objfiles.h   [plain text]

/* Definitions for symbol file management in GDB.

   Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   2001, 2002, 2003, 2004 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#if !defined (OBJFILES_H)
#define OBJFILES_H

#include "gdb_obstack.h"	/* For obstack internals.  */
#include "symfile.h"		/* For struct psymbol_allocation_list */
/* APPLE LOCAL subroutine inlining  */
#include "inlining.h"           /* For information about inlined subroutines  */
#include <sqlite3.h>

struct bcache;
struct htab;
struct symtab;
struct objfile_data;

/* This structure maintains information on a per-objfile basis about the
   "entry point" of the objfile, and the scope within which the entry point
   exists.  It is possible that gdb will see more than one objfile that is
   executable, each with its own entry point.

   For example, for dynamically linked executables in SVR4, the dynamic linker
   code is contained within the shared C library, which is actually executable
   and is run by the kernel first when an exec is done of a user executable
   that is dynamically linked.  The dynamic linker within the shared C library
   then maps in the various program segments in the user executable and jumps
   to the user executable's recorded entry point, as if the call had been made
   directly by the kernel.

   The traditional gdb method of using this info was to use the
   recorded entry point to set the entry-file's lowpc and highpc from
   the debugging information, where these values are the starting
   address (inclusive) and ending address (exclusive) of the
   instruction space in the executable which correspond to the
   "startup file", I.E. crt0.o in most cases.  This file is assumed to
   be a startup file and frames with pc's inside it are treated as
   nonexistent.  Setting these variables is necessary so that
   backtraces do not fly off the bottom of the stack.

   NOTE: cagney/2003-09-09: It turns out that this "traditional"
   method doesn't work.  Corinna writes: ``It turns out that the call
   to test for "inside entry file" destroys a meaningful backtrace
   under some conditions.  E. g. the backtrace tests in the asm-source
   testcase are broken for some targets.  In this test the functions
   are all implemented as part of one file and the testcase is not
   necessarily linked with a start file (depending on the target).
   What happens is, that the first frame is printed normaly and
   following frames are treated as being inside the enttry file then.
   This way, only the #0 frame is printed in the backtrace output.''
   Ref "frame.c" "NOTE: vinschen/2003-04-01".

   Gdb also supports an alternate method to avoid running off the bottom
   of the stack.

   There are two frames that are "special", the frame for the function
   containing the process entry point, since it has no predecessor frame,
   and the frame for the function containing the user code entry point
   (the main() function), since all the predecessor frames are for the
   process startup code.  Since we have no guarantee that the linked
   in startup modules have any debugging information that gdb can use,
   we need to avoid following frame pointers back into frames that might
   have been built in the startup code, as we might get hopelessly 
   confused.  However, we almost always have debugging information
   available for main().

   These variables are used to save the range of PC values which are
   valid within the main() function and within the function containing
   the process entry point.  If we always consider the frame for
   main() as the outermost frame when debugging user code, and the
   frame for the process entry point function as the outermost frame
   when debugging startup code, then all we have to do is have
   DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
   current PC is within the range specified by these variables.  In
   essence, we set "ceilings" in the frame chain beyond which we will
   not proceed when following the frame chain back up the stack.

   A nice side effect is that we can still debug startup code without
   running off the end of the frame chain, assuming that we have usable
   debugging information in the startup modules, and if we choose to not
   use the block at main, or can't find it for some reason, everything
   still works as before.  And if we have no startup code debugging
   information but we do have usable information for main(), backtraces
   from user code don't go wandering off into the startup code.  */

struct entry_info

    /* The value we should use for this objects entry point.
       The illegal/unknown value needs to be something other than 0, ~0
       for instance, which is much less likely than 0. */

    CORE_ADDR entry_point;

    /* APPLE LOCAL: Start (inclusive) and end (exclusive) of the user code 
       main() function. */

    CORE_ADDR main_func_lowpc;
    CORE_ADDR main_func_highpc;

/* We use these values because it guarantees that there is no number that is
   both >= LOWPC && < HIGHPC.  It is also highly unlikely that 3 is a valid
   module or function start address (as opposed to 0).  */


#define INVALID_ENTRY_POINT (~0)	/* ~0 will not be in any file, we hope.  */


/* Sections in an objfile.

