiple related rows in the table represented by the resultset (and related tables). This will not check for duplicate rows before inserting, use L to do that. To create one row for this resultset, pass a hashref of key/value pairs representing the columns of the table and the values you wish to store. If the appropriate relationships are set up, foreign key fields can also be passed an object representing the foreign row, and the value will be set to its primary key. To create related objects, pass a hashref of related-object column values B. If the relationship is of type C (L) - pass an arrayref of hashrefs. The process will correctly identify columns holding foreign keys, and will transparently populate them from the keys of the corresponding relation. This can be applied recursively, and will work correctly for a structure with an arbitrary depth and width, as long as the relationships actually exists and the correct column data has been supplied. Instead of hashrefs of plain related data (key/value pairs), you may also pass new or inserted objects. New objects (not inserted yet, see L), will be inserted into their appropriate tables. Effectively a shortcut for C<< ->new_result(\%vals)->insert >>. Example of creating a new row. $person_rs->create({ name=>"Some Person", email=>"somebody@someplace.com" }); Example of creating a new row and also creating rows in a related C or C resultset. Note Arrayref. $artist_rs->create( { artistid => 4, name => 'Manufactured Crap', cds => [ { title => 'My First CD', year => 2006 }, { title => 'Yet More Tweeny-Pop crap', year => 2007 }, ], }, ); Example of creating a new row and also creating a row in a related Cresultset. Note Hashref. $cd_rs->create({ title=>"Music for Silly Walks", year=>2000, artist => { name=>"Silly Musician", } }); =over =item WARNING When subclassing ResultSet never attempt to override this method. Since it is a simple shortcut for C<< $self->new_result($attrs)->insert >>, a lot of the internals simply never call it, so your override will be bypassed more often than not. Override either L or L depending on how early in the L process you need to intervene. =back =cut sub create { my ($self, $attrs) = @_; $self->throw_exception( "create needs a hashref" ) unless ref $attrs eq 'HASH'; return $self->new_result($attrs)->insert; } =head2 find_or_create =over 4 =item Arguments: \%vals, \%attrs? =item Return Value: $rowobject =back $cd->cd_to_producer->find_or_create({ producer => $producer }, { key => 'primary' }); Tries to find a record based on its primary key or unique constraints; if none is found, creates one and returns that instead. my $cd = $schema->resultset('CD')->find_or_create({ cdid => 5, artist => 'Massive Attack', title => 'Mezzanine', year => 2005, }); Also takes an optional C attribute, to search by a specific key or unique constraint. For example: my $cd = $schema->resultset('CD')->find_or_create( { artist => 'Massive Attack', title => 'Mezzanine', }, { key => 'cd_artist_title' } ); B: Because find_or_create() reads from the database and then possibly inserts based on the result, this method is subject to a race condition. Another process could create a record in the table after the find has completed and before the create has started. To avoid this problem, use find_or_create() inside a transaction. B: Take care when using C with a table having columns with default values that you intend to be automatically supplied by the database (e.g. an auto_increment primary key column). In normal usage, the value of such columns should NOT be included at all in the call to C, even when set to C. See also L and L. For information on how to declare unique constraints, see L. =cut sub find_or_create { my $self = shift; my $attrs = (@_ > 1 && ref $_[$#_] eq 'HASH' ? pop(@_) : {}); my $hash = ref $_[0] eq 'HASH' ? shift : {@_}; if (keys %$hash and my $row = $self->find($hash, $attrs) ) { return $row; } return $self->create($hash); } =head2 update_or_create =over 4 =item Arguments: \%col_values, { key => $unique_constraint }? =item Return Value: $rowobject =back $resultset->update_or_create({ col => $val, ... }); First, searches for an existing row matching one of the unique constraints (including the primary key) on the source of this