CFStorage.c   [plain text]


/*
 * Copyright (c) 2005 Apple Computer, Inc. All rights reserved.
 *
 * @APPLE_LICENSE_HEADER_START@
 * 
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this
 * file.
 * 
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 * 
 * @APPLE_LICENSE_HEADER_END@
 */
/*	CFStorage.c
	Copyright 1999-2002, Apple, Inc. All rights reserved.
	Responsibility: Ali Ozer
*/

/*
2-3 tree storing arbitrary sized values.
??? Currently elementSize cannot be greater than storage->maxLeafCapacity, which is less than or equal to __CFStorageMaxLeafCapacity
*/

#include "CFStorage.h"
#include "CFInternal.h"

#if defined(__MACH__)
#include <mach/mach.h>
#else
enum {
    vm_page_size = 4096
};
#endif

enum {
    __CFStorageMaxLeafCapacity = 65536
};

#define COPYMEM(src,dst,n) CF_WRITE_BARRIER_MEMMOVE((dst), (src), (n))
#define PAGE_LIMIT ((CFIndex)vm_page_size / 2)

CF_INLINE int roundToPage(int num) {
    return (num + vm_page_size - 1) & ~(vm_page_size - 1);
}

typedef struct __CFStorageNode {
    CFIndex numBytes;	/* Number of actual bytes in this node and all its children */
    bool isLeaf;
    union {
        struct {
            CFIndex capacityInBytes;	// capacityInBytes is capacity of memory; this is either 0, or >= numBytes
            uint8_t *memory;
        } leaf;
        struct {
            struct __CFStorageNode *child[3];
        } notLeaf;
    } info;
} CFStorageNode;

struct __CFStorage {
    CFRuntimeBase base;
    CFIndex valueSize;
    CFRange cachedRange;	// In terms of values, not bytes
    CFStorageNode *cachedNode;	// If cachedRange is valid, then either this or
    uint8_t *cachedNodeMemory;	//    this should be non-NULL
    CFIndex maxLeafCapacity;	// In terms of bytes
    CFStorageNode rootNode;
    CFOptionFlags nodeHint;	// auto_memory_type_t, AUTO_MEMORY_SCANNED or AUTO_MEMORY_UNSCANNED.
};

/* Allocates the memory and initializes the capacity in a leaf. __CFStorageAllocLeafNodeMemory() is the entry point; __CFStorageAllocLeafNodeMemoryAux is called if actual reallocation is needed.
*/
static void __CFStorageAllocLeafNodeMemoryAux(CFAllocatorRef allocator, CFStorageRef storage, CFStorageNode *node, CFIndex cap) {
    CF_WRITE_BARRIER_ASSIGN(allocator, node->info.leaf.memory, _CFAllocatorReallocateGC(allocator, node->info.leaf.memory, cap, storage->nodeHint));	// This will free... ??? Use allocator
    if (__CFOASafe) __CFSetLastAllocationEventName(node->info.leaf.memory, "CFStorage (node bytes)");
    node->info.leaf.capacityInBytes = cap;
}

CF_INLINE void __CFStorageAllocLeafNodeMemory(CFAllocatorRef allocator, CFStorageRef storage, CFStorageNode *node, CFIndex cap, bool compact) {
    if (cap > PAGE_LIMIT) {
        cap = roundToPage(cap);
	if (cap > storage->maxLeafCapacity) cap = storage->maxLeafCapacity;
    } else {
        cap = (((cap + 63) / 64) * 64);
    }
    if (compact ? (cap != node->info.leaf.capacityInBytes) : (cap > node->info.leaf.capacityInBytes)) __CFStorageAllocLeafNodeMemoryAux(allocator, storage, node, cap);
}

/* Sets the cache to point at the specified node or memory. loc and len are in terms of values, not bytes. To clear the cache set these two to 0.
   At least one of node or memory should be non-NULL. memory is consulted first when using the cache.
*/
CF_INLINE void __CFStorageSetCache(CFStorageRef storage, CFStorageNode *node, uint8_t *memory, CFIndex loc, CFIndex len) {
    CFAllocatorRef allocator = __CFGetAllocator(storage);
    storage->cachedRange.location = loc;
    storage->cachedRange.length = len;
    CF_WRITE_BARRIER_BASE_ASSIGN(allocator, storage, storage->cachedNode, node);
    CF_WRITE_BARRIER_BASE_ASSIGN(allocator, storage, storage->cachedNodeMemory, memory);
}