   It is strange that we have both this notion of "sections"
   and the one used by section_offsets.  Section as used
   here, (currently at least) means a BFD section, and the sections
   are set up from the BFD sections in allocate_objfile.

   The sections in section_offsets have their meaning determined by
   the symbol format, and they are set up by the sym_offsets function
   for that symbol file format.

   I'm not sure this could or should be changed, however.  */

/* APPLE LOCAL: Note that for a separate_debug_objfile, the obj_sections
   are a copy of the sections of the parent objfile.  This is more useful
   than having them be the sections of the separate debug file, which
   may, for instance, just have a few DWARF sections and that's all...  */
struct obj_section
    CORE_ADDR addr;		/* lowest address in section */
    CORE_ADDR endaddr;		/* 1+highest address in section */

    /* This field is being used for nefarious purposes by syms_from_objfile.
       It is said to be redundant with section_offsets; it's not really being
       used that way, however, it's some sort of hack I don't understand
       and am not going to try to eliminate (yet, anyway).  FIXME.

       It was documented as "offset between (end)addr and actual memory
       addresses", but that's not true; addr & endaddr are actual memory
       addresses.  */
    CORE_ADDR offset;

    struct bfd_section *the_bfd_section;	/* BFD section pointer */

    /* Objfile this section is part of.  */
    struct objfile *objfile;

    /* True if this "overlay section" is mapped into an "overlay region". */
    int ovly_mapped;

/* An import entry contains information about a symbol that
   is used in this objfile but not defined in it, and so needs
   to be imported from some other objfile */
/* Currently we just store the name; no attributes. 1997-08-05 */
typedef char *ImportEntry;

/* An export entry contains information about a symbol that
   is defined in this objfile and available for use in other
   objfiles */
typedef struct
    char *name;			/* name of exported symbol */
    int address;		/* offset subject to relocation */
    /* Currently no other attributes 1997-08-05 */

/* The "objstats" structure provides a place for gdb to record some
   interesting information about its internal state at runtime, on a
   per objfile basis, such as information about the number of symbols
   read, size of string table (if any), etc. */

struct objstats
    int n_minsyms;		/* Number of minimal symbols read */
    int n_psyms;		/* Number of partial symbols read */
    int n_syms;			/* Number of full symbols read */
    int n_stabs;		/* Number of ".stabs" read (if applicable) */
    int n_types;		/* Number of types */
    int sz_strtab;		/* Size of stringtable, (if applicable) */

#define OBJSTAT(objfile, expr) (objfile -> stats.expr)
#define OBJSTATS struct objstats stats
extern void print_objfile_statistics (void);
extern void print_symbol_bcache_statistics (void);

/* Number of entries in the minimal symbol hash table.  */

/* Master structure for keeping track of each file from which
   gdb reads symbols.  There are several ways these get allocated: 1.
   The main symbol file, symfile_objfile, set by the symbol-file command,
   2.  Additional symbol files added by the add-symbol-file command,
   3.  Shared library objfiles, added by ADD_SOLIB,  4.  symbol files
   for modules that were loaded when GDB attached to a remote system
   (see remote-vx.c).  */

struct objfile

    /* All struct objfile's are chained together by their next pointers.
       The global variable "object_files" points to the first link in this

       FIXME:  There is a problem here if the objfile is reusable, and if
       multiple users are to be supported.  The problem is that the objfile
       list is linked through a member of the objfile struct itself, which
       is only valid for one gdb process.  The list implementation needs to
       be changed to something like:

       struct list {struct list *next; struct objfile *objfile};

       where the list structure is completely maintained separately within
       each gdb process. */

    struct objfile *next;