resultset. If a row is found, updates it with the other given column values. Otherwise, creates a new row. Takes an optional C attribute to search on a specific unique constraint. For example: # In your application my $cd = $schema->resultset('CD')->update_or_create( { artist => 'Massive Attack', title => 'Mezzanine', year => 1998, }, { key => 'cd_artist_title' } ); $cd->cd_to_producer->update_or_create({ producer => $producer, name => 'harry', }, { key => 'primary, }); If no C is specified, it searches on all unique constraints defined on the source, including the primary key. If the C is specified as C, it searches only on the primary key. See also L and L. For information on how to declare unique constraints, see L. B: Take care when using C with a table having columns with default values that you intend to be automatically supplied by the database (e.g. an auto_increment primary key column). In normal usage, the value of such columns should NOT be included at all in the call to C, even when set to C. =cut sub update_or_create { my $self = shift; my $attrs = (@_ > 1 && ref $_[$#_] eq 'HASH' ? pop(@_) : {}); my $cond = ref $_[0] eq 'HASH' ? shift : {@_}; my $row = $self->find($cond, $attrs); if (defined $row) { $row->update($cond); return $row; } return $self->create($cond); } =head2 update_or_new =over 4 =item Arguments: \%col_values, { key => $unique_constraint }? =item Return Value: $rowobject =back $resultset->update_or_new({ col => $val, ... }); First, searches for an existing row matching one of the unique constraints (including the primary key) on the source of this resultset. If a row is found, updates it with the other given column values. Otherwise, instantiate a new result object and return it. The object will not be saved into your storage until you call L on it. Takes an optional C attribute to search on a specific unique constraint. For example: # In your application my $cd = $schema->resultset('CD')->update_or_new( { artist => 'Massive Attack', title => 'Mezzanine', year => 1998, }, { key => 'cd_artist_title' } ); if ($cd->in_storage) { # the cd was updated } else { # the cd is not yet in the database, let's insert it $cd->insert; } B: Take care when using C with a table having columns with default values that you intend to be automatically supplied by the database (e.g. an auto_increment primary key column). In normal usage, the value of such columns should NOT be included at all in the call to C, even when set to C. See also L, L and L. =cut sub update_or_new { my $self = shift; my $attrs = ( @_ > 1 && ref $_[$#_] eq 'HASH' ? pop(@_) : {} ); my $cond = ref $_[0] eq 'HASH' ? shift : {@_}; my $row = $self->find( $cond, $attrs ); if ( defined $row ) { $row->update($cond); return $row; } return $self->new_result($cond); } =head2 get_cache =over 4 =item Arguments: none =item Return Value: \@cache_objects? =back Gets the contents of the cache for the resultset, if the cache is set. The cache is populated either by using the L attribute to L or by calling L. =cut sub get_cache { shift->{all_cache}; } =head2 set_cache =over 4 =item Arguments: \@cache_objects =item Return Value: \@cache_objects =back Sets the contents of the cache for the resultset. Expects an arrayref of objects of the same class as those produced by the resultset. Note that if the cache is set the resultset will return the cached objects rather than re-querying the database even if the cache attr is not set. The contents of the cache can also be populated by using the L attribute to L. =cut sub set_cache { my ( $self, $data ) = @_; $self->throw_exception("set_cache requires an arrayref") if defined($data) && (ref $data ne 'ARRAY'); $self->{all_cache} = $data; } =head2 clear_cache =over 4 =item Arguments: none =item Return Value: [] =back Clears the cache for the resultset. =cut sub clear_cache { shift->set_cache(undef); } =head2 is_paged =over 4 =item Arguments: none =item Return Value: true, if the resultset has been paginated =back =cut sub is_paged { my ($self) = @_; return !!