
LIBARCHIVE (3) FreeBSD Library Functions Manual LIBARCHIVE (3)

NAME
libarchive — functions for reading and writing streaming archives

LIBRARY
Streaming Archive Library (libarchive, −larchive)

OVERVIEW
Thelibarchive library provides a flexible interface for reading and writing streaming archive files such
as tar and cpio.The library is inherently stream-oriented; readers serially iterate through the archive, writers
serially add things to the archive. In particular, note that there is no built-in support for random access nor
for in-place modification.

When reading an archive, the library automatically detects the format and the compression. The library cur-
rently has read support for:
• old-style tar archives,
• most variants of the POSIX “ustar” format,
• the POSIX “pax interchange” format,
• GNU-format tar archives,
• most common cpio archive formats,
• ISO9660 CD images (with or without RockRidge extensions),
• Zip archives.
The library automatically detects archives compressed withgzip(1), bzip2(1), or compress(1) and
decompresses them transparently.

When writing an archive, you can specify the compression to be used and the format to use. The library can
write
• POSIX-standard “ustar” archives,
• POSIX “pax interchange format” archives,
• POSIX octet-oriented cpio archives,
• two different variants of shar archives.
Pax interchange format is an extension of the tar archive format that eliminates essentially all of the limita-
tions of historic tar formats in a standard fashion that is supported by POSIX-compliantpax(1) implementa-
tions on many systems as well as several newer implementations oftar(1). Notethat the default write for-
mat will suppress the pax extended attributes for most entries; explicitly requesting pax format will enable
those attributes for all entries.

The read and write APIs are accessed through thearchive_read_XXX() functions and the
archive_write_XXX() functions, respectively, and either can be used independently of the other.

The rest of this manual page provides an overview of the library operation. More detailed information can be
found in the individual manual pages for each API or utility function.

READING AN ARCHIVE
To read an archive, you must first obtain an initializedstruct archive object fromarchive_read_new().
You can then modify this object for the desired operations with the variousarchive_read_set_XXX()
and archive_read_support_XXX() functions. In particular, you will need to invoke appropriate
archive_read_support_XXX() functions to enable the corresponding compression and format support.
Note that these latter functions perform two distinct operations: they cause the corresponding support code to
be linked into your program, and they enable the corresponding auto-detect code. Unless you have specific
constraints, you will generally want to invoke archive_read_support_compression_all() and
archive_read_support_format_all() to enable auto-detect for all formats and compression types
currently supported by the library.

FreeBSD 9.0 August 19, 2006 1



LIBARCHIVE (3) FreeBSD Library Functions Manual LIBARCHIVE (3)

Once you have prepared thestruct archive object, you callarchive_read_open() to actually open the ar-
chive and prepare it for reading.There are several variants of this function; the most basic expects you to
provide pointers to several functions that can provide blocks of bytes from the archive. There are con-
venience forms that allow you to specify a filename, file descriptor, FILE ∗ object, or a block of memory
from which to read the archive data. Notethat the core library makes no assumptions about the size of the
blocks read; callback functions are free to read whatever block size is most appropriate for the medium.

Each archive entry consists of a header followed by a certain amount of data.You can obtain the next header
with archive_read_next_header(), which returns a pointer to anstruct archive_entry structure with
information about the current archive element. Ifthe entry is a regular file, then the header will be followed
by the file data.You can usearchive_read_data() (which works much like theread(2) system call)
to read this data from the archive. You may prefer to use the higher-level archive_read_data_skip(),
which reads and discards the data for this entry, archive_read_data_to_buffer(), which reads the
data into an in-memory buffer, archive_read_data_to_file(), which copies the data to the provided
file descriptor, or archive_read_extract(), which recreates the specified entry on disk and copies data
from the archive. In particular, note thatarchive_read_extract() uses thestruct archive_entrystructure
that you provide it, which may differ from the entry just read from the archive. In particular, many applica-
tions will want to override the pathname, file permissions, or ownership.

Once you have finished reading data from the archive, you should callarchive_read_close() to close
the archive, then callarchive_read_finish() to release all resources, including all memory allocated
by the library.

Thearchive_read(3) manual page provides more detailed calling information for this API.

WRITING AN ARCHIVE
You use a similar process to write an archive. The archive_write_new() function creates an archive
object useful for writing, the variousarchive_write_set_XXX() functions are used to set parameters
for writing the archive, andarchive_write_open() completes the setup and opens the archive for writ-
ing.

Individual archive entries are written in a three-step process: You first initialize astruct archive_entrystructure
with information about the new entry. At a minimum, you should set the pathname of the entry and provide
a struct stat with a valid st_mode field, which specifies the type of object andst_size field, which specifies
the size of the data portion of the object.The archive_write_header() function actually writes the
header data to the archive. You can then usearchive_write_data() to write the actual data.

After all entries have been written, use thearchive_write_finish() function to release all resources.

Thearchive_write(3) manual page provides more detailed calling information for this API.

DESCRIPTION
Detailed descriptions of each function are provided by the corresponding manual pages.

All of the functions utilize an opaquestruct archive datatype that provides access to the archive contents.

Thestruct archive_entrystructure contains a complete description of a single archive entry. It uses an opaque
interface that is fully documented inarchive_entry(3).

Users familiar with historic formats should be aware that the newer variants have eliminated most restrictions
on the length of textual fields. Clients should not assume that filenames, link names, user names, or group
names are limited in length. In particular, pax interchange format can easily accommodate pathnames in
arbitrary character sets that exceedPA TH_MAX.

FreeBSD 9.0 August 19, 2006 2



LIBARCHIVE (3) FreeBSD Library Functions Manual LIBARCHIVE (3)

RETURN VALUES
Most functions return zero on success, non-zero on error. The return value indicates the general severity of
the error, ranging fromARCHIVE_WARN, which indicates a minor problem that should probably be reported
to the user, to ARCHIVE_FATAL, which indicates a serious problem that will prevent any further operations
on this archive. On error, thearchive_errno() function can be used to retrieve a numeric error code (see
errno(2)). Thearchive_error_string() returns a textual error message suitable for display.

archive_read_new() andarchive_write_new() return pointers to an allocated and initializedstruct
archive object.

archive_read_data() andarchive_write_data() return a count of the number of bytes actually
read or written.A value of zero indicates the end of the data for this entry. A negative value indicates an
error, in which case thearchive_errno() andarchive_error_string() functions can be used to
obtain more information.

ENVIRONMENT
There are character set conversions within thearchive_entry(3) functions that are impacted by the cur-
rently-selected locale.

SEE ALSO
tar(1),archive_entry(3),archive_read(3),archive_util(3),archive_write(3),tar(5)

HISTORY
Thelibarchive library first appeared inFreeBSD5.3.

AUTHORS
Thelibarchive library was written by Tim Kientzle〈kientzle@acm.org〉.

BUGS
Some archive formats support information that is not supported bystruct archive_entry. Such information can-
not be fully archived or restored using this library. This includes, for example, comments, character sets, or
the arbitrary key/value pairs that can appear in pax interchange format archives.

Conversely, of course, not all of the information that can be stored in anstruct archive_entryis supported by all
formats. For example, cpio formats do not support nanosecond timestamps; old tar formats do not support
large device numbers.

FreeBSD 9.0 August 19, 2006 3