    /* The object file's name, tilde-expanded and absolute.
       Malloc'd; free it if you free this struct.  */

    char *name;

    const char *prefix;

    /* Some flag bits for this objfile. */

    unsigned short flags;

    /* Controls level of detail of symbols loaded for this objfile. */

    unsigned short symflags;

    /* Each objfile points to a linked list of symtabs derived from this file,
       one symtab structure for each compilation unit (source file).  Each link
       in the symtab list contains a backpointer to this objfile. */

    struct symtab *symtabs;

    /* Each objfile points to a linked list of partial symtabs derived from
       this file, one partial symtab structure for each compilation unit
       (source file). */

    struct partial_symtab *psymtabs;

    /* List of freed partial symtabs, available for re-use */

    struct partial_symtab *free_psymtabs;

    /* The object file's BFD.  Can be null if the objfile contains only
       minimal symbols, e.g. the run time common symbols for SunOS4.  */

    bfd *obfd;

    /* The modification timestamp of the object file, as of the last time
       we read its symbols.  */

    long mtime;

    /* Obstack to hold objects that should be freed when we load a new symbol
       table from this object file. */

    struct obstack objfile_obstack; 

    /* A byte cache where we can stash arbitrary "chunks" of bytes that
       will not change. */

    struct bcache *psymbol_cache;	/* Byte cache for partial syms */
    struct bcache *macro_cache;          /* Byte cache for macros */

    /* Hash table for mapping symbol names to demangled names.  Each
       entry in the hash table is actually two consecutive strings,
       both null-terminated; the first one is a mangled or linkage
       name, and the second is the demangled name or just a zero byte
       if the name doesn't demangle.  */
    struct htab *demangled_names_hash;

    /* Vectors of all partial symbols read in from file.  The actual data
       is stored in the objfile_obstack. */

    struct psymbol_allocation_list global_psymbols;
    struct psymbol_allocation_list static_psymbols;

    /* Each file contains a pointer to an array of minimal symbols for all
       global symbols that are defined within the file.  The array is terminated
       by a "null symbol", one that has a NULL pointer for the name and a zero
       value for the address.  This makes it easy to walk through the array
       when passed a pointer to somewhere in the middle of it.  There is also
       a count of the number of symbols, which does not include the terminating
       null symbol.  The array itself, as well as all the data that it points
       to, should be allocated on the objfile_obstack for this file. */

    struct minimal_symbol *msymbols;
    int minimal_symbol_count;

    /* This is a hash table used to index the minimal symbols by name.  */

   struct minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE];

    /* This hash table is used to index the minimal symbols by their
       demangled names.  */

    struct minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE];

    int minimal_symbols_demangled;

    /* For object file formats which don't specify fundamental types, gdb
       can create such types.  For now, it maintains a vector of pointers
       to these internally created fundamental types on a per objfile basis,
       however it really should ultimately keep them on a per-compilation-unit
       basis, to account for linkage-units that consist of a number of
       compilation units that may have different fundamental types, such as
       linking C modules with ADA modules, or linking C modules that are
       compiled with 32-bit ints with C modules that are compiled with 64-bit
       ints (not inherently evil with a smarter linker). */

    struct type **fundamental_types;

    /* The mmalloc() malloc-descriptor for this objfile if we are using
       the memory mapped malloc() package to manage storage for this objfile's
       data.  NULL if we are not. */

    void *md;

    /* The file descriptor that was used to obtain the mmalloc descriptor
       for this objfile.  If we call mmalloc_detach with the malloc descriptor
       we should then close this file descriptor. */

    int mmfd;

    /* Structure which keeps track of functions that manipulate objfile's
       of the same type as this objfile.  I.E. the function to read partial
       symbols for example.  Note that this structure is in statically
       allocated memory, and is shared by all objfiles that use the
       object module reader of this type. */

    struct sym_fns *sf;