$self->{attrs}{page}; } =head2 is_ordered =over 4 =item Arguments: none =item Return Value: true, if the resultset has been ordered with C. =back =cut sub is_ordered { my ($self) = @_; return scalar $self->result_source->storage->_parse_order_by($self->{attrs}{order_by}); } =head2 related_resultset =over 4 =item Arguments: $relationship_name =item Return Value: $resultset =back Returns a related resultset for the supplied relationship name. $artist_rs = $schema->resultset('CD')->related_resultset('Artist'); =cut sub related_resultset { my ($self, $rel) = @_; $self->{related_resultsets} ||= {}; return $self->{related_resultsets}{$rel} ||= do { my $rsrc = $self->result_source; my $rel_info = $rsrc->relationship_info($rel); $self->throw_exception( "search_related: result source '" . $rsrc->source_name . "' has no such relationship $rel") unless $rel_info; my $attrs = $self->_chain_relationship($rel); my $join_count = $attrs->{seen_join}{$rel}; my $alias = $self->result_source->storage ->relname_to_table_alias($rel, $join_count); # since this is search_related, and we already slid the select window inwards # (the select/as attrs were deleted in the beginning), we need to flip all # left joins to inner, so we get the expected results # read the comment on top of the actual function to see what this does $attrs->{from} = $rsrc->schema->storage->_straight_join_to_node ($attrs->{from}, $alias); #XXX - temp fix for result_class bug. There likely is a more elegant fix -groditi delete @{$attrs}{qw(result_class alias)}; my $new_cache; if (my $cache = $self->get_cache) { if ($cache->[0] && $cache->[0]->related_resultset($rel)->get_cache) { $new_cache = [ map { @{$_->related_resultset($rel)->get_cache} } @$cache ]; } } my $rel_source = $rsrc->related_source($rel); my $new = do { # The reason we do this now instead of passing the alias to the # search_rs below is that if you wrap/overload resultset on the # source you need to know what alias it's -going- to have for things # to work sanely (e.g. RestrictWithObject wants to be able to add # extra query restrictions, and these may need to be $alias.) my $rel_attrs = $rel_source->resultset_attributes; local $rel_attrs->{alias} = $alias; $rel_source->resultset ->search_rs( undef, { %$attrs, where => $attrs->{where}, }); }; $new->set_cache($new_cache) if $new_cache; $new; }; } =head2 current_source_alias =over 4 =item Arguments: none =item Return Value: $source_alias =back Returns the current table alias for the result source this resultset is built on, that will be used in the SQL query. Usually it is C. Currently the source alias that refers to the result set returned by a L/L family method depends on how you got to the resultset: it's C by default, but eg. L aliases it to the related result source name (and keeps C referring to the original result set). The long term goal is to make L always alias the current resultset as C (and make this method unnecessary). Thus it's currently necessary to use this method in predefined queries (see L) when referring to the source alias of the current result set: # in a result set class sub modified_by { my ($self, $user) = @_; my $me = $self->current_source_alias; return $self->search( "$me.modified" => $user->id, ); } =cut sub current_source_alias { my ($self) = @_; return ($self->{attrs} || {})->{alias} || 'me'; } =head2 as_subselect_rs =over 4 =item Arguments: none =item Return Value: $resultset =back Act as a barrier to SQL symbols. The resultset provided will be made into a "virtual view" by including it as a subquery within the from clause. From this point on, any joined tables are inaccessible to ->search on the resultset (as if it were simply where-filtered without joins). For example: my $rs = $schema->resultset('Bar')->search({'x.name' => 'abc'},{ join => 'x' }); # 'x' now pollutes the query namespace # So the following works as expected my $ok_rs = $rs->search({'x.other' => 1}); # But this doesn't: instead of finding a 'Bar' related to two x rows (abc and # def) we look for one row with contradictory terms and join in another table # (aliased 'x_2') which we never use my $broken_rs = $rs->search({'x.name' => 'def'}); my $rs2 = $rs->as_subselect_rs; # doesn't work - 'x' is no longer accessible in $rs2, having been sealed away my $not_joined_rs = $rs2->search({'x.other' => 1}); # works as expected: finds a 'table' row related to two x rows (abc and def) my $correctly_joined_rs = $rs2->search({'x.name' => 'def'}); Another example of when one might use