/* Gets the location for the specified absolute loc from the cached info; call only after verifying that the cache is OK to use.
   Note that we assume if !storage->cachedNodeMemory, then storage->cachedNode must be non-NULL.
   However, it is possible to have storage->cachedNodeMemory without storage->cachedNode.  We check the memory before node.
*/
CF_INLINE uint8_t *__CFStorageGetFromCache(CFStorageRef storage, CFIndex loc) {
    if (!storage->cachedNodeMemory && !(storage->cachedNodeMemory = storage->cachedNode->info.leaf.memory)) {
        CFAllocatorRef allocator = CFGetAllocator(storage);
        __CFStorageAllocLeafNodeMemory(allocator, storage, storage->cachedNode, storage->cachedNode->numBytes, false);
        CF_WRITE_BARRIER_BASE_ASSIGN(allocator, storage, storage->cachedNodeMemory, storage->cachedNode->info.leaf.memory);
    }
    return storage->cachedNodeMemory + (loc - storage->cachedRange.location) * storage->valueSize;
}

/* Returns the number of the child containing the desired value and the relative index of the value in that child.
   forInsertion = true means that we are looking for the child in which to insert; this changes the behavior when the index is at the end of a child
   relativeByteNum (not optional, for performance reasons) returns the relative byte number of the specified byte in the child.
   Don't call with leaf nodes!
*/
CF_INLINE void __CFStorageFindChild(CFStorageNode *node, CFIndex byteNum, bool forInsertion, CFIndex *childNum, CFIndex *relativeByteNum) {
    if (forInsertion) byteNum--;	/* If for insertion, we do <= checks, not <, so this accomplishes the same thing */
    if (byteNum < node->info.notLeaf.child[0]->numBytes) *childNum = 0;
    else {
        byteNum -= node->info.notLeaf.child[0]->numBytes;
        if (byteNum < node->info.notLeaf.child[1]->numBytes) *childNum = 1;
        else {
            byteNum -= node->info.notLeaf.child[1]->numBytes;
            *childNum = 2;
        }
    }
    if (forInsertion) byteNum++;
    *relativeByteNum = byteNum;
}

/* Finds the location where the specified byte is stored. If validConsecutiveByteRange is not NULL, returns
   the range of bytes that are consecutive with this one.
   !!! Assumes the byteNum is within the range of this node.
*/
static void *__CFStorageFindByte(CFStorageRef storage, CFStorageNode *node, CFIndex byteNum, CFRange *validConsecutiveByteRange) {
    if (node->isLeaf) {
        if (validConsecutiveByteRange) *validConsecutiveByteRange = CFRangeMake(0, node->numBytes);
        __CFStorageAllocLeafNodeMemory(CFGetAllocator(storage), storage, node, node->numBytes, false);
        return node->info.leaf.memory + byteNum; 
    } else {
        void *result;
        CFIndex childNum;
        CFIndex relativeByteNum;
        __CFStorageFindChild(node, byteNum, false, &childNum, &relativeByteNum);
        result = __CFStorageFindByte(storage, node->info.notLeaf.child[childNum], relativeByteNum, validConsecutiveByteRange);
        if (validConsecutiveByteRange) {
            if (childNum > 0) validConsecutiveByteRange->location += node->info.notLeaf.child[0]->numBytes;
            if (childNum > 1) validConsecutiveByteRange->location += node->info.notLeaf.child[1]->numBytes;
        }
        return result;
    }
}

/* Guts of CFStorageGetValueAtIndex(); note that validConsecutiveValueRange is not optional.
   Consults and updates cache.
*/
CF_INLINE void *__CFStorageGetValueAtIndex(CFStorageRef storage, CFIndex idx, CFRange *validConsecutiveValueRange) {
    uint8_t *result;
    if (idx < storage->cachedRange.location + storage->cachedRange.length && idx >= storage->cachedRange.location) {
        result = __CFStorageGetFromCache(storage, idx);
    } else {
        CFRange range;
        result = __CFStorageFindByte(storage, &storage->rootNode, idx * storage->valueSize, &range);
        __CFStorageSetCache(storage, NULL, result - (idx * storage->valueSize - range.location), range.location / storage->valueSize, range.length / storage->valueSize);
    }
    *validConsecutiveValueRange = storage->cachedRange;
    return result;
}