    /* The per-objfile information about the entry point, the scope (file/func)
       containing the entry point, and the scope of the user's main() func. */

    struct entry_info ei;

    /* Information about stabs.  Will be filled in with a dbx_symfile_info
       struct by those readers that need it. */
    /* NOTE: cagney/2004-10-23: This has been replaced by per-objfile
       data points implemented using "data" and "num_data" below.  For
       an example of how to use this replacement, see "objfile_data"
       in "mips-tdep.c".  */

    struct dbx_symfile_info *deprecated_sym_stab_info;

    /* Hook for information for use by the symbol reader (currently used
       for information shared by sym_init and sym_read).  It is
       typically a pointer to malloc'd memory.  The symbol reader's finish
       function is responsible for freeing the memory thusly allocated.  */
    /* NOTE: cagney/2004-10-23: This has been replaced by per-objfile
       data points implemented using "data" and "num_data" below.  For
       an example of how to use this replacement, see "objfile_data"
       in "mips-tdep.c".  */

    void *deprecated_sym_private;

    /* Hook for target-architecture-specific information.  This must
       point to memory allocated on one of the obstacks in this objfile,
       so that it gets freed automatically when reading a new object
       file. */

    void *deprecated_obj_private;

    /* Per objfile data-pointers required by other GDB modules.  */
    /* FIXME: kettenis/20030711: This mechanism could replace
       deprecated_sym_stab_info, deprecated_sym_private and
       deprecated_obj_private entirely.  */

    void **data;
    unsigned num_data;

    /* Set of relocation offsets to apply to each section.
       Currently on the objfile_obstack (which makes no sense, but I'm
       not sure it's harming anything).

       These offsets indicate that all symbols (including partial and
       minimal symbols) which have been read have been relocated by this
       much.  Symbols which are yet to be read need to be relocated by
       it.  */

    struct section_offsets *section_offsets;
    int num_sections;

    /* Indexes in the section_offsets array. These are initialized by the
       *_symfile_offsets() family of functions (som_symfile_offsets,
       xcoff_symfile_offsets, default_symfile_offsets). In theory they
       should correspond to the section indexes used by bfd for the
       current objfile. The exception to this for the time being is the
       SOM version. */

    int sect_index_text;
    int sect_index_data;
    int sect_index_bss;
    int sect_index_rodata;

    /* These pointers are used to locate the section table, which
       among other things, is used to map pc addresses into sections.
       SECTIONS points to the first entry in the table, and
       SECTIONS_END points to the first location past the last entry
       in the table.  Currently the table is stored on the
       objfile_obstack (which makes no sense, but I'm not sure it's
       harming anything).  */

    struct obj_section
     *sections, *sections_end;

    /* Imported symbols */
    /* FIXME: ezannoni 2004-02-10: This is just SOM (HP) specific (see
       somread.c). It should not pollute generic objfiles.  */
    ImportEntry *import_list;
    int import_list_size;

    /* Exported symbols */
    /* FIXME: ezannoni 2004-02-10: This is just SOM (HP) specific (see
       somread.c). It should not pollute generic objfiles.  */
    ExportEntry *export_list;
    int export_list_size;

    /* Link to objfile that contains the debug symbols for this one.
       One is loaded if this file has an debug link to an existing
       debug file with the right checksum */
    struct objfile *separate_debug_objfile;

    /* If this is a separate debug object, this is used as a link to the
       actual executable objfile. */
    struct objfile *separate_debug_objfile_backlink;
    /* Place to stash various statistics about this objfile */

    /* A symtab that the C++ code uses to stash special symbols
       associated to namespaces.  */

    /* FIXME/carlton-2003-06-27: Delete this in a few years once
       "possible namespace symbols" go away.  */
    struct symtab *cp_namespace_symtab;

    /* APPLE LOCAL: libSystem contains two versions of some symbols,
       the "posix compliant" and the old style versions.  For compatibility
       reasons, the old style version is the one with the original function's
       symbol name.  The other is <orig>$SOME_TAG.  We want break to find
       both of these, so we build up a table of equivalences here, and then
       check them in break.  */