this would be to select a subset of columns in a group by clause: my $rs = $schema->resultset('Bar')->search(undef, { group_by => [qw{ id foo_id baz_id }], })->as_subselect_rs->search(undef, { columns => [qw{ id foo_id }] }); In the above example normally columns would have to be equal to the group by, but because we isolated the group by into a subselect the above works. =cut sub as_subselect_rs { my $self = shift; return $self->result_source->resultset->search( undef, { alias => $self->current_source_alias, from => [{ $self->current_source_alias => $self->as_query, -alias => $self->current_source_alias, -source_handle => $self->result_source->handle, }] }); } # This code is called by search_related, and makes sure there # is clear separation between the joins before, during, and # after the relationship. This information is needed later # in order to properly resolve prefetch aliases (any alias # with a relation_chain_depth less than the depth of the # current prefetch is not considered) # # The increments happen twice per join. An even number means a # relationship specified via a search_related, whereas an odd # number indicates a join/prefetch added via attributes # # Also this code will wrap the current resultset (the one we # chain to) in a subselect IFF it contains limiting attributes sub _chain_relationship { my ($self, $rel) = @_; my $source = $self->result_source; my $attrs = { %{$self->{attrs}||{}} }; # we need to take the prefetch the attrs into account before we # ->_resolve_join as otherwise they get lost - captainL my $join = $self->_merge_attr( $attrs->{join}, $attrs->{prefetch} ); delete @{$attrs}{qw/join prefetch collapse distinct select as columns +select +as +columns/}; my $seen = { %{ (delete $attrs->{seen_join}) || {} } }; my $from; my @force_subq_attrs = qw/offset rows group_by having/; if ( ($attrs->{from} && ref $attrs->{from} ne 'ARRAY') || $self->_has_resolved_attr (@force_subq_attrs) ) { # Nuke the prefetch (if any) before the new $rs attrs # are resolved (prefetch is useless - we are wrapping # a subquery anyway). my $rs_copy = $self->search; $rs_copy->{attrs}{join} = $self->_merge_attr ( $rs_copy->{attrs}{join}, delete $rs_copy->{attrs}{prefetch}, ); $from = [{ -source_handle => $source->handle, -alias => $attrs->{alias}, $attrs->{alias} => $rs_copy->as_query, }]; delete @{$attrs}{@force_subq_attrs, 'where'}; $seen->{-relation_chain_depth} = 0; } elsif ($attrs->{from}) { #shallow copy suffices $from = [ @{$attrs->{from}} ]; } else { $from = [{ -source_handle => $source->handle, -alias => $attrs->{alias}, $attrs->{alias} => $source->from, }]; } my $jpath = ($seen->{-relation_chain_depth}) ? $from->[-1][0]{-join_path} : []; my @requested_joins = $source->_resolve_join( $join, $attrs->{alias}, $seen, $jpath, ); push @$from, @requested_joins; $seen->{-relation_chain_depth}++; # if $self already had a join/prefetch specified on it, the requested # $rel might very well be already included. What we do in this case # is effectively a no-op (except that we bump up the chain_depth on # the join in question so we could tell it *is* the search_related) my $already_joined; # we consider the last one thus reverse for my $j (reverse @requested_joins) { my ($last_j) = keys %{$j->[0]{-join_path}[-1]}; if ($rel eq $last_j) { $j->[0]{-relation_chain_depth}++; $already_joined++; last; } } unless ($already_joined) { push @$from, $source->_resolve_join( $rel, $attrs->{alias}, $seen, $jpath, ); } $seen->{-relation_chain_depth}++; return {%$attrs, from => $from, seen_join => $seen}; } # too many times we have to do $attrs = { %{$self->_resolved_attrs} } sub _resolved_attrs_copy { my $self = shift; return { %{$self->_resolved_attrs (@_)} }; } sub _resolved_attrs { my $self = shift; return $self->{_attrs} if $self->{_attrs}; my $attrs = { %{ $self->{attrs} || {} } }; my $source = $self->result_source; my $alias = $attrs->{alias}; $attrs->{columns} ||= delete $attrs->{cols} if exists $attrs->{cols}; my @colbits; # build columns (as long as select isn't set) into a set of as/select hashes unless ( $attrs->{select} ) { my @cols; if ( ref $attrs->{columns} eq 'ARRAY' ) { @cols = @{ delete $attrs->{columns}} } elsif ( defined $attrs->{columns} ) { @cols = delete $attrs->{columns} } else { @cols = $source->columns } for (@cols) { if ( ref $_ eq 'HASH' ) { push @colbits, $_ } else { my $key = /^\Q${alias}.