static CFStorageNode *__CFStorageCreateNode(CFAllocatorRef allocator, bool isLeaf, CFIndex numBytes) {
    CFStorageNode *newNode = _CFAllocatorAllocateGC(allocator, sizeof(CFStorageNode), 0);
    if (__CFOASafe) __CFSetLastAllocationEventName(newNode, "CFStorage (node)");
    newNode->isLeaf = isLeaf;
    newNode->numBytes = numBytes;
    if (isLeaf) {
        newNode->info.leaf.capacityInBytes = 0;
        newNode->info.leaf.memory = NULL;
    } else {
        newNode->info.notLeaf.child[0] = newNode->info.notLeaf.child[1] = newNode->info.notLeaf.child[2] = NULL;
    }
    return newNode;
}

static void __CFStorageNodeDealloc(CFAllocatorRef allocator, CFStorageNode *node, bool freeNodeItself) {
    if (node->isLeaf) {
        _CFAllocatorDeallocateGC(allocator, node->info.leaf.memory);
    } else {
        int cnt;
        for (cnt = 0; cnt < 3; cnt++) if (node->info.notLeaf.child[cnt]) __CFStorageNodeDealloc(allocator, node->info.notLeaf.child[cnt], true);
    }
    if (freeNodeItself) _CFAllocatorDeallocateGC(allocator, node);
}

static CFIndex __CFStorageGetNumChildren(CFStorageNode *node) {
    if (!node || node->isLeaf) return 0;
    if (node->info.notLeaf.child[2]) return 3;
    if (node->info.notLeaf.child[1]) return 2;
    if (node->info.notLeaf.child[0]) return 1;
    return 0;
}