    /* This is usually 0 since we don't want to do this check for every
       shared library.  */
    int check_for_equivalence;

    /* This is the actual table.  It isn't exposed outside of symmisc.c, so 
       we leave it a void * here.  */
    void *equivalence_table;

    /* APPLE LOCAL: Mark whether the objfile is a kext or not.
       kexts have a dSYM file (because they are run through ld -r) but
       their addresses are not final until kextload has loaded them.
       We need to combine the debug map output from kextload with the
       dSYM file from the ld -r which is a rather unusual combination.  */

    /* APPLE LOCAL: If objfile_is_kext is true then this will be the name
       of the original kext, i.e. the file that was output by ld -r and
       dsymutil was run on but NOT the output of kextload -s or kextload -a.  
       We'll need this and the kextload'ed kext image to create the
       address translation table when reading the DWARF.  */
    const char *not_loaded_kext_filename;

    /* APPLE LOCAL: Mark struct objfile's as to whether they are 
       symbol files or if they represent file images that contain actual
       code that is, or will be, loaded into memory.  
       When a user add-symbol-file's a debug version of a dylib, breakpoints
       will end up in this symboled objfile, but they're actually inserted
       into the original stripped objfile.  So we need to short-circuit the
       "is this objfile resident in memory" check and assume that, in the case
       of a breakpoint in a hand-added symbol file, it's always resident.  */
    int syms_only_objfile;
    /* APPLE LOCAL begin dwarf repository  */
    int uses_sql_repository;
    /* APPLE LOCAL end dwarf repository  */

    /* APPLE LOCAL begin subroutine inlining  */
    struct rb_tree_node *inlined_subroutine_data;
    struct rb_tree_node *inlined_call_sites;
    /* APPLE LOCAL end subroutine inlining  */

/* Defines for the objfile flag word. */

/* When using mapped/remapped predigested gdb symbol information, we need
   a flag that indicates that we have previously done an initial symbol
   table read from this particular objfile.  We can't just look for the
   absence of any of the three symbol tables (msymbols, psymtab, symtab)
   because if the file has no symbols for example, none of these will
   exist. */

#define OBJF_SYMS	(1 << 1)	/* Have tried to read symbols */

/* When an object file has its functions reordered (currently Irix-5.2
   shared libraries exhibit this behaviour), we will need an expensive
   algorithm to locate a partial symtab or symtab via an address.
   To avoid this penalty for normal object files, we use this flag,
   whose setting is determined upon symbol table read in.  */

#define OBJF_REORDERED	(1 << 2)	/* Functions are reordered */

/* Distinguish between an objfile for a shared library and a "vanilla"
   objfile. (If not set, the objfile may still actually be a solib.
   This can happen if the user created the objfile by using the
   add-symbol-file command.  GDB doesn't in that situation actually
   check whether the file is a solib.  Rather, the target's
   implementation of the solib interface is responsible for setting
   this flag when noticing solibs used by an inferior.)  */

#define OBJF_SHARED     (1 << 3)	/* From a shared library */

/* User requested that this objfile be read in it's entirety. */

#define OBJF_READNOW	(1 << 4)	/* Immediate full read */

/* This objfile was created because the user explicitly caused it
   (e.g., used the add-symbol-file command).  This bit offers a way
   for run_command to remove old objfile entries which are no longer
   valid (i.e., are associated with an old inferior), but to preserve
   ones that the user explicitly loaded via the add-symbol-file
   command. */

#define OBJF_USERLOADED	(1 << 5)	/* User loaded */

/* APPLE LOCAL: Treat separate debug files special so we don't add
   the sections to the ordered list while initially creating the objfile
   in symbol_file_add() since the backlink pointer will not be valid yet.  */
#define OBJF_SEPARATE_DEBUG_FILE (1 << 6)	/* Separate debug file */