\E(.+)$/ ? "$1" : "$_"; my $value = /\./ ? "$_" : "${alias}.$_"; push @colbits, { $key => $value }; } } } # add the additional columns on foreach (qw{include_columns +columns}) { if ( $attrs->{$_} ) { my @list = ( ref($attrs->{$_}) eq 'ARRAY' ) ? @{ delete $attrs->{$_} } : delete $attrs->{$_}; for (@list) { if ( ref($_) eq 'HASH' ) { push @colbits, $_ } else { my $key = ( split /\./, $_ )[-1]; my $value = ( /\./ ? $_ : "$alias.$_" ); push @colbits, { $key => $value }; } } } } # start with initial select items if ( $attrs->{select} ) { $attrs->{select} = ( ref $attrs->{select} eq 'ARRAY' ) ? [ @{ $attrs->{select} } ] : [ $attrs->{select} ]; if ( $attrs->{as} ) { $attrs->{as} = ( ref $attrs->{as} eq 'ARRAY' ? [ @{ $attrs->{as} } ] : [ $attrs->{as} ] ) } else { $attrs->{as} = [ map { m/^\Q${alias}.\E(.+)$/ ? $1 : $_ } @{ $attrs->{select} } ] } } else { # otherwise we intialise select & as to empty $attrs->{select} = []; $attrs->{as} = []; } # now add colbits to select/as push @{ $attrs->{select} }, map values %{$_}, @colbits; push @{ $attrs->{as} }, map keys %{$_}, @colbits; if ( my $adds = delete $attrs->{'+select'} ) { $adds = [$adds] unless ref $adds eq 'ARRAY'; push @{ $attrs->{select} }, map { /\./ || ref $_ ? $_ : "$alias.$_" } @$adds; } if ( my $adds = delete $attrs->{'+as'} ) { $adds = [$adds] unless ref $adds eq 'ARRAY'; push @{ $attrs->{as} }, @$adds; } $attrs->{from} ||= [{ -source_handle => $source->handle, -alias => $self->{attrs}{alias}, $self->{attrs}{alias} => $source->from, }]; if ( $attrs->{join} || $attrs->{prefetch} ) { $self->throw_exception ('join/prefetch can not be used with a custom {from}') if ref $attrs->{from} ne 'ARRAY'; my $join = delete $attrs->{join} || {}; if ( defined $attrs->{prefetch} ) { $join = $self->_merge_attr( $join, $attrs->{prefetch} ); } $attrs->{from} = # have to copy here to avoid corrupting the original [ @{ $attrs->{from} }, $source->_resolve_join( $join, $alias, { %{ $attrs->{seen_join} || {} } }, ( $attrs->{seen_join} && keys %{$attrs->{seen_join}}) ? $attrs->{from}[-1][0]{-join_path} : [] , ) ]; } if ( defined $attrs->{order_by} ) { $attrs->{order_by} = ( ref( $attrs->{order_by} ) eq 'ARRAY' ? [ @{ $attrs->{order_by} } ] : [ $attrs->{order_by} || () ] ); } if ($attrs->{group_by} and ref $attrs->{group_by} ne 'ARRAY') { $attrs->{group_by} = [ $attrs->{group_by} ]; } # generate the distinct induced group_by early, as prefetch will be carried via a # subquery (since a group_by is present) if (delete $attrs->{distinct}) { if ($attrs->{group_by}) { carp ("Useless use of distinct on a grouped resultset ('distinct' is ignored when a 'group_by' is present)"); } else { $attrs->{group_by} = [ grep { !ref($_) || (ref($_) ne 'HASH') } @{$attrs->{select}} ]; # add any order_by parts that are not already present in the group_by # we need to be careful not to add any named functions/aggregates # i.e. select => [ ... { count => 'foo', -as 'foocount' } ... ] my %already_grouped = map { $_ => 1 } (@{$attrs->{group_by}}); my $storage = $self->result_source->schema->storage; my $rs_column_list = $storage->_resolve_column_info ($attrs->{from}); for my $chunk ($storage->_parse_order_by($attrs->{order_by})) { if ($rs_column_list->{$chunk} && not $already_grouped{$chunk}++) { push @{$attrs->{group_by}}, $chunk; } } } } $attrs->{collapse} ||= {}; if ( my $prefetch = delete $attrs->{prefetch} ) { $prefetch = $self->_merge_attr( {}, $prefetch ); my $prefetch_ordering = []; # this is a separate structure (we don't look in {from} directly) # as the resolver needs to shift things off the lists to work # properly (identical-prefetches on different branches) my $join_map = {}; if (ref $attrs->{from} eq 'ARRAY') { my $start_depth = $attrs->{seen_join}{-relation_chain_depth} || 0; for my $j ( @{$attrs->{from}}[1 .. $#{$attrs->{from}} ] ) { next unless $j->[0]{-alias}; next unless $j->[0]{-join_path}; next if ($j->[0]{-relation_chain_depth} || 0) < $start_depth; my @jpath = map { keys %$_ } @{$j->[0]{-join_path}}; my $p = $join_map; $p = $p->{$_} ||= {} for @jpath[ ($start_depth/2) .. $#jpath]; #only even depths are actual jpath boundaries push @{$p->{-join_aliases} }, $j->[0]{-alias}; } } my @prefetch = $source->_resolve_prefetch( $prefetch, $alias, $join_map, $prefetch_ordering, $attrs->{collapse} ); # we need to somehow mark which columns came from prefetch $attrs->{_prefetch_select} = [ map { $_->[0] } @prefetch ]; push @{ $attrs->{select} }, @{$attrs->{_prefetch_select}}; push @{ $attrs->{as} }, (map { $_->[1] } @prefetch); push( @{$attrs->{order_by}}, @$prefetch_ordering ); $attrs->{_collapse_order_by} = \@$prefetch_ordering; } # if both page and offset are specified, produce a combined offset # even though it doesn't make much sense, this is what pre 081xx has # been doing if (my $page = delete $attrs->{page}) { $attrs->{offset} = ($attrs->{rows} * ($page - 1)) + ($attrs->{offset} || 0) ; } return $self->{_attrs} = $attrs; } sub _rollout_attr { my ($self, $attr) = @_; if (ref $attr eq 'HASH') { return $self->_rollout_hash($attr); } elsif (ref $attr eq 'ARRAY') { return $self->_rollout_array($attr); } else { return [$attr]; } } sub _rollout_array { my ($self, $attr) = @_; my @rolled_array; foreach my $element (@{$attr}) { if (ref $element eq 'HASH') { push( @rolled_array, @{ $self->_rollout_hash( $element ) } ); } elsif (ref $element eq 'ARRAY') { # XXX - should probably recurse here push( @rolled_array, @{$self->_rollout_array($element)} ); } else { push( @rolled_array, $element ); } } return \@rolled_array; } sub _rollout_hash { my ($self, $attr) = @_; my @rolled_array; foreach my $key (keys %{$attr}) { push( @rolled_array, { $key => $attr->{$key} } ); } return \@rolled_array; } sub _calculate_score { my ($self, $a, $b) = @_; if (defined $a xor defined $b) { return 0; } elsif (not defined $a) { return 1; } if (ref $b eq 'HASH') { my ($b_key) = keys %{$b}; if (ref $a eq 'HASH') { my ($a_key) = keys %{$a}; if ($a_key eq $b_key) { return (1 + $self->_calculate_score( $a->{$a_key}, $b->{$b_key} )); } else { return 0; } } else { return ($a eq $b_key) ? 1 : 0; } } else { if (ref $a eq 'HASH') { my ($a_key) = keys %{$a}; return ($b eq $a_key) ? 1 : 0; } else { return ($b eq $a) ? 1 : 0; } } } sub _merge_attr { my ($self, $orig, $import) = @_; return $import unless defined($orig); return $orig unless defined($import); $orig = $self->_rollout_attr($orig); $import = $self->_rollout_attr($import); my $seen_keys; foreach my $import_element ( @{$import} ) { # find best candidate from $orig to merge $b_element into my $best_candidate = { position => undef, score => 0 }; my $position = 0; foreach my $orig_element ( @{$orig} ) { my $score = $self->_calculate_score( $orig_element, $import_element ); if ($score > $best_candidate->{score}) { $best_candidate->{position} = $position; $best_candidate->{score} = $score; } $position++; } my ($import_key) = ( ref $import_element eq 'HASH' ) ? keys %{$import_element} : ($import_element); if ($best_candidate->{score} == 0 || exists $seen_keys->{$import_key}) { push( @{$orig}, $import_element ); } else { my $orig_best = $orig->[$best_candidate->{position}]; # merge orig_best and b_element together and replace original with merged if (ref $orig_best ne 'HASH') { $orig->[$best_candidate->{position}] = $import_element; } elsif (ref $import_element eq 'HASH') { my ($key) = keys %{$orig_best}; $orig->[$best_candidate->{position}] = { $key => $self->_merge_attr($orig_best->{$key}, $import_element->{$key}) }; } } $seen_keys->{$import_key} = 1; # don't merge the same key twice } return $orig; } sub result_source { my $self = shift; if (@_) { $self->_source_handle($_[0]->handle); } else { $self->_source_handle->resolve; } } =head2 throw_exception See L for details. =cut sub throw_exception { my $self=shift; if (ref $self && $self->_source_handle->schema) { $self->_source_handle->schema->throw_exception(@_) } else { DBIx::Class::Exception->throw(@_); } } # XXX: FIXME: Attributes docs need clearing up =head1 ATTRIBUTES Attributes are used to refine a ResultSet in various ways when searching for data. They can be passed to any method which takes an C<\%attrs> argument. See L, L, L, L. These are in no particular order: =head2 order_by =over 4 =item Value: ( $order_by | \@order_by | \%order_by ) =back Which column(s) to order the results by. [The full list of suitable values is documented in L; the following is a summary of common options.] If