/* The boolean compact indicates whether leaf nodes that get smaller should be realloced.
*/
static void __CFStorageDelete(CFAllocatorRef allocator, CFStorageRef storage, CFStorageNode *node, CFRange range, bool compact) {
    if (node->isLeaf) {
	node->numBytes -= range.length;
        // If this node had memory allocated, readjust the bytes...
	if (node->info.leaf.memory) {
            COPYMEM(node->info.leaf.memory + range.location + range.length, node->info.leaf.memory + range.location, node->numBytes - range.location);
	    if (compact) __CFStorageAllocLeafNodeMemory(allocator, storage, node, node->numBytes, true);
	}
   } else {
        bool childrenAreLeaves = node->info.notLeaf.child[0]->isLeaf;
	node->numBytes -= range.length;
	while (range.length > 0) {
            CFRange rangeToDelete;
            CFIndex relativeByteNum;
            CFIndex childNum;
            __CFStorageFindChild(node, range.location + range.length, true, &childNum, &relativeByteNum);
            if (range.length > relativeByteNum) {
                rangeToDelete.length = relativeByteNum;
                rangeToDelete.location = 0;
            } else {
                rangeToDelete.length = range.length;
                rangeToDelete.location = relativeByteNum - range.length;
            }
            __CFStorageDelete(allocator, storage, node->info.notLeaf.child[childNum], rangeToDelete, compact);
            if (node->info.notLeaf.child[childNum]->numBytes == 0) {		// Delete empty node and compact
                int cnt;
                _CFAllocatorDeallocateGC(allocator, node->info.notLeaf.child[childNum]);
                for (cnt = childNum; cnt < 2; cnt++) {
                    CF_WRITE_BARRIER_ASSIGN(allocator, node->info.notLeaf.child[cnt], node->info.notLeaf.child[cnt+1]);
                }
                node->info.notLeaf.child[2] = NULL;
            }
	    range.length -= rangeToDelete.length;
	}
        // At this point the remaining children are packed
        if (childrenAreLeaves) {
            // Children are leaves; if their total bytes is smaller than a leaf's worth, collapse into one...
            if (node->numBytes > 0 && node->numBytes <= storage->maxLeafCapacity) {
                __CFStorageAllocLeafNodeMemory(allocator, storage, node->info.notLeaf.child[0], node->numBytes, false);
                if (node->info.notLeaf.child[1] && node->info.notLeaf.child[1]->numBytes) {
                    COPYMEM(node->info.notLeaf.child[1]->info.leaf.memory, node->info.notLeaf.child[0]->info.leaf.memory + node->info.notLeaf.child[0]->numBytes, node->info.notLeaf.child[1]->numBytes);
                    if (node->info.notLeaf.child[2] && node->info.notLeaf.child[2]->numBytes) {
                        COPYMEM(node->info.notLeaf.child[2]->info.leaf.memory, node->info.notLeaf.child[0]->info.leaf.memory + node->info.notLeaf.child[0]->numBytes + node->info.notLeaf.child[1]->numBytes, node->info.notLeaf.child[2]->numBytes);
                        __CFStorageNodeDealloc(allocator, node->info.notLeaf.child[2], true);
                        node->info.notLeaf.child[2] = NULL;
                    }
                    __CFStorageNodeDealloc(allocator, node->info.notLeaf.child[1], true);
                    node->info.notLeaf.child[1] = NULL;
                }
                node->info.notLeaf.child[0]->numBytes = node->numBytes;
            }
        } else {
            // Children are not leaves; combine their children to assure each node has 2 or 3 children...
	    // (Could try to bypass all this by noting up above whether the number of grandchildren changed...)
            CFStorageNode *gChildren[9];
            CFIndex cCnt, gCnt, cnt;
            CFIndex totalG = 0;	// Total number of grandchildren
            for (cCnt = 0; cCnt < 3; cCnt++) {
                CFStorageNode *child = node->info.notLeaf.child[cCnt];
                if (child) {
		    for (gCnt = 0; gCnt < 3; gCnt++) if (child->info.notLeaf.child[gCnt]) {
                        gChildren[totalG++] = child->info.notLeaf.child[gCnt];
                        child->info.notLeaf.child[gCnt] = NULL;
                    }
		    child->numBytes = 0;
		}
            }
            gCnt = 0;	// Total number of grandchildren placed
	    for (cCnt = 0; cCnt < 3; cCnt++) {
                // These tables indicate how many children each child should have, given the total number of grandchildren (last child gets remainder)
                static const unsigned char forChild0[10] = {0, 1, 2, 3, 2, 3, 3, 3, 3, 3};
                static const unsigned char forChild1[10] = {0, 0, 0, 0, 2, 2, 3, 2, 3, 3};
		// sCnt is the number of grandchildren to be placed into child cCnt
		// Depending on child number, pick the right number
                CFIndex sCnt = (cCnt == 0) ? forChild0[totalG] : ((cCnt == 1) ? forChild1[totalG] : totalG);
		// Assure we have that many grandchildren...
		if (sCnt > totalG - gCnt) sCnt = totalG - gCnt;
                if (sCnt) {
                    if (!node->info.notLeaf.child[cCnt]) {
                        CFStorageNode *newNode = __CFStorageCreateNode(allocator, false, 0);
                        CF_WRITE_BARRIER_ASSIGN(allocator, node->info.notLeaf.child[cCnt], newNode);
                    }
                    for (cnt = 0; cnt < sCnt; cnt++) {
                        node->info.notLeaf.child[cCnt]->numBytes += gChildren[gCnt]->numBytes;
                        CF_WRITE_BARRIER_ASSIGN(allocator, node->info.notLeaf.child[cCnt]->info.notLeaf.child[cnt], gChildren[gCnt++]);
                    }
                } else {
                    if (node->info.notLeaf.child[cCnt]) {
                        _CFAllocatorDeallocateGC(allocator, node->info.notLeaf.child[cCnt]);
                        node->info.notLeaf.child[cCnt] = NULL;
                    }
                }
	    }
        }
    }
}