/* APPLE LOCAL: The following OBJF_SYM_ constants are used to limit
   the scope of how much debug/symbol information we read from
   a given objfile.  All legitimate values should be > 0.  */

#define OBJF_SYM_NONE 0
#define OBJF_SYM_CONTAINER (1 << 0)
#define OBJF_SYM_EXTERN (1 << 1)
#define OBJF_SYM_TRACEBACK (1 << 2)
#define OBJF_SYM_LOCAL (1 << 3)
#define OBJF_SYM_DEBUG (1 << 4)
#define OBJF_SYM_ALL (0xff)

#define OBJF_SYM_LEVELS_MASK (0xff)
#define OBJF_SYM_FLAGS_MASK (0xff00)

#define OBJF_SYM_DONT_CHANGE (1 << 8)

/* The object file that the main symbol table was loaded from (e.g. the
   argument to the "symbol-file" or "file" command).  */

extern struct objfile *symfile_objfile;

/* The object file that contains the runtime common minimal symbols
   for SunOS4. Note that this objfile has no associated BFD.  */

extern struct objfile *rt_common_objfile;

/* When we need to allocate a new type, we need to know which objfile_obstack
   to allocate the type on, since there is one for each objfile.  The places
   where types are allocated are deeply buried in function call hierarchies
   which know nothing about objfiles, so rather than trying to pass a
   particular objfile down to them, we just do an end run around them and
   set current_objfile to be whatever objfile we expect to be using at the
   time types are being allocated.  For instance, when we start reading
   symbols for a particular objfile, we set current_objfile to point to that
   objfile, and when we are done, we set it back to NULL, to ensure that we
   never put a type someplace other than where we are expecting to put it.
   FIXME:  Maybe we should review the entire type handling system and
   see if there is a better way to avoid this problem. */

extern struct objfile *current_objfile;

/* All known objfiles are kept in a linked list.  This points to the
   root of this list. */

extern struct objfile *object_files;

/* Declarations for functions defined in objfiles.c */

extern struct objfile *allocate_objfile (bfd *, int, int symflags, CORE_ADDR mapaddr, const char *prefix);

/* APPLE LOCAL: for use with clear_objfile.  */
extern struct objfile *allocate_objfile_using_objfile (struct objfile *, bfd *, int, int symflags, 
						      CORE_ADDR mapaddr, const char *prefix);

extern void init_entry_point_info (struct objfile *);

extern CORE_ADDR entry_point_address (void);

extern int build_objfile_section_table (struct objfile *);

extern int objfile_keeps_section (bfd *abfd, asection *asect);

extern void terminate_minimal_symbol_table (struct objfile *objfile);

extern void put_objfile_before (struct objfile *, struct objfile *);

extern void objfile_to_front (struct objfile *);

extern void link_objfile (struct objfile *);

extern void unlink_objfile (struct objfile *);

extern void free_objfile (struct objfile *);

/* APPLE LOCAL: clear the contents of the objfile but don't delete or unlink it.  */
extern void clear_objfile (struct objfile *);

extern struct cleanup *make_cleanup_free_objfile (struct objfile *);

extern void free_all_objfiles (void);

extern void objfile_relocate (struct objfile *, struct section_offsets *);

extern int have_partial_symbols (void);

extern int have_full_symbols (void);

/* This operation deletes all objfile entries that represent solibs that
   weren't explicitly loaded by the user, via e.g., the add-symbol-file
extern void objfile_purge_solibs (void);

/* Functions for dealing with the minimal symbol table, really a misc
   address<->symbol mapping for things we don't have debug symbols for.  */

extern int have_minimal_symbols (void);

extern struct obj_section *find_pc_section (CORE_ADDR pc);

extern struct obj_section *find_pc_sect_section (CORE_ADDR pc,
						 asection * section);

extern int in_plt_section (CORE_ADDR, char *);

extern int is_in_import_list (char *, struct objfile *);

