/**************************************************************************** * * * GNAT COMPILER COMPONENTS * * * * C U I N T P * * * * C Implementation File * * * * Copyright (C) 1992-2003 Free Software Foundation, Inc. * * * * GNAT is free software; you can redistribute it and/or modify it under * * terms of the GNU General Public License as published by the Free Soft- * * ware Foundation; either version 2, or (at your option) any later ver- * * sion. GNAT is distributed in the hope that it will be useful, but WITH- * * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * * for more details. You should have received a copy of the GNU General * * Public License distributed with GNAT; see file COPYING. If not, write * * to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, * * MA 02111-1307, USA. * * * * GNAT was originally developed by the GNAT team at New York University. * * Extensive contributions were provided by Ada Core Technologies Inc. * * * ****************************************************************************/ /* This file corresponds to the Ada package body Uintp. It was created manually from the files uintp.ads and uintp.adb. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "ada.h" #include "types.h" #include "uintp.h" #include "atree.h" #include "elists.h" #include "nlists.h" #include "stringt.h" #include "fe.h" #include "gigi.h" /* Universal integers are represented by the Uint type which is an index into the Uints_Ptr table containing Uint_Entry values. A Uint_Entry contains an index and length for getting the "digits" of the universal integer from the Udigits_Ptr table. For efficiency, this method is used only for integer values larger than the constant Uint_Bias. If a Uint is less than this constant, then it contains the integer value itself. The origin of the Uints_Ptr table is adjusted so that a Uint value of Uint_Bias indexes the first element. First define a utility function that operates like build_int_cst for integral types and does a conversion to floating-point for real types. */ static tree build_cst_from_int (tree type, HOST_WIDE_INT low) { if (TREE_CODE (type) == REAL_TYPE) return convert (type, build_int_cst (NULL_TREE, low)); else return force_fit_type (build_int_cst (type, low), false, false, false); } /* Similar to UI_To_Int, but return a GCC INTEGER_CST or REAL_CST node, depending on whether TYPE is an integral or real type. Overflow is tested by the constant-folding used to build the node. TYPE is the GCC type of the resulting node. */ tree UI_To_gnu (Uint Input, tree type) { tree gnu_ret; if (Input <= Uint_Direct_Last) gnu_ret = build_cst_from_int (type, Input - Uint_Direct_Bias); else { Int Idx = Uints_Ptr[Input].Loc; Pos Length = Uints_Ptr[Input].Length; Int First = Udigits_Ptr[Idx]; /* Do computations in integer type or TYPE whichever is wider, then convert later. This avoid overflow if type is short integer. */ tree comp_type = ((TREE_CODE (type) == REAL_TYPE || TYPE_PRECISION (type) >= TYPE_PRECISION (integer_type_node)) ? type : integer_type_node); tree gnu_base = build_cst_from_int (comp_type, Base); if (Length <= 0) abort (); gnu_ret = build_cst_from_int (comp_type, First); if (First < 0) for (Idx++, Length--; Length; Idx++, Length--) gnu_ret = fold (build2 (MINUS_EXPR, comp_type, fold (build2 (MULT_EXPR, comp_type, gnu_ret, gnu_base)), build_cst_from_int (comp_type, Udigits_Ptr[Idx]))); else for (Idx++, Length--; Length; Idx++, Length--) gnu_ret = fold (build2 (PLUS_EXPR, comp_type, fold (build2 (MULT_EXPR, comp_type, gnu_ret, gnu_base)), build_cst_from_int (comp_type, Udigits_Ptr[Idx]))); } gnu_ret = convert (type, gnu_ret); /* We don't need any NOP_EXPR or NON_LVALUE_EXPR on GNU_RET. */ while ((TREE_CODE (gnu_ret) == NOP_EXPR || TREE_CODE (gnu_ret) == NON_LVALUE_EXPR) && TREE_TYPE (TREE_OPERAND (gnu_ret, 0)) == TREE_TYPE (gnu_ret)) gnu_ret = TREE_OPERAND (gnu_ret, 0); return gnu_ret; }