/* Returns NULL or additional node to come after this node
   Assumption: size is never > storage->maxLeafCapacity
*/
static CFStorageNode *__CFStorageInsert(CFAllocatorRef allocator, CFStorageRef storage, CFStorageNode *node, CFIndex byteNum, CFIndex size, CFIndex absoluteByteNum) {
    if (node->isLeaf) {
        if (size + node->numBytes > storage->maxLeafCapacity) {	// Need to create more child nodes
            if (byteNum == node->numBytes) {	// Inserting at end; easy...
                CFStorageNode *newNode = __CFStorageCreateNode(allocator, true, size);
                __CFStorageSetCache(storage, newNode, NULL, absoluteByteNum / storage->valueSize, size / storage->valueSize);
                return newNode;
            } else if (byteNum == 0) {	// Inserting at front; also easy, but we need to swap node and newNode
                CFStorageNode *newNode = __CFStorageCreateNode(allocator, true, 0);
                CF_WRITE_BARRIER_MEMMOVE(newNode, node, sizeof(CFStorageNode));
                node->isLeaf = true;
                node->numBytes = size;
                node->info.leaf.capacityInBytes = 0;
                node->info.leaf.memory = NULL;
                __CFStorageSetCache(storage, node, NULL, absoluteByteNum / storage->valueSize, size / storage->valueSize);
                return newNode;
            } else if (byteNum + size <= storage->maxLeafCapacity) {	// Inserting at middle; inserted region will fit into existing child
                // Create new node to hold the overflow
                CFStorageNode *newNode = __CFStorageCreateNode(allocator, true, node->numBytes - byteNum);
                if (node->info.leaf.memory) {	// We allocate memory lazily...
                    __CFStorageAllocLeafNodeMemory(allocator, storage, newNode, node->numBytes - byteNum, false);
                    COPYMEM(node->info.leaf.memory + byteNum, newNode->info.leaf.memory, node->numBytes - byteNum);
                    __CFStorageAllocLeafNodeMemory(allocator, storage, node, byteNum + size, false);
                }
                node->numBytes = byteNum + size;
                __CFStorageSetCache(storage, node, node->info.leaf.memory, (absoluteByteNum - byteNum) / storage->valueSize, node->numBytes / storage->valueSize);
                return newNode;
            } else {	// Inserting some of new into one node, rest into another; remember that the assumption is size <= storage->maxLeafCapacity
                CFStorageNode *newNode = __CFStorageCreateNode(allocator, true, node->numBytes + size - storage->maxLeafCapacity);	// New stuff
                if (node->info.leaf.memory) {	// We allocate memory lazily...
                    __CFStorageAllocLeafNodeMemory(allocator, storage, newNode, node->numBytes + size - storage->maxLeafCapacity, false);
                    COPYMEM(node->info.leaf.memory + byteNum, newNode->info.leaf.memory + byteNum + size - storage->maxLeafCapacity, node->numBytes - byteNum);
                    __CFStorageAllocLeafNodeMemory(allocator, storage, node, storage->maxLeafCapacity, false);
                }
                node->numBytes = storage->maxLeafCapacity;
                __CFStorageSetCache(storage, node, node->info.leaf.memory, (absoluteByteNum - byteNum) / storage->valueSize, node->numBytes / storage->valueSize);
                //__CFStorageSetCache(storage, NULL, NULL, 0, 0);
                return newNode;
            }
        } else {	// No need to create new nodes!
            if (node->info.leaf.memory) {
                __CFStorageAllocLeafNodeMemory(allocator, storage, node, node->numBytes + size, false);
                COPYMEM(node->info.leaf.memory + byteNum, node->info.leaf.memory + byteNum + size, node->numBytes - byteNum);
            }
            node->numBytes += size;
            __CFStorageSetCache(storage, node, node->info.leaf.memory, (absoluteByteNum - byteNum) / storage->valueSize, node->numBytes / storage->valueSize);
            return NULL;
        }
    } else {
        CFIndex relativeByteNum;
        CFIndex childNum;
        CFStorageNode *newNode;
        __CFStorageFindChild(node, byteNum, true, &childNum, &relativeByteNum);
        newNode = __CFStorageInsert(allocator, storage, node->info.notLeaf.child[childNum], relativeByteNum, size, absoluteByteNum);
        if (newNode) {
            if (node->info.notLeaf.child[2] == NULL) {	// There's an empty slot for the new node, cool
                if (childNum == 0) CF_WRITE_BARRIER_ASSIGN(allocator, node->info.notLeaf.child[2], node->info.notLeaf.child[1]);	// Make room
                CF_WRITE_BARRIER_ASSIGN(allocator, node->info.notLeaf.child[childNum + 1], newNode);
                node->numBytes += size;
                return NULL;
            } else {
                CFStorageNode *anotherNode = __CFStorageCreateNode(allocator, false, 0);	// Create another node
                if (childNum == 0) {	// Last two children go to new node
                    CF_WRITE_BARRIER_ASSIGN(allocator, anotherNode->info.notLeaf.child[0], node->info.notLeaf.child[1]);
                    CF_WRITE_BARRIER_ASSIGN(allocator, anotherNode->info.notLeaf.child[1], node->info.notLeaf.child[2]);
                    CF_WRITE_BARRIER_ASSIGN(allocator, node->info.notLeaf.child[1], newNode);
                    node->info.notLeaf.child[2] = NULL;
                } else if (childNum == 1) {	// Last child goes to new node
                    CF_WRITE_BARRIER_ASSIGN(allocator, anotherNode->info.notLeaf.child[0], newNode);
                    CF_WRITE_BARRIER_ASSIGN(allocator, anotherNode->info.notLeaf.child[1], node->info.notLeaf.child[2]);
                    node->info.notLeaf.child[2] = NULL;
                } else {	// New node contains the new comers...
                    CF_WRITE_BARRIER_ASSIGN(allocator, anotherNode->info.notLeaf.child[0], node->info.notLeaf.child[2]);
                    CF_WRITE_BARRIER_ASSIGN(allocator, anotherNode->info.notLeaf.child[1], newNode);
                    node->info.notLeaf.child[2] = NULL;
                }
                node->numBytes = node->info.notLeaf.child[0]->numBytes + node->info.notLeaf.child[1]->numBytes;
                anotherNode->numBytes = anotherNode->info.notLeaf.child[0]->numBytes + anotherNode->info.notLeaf.child[1]->numBytes;
                return anotherNode;
            }
        } else {
            node->numBytes += size;
        }
    }
    return NULL;
}