/* Keep a registry of per-objfile data-pointers required by other GDB
   modules.  */

extern const struct objfile_data *register_objfile_data (void);
extern void clear_objfile_data (struct objfile *objfile);
extern void set_objfile_data (struct objfile *objfile,
			      const struct objfile_data *data, void *value);
extern void *objfile_data (struct objfile *objfile,
			   const struct objfile_data *data);

/* Traverse all object files.  ALL_OBJFILES_SAFE works even if you delete
   the objfile during the traversal.  */

struct objfile_list {
  struct objfile *objfile;
  struct objfile_list *next;

extern struct objfile_list *objfile_list;

struct objfile *objfile_get_first ();
struct objfile *objfile_get_next (struct objfile *);
int objfile_restrict_search (int);
void objfile_add_to_restrict_list (struct objfile *objfile);
void objfile_clear_restrict_list ();

enum objfile_matches_name_return

enum objfile_matches_name_return objfile_matches_name (struct objfile *objfile, char *name);
struct cleanup *make_cleanup_restrict_to_objfile (struct objfile *objfile);
/* APPLE LOCAL radar 5273932  */
struct cleanup *make_cleanup_restrict_to_objfile_by_name (char *objfile_name);
struct cleanup *make_cleanup_restrict_to_shlib (char *shlib);

/* APPLE LOCAL: These manage & look up obj_sections in the ordered_sections
   array.  */
void objfile_add_to_ordered_sections (struct objfile *objfile);
void objfile_delete_from_ordered_sections (struct objfile *objfile);
struct obj_section *find_pc_sect_in_ordered_sections (CORE_ADDR addr, 
					      struct bfd_section *bfd_section);
/* APPLE LOCAL: These set the load state for the debug info based on the 
   pc or by objfile.  */

int objfile_set_load_state (struct objfile *, int, int);
int pc_set_load_state (CORE_ADDR, int, int);
int objfile_name_set_load_state (char *, int, int);

/* APPLE LOCAL begin dwarf repository  */
extern unsigned get_objfile_registry_num_registrations (void);
/* APPLE LOCAL end dwarf repository  */

struct objfile *find_objfile_by_name (const char *name, int exact);

/* APPLE LOCAL begin fix-and-continue */
struct symtab *symtab_get_first (struct objfile *, int );
struct symtab *symtab_get_next (struct symtab *, int );
struct partial_symtab *psymtab_get_first (struct objfile *, int );
struct partial_symtab *psymtab_get_next (struct partial_symtab *, int );
/* APPLE LOCAL end fix-and-continue */

#define	ALL_OBJFILES(obj) \
  for ((obj) = objfile_get_first (); \
       (obj) != NULL; \
       (obj) = objfile_get_next (obj))

#define	ALL_OBJFILES_SAFE(obj,nxt) \
  for ((obj) = objfile_get_first(); 	   \
       (obj) != NULL? ((nxt)=objfile_get_next((obj)),1) :0;	\
       (obj) = (nxt))

/* Traverse all symtabs in one objfile.  */

/* APPLE LOCAL fix-and-continue */
#define	ALL_OBJFILE_SYMTABS(objfile, s) \
    for ((s) = symtab_get_first (objfile, 1);  \
         (s) != NULL; \
         (s) = symtab_get_next (s, 1))

    for ((s) = symtab_get_first (objfile, 0);  \
         (s) != NULL; \
         (s) = symtab_get_next (s, 0))

/* Traverse all psymtabs in one objfile.  */

/* APPLE LOCAL fix-and-continue */
#define	ALL_OBJFILE_PSYMTABS(objfile, p) \
    for ((p) = psymtab_get_first (objfile, 1); \
         (p) != NULL; \
         (p) = psymtab_get_next (p, 1))

/* APPLE LOCAL fix-and-continue */
    for ((p) = psymtab_get_first (objfile, 0); \
         (p) != NULL; \
         (p) = psymtab_get_next (p, 0))

