LIBARCHIVE (3) FreeBSD Library Functions Manual LMRCHIVE (3)

NAME
I i bar chi ve — functions for reading and writing streaming avekhi

LIBRARY
Streaming Archie Library (libarchve, —larchive)

OVERVIEW
Thel i bar chi ve library provides a fieible interface for reading and writing streaming arehiles such
as tar and cpioThe library is inherently stream-oriented; readers serially iterate through thesavaitiers
serially add things to the arelei In particulat note that there is no built-in support for random access nor
for in-place modification.

When reading an aralg, the library automatically detects the format and the compression. The library cur
rently has read support for:

» old-style tar arclvies,

* most variants of the POSIX “ustar” format,

» the POSIX “pax interchange” format,

* GNU-format tar arclvies,

e most common cpio arcke formats,

* 1S09660 CD images (with or without RockRidge extensions),

» Zip archies.

The library automatically detects areés compressed withgzi p(1), bzi p2(1), or conpr ess(1) and
decompresses them transparently.

When writing an archie, you can specify the compression to be used and the format to use. The library can
write

* POSIX-standard “ustar” arohes,

» POSIX “pax interchange format” arefes,

» POSIX octet-oriented cpio arctes,

* two different variants of shar arales.

Pa< interchange format is an extension of the tar aecfirmat that eliminates essentially all of the limita-
tions of historic tar formats in a standard fashion that is supported by POSIX-cormppkdf) implementa-
tions on may systems as well as w&al newer implementations ofar (1). Notethat the default write fer

mat will suppress the paxtended attributes for most entries; explicitly requesting pax format will enable
those attributes for all entries.

The read and write APIs are accessed through ahehi ve_read_XXX() functions and the
archi ve_writ e_XXX() functions, respeately, and either can be used independently of the other.

The rest of this manual page provides aerdew of the library operation. More detailed information can be
found in the individual manual pages for each API or utility function.

READING AN ARCHIVE
To read an arclie, you must first obtain an initializegtruct archie object fromar chi ve_r ead_new().
You can then modify this object for the desired operations with #nwwsar chi ve_r ead_set _XXX()
and ar chi ve_r ead_support _XXX() functions. In particularyou will need to imoke gpropriate
ar chi ve_r ead_support _XXX() functions to enable the corresponding compression and format support.
Note that these latter functions performotdistinct operations: thecause the corresponding support code to
be linked into your program, and thenable the corresponding auto-detect code. Unless ywrishacific
constraints, you will generally amt to irvoke ar chi ve_read_support _conpression_al | () and
archi ve_read_support _format_al |l () to enable auto-detect for all formats and compression types
currently supported by the library.

FreeBSD 9.0 August 19, 2006 1

LIBARCHIVE (3) FreeBSD Library Functions Manual LMRCHIVE (3)

Once you hee pgrepared thetruct archie object, you callar chi ve_r ead_open() to actually open the ar
chive and prepare it for readingThere are seral variants of this function; the most basic expects you to
provide pointers to s@ral functions that can provide blocks of bytes from the amechThere are con-
venience forms that alle you to specify a filename, file descriptét LE [object, or a block of memory
from which to read the arché cata. Notethat the core library makes no assumptions about the size of the
blocks read; callback functions are free to read wieatdock size is most appropriate for the medium.

Each archie entry consists of a header followed by a certain amount of d@ta.can obtain the next header
with ar chi ve_r ead_next _header (), which returns a pointer to atruct archie_entry structure with
information about the current arghidement. Ifthe entry is a regular file, then the header will be fedid
by the file data.You can usear chi ve_r ead_dat a() (which works much lig ther ead(2) system call)
to read this data from the areti You may prefer to use the higHevel ar chi ve_r ead_dat a_ski p(),
which reads and discards the data for this eatrghi ve_read_dat a_t o_buf f er (), which reads the
data into an in-memoryuffer, ar chi ve_r ead_data_t o_fi | e(), which copies the data to the pided
file descriptoror ar chi ve_r ead_ext r act (), which recreates the specified entry on disk and copies data
from the archie. In particulat note thatar chi ve_r ead_ext r act () uses thatruct archie_entrystructure
that you provide it, which may differ from the entry just read from the\achin particular mary applica-
tions will want to @erride the pathname, file permissions, or ownership.