CF_INLINE CFIndex __CFStorageGetCount(CFStorageRef storage) {
    return storage->rootNode.numBytes / storage->valueSize;
}

static bool __CFStorageEqual(CFTypeRef cf1, CFTypeRef cf2) {
    CFStorageRef storage1 = (CFStorageRef)cf1;
    CFStorageRef storage2 = (CFStorageRef)cf2;
    CFIndex loc, count, valueSize;
    CFRange range1, range2;
    uint8_t *ptr1, *ptr2;

    count = __CFStorageGetCount(storage1);
    if (count != __CFStorageGetCount(storage2)) return false;

    valueSize = __CFStorageGetValueSize(storage1);
    if (valueSize != __CFStorageGetValueSize(storage2)) return false;

    loc = range1.location = range1.length = range2.location = range2.length = 0;
    ptr1 = ptr2 = NULL;

    while (loc < count) {
	CFIndex cntThisTime;
	if (loc >= range1.location + range1.length) ptr1 = CFStorageGetValueAtIndex(storage1, loc, &range1);
	if (loc >= range2.location + range2.length) ptr2 = CFStorageGetValueAtIndex(storage2, loc, &range2);
	cntThisTime = range1.location + range1.length;
	if (range2.location + range2.length < cntThisTime) cntThisTime = range2.location + range2.length;
	cntThisTime -= loc;
	if (memcmp(ptr1, ptr2, valueSize * cntThisTime) != 0) return false;
	ptr1 += valueSize * cntThisTime;
	ptr2 += valueSize * cntThisTime;
	loc += cntThisTime;
    }
    return true;
}

static CFHashCode __CFStorageHash(CFTypeRef cf) {
    CFStorageRef Storage = (CFStorageRef)cf;
    return __CFStorageGetCount(Storage);
}

static void __CFStorageDescribeNode(CFStorageNode *node, CFMutableStringRef str, CFIndex level) {
    int cnt;
    for (cnt = 0; cnt < level; cnt++) CFStringAppendCString(str, "  ", CFStringGetSystemEncoding());

    if (node->isLeaf) {
        CFStringAppendFormat(str, NULL, CFSTR("Leaf %d/%d\n"), node->numBytes, node->info.leaf.capacityInBytes);
    } else {
        CFStringAppendFormat(str, NULL, CFSTR("Node %d\n"), node->numBytes);
        for (cnt = 0; cnt < 3; cnt++) if (node->info.notLeaf.child[cnt]) __CFStorageDescribeNode(node->info.notLeaf.child[cnt], str, level+1);
    }
}

static CFIndex __CFStorageGetNodeCapacity(CFStorageNode *node) {
    if (!node) return 0;
    if (node->isLeaf) return node->info.leaf.capacityInBytes;
    return __CFStorageGetNodeCapacity(node->info.notLeaf.child[0]) + __CFStorageGetNodeCapacity(node->info.notLeaf.child[1]) + __CFStorageGetNodeCapacity(node->info.notLeaf.child[2]);
}

CFIndex __CFStorageGetCapacity(CFStorageRef storage) {
    return __CFStorageGetNodeCapacity(&storage->rootNode) / storage->valueSize;
}