a single column name, or an arrayref of names is supplied, the argument is passed through directly to SQL. The hashref syntax allows for connection-agnostic specification of ordering direction: For descending order: order_by => { -desc => [qw/col1 col2 col3/] } For explicit ascending order: order_by => { -asc => 'col' } The old scalarref syntax (i.e. order_by => \'year DESC') is still supported, although you are strongly encouraged to use the hashref syntax as outlined above. =head2 columns =over 4 =item Value: \@columns =back Shortcut to request a particular set of columns to be retrieved. Each column spec may be a string (a table column name), or a hash (in which case the key is the C value, and the value is used as the C from that, then auto-populates C from C but adds columns to the selection. =back =head2 +as =over 4 Indicates additional column names for those added via L. See L. =back =head2 as =over 4 =item Value: \@inflation_names =back Indicates column names for object inflation. That is, C indicates the name that the column can be accessed as via the C method (or via the object accessor, B). It has nothing to do with the SQL code C, usually when C attribute that contains the C text, e.g. select => [\'myfield AS alias'] =head2 join =over 4 =item Value: ($rel_name | \@rel_names | \%rel_names) =back Contains a list of relationships that should be joined for this query. For example: # Get CDs by Nine Inch Nails my $rs = $schema->resultset('CD')->search( { 'artist.name' => 'Nine Inch Nails' }, { join => 'artist' } ); Can also contain a hash reference to refer to the other relation's relations. For example: package MyApp::Schema::Track; use base qw/DBIx::Class/; __PACKAGE__->table('track'); __PACKAGE__->add_columns(qw/trackid cd position title/); __PACKAGE__->set_primary_key('trackid'); __PACKAGE__->belongs_to(cd => 'MyApp::Schema::CD'); 1; # In your application my $rs = $schema->resultset('Artist')->search( { 'track.title' => 'Teardrop' }, { join => { cd => 'track' }, order_by => 'artist.name', } ); You need to use the relationship (not the table) name in conditions, because they are aliased as such. The current table is aliased as "me", so you need to use me.column_name in order to avoid ambiguity. For example: # Get CDs from 1984 with a 'Foo' track my $rs = $schema->resultset('CD')->search( { 'me.year' => 1984, 'tracks.name' => 'Foo' }, { join => 'tracks' } ); If the same join is supplied twice, it will be aliased to _2 (and similarly for a third time). For e.g. my $rs = $schema->resultset('Artist')->search({ 'cds.title' => 'Down to Earth', 'cds_2.title' => 'Popular', }, { join => [ qw/cds cds/ ], }); will return a set of all artists that have both a cd with title 'Down to Earth' and a cd with title 'Popular'. If you want to fetch related objects from other tables as well, see C below. For more help on using joins with search, see L. =head2 prefetch =over 4 =item Value: ($rel_name | \@rel_names | \%rel_names) =back Contains one or more relationships that should be fetched along with the main query (when they are accessed afterwards the data will already be available, without extra queries to the database). This is useful for when you know you will need the related objects, because it saves at least one query: my $rs = $schema->resultset('Tag')->search( undef, { prefetch => { cd => 'artist' } } ); The initial search results in SQL like the following: SELECT tag.*, cd.*, artist.* FROM tag JOIN cd ON tag.cd = cd.cdid JOIN artist ON cd.artist = artist.artistid L has no need to go back to the database when we access the C or C relationships, which saves us two SQL statements in this case. Simple prefetches will be joined automatically, so there is no need for a C attribute in the above search. C can be used with the following relationship types: C, C (or if you're using C, any relationship declared with an accessor type of 'single' or 'filter'). A more complex example that prefetches an artists cds, the tracks on those cds, and the tags associated with that artist is given below (assuming many-to-many from artists to tags): my $rs = $schema->resultset('Artist')->search( undef, { prefetch => [ { cds => 'tracks' }, { artist_tags => 'tags' } ] } ); B If you specify a C attribute, the C and C