/* Traverse all minimal symbols in one objfile.  */

#define	ALL_OBJFILE_MSYMBOLS(objfile, m) \
  if ((objfile)->msymbols)	 	 \
    for ((m) = (objfile) -> msymbols; DEPRECATED_SYMBOL_NAME(m) != NULL; (m)++)

/* Traverse all symtabs in all objfiles.  */

#define	ALL_SYMTABS(objfile, s) \
  ALL_OBJFILES (objfile)	 \
    ALL_OBJFILE_SYMTABS (objfile, s)

/* APPLE LOCAL fix-and-continue */
#define	ALL_SYMTABS_INCL_OBSOLETED(objfile, s) \
  ALL_OBJFILES (objfile)	 \

/* Traverse all psymtabs in all objfiles.  */

#define	ALL_PSYMTABS(objfile, p) \
  ALL_OBJFILES (objfile)	 \
    ALL_OBJFILE_PSYMTABS (objfile, p)

/* Traverse all minimal symbols in all objfiles.  */

#define	ALL_MSYMBOLS(objfile, m) \
  ALL_OBJFILES (objfile)	 \
    ALL_OBJFILE_MSYMBOLS (objfile, m)

#define ALL_OBJFILE_OSECTIONS(objfile, osect)	\
  for (osect = objfile->sections; osect < objfile->sections_end; osect++)

#define ALL_OBJSECTIONS(objfile, osect)		\
  ALL_OBJFILES (objfile)			\
    ALL_OBJFILE_OSECTIONS (objfile, osect)

   Always grab the executable objfile when getting section information.  */

/* Given and objfile, always return the main executable objfile
   if one exists. It is safe to call this macro with NULL.  */
struct objfile *executable_objfile (struct objfile *objfile);

/* Given and objfile, always return the separate debug objfile
   if one exists. It is safe to call this macro with NULL.  */
struct objfile *separate_debug_objfile (struct objfile *objfile);

#define SECT_OFF_DATA(objfile) \
     ((executable_objfile(objfile)->sect_index_data == -1) \
      ? (internal_error (__FILE__, __LINE__, _("sect_index_data not initialized")), -1) \
      : executable_objfile(objfile)->sect_index_data)

#define SECT_OFF_RODATA(objfile) \
     ((executable_objfile(objfile)->sect_index_rodata == -1) \
      ? (internal_error (__FILE__, __LINE__, _("sect_index_rodata not initialized")), -1) \
      : executable_objfile(objfile)->sect_index_rodata)

#define SECT_OFF_TEXT(objfile) \
     ((executable_objfile(objfile)->sect_index_text == -1) \
      ? (internal_error (__FILE__, __LINE__, _("sect_index_text not initialized")), -1) \
      : executable_objfile(objfile)->sect_index_text)

/* Sometimes the .bss section is missing from the objfile, so we don't
   want to die here. Let the users of SECT_OFF_BSS deal with an
   uninitialized section index. */
#define SECT_OFF_BSS(objfile) (executable_objfile(objfile))->sect_index_bss

CORE_ADDR objfile_section_offset (struct objfile *objfile, int sect_idx);
CORE_ADDR objfile_text_section_offset (struct objfile *objfile);
CORE_ADDR objfile_data_section_offset (struct objfile *objfile);
CORE_ADDR objfile_rodata_section_offset (struct objfile *objfile);
CORE_ADDR objfile_bss_section_offset (struct objfile *objfile);


struct objfile *find_libobjc_objfile ();

/* APPLE LOCAL: recording which objfiles get hit in symbol lookup.  */
struct objfile_hitlist;
struct objfile_hitlist *objfile_detach_hitlist(void);
int objfile_on_hitlist_p (struct objfile_hitlist *, struct objfile *);
struct cleanup *make_cleanup_objfile_init_clear_hitlist ();
void objfile_add_to_hitlist (struct objfile *);
#endif /* !defined (OBJFILES_H) */