Once you hee finished reading data from the arehiyou should calbr chi ve_read_cl ose() to close
the archie, then callar chi ve_read_fi ni sh() to release all resources, including all memory allocated
by the library.

Thear chi ve_r ead(3) manual page provides more detailed calling information for this API.

WRITING AN ARCHIVE
You use a similar process to write an awehi The ar chi ve_wri t e_new() function creates an arcfei
object useful for writing, theariousar chi ve_write_set XXX() functions are used to set parameters
for writing the archie, and ar chi ve_wri t e_open() completes the setup and opens the aecfur writ-
ing.
Individual archve entries are written in a three-step process: You first initializteuat archie_entrystructure
with information about the meentry. At a minimum, you should set the pathname of the entry anddeo
a struct stat with a valid st_mode field, which specifies the type of object astdsize field, which specifies
the size of the data portion of the obje@he ar chi ve_wr i t e_header () function actually writes the
header data to the arghi You can then usar chi ve_wri t e_dat a() to write the actual data.

After all entries hee been written, use thar chi ve_wri t e_fi ni sh() function to release all resources.

Thear chi ve_wri t e(3) manual page provides more detailed calling information for this API.
DESCRIPTION

Detailed descriptions of each function are provided by the corresponding manual pages.

All of the functions utilize an opaqu#ruct archie datatype that provides access to the aectontents.

The struct archie_entry structure contains a complete description of a singlevarehiry. It uses an opaque
interface that is fully documentedam chi ve_ent r y(3).

Users familiar with historic formats should bheage that the newer variantsueadiminated most restrictions

on the length of textual fields. Clients should not assume that filenames, link names, user names, or group
names are limited in length. In particyl@ax interchange format can easily accommodate pathnames in
arbitrary character sets that exc&dH_MAX.

FreeBSD 9.0 August 19, 2006 2

LIBARCHIVE (3) FreeBSD Library Functions Manual LMRCHIVE (3)

RETURN VALUES
Most functions return zero on success, non-zero on. eftog return value indicates the generalesty of
the erroyranging fromARCHI VE_WARN, which indicates a minor problem that should probably be reported
to the userto ARCHI VE_FATAL, which indicates a serious problem that will\g ary further operations
on this archie. On eror, thear chi ve_er rno() function can be used to retreea umeric error code (see
errno(2)). Thear chi ve_error_string() returns a textual error message suitable for display.

ar chi ve_r ead_new() andar chi ve_wri t e_new) return pointers to an allocated and initializedct
archive object.

archi ve_read_dat a() andar chi ve_wri t e_dat a() return a count of the number of bytes actually
read or written.A value of zero indicates the end of the data for this etrpegaive value indicates an
error, in which case thar chi ve_er rno() andar chi ve_error _stri ng() functions can be used to
obtain more information.

ENVIRONMENT
There are character set gersions within thear chi ve_ent r y(3) functions that are impacted by the-cur
rently-selected locale.

SEE ALSO
tar (1),archive_entry(3),archi ve_read(3),archive_util (3),archive_wite(3),tar(5)

HISTORY
Thel i bar chi ve library first appeared iRreeBSD5.3.

AUTHORS
Thel i bar chi ve library was written by Tim Kientzl&ientzle@acm.org

BUGS
Some archie formats support information that is not supportedthyct archie_entry. Such information can-
not be fully archied or restored using this libraryThis includes, for example, comments, character sets, or
the arbitrary ky/value pairs that can appear in pax interchange formataschi

Corversely, of course, not all of the information that can be stored istrant archie_entryis supported by all
formats. er example, cpio formats do not support nanosecond timestamps; old tar formats do not support
large device numbers.

FreeBSD 9.0 August 19, 2006 3