CFIndex __CFStorageGetValueSize(CFStorageRef storage) {
    return storage->valueSize;
}

static CFStringRef __CFStorageCopyDescription(CFTypeRef cf) {
    CFStorageRef storage = (CFStorageRef)cf;
    CFMutableStringRef result;
    CFAllocatorRef allocator = CFGetAllocator(storage);
    result = CFStringCreateMutable(allocator, 0);
    CFStringAppendFormat(result, NULL, CFSTR("<CFStorage %p [%p]>[count = %u, capacity = %u]\n"), storage, allocator, __CFStorageGetCount(storage), __CFStorageGetCapacity(storage));
    __CFStorageDescribeNode(&storage->rootNode, result, 0);
    return result;
}

static void __CFStorageDeallocate(CFTypeRef cf) {
    CFStorageRef storage = (CFStorageRef)cf;
    CFAllocatorRef allocator = CFGetAllocator(storage);
    if (CF_IS_COLLECTABLE_ALLOCATOR(allocator)) return; // XXX_PCB GC will take care of us.
    __CFStorageNodeDealloc(allocator, &storage->rootNode, false);
}

static CFTypeID __kCFStorageTypeID = _kCFRuntimeNotATypeID;

static const CFRuntimeClass __CFStorageClass = {
    _kCFRuntimeScannedObject,
    "CFStorage",
    NULL,	// init
    NULL,	// copy
    __CFStorageDeallocate,
    (void *)__CFStorageEqual,
    __CFStorageHash,
    NULL,	// 
    __CFStorageCopyDescription
};

__private_extern__ void __CFStorageInitialize(void) {
    __kCFStorageTypeID = _CFRuntimeRegisterClass(&__CFStorageClass);
}

/*** Public API ***/

CFStorageRef CFStorageCreate(CFAllocatorRef allocator, CFIndex valueSize) {
    CFStorageRef storage;
    CFIndex size = sizeof(struct __CFStorage) - sizeof(CFRuntimeBase);
    storage = (CFStorageRef)_CFRuntimeCreateInstance(allocator, __kCFStorageTypeID, size, NULL);
    if (NULL == storage) {
	return NULL;
    }
    storage->valueSize = valueSize;
    storage->cachedRange.location = 0;
    storage->cachedRange.length = 0;
    storage->cachedNode = NULL;
    storage->cachedNodeMemory = NULL;
    storage->maxLeafCapacity = __CFStorageMaxLeafCapacity;
    if (valueSize && ((storage->maxLeafCapacity % valueSize) != 0)) {	
        storage->maxLeafCapacity = (storage->maxLeafCapacity / valueSize) * valueSize;	// Make it fit perfectly (3406853)
    }
    memset(&(storage->rootNode), 0, sizeof(CFStorageNode));
    storage->rootNode.isLeaf = true;
    storage->nodeHint = AUTO_MEMORY_SCANNED;
    if (__CFOASafe) __CFSetLastAllocationEventName(storage, "CFStorage");
    return storage;    
}

CFTypeID CFStorageGetTypeID(void) {
    return __kCFStorageTypeID;
}

CFIndex CFStorageGetCount(CFStorageRef storage) {
    return __CFStorageGetCount(storage);
}

/* Returns pointer to the specified value
   index and validConsecutiveValueRange are in terms of values
*/
void *CFStorageGetValueAtIndex(CFStorageRef storage, CFIndex idx, CFRange *validConsecutiveValueRange) {
    CFRange range;
    return __CFStorageGetValueAtIndex(storage, idx, validConsecutiveValueRange ? validConsecutiveValueRange : &range);
}

/* Makes space for range.length values at location range.location
   This function deepens the tree if necessary...
*/
void CFStorageInsertValues(CFStorageRef storage, CFRange range) {
    CFIndex numBytesToInsert = range.length * storage->valueSize;
    CFIndex byteNum = range.location * storage->valueSize;
    while (numBytesToInsert > 0) {
        CFStorageNode *newNode;
        CFAllocatorRef allocator = CFGetAllocator(storage);
        CFIndex insertThisTime = numBytesToInsert;
        if (insertThisTime > storage->maxLeafCapacity) {
            insertThisTime = (storage->maxLeafCapacity / storage->valueSize) * storage->valueSize;
        }
        newNode = __CFStorageInsert(allocator, storage, &storage->rootNode, byteNum, insertThisTime, byteNum);
        if (newNode) {
            CFStorageNode *tempRootNode = __CFStorageCreateNode(allocator, false, 0);	// Will copy the (static) rootNode over to this
            CF_WRITE_BARRIER_MEMMOVE(tempRootNode, &storage->rootNode, sizeof(CFStorageNode));
            storage->rootNode.isLeaf = false;
            CF_WRITE_BARRIER_BASE_ASSIGN(allocator, storage, storage->rootNode.info.notLeaf.child[0], tempRootNode);
            CF_WRITE_BARRIER_BASE_ASSIGN(allocator, storage, storage->rootNode.info.notLeaf.child[1], newNode);
            storage->rootNode.info.notLeaf.child[2] = NULL;
            storage->rootNode.numBytes = tempRootNode->numBytes + newNode->numBytes;
            if (storage->cachedNode == &(storage->rootNode))
                CF_WRITE_BARRIER_BASE_ASSIGN(allocator, storage, storage->cachedNode, tempRootNode);	// The cache should follow the node
        }
        numBytesToInsert -= insertThisTime;
        byteNum += insertThisTime;
    }
}

/* Deletes the values in the specified range
   This function gets rid of levels if necessary...
*/
void CFStorageDeleteValues(CFStorageRef storage, CFRange range) {
    CFAllocatorRef allocator = CFGetAllocator(storage);
    range.location *= storage->valueSize;
    range.length *= storage->valueSize;
    __CFStorageDelete(allocator, storage, &storage->rootNode, range, true);
    while (__CFStorageGetNumChildren(&storage->rootNode) == 1) {
        CFStorageNode *child = storage->rootNode.info.notLeaf.child[0];	// The single child
        CF_WRITE_BARRIER_MEMMOVE(&storage->rootNode, child, sizeof(CFStorageNode));
        _CFAllocatorDeallocateGC(allocator, child);
    }
    if (__CFStorageGetNumChildren(&storage->rootNode) == 0 && !storage->rootNode.isLeaf) {
	storage->rootNode.isLeaf = true;
	storage->rootNode.info.leaf.capacityInBytes = 0;
	storage->rootNode.info.leaf.memory = NULL;
    }
    // ??? Need to update the cache
    storage->cachedRange = CFRangeMake(0, 0);
}

void CFStorageGetValues(CFStorageRef storage, CFRange range, void *values) {
    while (range.length > 0) {
        CFRange leafRange;
        void *storagePtr = __CFStorageGetValueAtIndex(storage, range.location, &leafRange);
        CFIndex cntThisTime = range.length;
        if (cntThisTime > leafRange.length - (range.location - leafRange.location)) cntThisTime = leafRange.length - (range.location - leafRange.location);
        COPYMEM(storagePtr, values, cntThisTime * storage->valueSize);
		((uint8_t *)values) += cntThisTime * storage->valueSize;
        range.location += cntThisTime;
        range.length -= cntThisTime;
    }
}

void CFStorageApplyFunction(CFStorageRef storage, CFRange range, CFStorageApplierFunction applier, void *context) {
    while (0 < range.length) {
        CFRange leafRange;
        const void *storagePtr;
        CFIndex idx, cnt;
        storagePtr = CFStorageGetValueAtIndex(storage, range.location, &leafRange);
        cnt = __CFMin(range.length, leafRange.location + leafRange.length - range.location);
        for (idx = 0; idx < cnt; idx++) {
            applier(storagePtr, context);
            storagePtr = (const char *)storagePtr + storage->valueSize;
        }
        range.length -= cnt;
        range.location += cnt;
    }
}

void CFStorageReplaceValues(CFStorageRef storage, CFRange range, const void *values) {
    while (range.length > 0) {
        CFRange leafRange;
        void *storagePtr = __CFStorageGetValueAtIndex(storage, range.location, &leafRange);
        CFIndex cntThisTime = range.length;
        if (cntThisTime > leafRange.length - (range.location - leafRange.location)) cntThisTime = leafRange.length - (range.location - leafRange.location);
        COPYMEM(values, storagePtr, cntThisTime * storage->valueSize);
	((const uint8_t *)values) += cntThisTime * storage->valueSize;
        range.location += cntThisTime;
        range.length -= cntThisTime;
    }
}

/* Used by CFArray.c */

static void __CFStorageNodeSetLayoutType(CFStorageNode *node, auto_zone_t *zone, auto_memory_type_t type) {
    if (node->isLeaf) {
        auto_zone_set_layout_type(zone, node->info.leaf.memory, type);
    } else {
        CFStorageNode **children = node->info.notLeaf.child;
        if (children[0]) __CFStorageNodeSetLayoutType(children[0], zone, type);
        if (children[1]) __CFStorageNodeSetLayoutType(children[1], zone, type);
        if (children[2]) __CFStorageNodeSetLayoutType(children[2], zone, type);
    }
}

__private_extern__ void _CFStorageSetWeak(CFStorageRef storage) {
    storage->nodeHint = AUTO_MEMORY_UNSCANNED;
    __CFStorageNodeSetLayoutType(&storage->rootNode, __CFCollectableZone, storage->nodeHint);
}

#undef COPYMEM
#undef PAGE_LIMIT